1
|
Queiroz MIC, Sales MVS, Barros EDSS, D' Amato FOS, Gonçalves CM, Ursulino JS, Bueno NB, Marinho C, Rocha U, Aquino TM, Fonseca EJS, Borbely AU, Oliveira HCF, Santos JCC, Leite ACR. Exposure to a contaminated environment and its relationship with human health: Mercury effect on loss of functionality and increased oxidative stress of blood cells. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138088. [PMID: 40179776 DOI: 10.1016/j.jhazmat.2025.138088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/12/2025] [Accepted: 03/27/2025] [Indexed: 04/05/2025]
Abstract
Recent findings indicate elevated levels of total Hg in the waters of the Lagoa Mundaú-Manguaba Estuarine Complex (CELMM, Maceió-AL, Brazil) and the biological fluids of fishermen that live near CELMM. This study assessed Hg levels in whole blood and the functionality, structure, morphology, and oxidative stress of blood cells from fishermen (n = 60) compared with control volunteers (n = 65). A systematic assessment was performed, and our results revealed increased Hg concentration in fishermen's blood. Erythrocyte functionality showed a 39 % decrease in O2 uptake. For peripheral blood mononuclear cells (PBMCs), ROS generation demonstrated an 87 and 116 % increase in O2•- and H2O2 production, respectively, confirmed by fluorescence microscopy. Scanning electron microscopy showed increased roughness in the PBMCs membrane. Secondary oxidative stress markers revealed a reduction in the GSH/GSSG ratio and thiol content. MDA production increased by 89 %, while antioxidant enzyme activities showed a 159 and 22 % increase in SOD and CAT, respectively; otherwise, a depletion of 33 % in GPx. The metabolomic profile exhibited changes in essential amino acids for GSH formation, and energy pathways were modified. Finally, our data indicates that exposure to a polluted environment alters redox status, leading to compromised function and structure of blood cells.
Collapse
Affiliation(s)
- Maiara I C Queiroz
- Instituto de Química e Biotecnologia, Universidade Federal de Alagoas (UFAL), Alagoas, Brazil
| | - Marcos V S Sales
- Instituto de Química e Biotecnologia, Universidade Federal de Alagoas (UFAL), Alagoas, Brazil
| | | | - Flávio O S D' Amato
- Instituto de Física, Universidade Federal de Alagoas (UFAL), Alagoas, Brazil
| | - Camilla M Gonçalves
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas (UFAL), Alagoas, Brazil
| | - Jeferson S Ursulino
- Instituto de Química e Biotecnologia, Universidade Federal de Alagoas (UFAL), Alagoas, Brazil
| | - Nassib B Bueno
- Faculdade de Nutrição, Universidade Federal de Alagoas (UFAL), Alagoas, Brazil
| | | | - Ueslen Rocha
- Instituto de Física, Universidade Federal de Alagoas (UFAL), Alagoas, Brazil
| | - Thiago M Aquino
- Instituto de Química e Biotecnologia, Universidade Federal de Alagoas (UFAL), Alagoas, Brazil
| | | | - Alexandre U Borbely
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas (UFAL), Alagoas, Brazil
| | - Helena C F Oliveira
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), São Paulo, Brazil
| | | | - Ana Catarina R Leite
- Instituto de Química e Biotecnologia, Universidade Federal de Alagoas (UFAL), Alagoas, Brazil.
| |
Collapse
|
2
|
Koide H, Hirata S, Watanabe M, Ochiai H, Kobayashi T, Yasuno G, Mizuno H, Sugiyama E, Kojima S, Dewa T, Egami H, Yonezawa S, Oku N, Asai T. In vivo delivery of antioxidant enzymes with multi-functionalized lipid nanoparticles for sepsis therapy. J Control Release 2025; 382:113734. [PMID: 40233832 DOI: 10.1016/j.jconrel.2025.113734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Accepted: 04/11/2025] [Indexed: 04/17/2025]
Abstract
Supplementing the cell with specific proteins is essential for disease prevention and therapy. However, protein permeability to the cell membrane is quite low because of the molecules large size and hydrophilic nature. Although protein delivery systems have been developing using vectors, their protein encapsulation efficiency depends on electrostatic interaction between proteins and vectors. Since proteins have a weaker net charge high affinity between vector and protein cannot be realized, and thus the encapsulation efficiency of naked proteins into vector is low. Herein, we developed a strategy for delivering target proteins into cells utilizing multifunctionalized lipid nanoparticles (MF-LNPs) prepared using several functional lipids that induce noncovalent interactions. We used two types of antioxidant enzymes, superoxide dismutase (SOD) and catalase (CAT), as model proteins for inflammation therapy. MF-LNPs are prepared by combining positively charged, neutral, and hydrophobic group-functionalized lipids. Optimization of the functional lipid composition alone resulted in MF-LNPs exhibiting nM affinity for SOD and CAT. Proteins were encapsulated in each optimized MF-LNP by freeze-thawing of MF-LNP and protein complexes. Co-treatment with SOD- and CAT-encapsulated MF-LNPs significantly inhibited ROS production in vitro and in vivo. Notably, the survival rate of model mice with severe sepsis was dramatically improved following the co-administration of SOD- and CAT-encapsulated MF-LNPs through the suppression of inflammatory cytokines and improvement of ROS scavenging activities. The findings indicate that this fundamental technology could be useful information for designing protein delivery vectors.
Collapse
Affiliation(s)
- Hiroyuki Koide
- Laboratory of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan.
| | - Shinya Hirata
- Laboratory of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| | - Midori Watanabe
- Laboratory of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| | - Hiroki Ochiai
- Laboratory of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| | - Tatsuya Kobayashi
- Laboratory of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| | - Go Yasuno
- Laboratory of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| | - Hajime Mizuno
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-Ku, Nagoya, Aichi 468-8503, Japan
| | - Eiji Sugiyama
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-Ku, Nagoya, Aichi 468-8503, Japan
| | - Shohei Kojima
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| | - Takehisa Dewa
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| | - Hiromichi Egami
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Sei Yonezawa
- Laboratory of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| | - Naoto Oku
- Laboratory of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| | - Tomohiro Asai
- Laboratory of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| |
Collapse
|
3
|
Wen P, Dirisala A, Guo H, Liu X, Kobayashi S, Kinoh H, Anada T, Tanaka M, Kataoka K, Li J. Engineering durable antioxidative nanoreactors as synthetic organelles for autoregulatory cellular protection against oxidative stress. J Control Release 2025; 382:113683. [PMID: 40185336 DOI: 10.1016/j.jconrel.2025.113683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 03/24/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Polymersomes, which are polymer vesicles containing an aqueous cavity enclosed in a polymer membrane, hold enormous potential for biomedical applications. In recent years, enzyme-loaded polymersomes, serving as therapeutic nanoreactors, have drawn substantial interest. A crucial requirement for effective catalytic function is to impart semipermeability to the vesicular membrane while maintaining its role as a protective barrier for encapsulated enzymes. However, achieving both long-term stability and optimal membrane permeability for sustained functionality remains a challenge in many reported examples. In this study, we introduce ROS-responsive polyion complex vesicles (PICsomes) loaded with antioxidant enzymes (catalase) as antioxidative nanoreactors. The intrinsic semipermeability and crosslinked network structure of the membrane enable long-lasting catalytic function of catalase. The nanoreactor exhibits inherent cell-protective properties against oxidative stress in fibroblasts due to the ROS-scavenging ability of polymers. Notably, triggered by ROS, the nanoreactor demonstrates autoregulatory control of redox homeostasis. This is because the cysteamine released by PICsomes not only acts as a free radical scavenger but also facilitates the transport of L-cysteine into cells, thereby enhancing glutathione (GSH) biosynthesis. The results further demonstrate significant long blood circulation of PICsomes loaded with catalase and strong protection effects against bloodstream oxidative stress, paving the way for the further development of truly effective in vivo therapeutics. These findings underscore the potential of the engineered antioxidative nanoreactor with durable functionality as synthetic organelles for cellular protection against oxidative stress.
Collapse
Affiliation(s)
- Panyue Wen
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Anjaneyulu Dirisala
- Innovation Center of Nanomedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Haochen Guo
- Innovation Center of Nanomedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Xueying Liu
- Innovation Center of Nanomedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Shingo Kobayashi
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hiroaki Kinoh
- Innovation Center of Nanomedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Takahisa Anada
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Kazunori Kataoka
- Innovation Center of Nanomedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan.
| | - Junjie Li
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
4
|
Tian Y, Chen Y, Huang R, Wang T, Wang S. Synergistic inhibition of Pseudomonas aeruginosa by EGCG and I3A: preliminary mechanisms and application in fish meat preservation. Int J Food Microbiol 2025; 436:111193. [PMID: 40239291 DOI: 10.1016/j.ijfoodmicro.2025.111193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 03/25/2025] [Accepted: 04/06/2025] [Indexed: 04/18/2025]
Abstract
Synergistic bacteriostatic action represents a potent strategy for combating microbial contamination in the food industry. This study investigated the synergistic bacteriostatic effect of epigallocatechin gallate (EGCG) and indole-3-carboxaldehyde (I3A). Results showed a pronounced synergistic action of EGCG and I3A against diverse food spoilage microorganisms, most notably Pseudomonas aeruginosa (P. aeruginosa), with a fractional inhibitory concentration index (FICI) of 0.25. Further research revealed that EGCG disrupted the cell wall and cell membrane of P. aeruginosa, while supplementing I3A significantly boosted the concentration of intracellular reactive oxygen species, thereby inflicting cellular damage. Moreover, the EGCG-I3A treatment inhibited the biofilm formation of P. aeruginosa in a dose-dependent manner, with the effectiveness increasing with the quantity of I3A added. Metabolomic study revealed a perturbation in glutathione and taurine metabolic pathways post synergistic treatment, compromising redox homeostasis. This synergistic treatment also downregulated uracil, proline, and glutamate metabolites, thereby suppressing Quorum Sensing (QS) and biofilm-associated expression within P. aeruginosa. Additionally, the combination significantly inhibited P. aeruginosa growth in fish meat. In essence, this study underscored the synergistic bacteriostatic efficacy of EGCG and I3A, highlighting its potential application in food preservation.
Collapse
Affiliation(s)
- Yongqi Tian
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China.
| | - Yuanyuan Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Ruyang Huang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Tao Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China.
| |
Collapse
|
5
|
Narayanan KB. Enzyme-Based Anti-Inflammatory Therapeutics for Inflammatory Diseases. Pharmaceutics 2025; 17:606. [PMID: 40430897 PMCID: PMC12115089 DOI: 10.3390/pharmaceutics17050606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/21/2025] [Accepted: 04/26/2025] [Indexed: 05/29/2025] Open
Abstract
Inflammation is a multifaceted biological response of the immune system against various harmful stimuli, including pathogens (such as bacteria and viruses), cellular damage, toxins, and natural/synthetic irritants. This protective mechanism is essential for eliminating the cause of injury, removing damaged cells, and initiating the repair process. While inflammation is a fundamental component of the body's defense and healing process, its dysregulation can lead to pathological consequences, contributing to various acute and chronic diseases, such as autoimmune disorders, cancer, metabolic syndromes, cardiovascular diseases, neurodegenerative conditions, and other systemic complications. Generally, non-steroidal anti-inflammatory drugs (NSAIDs), corticosteroids, disease-modifying anti-rheumatic drugs (DMARDs), antihistamines, biologics, and colchicine are used as pharmacological agents in the management of inflammatory diseases. However, these conventional treatments often have limitations, including adverse side effects, long-term toxicity, and drug resistance. In contrast, enzyme-based therapeutics have emerged as a promising alternative due to their high specificity, catalytic efficiency, and ability to modulate inflammatory pathways with reduced side effects. These enzymes function by scavenging reactive oxygen species (ROS), inhibiting cytokine transcription, degrading circulating cytokines, and blocking cytokine release by targeting exocytosis-related receptors. Additionally, their role in tissue repair and regeneration further enhances their therapeutic potential. Most natural anti-inflammatory enzymes belong to the oxidoreductase class, including catalase and superoxide dismutase, as well as hydrolases such as trypsin, chymotrypsin, nattokinase, bromelain, papain, serratiopeptidase, collagenase, hyaluronidase, and lysozyme. Engineered enzymes, such as Tobacco Etch Virus (TEV) protease and botulinum neurotoxin type A (BoNT/A), have also demonstrated significant potential in targeted anti-inflammatory therapies. Recent advancements in enzyme engineering, nanotechnology-based enzyme delivery, and biopharmaceutical formulations have further expanded their applicability in treating inflammatory diseases. This review provides a comprehensive overview of both natural and engineered enzymes, along with their formulations, used as anti-inflammatory therapeutics. It highlights improvements in stability, efficacy, and specificity, as well as minimized immunogenicity, while discussing their mechanisms of action and clinical applications and potential future developments in enzyme-based biomedical therapeutics.
Collapse
Affiliation(s)
- Kannan Badri Narayanan
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Gyeongbuk, Republic of Korea; or
- Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| |
Collapse
|
6
|
Luo Z, Wang Q, Fan X, Koh XQ, Loh XJ, Wu C, Li Z, Wu Y. ROS-Driven Nanoventilator for MRSA-Induced Acute Lung Injury Treatment via In Situ Oxygen Supply, Anti-Inflammation and Immunomodulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2406060. [PMID: 40106334 PMCID: PMC12079454 DOI: 10.1002/advs.202406060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/06/2024] [Indexed: 03/22/2025]
Abstract
Hypoxia, inflammatory response and pathogen (bacterial or viral) infection are the three main factors that lead to death in patients with acute lung injury (ALI). Among them, hypoxia activates the expression of HIF-1α, further exacerbating the production of ROS and inflammatory response. Currently, anti-inflammatory and pathogen elimination treatment strategies have effectively alleviated infectious pneumonia, but improving lung hypoxia still faces challenges. Here, a vancomycin-loaded nanoventilator (SCVN) containing superoxide dismutase (SOD) and catalase (CAT) is developed, which is prepared by encapsulating SOD, CAT and vancomycin into a nanocapsule by in situ polymerization. This nanocapsule can effectively improve the stability and loading rate of enzymes, and enhance their enzyme cascade efficiency, thereby efficiently consuming •O2 - and H2O2 to generate O2 in situ and reducing ROS level. More interestingly, in situ O2 supply can effectively relieve lung hypoxia to reduce HIF-1α expression and balance the number of M1/M2 macrophages to reduce the levels of TNF-α, IL-1β and IL-6, thereby alleviating the inflammatory response. Meanwhile, vancomycin can target and kill MRSA, fundamentally solving the cause of pneumonia. This nanoventilator with antibacterial, anti-inflammatory, ROS scavenging and in situ O2 supply functions will provide a universal clinical treatment strategy for ALI caused by pathogens.
Collapse
Affiliation(s)
- Zheng Luo
- State Key Laboratory of Cellular Stress BiologyFujian Provincial Key Laboratory of Innovative Drug Target ResearchSchool of Pharmaceutical SciencesXiamen UniversityXiamen361102China
- Institute of Materials Research and Engineering (IMRE)Agency for ScienceTechnology and Research (A*STAR)2 Fusionopolis Way, Innovis #08‐03Singapore138634Republic of Singapore
| | - Qi Wang
- State Key Laboratory of Cellular Stress BiologyFujian Provincial Key Laboratory of Innovative Drug Target ResearchSchool of Pharmaceutical SciencesXiamen UniversityXiamen361102China
| | - Xiaotong Fan
- Institute of Sustainability for ChemicalsEnergy and Environment (ISCE2)Agency for Science, Technology and Research (A*STAR)1 Pesek Road, Jurong IslandSingapore627833Republic of Singapore
| | - Xue Qi Koh
- Institute of Materials Research and Engineering (IMRE)Agency for ScienceTechnology and Research (A*STAR)2 Fusionopolis Way, Innovis #08‐03Singapore138634Republic of Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE)Agency for ScienceTechnology and Research (A*STAR)2 Fusionopolis Way, Innovis #08‐03Singapore138634Republic of Singapore
| | - Caisheng Wu
- State Key Laboratory of Cellular Stress BiologyFujian Provincial Key Laboratory of Innovative Drug Target ResearchSchool of Pharmaceutical SciencesXiamen UniversityXiamen361102China
| | - Zibiao Li
- Institute of Materials Research and Engineering (IMRE)Agency for ScienceTechnology and Research (A*STAR)2 Fusionopolis Way, Innovis #08‐03Singapore138634Republic of Singapore
- Institute of Sustainability for ChemicalsEnergy and Environment (ISCE2)Agency for Science, Technology and Research (A*STAR)1 Pesek Road, Jurong IslandSingapore627833Republic of Singapore
- Department of Materials Science and EngineeringNational University of SingaporeSingapore117576Republic of Singapore
| | - Yun‐Long Wu
- State Key Laboratory of Cellular Stress BiologyFujian Provincial Key Laboratory of Innovative Drug Target ResearchSchool of Pharmaceutical SciencesXiamen UniversityXiamen361102China
| |
Collapse
|
7
|
Fu Q, Qiu R, Yao T, Liu L, Li Y, Li X, Qi W, Chen Y, Cheng Y. Music therapy as a preventive intervention for postpartum depression: modulation of synaptic plasticity, oxidative stress, and inflammation in a mouse model. Transl Psychiatry 2025; 15:143. [PMID: 40216751 PMCID: PMC11992210 DOI: 10.1038/s41398-025-03370-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 03/17/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
Postpartum depression (PPD) significantly impacts women's mental health and social functioning, yet effective therapies remain limited. This study investigates the preventive effects of music therapy on PPD-like behaviors and the underlying neurobiological mechanisms in a mouse model subjected to ovarian hormone withdrawal (HW). Mice exposed to daily music sessions exhibited markedly reduced depression- and anxiety-like behaviors, as evidenced by enhanced performance in behavioral tests such as the open field test (OFT), forced swim test (FST), elevated plus maze test (EPM), sucrose preference test (SPT), novelty-suppressed feeding (NSF) test, and tail suspension test (TST). Furthermore, music therapy normalized oxidative stress indicators (NO, MDA, SOD, CAT, GSH-Px, T-AOC, ATP, and glutamate) in the serum, hippocampus, and prefrontal cortex. Additionally, music exposure reduced levels of proinflammatory factors (IL-6, IL-1β, iNOS, TNF-α, and TGF-β) and the activation of microglia and astrocytes in these brain regions. Notably, music therapy preserved neuronal integrity, promoted neurogenesis, and maintained synaptic plasticity, evidenced by the restoration of dendritic spines. Transcriptome sequencing identified differential gene expression in pathways related to synaptic plasticity, inflammation, and oxidative stress. These findings suggest that music therapy prevents PPD by modulating oxidative stress, inflammation, and synaptic integrity, providing robust preclinical evidence for its potential as a natural preventive intervention for PPD. This study underscores the need for further clinical research to validate the therapeutic efficacy of music in preventing PPD in humans, highlighting its promise as a non-invasive and accessible treatment modality.
Collapse
Affiliation(s)
- Qiang Fu
- Institute of National Security, Center on Translational Neuroscience, Minzu University of China, Beijing, China
- School of Ethnology and Sociology, Minzu University of China, Beijing, China
| | - Rui Qiu
- Institute of National Security, Center on Translational Neuroscience, Minzu University of China, Beijing, China
- School of Ethnology and Sociology, Minzu University of China, Beijing, China
| | - Tongtong Yao
- Institute of National Security, Center on Translational Neuroscience, Minzu University of China, Beijing, China
- School of Ethnology and Sociology, Minzu University of China, Beijing, China
| | - Liming Liu
- Institute of National Security, Center on Translational Neuroscience, Minzu University of China, Beijing, China
- School of Ethnology and Sociology, Minzu University of China, Beijing, China
| | - Yaobo Li
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Xiaodong Li
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Wen Qi
- College of Dance, Minzu University of China, Beijing, China.
| | - Yuewen Chen
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong, China.
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen, Guangdong, China.
- SIAT-HKUST Joint Laboratory for Brain Science, Chinese Academy of Sciences, Shenzhen, Guangdong, China.
| | - Yong Cheng
- Institute of National Security, Center on Translational Neuroscience, Minzu University of China, Beijing, China.
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China.
| |
Collapse
|
8
|
Gong W, Liu Z, Wang Y, Huang W, Yang K, Gao Z, Guo K, Xiao Z, Zhao W. Reprogramming of Treg cell-derived small extracellular vesicles effectively prevents intestinal inflammation from PANoptosis by blocking mitochondrial oxidative stress. Trends Biotechnol 2025; 43:893-917. [PMID: 39689981 DOI: 10.1016/j.tibtech.2024.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 12/19/2024]
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing immune-mediated inflammatory disorder of the alimentary tract without exact etiology. Mitochondrial reactive oxygen species (mtROS) derived from mitochondrial dysfunction impair intestinal barrier function, increase gut permeability, and facilitate immune cell invasion, and, therefore, are considered to have a pivotal role in the pathogenesis of IBD. Here, we reprogrammed regulatory T cell (Treg)-derived exosomes loaded with the antioxidant trace element selenium (Se) and decorated them with the synthetic mitochondria-targeting SS-31 tetrapeptide via a peptide linker. This linker can be cleaved by matrix metalloproteinases (MMPs) in inflammatory lesions. This actively targetable exosome-derived delivery system is protected from intestinal inflammation by scavenging excessive mtROS and preventing immunologically programmed cell death pyroptosis, necroptosis, and apoptosis, known as PANoptosis. Our results suggest that this engineered exosome delivery platform represents a promising targeted therapeutic strategy for the treatment of IBDs.
Collapse
Affiliation(s)
- Wenbin Gong
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhenni Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Yuqiu Wang
- Zhuhai Campus of Zunyi Medical University, Zhuhai, 519041, China
| | - Wenbo Huang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Kui Yang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhenhai Gao
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Kun Guo
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| | - Zhengtao Xiao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China.
| | - Wei Zhao
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
9
|
Wu A, Liang C, Chen W, Lu C, Chen J, Wu B, Chen D, He L, Wang X. ZnO-Cu/Mn nanozyme for rescuing the intestinal homeostasis in Salmonella-induced colitis. J Nanobiotechnology 2025; 23:225. [PMID: 40114178 PMCID: PMC11924796 DOI: 10.1186/s12951-025-03283-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 02/28/2025] [Indexed: 03/22/2025] Open
Abstract
Salmonella is one of the most common foodborne pathogens, which can cause severe enteritis and intestinal microbiota imbalance. However, there are limited strategies currently available for preventing or treating Salmonella-induced colitis. Herein, we developed the Cu/Mn-co-doped ZnO tandem nanozyme (ZnO-CM) with pH-responsive multienzyme-mimicking activities via doping engineering for the treatment of Salmonella-induced colitis. Benefiting from the co-doping of Cu and Mn, ZnO-CM nanospheres exhibit remarkable peroxidase-like activity in acidic condition and superoxide dismutase- and catalase-like activities in neutral environment. Animal experiments show that ZnO-CM can efficiently inhibit bacterial growth, alleviate inflammation, and restore the intestinal barrier, resulting in good antibacterial and anti-inflammatory effects on Salmonella-induced colitis. Mechanistically, ZnO-CM functions through inhibiting the continuous accumulation of ROS, increasing the levels of tight junction proteins occludin and claudin-1, and decreasing the expression of pro-inflammatory cytokines IL-1β and IL-6 in intestine. This work not only presents an effective paradigm for Salmonella-induced colitis therapy, but also provides new sights into the prevention and treatment of other bacterial enteritis.
Collapse
Affiliation(s)
- Aimin Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chen Liang
- College of Science, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - WenShuang Chen
- College of Science, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - ChangFang Lu
- College of Science, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - JunZhou Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bing Wu
- Sichuan Chelota Biotechnology Group Co., Ltd, Chengdu, 618302, Sichuan, China
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Li He
- College of Science, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Xianxiang Wang
- College of Science, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
10
|
Jia X, Wang E, Wang J. Rational Design of Nanozymes for Engineered Cascade Catalytic Cancer Therapy. Chem Rev 2025; 125:2908-2952. [PMID: 39869790 DOI: 10.1021/acs.chemrev.4c00882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Nanozymes have shown significant potential in cancer catalytic therapy by strategically catalyzing tumor-associated substances and metabolites into toxic reactive oxygen species (ROS) in situ, thereby inducing oxidative stress and promoting cancer cell death. However, within the complex tumor microenvironment (TME), the rational design of nanozymes and factors like activity, reaction substrates, and the TME itself significantly influence the efficiency of ROS generation. To address these limitations, recent research has focused on exploring the factors that affect activity and developing nanozyme-based cascade catalytic systems, which can trigger two or more cascade catalytic processes within tumors, thereby producing more therapeutic substances and achieving efficient and stable cancer therapy with minimal side effects. This area has shown remarkable progress. This Perspective provides a comprehensive overview of nanozymes, covering their classification and fundamentals. The regulation of nanozyme activity and efficient strategies of rational design are discussed in detail. Furthermore, representative paradigms for the successful construction of cascade catalytic systems for cancer treatment are summarized with a focus on revealing the underlying catalytic mechanisms. Finally, we address the current challenges and future prospects for the development of nanozyme-based cascade catalytic systems in biomedical applications.
Collapse
Affiliation(s)
- Xiuna Jia
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Jin Wang
- Center for Theoretical Interdisciplinary Sciences Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, P. R. China
- Department of Chemistry and Physics, State University of New York at Stony Brook, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
11
|
Huang Y, Cai H, Liu H, Wang L, Feng G, Ding Z, Fei Y, Li A, Fang J. Probiotic nanocomposite materials with excellent resistance, inflammatory targeting, and multiple efficacies for enhanced treatment of colitis in mice. J Nanobiotechnology 2025; 23:188. [PMID: 40055678 PMCID: PMC11889847 DOI: 10.1186/s12951-025-03240-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 02/18/2025] [Indexed: 05/13/2025] Open
Abstract
The occurrence of inflammatory bowel disease (IBD) is relevant to impaired intestinal mucosal barrier and disordered gut microbiota, subsequently leading to excessive production of reactive oxygen species (ROS) and elevated levels of inflammatory factors. Traditional therapies focus on inhibiting inflammation, but the vast majority involve non-targeted systemic administration, whose long-term use may result in potential side effects. Oral microbial therapy has exhibited great application prospects currently in IBD treatment; however, its progress has been slowed by issues with deficient bioavailability, poor targeting of colitis, and low therapeutic efficacy. Consequently, it is exceedingly desirable to develop a strategy by which probiotics can be endowed with additional anti-inflammatory and antioxidant properties, as well as enhanced targeting of the inflamed intestine. Herein, we present an innovative therapeutic strategy for encapsulating probiotic Bacillus coagulans spores with rosmarinic acid (RA) and silk fibroin (SF). Probiotics in spore morphology possessed strong gastrointestinal environmental resistance; RA alleviated oxidative damage by scavenging ROS and inhibited inflammatory responses; SF assisted probiotics release and colonize in the inflamed intestine. We demonstrated the therapeutic efficacy of probiotic composite materials in a colitis mouse model, which significantly alleviated a series of colitis symptoms, inhibited inflammatory cytokine storms, restored the balance of the gut microbiota, and downregulated inflammation-related signaling pathways. We are optimistic that the utilization of therapeutic nanocoating to modify probiotics will open up novel avenues for future microbial therapy targeting IBD.
Collapse
Affiliation(s)
- Yuewen Huang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Hongting Cai
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Huipeng Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Lixiang Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Guangfu Feng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
| | - Zizi Ding
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Yanquan Fei
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Aike Li
- Feed Research Institute/Grain Quality & Nutrition Institute, Key Laboratory of Grain and Oil Biotechnology of National Food and Strategic Reserves Administration, Academy of National Food and Strategic Reserves Administration, Beijing, 100037, China.
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
12
|
Liao R, Wang L, Zeng J, Tang X, Huang M, Kantawong F, Huang Q, Mei Q, Huang F, Yang Y, Liao B, Wu A, Wu J. Reactive oxygen species: Orchestrating the delicate dance of platelet life and death. Redox Biol 2025; 80:103489. [PMID: 39764976 PMCID: PMC11759559 DOI: 10.1016/j.redox.2025.103489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/27/2024] [Accepted: 01/02/2025] [Indexed: 01/28/2025] Open
Abstract
Platelets, which are vital for blood clotting and immunity, need to maintain a delicately balanced relationship between generation and destruction. Recent studies have highlighted that reactive oxygen species (ROS), which act as second messengers in crucial signaling pathways, are crucial players in this dance. This review explores the intricate connection between ROS and platelets, highlighting their dual nature. Moderate ROS levels act as potent activators, promoting megakaryocyte (MK) differentiation, platelet production, and function. They enhance platelet binding to collagen, increase coagulation, and directly trigger cascades for thrombus formation. However, this intricate role harbors a double-edged sword. Excessive ROS unleash its destructive potential, triggering apoptosis and reducing the lifespan of platelets. High levels can damage stem cells and disrupt vital redox-dependent signaling, whereas uncontrolled activation promotes inappropriate clotting, leading to thrombosis. Maintaining a precise balance of ROS within the hematopoietic microenvironment is paramount for optimal platelet homeostasis. While significant progress has been made, unanswered questions remain concerning specific ROS signaling pathways and their impact on platelet disorders. Addressing these questions holds the key to unlocking the full potential of ROS-based therapies for treating platelet-related diseases such as thrombocytopenia and thrombosis. This review aims to contribute to this ongoing dialog and inspire further exploration of this exciting field, paving the way for novel therapeutic strategies that harness the benefits of ROS while mitigating their dangers.
Collapse
Affiliation(s)
- Rui Liao
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China; School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Long Wang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Jing Zeng
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Xiaoqin Tang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Miao Huang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Fahsai Kantawong
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Qianqian Huang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Qibing Mei
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Feihong Huang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Yan Yang
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
| | - Bin Liao
- Department of Cardiovascular Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China.
| | - Anguo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China.
| | - Jianming Wu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
13
|
Shen J, Liu H, Wang M, Lu B, Ke K, Wei Y, Gao F, Wang Q, Huang S, Ma Y. Effects of Brown Algae ( Laminaria japonica) Extract on Growth Performance, Immune Function and Intestinal Health of Largemouth Bass ( Micropterus salmoides). Animals (Basel) 2025; 15:622. [PMID: 40075905 PMCID: PMC11898121 DOI: 10.3390/ani15050622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/05/2025] [Accepted: 02/11/2025] [Indexed: 03/14/2025] Open
Abstract
This study used largemouth bass (initial average weight: 33.33 ± 1.8 g) to explore the effects of adding different brown algae extracts to feed on the fish's growth, immunity and intestinal health. Six groups were set up: a control (Group A), 0.1% sodium alginate (Group B), 0.1% oligotriosaccharide I (Group C), 0.1% oligotriosaccharide II (Group D), 0.2% brown algae powder (Group E) and 0.2% brown algae powder enzymatic product (Group F), with three replicates of 35 fish each, and a 56-day feeding experiment. Results: Compared to Group A, Groups C, D and F had a higher specific growth rate and lower feed coefficient (p < 0.05). Group D had enhanced serum SOD activity; Group F had increased antioxidant enzyme activity and decreased MDA content (p < 0.05). All experimental groups had higher serum LZM levels (p < 0.05), with no IgM difference (p > 0.05). In the intestine, treatment groups had higher α-amylase activity (p < 0.05) and no lipase difference (p > 0.05), and Groups C, D and F had higher trypsin activity (p < 0.05). Group F had the tallest villi, Group B had the thickest muscular layer (p < 0.05), and villus width was similar among groups (p > 0.05). The experimental groups had fewer intestinal pathogenic bacteria, and Group F had improved intestinal microorganism diversity and richness (p < 0.05). In conclusion, adding 0.1% oligotriosaccharide and 0.2% brown algae powder enzymatic product to feed can promote largemouth bass growth, antioxidant capacity and immunity. The 0.2% brown algae powder enzymatic product is better for intestinal development and flora improvement.
Collapse
Affiliation(s)
- Jiajia Shen
- Key Laboratory of Aquatic Healthy Breeding and Nutrition Regulation of Guangxi Universities, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Hongxiang Liu
- Key Laboratory of Aquatic Healthy Breeding and Nutrition Regulation of Guangxi Universities, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Mengran Wang
- Key Laboratory of Aquatic Healthy Breeding and Nutrition Regulation of Guangxi Universities, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Bo Lu
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynethesis Chemistry, Guangxi Academy of Sciences, Nanning 530007, China
| | - Ke Ke
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynethesis Chemistry, Guangxi Academy of Sciences, Nanning 530007, China
| | - Yunyong Wei
- Key Laboratory of Aquatic Healthy Breeding and Nutrition Regulation of Guangxi Universities, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Feng Gao
- Key Laboratory of Aquatic Healthy Breeding and Nutrition Regulation of Guangxi Universities, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Qiaozhen Wang
- National Key Laboratory of Non-Food Biomass Energy Technology, National Engineering Research Center for Non-Food Biorefinery, Institute of Biological Science and Technology, Guangxi Academy of Sciences, Nanning 530007, China
| | - Shushi Huang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynethesis Chemistry, Guangxi Academy of Sciences, Nanning 530007, China
| | - Yanqun Ma
- Key Laboratory of Aquatic Healthy Breeding and Nutrition Regulation of Guangxi Universities, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| |
Collapse
|
14
|
Su D, Peng J, Hao J, Wang X, Yu P, Li S, Shi H. Integrated multiomics approach and pathological analyses provide new insights into hepatic injury and metabolic alterations in Saanen goats after dietary exposure to aflatoxin B 1. J Dairy Sci 2025; 108:1431-1450. [PMID: 39477065 DOI: 10.3168/jds.2024-25430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/04/2024] [Indexed: 01/25/2025]
Abstract
Exploring the toxicity and metabolic mechanisms of aflatoxin B1 (AFB1) in ruminants can help to develop strategies to prevent or reduce the transfer of the toxin and its metabolites to milk and meat. This study aimed to explore the effects of 3 concentrations of dietary AFB1 (0, 50, and 500 μg/kg) on hepatic injury and metabolism in Saanen goats via histological examination, western blot analysis, as well as integrated multiomics techniques. Eighteen Saanen goats were assigned to 1 of 3 treatments and the AFB1 challenge lasted for 14 d. Results showed that the liver tissue was enlarged and the relative organ index of the liver was linearly increased with elevated AFB1 levels. The hepatocyte apoptosis rate was significantly increased after AFB1 exposure, and the western blotting results revealed that both the external apoptotic pathway and mitochondrial-mediated intrinsic apoptotic pathway might be involved in AFB1-induced hepatocyte apoptosis. We identified 251, 269, and 154 significant differentially expressed genes (DEG) and 340, 596, and 127 significant differential metabolites in comparisons between the control (CON; 0 μg/kg) and low-dose (LO; 50 μg/kg) groups, the CON and high-dose (HI; 500 μg/kg) groups, and the LO and HI groups, respectively. The DEG annotated were mainly involved in the cell part, cell, single-organism process, cellular process, binding, and other functional categories. The identified metabolites primarily belonged to glycerophospholipids, prenol lipids, carboxylic acids, and derivatives. Integrative analysis of transcriptomics and metabolomics revealed that glycerophospholipids metabolism and choline metabolism in cancer were the most affected pathways related to AFB1 exposure. The identified differential metabolites, DEG, and pathways might have played a crucial role in the hepatic injury induced by AFB1 in goats.
Collapse
Affiliation(s)
- Donghua Su
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, Sichuan 610041, China
| | - Jing Peng
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, Sichuan 610041, China
| | - Jingjing Hao
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, Sichuan 610041, China
| | - Xi Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, Sichuan 610041, China
| | - Peiqiang Yu
- College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK S7N5A8, Canada
| | - Shengli Li
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, China Agricultural University, Beijing 100193, China
| | - Haitao Shi
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
15
|
Wang J, Zhang G, Xing K, Wang B, Liu Y, Xue Y, Liu S, Leong DT. Influencing inter-cellular junctions with nanomaterials. Adv Colloid Interface Sci 2025; 336:103372. [PMID: 39671889 DOI: 10.1016/j.cis.2024.103372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/29/2024] [Accepted: 11/30/2024] [Indexed: 12/15/2024]
Abstract
Cell-cell junctions are essential for maintaining tissue integrity and regulating a wide range of physiological processes. While the disruption of intercellular junctions may lead to pathological conditions, it also presents an opportunity for therapeutic interventions. Nanomaterials have emerged as promising tools for modulating cell-cell junctions, offering new avenues for innovative treatments. In this review, we provide a comprehensive overview of the various nanomaterials interaction with cell-cell junctions. We discussed their underlying mechanisms, heterogenous effects on cellular behavior, and the therapeutic strategies of applying nanomaterial-induced intercellular junction disruption. Additionally, we address the challenges and opportunities involved in translating these strategies into clinical practice and discuss future directions for this rapidly advancing field.
Collapse
Affiliation(s)
- Jinping Wang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| | - Guoying Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Kuoran Xing
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| | - Baoteng Wang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Yanping Liu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yuling Xue
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Shankui Liu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| |
Collapse
|
16
|
Meng T, Feng R, Zhu Y, Luo J, Zhang A, Liu Y, Chen J, Yang C. Sulforaphane relieved inflammation symptoms in EAP mice by blocking oxidative stress and NLRP3 inflammasome activation through the Nrf2 pathway. Clin Exp Immunol 2025; 219:uxaf022. [PMID: 40207573 PMCID: PMC12070798 DOI: 10.1093/cei/uxaf022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 02/07/2025] [Accepted: 04/02/2025] [Indexed: 04/11/2025] Open
Abstract
Chronic prostatitis and chronic pelvic pain syndrome (CP/CPPS) are diagnosed in patients with various pelvic or genitourinary symptoms irrespective of the presence of a tender prostate. The etiology of chronic nonbacterial prostatitis remains unclear. Current treatments such as alpha-blockers, neuroleptics, anti-inflammatory, medications, and physical therapy, are often unsatisfactory. New treatments, as well as an improved knowledge of the underlying CP/CPPS pathogenesis, are thus needed. Sulforaphane (SFN), an isothiocyanate found in large quantities in Brassica species, has shown therapeutic effects on inflammation and cancer, and can protect against DNA damage and modulate the cell cycle to control apoptosis, angiogenesis, and metastasis. At the molecular level, SFN modulates cell homeostasis by activating the transcription factor Nrf2. However, its effect on CP/CPPS is not clear. Here, SFN was found to alleviate inflammation by suppressing NLRP3 inflammasomes via the Nrf2/HO-1 axis, as demonstrated in both animal and cellular analyses.
Collapse
Affiliation(s)
- Tong Meng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, China
| | - Rui Feng
- Department of Urology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yunlong Zhu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, China
| | - Jincheng Luo
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, China
| | - Andong Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, China
| | - Yi Liu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, China
| | - Jing Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, China
| | - Cheng Yang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
17
|
Fu Q, Qiu R, Liang J, Wu S, Huang D, Qin Y, Li Q, Shi X, Xiong X, Jiang Z, Chen Y, Cheng Y. Sugemule-7 alleviates oxidative stress, neuroinflammation, and cell death, promoting synaptic plasticity recovery in mice with postpartum depression. Sci Rep 2025; 15:1426. [PMID: 39789071 PMCID: PMC11718020 DOI: 10.1038/s41598-025-85276-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/01/2025] [Indexed: 01/12/2025] Open
Abstract
Postpartum depression (PPD) profoundly impacts the mental and physical health of women globally and is an incurable psychological disorder. Traditional pharmacological treatments often have strong side effects and may adversely affect infant health through breastfeeding, underscoring the critical need for natural and gentle treatment strategies. Sugemule-7, a traditional Chinese medicine comprising multiple natural plant ingredients, represents a potentially safer and more effective alternative. To investigate its preventive effects on PPD, we established an animal model and administered the drug Sugemule-7. Our study demonstrated that varying doses of Sugemule-7 effectively alleviated depressive and anxiety-like behaviors in PPD mice, as assessed through a battery of tests, including the open field test, tail suspension test, sucrose preference test, forced swim test, novelty-suppressed feeding test, and elevated plus maze test. Furthermore, Sugemule-7 significantly improved oxidative stress levels in the serum, prefrontal cortex, and hippocampus of PPD-induced mice while also suppressing inflammatory responses and abnormal neuronal death in these brain regions. Transcriptomic sequencing of hippocampal and prefrontal cortex tissues supported our findings, revealing that differential gene expression is primarily involved in regulating synaptic plasticity. Overall, our study confirms the efficacy of Sugemule-7 in treating PPD at different concentrations, potentially alleviating depressive behaviors by enhancing synaptic plasticity, mitigating oxidative stress, reducing inflammation, and protecting neurons.
Collapse
Affiliation(s)
- Qiang Fu
- Center on Translational Neuroscience, Institute of National Security, Minzu University of China, Beijing, China
- School of Ethnology and Sociology, Minzu University of China, Beijing, China
| | - Rui Qiu
- Center on Translational Neuroscience, Institute of National Security, Minzu University of China, Beijing, China
- School of Ethnology and Sociology, Minzu University of China, Beijing, China
| | - Jiaquan Liang
- Center on Translational Neuroscience, Institute of National Security, Minzu University of China, Beijing, China
| | - Shuai Wu
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Dezhi Huang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yuxiang Qin
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Qiaosheng Li
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Xiaojie Shi
- School of Pharmacy, Minzu University of China, Beijing, China
| | - Xiyue Xiong
- NHC Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Zhongyong Jiang
- Department of Medical Laboratory, Affiliated Cancer Hospital of Chengdu Medical College, Chengdu Seventh People's Hospital, Chengdu, Sichuan, China
| | - Yuewen Chen
- Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Chinese Academy of Sciences, Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, Guangdong, China.
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen, 518057, Guangdong, China.
- Xili Shenzhen University Town, No.1068 Xueyuan Avenue, Nanshan District, Shenzhen, 518055, China.
| | - Yong Cheng
- Center on Translational Neuroscience, Institute of National Security, Minzu University of China, Beijing, China.
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China.
- , 27th South Zhongguancun Avenue, Beijing, 100081, China.
| |
Collapse
|
18
|
Pu X, Lu C, Yang X, He H, Chen X, Wang R, Li B, Chen S, Zhang Y, Wang W, Li Y. Unveiling the hepatoprotective mechanisms of Desmodium heterocarpon (L.) DC: Novel flavonoid identification and Keap1/Nrf2 pathway activation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156323. [PMID: 39706064 DOI: 10.1016/j.phymed.2024.156323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/08/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND The pathophysiology of liver diseases is significantly influenced by oxidative stress, making its alleviation a key strategy for treatment. The Keap1/Nrf2 signaling pathway is the body's most crucial antioxidant defense mechanism. Traditional Chinese medicine, Desmodium heterocarpon (L.) DC, has shown promising hepatoprotective effects, however, the specific active components and underlying mechanisms of its liver-protective properties remain inadequately understood. Further investigation into the bioactive constituents and mechanisms of its hepatoprotective action is therefore essential. OBJECTIVE This study aims to identify the active ingredients in D. heterocarpon and to explore its hepatoprotective properties and underlying mechanisms. METHODS The hepatoprotective activity of the ethyl acetate fraction (JEAE) from D. heterocarpon was first evaluated utilizing a mouse model of acute liver damage (ALI) caused by CCl4. Molecular and histological analyses, including H&E staining, ELISA, and Western blot, were used to assess liver protection. The chemical constituents of JEAE were further identified using UPLC-MS/MS, and the molecular network of the JEAE fraction was analyzed. Compounds were isolated through column chromatography, and their antioxidant and hepatoprotective effects were assessed in an H₂O₂-induced HepG2 cell model using molecular assays. Additionally, binding interactions between active compounds and Keap1 were evaluated using molecular docking, molecular dynamics simulations, and surface plasmon resonance. RESULTS The ethyl acetate fraction of Desmodium heterocarpon (JEAE) showed remarkable antioxidant activity, with the highest flavonoid contents among extract fractions. In CCl₄-induced liver injury models, JEAE improved liver function, reduced ALT and AST levels, and enhanced antioxidant enzyme activities, suggesting hepatoprotective effects via the Keap1/Nrf2 pathway. 47 compounds were identified in JEAE, and fourteen flavonoids, including two novel compounds (1 and 2), were isolated from the JEAE fraction. Compounds 1, 3, 5, 8, and 14 notably protected HepG2 cells from oxidative damage, reduced ROS levels, and maintained mitochondrial function. These compounds also showed strong binding affinities to Keap1 and other antioxidant receptors, with molecular dynamics simulations confirming their stability and binding potential as effective hepatoprotective agents. CONCLUSION This study demonstrates that the ethyl acetate fraction of Desmodium heterocarpon (JEAE) exhibits significant hepatoprotective effects, largely attributed to its flavonoid-rich composition. The protective effects are mediated through antioxidant pathways, particularly the Keap1/Nrf2 signaling pathway. Newly identified isoflavanes and other flavonoids in JEAE show strong potential as bioactive compounds, with stability and binding affinities supporting their role in reducing oxidative stress. These findings suggest D. heterocarpon as a promising source of hepatoprotective agents and provide a foundation for further exploration of its therapeutic applications.
Collapse
Affiliation(s)
- XingNa Pu
- Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Cheng Lu
- Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Xing Yang
- Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - HongPing He
- Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - XingLong Chen
- Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - RuiRui Wang
- Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - BaoJing Li
- Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Shuai Chen
- Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Yi Zhang
- Yunnan University of Chinese Medicine, Kunming, 650500, China.
| | - WeiGuang Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650031, China.
| | - YanPing Li
- Yunnan University of Chinese Medicine, Kunming, 650500, China.
| |
Collapse
|
19
|
Li H, Pan M, Li Y, Liang H, Cui M, Zhang M, Zhang M. Nanomedicine: The new trend and future of precision medicine for inflammatory bowel disease. Chin Med J (Engl) 2024; 137:3073-3082. [PMID: 39679456 PMCID: PMC11706594 DOI: 10.1097/cm9.0000000000003413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Indexed: 12/17/2024] Open
Abstract
ABSTRACT Nanomedicine is an interdisciplinary area that utilizes nanoscience and technology in the realm of medicine. Rapid advances in science and technology have propelled the medical sector into a new era. The most commonly used nanotechnology in the field of medicine is nanoparticles. Due to their unique physicochemical properties, nanoparticles offer significant benefits of precision medicine for diseases such as inflammatory bowel disease that cannot be effectively treated by existing approaches. Nanomedicine has emerged as a highly active research field, with extensive scientific and technological studies being carried out, as well as growing international competition in the commercialization of this field. The accumulation of expertise in the key technologies relating to nanomedicine would provide strategic advantages in the development of cutting-edge medical techniques. This review presented a comprehensive analysis of the primary uses of nanoparticles in medicine, including recent advances in their application for the diagnosis and treatment of inflammatory bowel disease. Furthermore, we discussed the challenges and possibilities associated with the application of nanoparticles in clinical settings.
Collapse
Affiliation(s)
- Huanyu Li
- Second Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China
| | - Meng Pan
- School of Basic Medical Sciences, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China
| | - Yifan Li
- Second Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China
| | - Hao Liang
- Department of Gastroenterology, The First Affiliated Hospital of Xi’an Medical University, Xi’an, Shaanxi 710077, China
| | - Manli Cui
- Department of Gastroenterology, The First Affiliated Hospital of Xi’an Medical University, Xi’an, Shaanxi 710077, China
| | - Mingzhen Zhang
- School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Mingxin Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xi’an Medical University, Xi’an, Shaanxi 710077, China
- Engineering Research Center of Shaanxi Universities for Innovative Services of Chronic Disease Prevention and Control and Transformation of Nutritional Functional Food, Xi’an, Shaanxi 710077, China
| |
Collapse
|
20
|
Ou Z, Wei J, Lei J, Wu D, Tong B, Liang H, Zhu D, Wang H, Zhou X, Xu H, Du Z, Du Y, Tan L, Yang C, Feng X. Biodegradable Janus sonozyme with continuous reactive oxygen species regulation for treating infected critical-sized bone defects. Nat Commun 2024; 15:10525. [PMID: 39627239 PMCID: PMC11615367 DOI: 10.1038/s41467-024-54894-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 11/22/2024] [Indexed: 12/06/2024] Open
Abstract
Critical-sized bone defects are usually accompanied by bacterial infection leading to inflammation and bone nonunion. However, existing biodegradable materials lack long-term therapeutical effect because of their gradual degradation. Here, a degradable material with continuous ROS modulation is proposed, defined as a sonozyme due to its functions as a sonosensitizer and a nanoenzyme. Before degradation, the sonozyme can exert an effective sonodynamic antimicrobial effect through the dual active sites of MnN4 and Cu2O8. Furthermore, it can promote anti-inflammation by superoxide dismutase- and catalase-like activities. Following degradation, quercetin-metal chelation exhibits a sustaining antioxidant effect through ligand-metal charge transfer, while the released ions and quercetin also have great self-antimicrobial, osteogenic, and angiogenic effects. A rat model of infected cranial defects demonstrates the sonozyme can rapidly eliminate bacteria and promote bone regeneration. This work presents a promising approach to engineer biodegradable materials with long-time effects for infectious bone defects.
Collapse
Affiliation(s)
- Zixuan Ou
- Orthopaedic Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Junyu Wei
- Orthopaedic Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Jie Lei
- Orthopaedic Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Di Wu
- Orthopaedic Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Bide Tong
- Orthopaedic Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Huaizhen Liang
- Orthopaedic Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Dingchao Zhu
- Orthopaedic Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Hongchuan Wang
- Orthopaedic Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Xingyu Zhou
- Orthopaedic Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Hanpeng Xu
- Orthopaedic Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Zhi Du
- Orthopaedic Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Yifan Du
- Orthopaedic Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Lei Tan
- Orthopaedic Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| | - Cao Yang
- Orthopaedic Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| | - Xiaobo Feng
- Orthopaedic Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| |
Collapse
|
21
|
Liang Y, Feng L, Zheng Y, Gao Y, Shi R, Zhang Z, Ying X, Zeng Y. Targeted Liposomal Co-Delivery Dopamine with 3-n-Butylphthalide for Effective Against Parkinson's Disease in Mice Model. Int J Nanomedicine 2024; 19:12851-12870. [PMID: 39640048 PMCID: PMC11618862 DOI: 10.2147/ijn.s483595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction Parkinson's disease (PD) is a multifactor-induced neurodegenerative disease with high incidence in the elderly population. We found for the first time that the combination of dopamine (DA) and 3-n-butylphthalide (NBP) has great potential for the synergistic treatment of PD. To further improve the therapeutic performance of the drugs, a brain-targeting liposomal co-delivery system encapsulating NBP and DA ((NBP+DA)-Lips-RVG29) was designed using a rabies virus polypeptide with 29 amino acids (RVG29) as the targeting ligand. Methods The synergistic neuroprotective effects of NBP and DA were assessed in 6-OHDA-induced PC12 cells. Then, (NBP+DA)-Lips-RVG29 loading with NBP and DA at an optimal ratio was prepared using the thin-film hydration and sonication method. The physicochemical and biological characterization of (NBP+DA)-Lips-RVG29 were systemically investigated, and the therapeutic efficiency and underlying mechanisms of (NBP+DA)-Lips-RVG29 were also explored in vitro and in vivo. Finally, the safety of (NBP+DA)-Lips-RVG29 was evaluated. Results The synergistic effects of NBP and DA peaked at 1:1 (NBP/DA, mol/mol). The functionalized liposomes showed significantly higher uptake efficiency and blood-brain barrier (BBB) penetration efficiency in vitro. After systemic administration, (NBP+DA)-Lips-RVG29 prolonged the blood circulation of drugs, enhanced BBB penetration and increased drug accumulation in the striatum, substantia nigra and hippocampus. Moreover, (NBP+DA)-Lips-RVG29 showed excellent neuroprotective effects in a cellular PD model of PC12 cells and improved therapeutic efficacy in a PD mouse model. Furthermore, the safety evaluation of (NBP+DA)-Lips-RVG29 revealed no systemic toxicity. Conclusion NBP and DA exhibited the synergistic anti-PD effects. The RVG29-modified liposomes encapsulating NBP and DA contributed to the accumulation of drugs in the brain lesions area of PD and further improved treatment efficacy. Therefore, (NBP+DA)-Lips-RVG29 represents a promising strategy for the treatment of PD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Yi Liang
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, People’s Republic of China
- Key Laboratory of Drug-Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Liping Feng
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, People’s Republic of China
| | - Yue Zheng
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, People’s Republic of China
| | - Yunzhen Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Rongying Shi
- Key Laboratory of Drug-Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Zhirong Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Xue Ying
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, People’s Republic of China
| | - Yingchun Zeng
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, People’s Republic of China
| |
Collapse
|
22
|
Pashirova T, Shaihutdinova Z, Tatarinov D, Titova A, Malanyeva A, Vasileva O, Gabdurakhmanov K, Dudnikov S, Schopfer LM, Lockridge O, Masson P. Pharmacokinetics and fate of free and encapsulated IRD800CW-labelled human BChE intravenously administered in mice. Int J Biol Macromol 2024; 282:137305. [PMID: 39515732 DOI: 10.1016/j.ijbiomac.2024.137305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Human butyrylcholinesterase (BChE) is an efficient bioscavenger of toxicants. Highly purified BChE was labelled with the near infrared fluorescent IRDye800CW. The goal was to determine the pharmacokinetics and fate of enzyme in mice. BChE-IRDye800CW was encapsulated in polyethylene glycol-polypropylene sulfide-based spherical polymersome nanoreactors with the following characteristics: 140 nm diameter, ξ = -6 mV, PDI ≤ 0.2, 1 year stability. Encapsulation did not alter the functional properties of BChE. Free and encapsulated enzyme were injected intravenously to CD-1 mice (single dose of enzyme 1.5 mg/kg and PEG-PPS polymersomes 25 mg/kg) and were analyzed for 8 days using an in vivo imaging system. Results showed that the pharmacokinetic distribution α-phase of encapsulated BChE (t1/2 = 17.6 h) was longer than for free enzyme (t1/2 = 6.6 h). The mean half-time for elimination β-phase was 2-time longer for encapsulated enzyme than for free enzyme (150 vs 72 h). Transient changes in infrared fluorescence in organs showed that BChE is eliminated from liver. However, free and encapsulated enzymes were cleared via different pathways. This first study of pharmacokinetics and fate of BChE encapsulated in polymersomes initiates research of new formulations of bioscavengers aimed at increasing the residence time of enzymes in the blood stream.
Collapse
Affiliation(s)
- Tatiana Pashirova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, 18 Kremlyovskaya St., Russian Federation; Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, 420088 Kazan, Russian Federation.
| | - Zukhra Shaihutdinova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, 18 Kremlyovskaya St., Russian Federation; Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, 420088 Kazan, Russian Federation
| | - Dmitry Tatarinov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, 420088 Kazan, Russian Federation
| | - Angelina Titova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, 18 Kremlyovskaya St., Russian Federation
| | - Albina Malanyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, 18 Kremlyovskaya St., Russian Federation
| | - Olga Vasileva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, 18 Kremlyovskaya St., Russian Federation
| | - Kamil Gabdurakhmanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, 18 Kremlyovskaya St., Russian Federation
| | - Sergei Dudnikov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, 18 Kremlyovskaya St., Russian Federation
| | | | - Oksana Lockridge
- University of Nebraska Medical Center, Eppley Institute, Omaha, NE, USA
| | - Patrick Masson
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, 18 Kremlyovskaya St., Russian Federation.
| |
Collapse
|
23
|
Zhang L, Tian R, Xiao J, Wang Y, Feng K, Chen G. Preliminary Study on Polymerization between Hemoglobin and Enzymes during the Preparation of PolyHb-SOD-CAT-CA. DOKL BIOCHEM BIOPHYS 2024; 518:463-474. [PMID: 39196524 DOI: 10.1134/s1607672924600477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 08/29/2024]
Abstract
The objective of this study was to explore the influence of different factors on the aggregation effect on hemoglobin (Hb) and enzymes during the preparation of Polyhemoglobin-Superoxide dismutase-Catalase-Carbonic anhydrase (PolyHb-SOD-CAT-CA). Several factors including temperatures, pH values, Glutaraldehyde (GDA) amounts and enzymes amounts were investigated systematically to study their effects on the enzymes recoveries and polymerization rates including the Superoxide dismutase (SOD), Catalase (CAT) and Carbonic anhydrase (CA), as well as their effects on the molecular weight distribution of PolyHb-SOD-CAT-CA. Then the oxygen affinity and methemoglobin (MetHb) contents of obtained PolyHb-SOD-CAT-CA were measured to evaluate the effects of enzyme crosslinking on the properties of Polyhemoglobin (PolyHb) moieties in the molecular structure of obtained PolyHb-SOD-CAT-CA conjugate. The results showed that the enzyme recoveries and polymerization rates could be decreased with the temperatures increasing and could be generally kept stable in the physiological pH conditions, but presented only slight changes among the investigated enzyme amounts ranges. Although the GDA concentration increasing could promote the enzyme polymerization rates, the enzyme recoveries decreased in whole. The polymerization rate and molecular size of PolyHb-SOD-CAT-CA conjugate increased with the elevation of temperature and the concentration of GDA. Lastly, the P50 values, Hill coefficients, and MetHb contents of PolyHb-SOD-CAT-CA conjugate with different enzyme crosslinking degrees exhibited no obvious differences with each other. In conclusion, the polymerization reactions between enzymes and Hb molecules could be remarkably affected by temperatures, pH values, and GDA amounts, and the enzyme crosslinking presented no obvious effects on the Hb properties, especially about the oxygen affinity and oxidation degrees.
Collapse
Affiliation(s)
- Lili Zhang
- School of Bioengineering, Zhuhai Campus, Zunyi Medical University, 519041, Zhuhai City, Guangdong Province, China
| | - Renci Tian
- School of Bioengineering, Zhuhai Campus, Zunyi Medical University, 519041, Zhuhai City, Guangdong Province, China
| | - Jiawei Xiao
- School of Bioengineering, Zhuhai Campus, Zunyi Medical University, 519041, Zhuhai City, Guangdong Province, China
| | - Yaoxi Wang
- Beijing Pro-heme Biotech Co.Ltd, 10010, Beijing, Changping District, China
| | - Kun Feng
- School of Bioengineering, Zhuhai Campus, Zunyi Medical University, 519041, Zhuhai City, Guangdong Province, China.
| | - Gang Chen
- School of Bioengineering, Zhuhai Campus, Zunyi Medical University, 519041, Zhuhai City, Guangdong Province, China.
- Beijing Pro-heme Biotech Co.Ltd, 10010, Beijing, Changping District, China.
| |
Collapse
|
24
|
Mustafa YL, Balestri A, Huang X, Palivan C. Redefining drug therapy: innovative approaches using catalytic compartments. Expert Opin Drug Deliv 2024; 21:1395-1413. [PMID: 39259136 DOI: 10.1080/17425247.2024.2403476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/22/2024] [Accepted: 09/09/2024] [Indexed: 09/12/2024]
Abstract
INTRODUCTION Rapid excretion of drug derivatives often results in short drug half-lives, necessitating frequent administrations. Catalytic compartments, also known as nano- and microreactors, offer a solution by providing confined environments for in situ production of therapeutic agents. Inspired by natural compartments, polymer-based catalytic compartments have been developed to improve reaction efficiency and enable site-specific therapeutic applications. AREAS COVERED Polymer-based compartments provide stability, permeability control, and responsiveness to stimuli, making them ideal for generating localized compounds/signals. These sophisticated systems, engineered to carry active compounds and enable selective molecular release, represent a significant advancement in pharmaceutical research. They mimic cellular functions, creating controlled catalytic environments for bio-relevant processes. This review explores the latest advancements in synthetic catalytic compartments, focusing on design approaches, building blocks, active molecules, and key bio-applications. EXPERT OPINION Catalytic compartments hold transformative potential in precision medicine by improving therapeutic outcomes through precise, on-site production of therapeutic agents. While promising, challenges like scalable manufacturing, biodegradability, and regulatory hurdles must be addressed to realize their full potential. Addressing these will be crucial for their successful application in healthcare.
Collapse
Affiliation(s)
| | - Arianna Balestri
- Department of Chemistry, University of Basel, Basel, Switzerland
| | - Xinan Huang
- Department of Chemistry, University of Basel, Basel, Switzerland
| | - Cornelia Palivan
- Department of Chemistry, University of Basel, Basel, Switzerland
- National Centre of Competence in Research-Molecular Systems Engineering, Basel, Switzerland
| |
Collapse
|
25
|
Liu C, Huang H, Chen Y, Zhou Y, Meng T, Tan B, He W, Fu X, Xiao D. Dietary supplementation with mulberry leaf flavonoids and carnosic acid complex enhances the growth performance and antioxidant capacity via regulating the p38 MAPK/Nrf2 pathway. Front Nutr 2024; 11:1428577. [PMID: 39139650 PMCID: PMC11319276 DOI: 10.3389/fnut.2024.1428577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Introduction This study aimed to investigate the regulatory effects of mulberry leaf flavonoids and carnosic acid complex (MCC) on the growth performance, intestinal morphology, antioxidant, and p38 MAPK/Nrf2 pathway in broilers. Methods A total of 256 healthy 8-day-old female yellow-feathered broilers were randomly divided into 4 equal groups: a control group (CON) fed a basal diet, an antibiotic group (CTC) supplemented with 50 mg/kg chlortetracycline, and two experimental groups (MCC75, MCC150) fed basal diets with 75 mg/kg and 150 mg/kg of MCC, respectively. The experiment lasted for 56 days, with days 1-28 designated as the initial phase and days 29-56 as the growth phase. Results The results on the growth performance showed that diets supplemented with MCC and CTC decreased the feed-to-gain ratio (F/G), diarrhea rate, and death rate, while significantly increasing the average daily weight gain (ADG) (p < 0.05). Specifically, the MCC150 group enhanced intestinal health, indicated by reduced crypt depth and increased villus height-to-crypt depth ratio (V/C) as well as amylase activity in the jejunum. Both the MCC and CTC groups exhibited increased villus height and V/C ratio in the ileal (p < 0.05). Additionally, all treated groups showed elevated serum total antioxidant capacity (T-AOC), and significant increases in catalase (CAT) and glutathione peroxidase (GSH-Px) activities were observed in both the MCC150 and CTC groups. Molecular analysis revealed an upregulation of the jejunal mRNA expression levels of PGC-1α, Nrf2, and Keap1 in the MCC and CTC groups, as well as an upregulation of ileum mRNA expression levels of P38, PGC-1α, Nrf2, and Keap1 in the MCC150 group, suggesting activation of the p38-MAPK/Nrf2 pathway. Discussion These findings indicate that dietary supplementation with MCC, particularly at a dosage of 150 mg/kg, may serve as a viable antibiotic alternative, enhancing growth performance, intestinal health, and antioxidant capacity in broilers by regulating the p38-MAPK/Nrf2 pathway.
Collapse
Affiliation(s)
- Chunming Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Hui Huang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Yulian Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Yingjun Zhou
- College of Xiangya Pharmaceutical Sciences, Central South University, Changsha, China
- Geneham Pharmaceutical Co., Ltd., Changsha, China
| | - Tiantian Meng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Bihui Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Wenxiang He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Xiaoqin Fu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Dingfu Xiao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Yuelushan Laboratory, Changsha, China
| |
Collapse
|
26
|
Bu W, Shi Y, Huang X, Wu S, Jiang L, Pan C, Li D, Xu Z, Wang H, Chen H, Du J. Rescue of nucleus pulposus cells from an oxidative stress microenvironment via glutathione-derived carbon dots to alleviate intervertebral disc degeneration. J Nanobiotechnology 2024; 22:412. [PMID: 38997713 PMCID: PMC11241859 DOI: 10.1186/s12951-024-02683-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/30/2024] [Indexed: 07/14/2024] Open
Abstract
The senescence of nucleus pulposus (NP) cells (NPCs), which is induced by the anomalous accumulation of reactive oxygen species (ROS), is a major cause of intervertebral disc degeneration (IVDD). In this research, glutathione-doped carbon dots (GSH-CDs), which are novel carbon dot antioxidant nanozymes, were successfully constructed to remove large amounts of ROS for the maintenance of NP tissue at the physical redox level. After significantly scavenging endogenous ROS via exerting antioxidant activities, such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and total antioxidant capacity, GSH-CDs with good biocompatibility have been demonstrated to effectively improve mitochondrial dysfunction and rescue NPCs from senescence, catabolism, and inflammatory factors in vivo and in vitro. In vivo imaging data and histomorphological indicators, such as the disc height index (DHI) and Pfirrmann grade, demonstrated prominent improvements in the progression of IVDD after the topical application of GSH-CDs. In summary, this study investigated the GSH-CDs nanozyme, which possesses excellent potential to inhibit the senescence of NPCs with mitochondrial lesions induced by the excessive accumulation of ROS and improve the progression of IVDD, providing potential therapeutic options for clinical treatment.
Collapse
Affiliation(s)
- Wenzhen Bu
- Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Yu Shi
- Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Xueping Huang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Shang Wu
- Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, China
| | - Letao Jiang
- Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, China
| | - Chun Pan
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Dandan Li
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Zhuobin Xu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Huihui Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China.
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, China.
| | - Hao Chen
- Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, China.
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China.
| | - Jianwei Du
- Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, China.
| |
Collapse
|
27
|
Yao G, Zhao Z, Yang C, Zuo B, Sun Z, Wang J, Zhang H. Evaluating the probiotic effects of spraying lactiplantibacillus plantarum P-8 in neonatal piglets. BMC Microbiol 2024; 24:253. [PMID: 38982403 PMCID: PMC11232343 DOI: 10.1186/s12866-024-03332-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/13/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Gut microbes play an important role in the growth and health of neonatal piglets. Probiotics can promote the healthy growth of neonatal piglets by regulating their gut microbes. The study investigated the effects of spraying Lactiplantibacillus plantarum P-8 (L. plantarum P-8) fermentation broth on the growth performance and gut microbes of neonatal piglets. RESULTS The animals were randomly divided into probiotics groups (109 neonatal piglets) and control groups (113 neonatal piglets). The probiotics group was sprayed with L. plantarum P-8 fermented liquid from 3 day before the expected date of the sow to the 7-day-old of piglets, while the control group was sprayed with equal dose of PBS. Average daily gain (ADG), immune and antioxidant status and metagenome sequencing were used to assess the changes in growth performance and gut microbiota of neonatal piglets. The results showed that L. plantarum P-8 treatment significantly improved the average daily gain (P < 0.05) of neonatal piglets. L. plantarum P-8 increased the activities of CAT and SOD but reduced the levels of IL-2 and IL-6, effectively regulating the antioxidant capacity and immunity in neonatal piglets. L. plantarum P-8 adjusted the overall structure of gut microflora improving gut homeostasis to a certain extent, and significantly increased the relative abundance of gut beneficial bacteria such as L. mucosae and L. plantarum. CONCLUSION Spraying L. plantarum P-8 can be a feasible and effective probiotic intervention not only improving the growth of neonatal piglets, regulating the antioxidant capacity and immunity of neonatal piglets, but also improving the gut homeostasis to a certain extent.
Collapse
Affiliation(s)
- Guoqiang Yao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Huhhot, Inner Mongolia, China
| | - Zhixin Zhao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Huhhot, Inner Mongolia, China
| | - Chengcong Yang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Huhhot, Inner Mongolia, China
| | - Bin Zuo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Huhhot, Inner Mongolia, China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Huhhot, Inner Mongolia, China.
| |
Collapse
|
28
|
Feng C, Li J, Yang W, Chen Z. Study on the inactivation effect and mechanism of EGCG disinfectant on Bacillus subtilis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124364. [PMID: 38878811 DOI: 10.1016/j.envpol.2024.124364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
The widespread use of chlorine-based disinfectants in drinking water treatment has led to the proliferation of chlorine-resistant bacteria and the risk of disinfection byproducts (DBPs), posing a serious threat to public health. This study aims to explore the effectiveness and potential applications of epigallocatechin gallate (EGCG) against chlorine-resistant Bacillus and its spores in water, providing new insights for the control of chlorine-resistant bacteria and improving the biological stability of distribution systems. The inactivation effects of EGCG on Bacillus subtilis (B. subtilis) and its spores were investigated using transmission electron microscopy, ATP measurement, and transcriptome sequencing analysis to determine changes in surface structure, energy metabolism, and gene expression levels, thereby elucidating the inactivation mechanism. The results demonstrate the potential application of EGCG in continuously inhibiting chlorine-resistant B. subtilis in water, effectively improving the biological stability of the distribution system. However, EGCG is not suitable for treating raw water with high spore content and is more suitable as a supplementary disinfectant for processes with strong spore removal capabilities, such as ozone, ultraviolet, or ultrafiltration. EGCG exhibits a disruptive effect on the morphological structure and energy metabolism of B. subtilis and suppresses the synthesis of substances, energy metabolism, and normal operation of the antioxidant system by inhibiting the expression of multiple genes, thereby achieving the inactivation of B. subtilis.
Collapse
Affiliation(s)
- Cuimin Feng
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; National Demonstration Center for Experimental Water Environment Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Jing Li
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; National Demonstration Center for Experimental Water Environment Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Weiqi Yang
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; National Demonstration Center for Experimental Water Environment Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Zexin Chen
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; National Demonstration Center for Experimental Water Environment Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| |
Collapse
|
29
|
Mishra M, Mishra M, Dutta S. Dual Enzyme-Encapsulated Materials for Biological Cascade Chemistry and Synergistic Tumor Starvation. Chemistry 2024; 30:e202400195. [PMID: 38563653 DOI: 10.1002/chem.202400195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/12/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024]
Abstract
Framework and polymeric nanoreactors (NRs) have distinct advantages in improving chemical reaction efficiency in the tumor microenvironment (TME). Nanoreactor-loaded oxidoreductase enzyme is activated by tumor acidity to produce H2O2 by increasing tumor oxidative stress. High levels of H2O2 induce self-destruction of the vesicles by releasing quinone methide to deplete glutathione and suppress the antioxidant potential of cancer cells. Therefore, the synergistic effect of the enzyme-loaded nanoreactors results in efficient tumor ablation via suppressing cancer-cell metabolism. The main driving force would be to take advantage of the distinct metabolic properties of cancer cells along with the high peroxidase-like activity of metalloenzyme/metalloprotein. A cascade strategy of dual enzymes such as glucose oxidase (GOx) and nitroreductase (NTR) wherein the former acts as an O2-consuming agent such as overexpression of NTR and further amplified NTR-catalyzed release for antitumor therapy. The design of cascade bioreductive hypoxia-responsive drug delivery via GOx regulates NTR upregulation and NTR-responsive nanoparticles. Herein, we discuss tumor hypoxia, reactive oxygen species (ROS) formation, and the effectiveness of these therapies. Nanoclusters in cascaded enzymes along with chemo-radiotherapy with synergistic therapy are illustrated. Finally, we outline the role of the nanoreactor strategy of cascading enzymes along with self-synergistic tumor therapy.
Collapse
Affiliation(s)
- Meemansha Mishra
- Electrochemical Energy & Sensor Research Laboratory, Amity Institute of Click Chemistry Research & Studies, Amity University, Noida, 201303, India
| | - Mallya Mishra
- Electrochemical Energy & Sensor Research Laboratory, Amity Institute of Click Chemistry Research & Studies, Amity University, Noida, 201303, India
| | - Saikat Dutta
- Electrochemical Energy & Sensor Research Laboratory, Amity Institute of Click Chemistry Research & Studies, Amity University, Noida, 201303, India
| |
Collapse
|
30
|
Hu C, Yuan X, Zhao R, Hong B, Chen C, Zhu Q, Zheng Y, Hu J, Yuan Y, Wu Z, Zhang J, Tang C. Scale-Up Preparation of Manganese-Iron Prussian Blue Nanozymes as Potent Oral Nanomedicines for Acute Ulcerative Colitis. Adv Healthc Mater 2024; 13:e2400083. [PMID: 38447228 DOI: 10.1002/adhm.202400083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/04/2024] [Indexed: 03/08/2024]
Abstract
Prussian blue (PB) nanozymes are demonstrated as effective therapeutics for ulcerative colitis (UC), yet an unmet practical challenge remains in the scalable production of these nanozymes and uncertainty over their efficacy. With a novel approach, a series of porous manganese-iron PB (MnPB) colloids, which are shown to be efficient scavengers for reactive oxygen species (ROS) including hydroxyl radical, superoxide anion, and hydrogen peroxide, are prepared. In vitro cellular experiments confirm the capability of the nanozyme to protect cells from ROS attack. In vivo, the administration of MnPB nanozyme through gavage at a dosage of 10 mg kg-1 per day for three doses in total potently ameliorates the pathological symptoms of acute UC in a murine model, resulting in mitigated inflammatory responses and improved viability rate. Significantly, the nanozyme produced at a large scale can be achieved at an unprecedented yield weighting ≈11 g per batch of reaction, demonstrating comparable anti-ROS activities and treatment efficacy to its small-scale counterpart. This work represents the first demonstration of the scale-up preparation of PB analog nanozymes for UC without compromising treatment efficacy, laying the foundation for further testing of these nanozymes on larger animals and promising clinical translation.
Collapse
Affiliation(s)
- Chengyun Hu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Xue Yuan
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Ronghua Zhao
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Biao Hong
- College & Hospital of Stomatology, Anhui Provincial Key Laboratory of Oral Diseases Research, Anhui Medical University, Hefei, 230032, China
| | - Chuang Chen
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Qingjun Zhu
- Anhui Provincial Key Laboratory of High Magnetic Resonance Image, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Yanmin Zheng
- Anhui Provincial Key Laboratory of High Magnetic Resonance Image, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Jinming Hu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yue Yuan
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Zhengyan Wu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Jia Zhang
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Chaoliang Tang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| |
Collapse
|
31
|
Lv W, Liu H, Zheng Q, Niu H. LINC02535 + miR-30a-5p combination enhances proliferation and inhibits apoptosis in metastatic breast Cancer cells. Toxicol In Vitro 2024; 98:105845. [PMID: 38754600 DOI: 10.1016/j.tiv.2024.105845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 05/11/2024] [Indexed: 05/18/2024]
Abstract
Current clinical therapies for metastatic breast cancer (MBC) have limited therapeutic efficacy and induce significant systemic side effects, leading to poor patient compliance. To address this challenge, this investigation focuses on the design of LINC02535 + miR-30a-5p for treating breast cancer. In vitro cytotoxicity studies confirmed that LINC02535 + miR-30a-5p was more effective in 4 T1 cells, with reduced toxicity in NIH3T3 cells. Further verification of cellular morphology was achieved through various biochemical staining methods. Additionally, the antimetastatic attributes of LINC02535 + miR-30a-5p have been evaluated using both migration scratch and Transwell migration assays, which have collectively revealed excellent antimetastatic potential. The DNA fragmentation of the 4 T1 cells was assessed using a comet assay. LINC02535 + miR-30a-5p improved ROS levels and caused mitochondrial membrane potential alterations and DNA damage, which resulted in apoptosis. Therefore, we propose that LINC02535 + miR-30a-5p could be an alternative therapeutic strategy for breast cancer therapy.
Collapse
Affiliation(s)
- Wei Lv
- Department of General Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong 250021, China
| | - Hui Liu
- Department of Breast and Thyroid Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong, China
| | - Qi Zheng
- Department of Gynecological Ward, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong, China
| | - Hu Niu
- Department of Breast and Thyroid Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong, China..
| |
Collapse
|
32
|
Feng W, Zhu N, Xia Y, Huang Z, Hu J, Guo Z, Li Y, Zhou S, Liu Y, Liu D. Melanin-like nanoparticles alleviate ischemia-reperfusion injury in the kidney by scavenging reactive oxygen species and inhibiting ferroptosis. iScience 2024; 27:109504. [PMID: 38632989 PMCID: PMC11022057 DOI: 10.1016/j.isci.2024.109504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/13/2024] [Accepted: 03/13/2024] [Indexed: 04/19/2024] Open
Abstract
Kidney transplantation is essential for patients with end-stage renal disease; however, ischemia-reperfusion injury (IRI) during transplantation can lead to acute kidney damage and compromise survival. Recent studies have reported that antiferroptotic agents may be a potential therapeutic strategy, by reducing production of reactive oxygen species (ROS). Therefore, we constructed rutin-loaded polydopamine nanoparticles (PEG-PDA@rutin NPs, referred to as PPR NPs) to eliminate ROS resulting from IRI. Physicochemical characterization showed that the PPR NPs were ∼100 nm spherical particles with good ROS scavenging ability. Notably, PPR NPs could effectively enter lipopolysaccharide (LPS)-treated renal tubular cells, then polydopamine (PDA) released rutin to eliminate ROS, repair mitochondria, and suppress ferroptosis. Furthermore, in vivo imaging revealed that PPR NPs efficiently accumulated in the kidneys after IRI and effectively protected against IRI damage. In conclusion, PPR NPs demonstrated an excellent ability to eliminate ROS, suppress ferroptosis, and protect kidneys from IRI.
Collapse
Affiliation(s)
- Wenxiang Feng
- Department of Organ Transplantation, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Nan Zhu
- Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yubin Xia
- Department of Nephrology, First Affiliated Hospital of Shantou University Medical College, No. 57, Changping Rd, Shantou, Guangdong Province 515000, China
| | - Zehai Huang
- Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jianmin Hu
- Department of Organ Transplantation, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zefeng Guo
- Department of Organ Transplantation, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yuzhuz Li
- Department of Organ Transplantation, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Song Zhou
- Department of Organ Transplantation, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yongguang Liu
- Department of Organ Transplantation, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Ding Liu
- Department of Organ Transplantation, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
33
|
Zhang Z, Pan Y, Guo Z, Fan X, Pan Q, Gao W, Luo K, Pu Y, He B. An olsalazine nanoneedle-embedded inulin hydrogel reshapes intestinal homeostasis in inflammatory bowel disease. Bioact Mater 2024; 33:71-84. [PMID: 38024237 PMCID: PMC10658185 DOI: 10.1016/j.bioactmat.2023.10.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/07/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic and refractory condition characterized by disrupted epithelial barrier, dysregulated immune balance, and altered gut microbiota. Nano-enabled interventions for restoring gut homeostasis have the potential to alleviate inflammation in IBD. Herein, we developed a combination of olsalazine (Olsa)-based nanoneedles and microbiota-regulating inulin gel to reshape intestinal homeostasis and relieve inflammation. The Olsa-derived nanoneedles exhibited reactive oxygen species scavenging ability and anti-inflammatory effects in lipopolysaccharide-simulated macrophages. The composite of nanoneedles and inulin gel (Cu2(Olsa)/Gel) displayed a macroporous structure, improved bio-adhesion, and enhanced colon retention after oral administration. Mechanistically, the composite effectively downregulated pro-inflammatory cytokine levels and promoted epithelial barrier repair through anti-inflammatory and antioxidant therapies, resulting in significant alleviation of colitis in three animal models of IBD. Furthermore, analysis of gut microbiota revealed that Cu2(Olsa)/Gel treatment increased the diversity of intestinal microflora and decreased the relative abundance of pathogenic bacteria such as Proteobacteria. Overall, this study provides a self-delivering nanodrug and dietary fiber hydrogel composite for IBD therapy, offering an efficient approach to restore intestinal homeostasis.
Collapse
Affiliation(s)
- Zhuangzhuang Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Yang Pan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Zhaoyuan Guo
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Xi Fan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Qingqing Pan
- School of Preclinical Medicine, Chengdu University, Chengdu, 610106, China
| | - Wenxia Gao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325027, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Sichuan University, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
34
|
Zhang J, Li J, Gong J, Liu J, Wang Y, Zhao F, Sun S, Wang W. A novel highly thermostable and stress resistant ROS scavenging metalloprotein from Paenibacillus. Arch Biochem Biophys 2024; 751:109837. [PMID: 38007074 DOI: 10.1016/j.abb.2023.109837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/19/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
Reactive oxygen species (ROS) are unstable metabolites produced during cellular respiration that can cause extensive damage to the body. Here we report a unique structural metalloprotein called RSAPp for the first time, which exhibits robust ROS-scavenging activity, high thermostability, and stress resistance. RSAPp is a previously uncharacterized DUF2935 (domain of unknown function, accession number: cl12705) family protein from Paenibacillus, containing a highly conserved four-helix bundle with binding sites for variable-valence metal ions (Mn2+/Fe2+/Zn2+). Enzymatic characterization results indicated that RSAPp displays the functionality of three different antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD). In particular, RSAPp exhibits a significant SOD-like activity that is remarkably effective in eliminating superoxide radicals (up to kcat/KM = 2.27 × 1011 mol-1 s-1), and maintains the catalytical active in a wide range of temperatures (25-100 °C) and pH (pH 2.0-9.0), as well as resistant to high temperature, alkali and acidic pH, and 55 different concentrations of detergent agents, chemical solvents, and inhibitors. These properties make RSAPp an attractive candidate for various industrial applications, including cosmetics, food, and pharmaceuticals.
Collapse
Affiliation(s)
- Jingjing Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, 300457, PR China
| | - Jiabin Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, 300457, PR China
| | - Jingbo Gong
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, 300457, PR China
| | - Jingjing Liu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, 300457, PR China
| | - Yijia Wang
- Laboratory of Oncologic Molecular Medicine, Tianjin Union Medical Center, Nankai University, Tianjin, 300121, PR China
| | - Fang Zhao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, 300457, PR China
| | - Shenmei Sun
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, 300457, PR China
| | - Wei Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, 300457, PR China; Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, 300457, PR China.
| |
Collapse
|
35
|
Min DK, Kim YE, Kim MK, Choi SW, Park N, Kim J. Orally Administrated Inflamed Colon-Targeted Nanotherapeutics for Inflammatory Bowel Disease Treatment by Oxidative Stress Level Modulation in Colitis. ACS NANO 2023; 17:24404-24416. [PMID: 38039189 DOI: 10.1021/acsnano.3c11089] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
Inflammatory bowel disease (IBD) is characterized by an inappropriate and persistent inflammatory immune response and is often accompanied by excessive reactive oxygen species (ROS) production. For effective IBD treatment, there is a high demand for safe and targeted therapy that can be orally administered. In this study, we aimed to propose the use of inflamed colon-targeted antioxidant nanotherapeutics (ICANs) for in situ oxidative stress level modulation in colitis. ICANs consist of mesoporous silica nanoparticles (MSNs) with surface-attached ROS-scavenging ceria nanoparticles (CeNPs), which are further coated with poly(acrylic acid) (PAA) to facilitate preferential adherence to inflamed colon tissues through electrostatic interaction. We achieved a high ROS-scavenging property that remained effective even after artificial gastrointestinal fluid incubation by optimization of the molecular weight and PAA-coating pH. The orally administered ICANs demonstrated enhanced adherence to inflamed colon tissues in an acute inflammation mouse model of IBD induced by dextran sulfate sodium. This targeted delivery resulted in gut microenvironment modulation by regulating redox balance and reducing inflammatory cell infiltration, thereby suppressing the colitis-associated immune response. These findings highlight the potential of noninvasive ICANs as a promising candidate for treating inflammatory intestinal diseases by oxidative stress level modulation in colitis.
Collapse
Affiliation(s)
- Dong Kwang Min
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Ye Eun Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Min Kyung Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Seung Woo Choi
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
| | - Nuri Park
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jaeyun Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Institute of Quantum Biophysics (IQB), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| |
Collapse
|
36
|
Chen B, He Q, Chen C, Lin Y, Xiao J, Pan Z, Li M, Li S, Yang J, Wang F, Zeng J, Yi Y, Chi W, Meng K, Wang H, Chen P. Combination of curcumin and catalase protects against chondrocyte injury and knee osteoarthritis progression by suppressing oxidative stress. Biomed Pharmacother 2023; 168:115751. [PMID: 37879214 DOI: 10.1016/j.biopha.2023.115751] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023] Open
Abstract
Knee Osteoarthritis (KOA) is an age-related progressive degenerative joint disease, which is featured with pain, joint deformity, and disability. Accumulating evidence indicated oxidative stress plays a crucial role in the occurrence and development of KOA. Curcumin is a polyphenolic compound with significant antioxidant activity among various diseases while catalase (CAT) is an enzyme degrading hydrogen peroxide in treating oxidative diseases. We previously showed that the expression of CAT was low in cartilage. However, the combination of curcumin and CAT in KOA is still elusive. In this study, we demonstrated that the combination of curcumin and CAT has the potential to inhibit the IL1β-induced chondrocyte apoptosis without cytotoxicity in vitro. Mechanistically, we found that the synergistic application curcumin and CAT not only promotes curcumin's regulation of the NRF2/HO-1 signaling pathway to enhance antioxidant enzyme expression to remove superoxide radicals, but also CAT can further remove downstream hydrogen peroxide which enhances the ability to scavenge reactive oxygen species (ROS). In vivo, studies revealed that combination of curcumin and catalase could better inhibit oxidative stress-induced chondrocyte injury by promoting the expression of ROS scavenging enzymes. In sum, the combination of curcumin and catalase can be used to treat KOA. Thus, combination of curcumin and catalase may act as a novel therapeutic agent to manage KOA and our research gives a rationale for their combined use in the therapeutic of KOA.
Collapse
Affiliation(s)
- Bohao Chen
- 1st School of Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Qi He
- 1st School of Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chuyi Chen
- 1st School of Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Yuewei Lin
- 1st School of Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Jiacong Xiao
- 1st School of Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Zhaofeng Pan
- 1st School of Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Miao Li
- 1st School of Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Shaocong Li
- 1st School of Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Junzheng Yang
- 1st School of Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - FanChen Wang
- 1st School of Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Jiaxu Zeng
- 1st School of Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Yanzi Yi
- 1st School of Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou 510405, PR China; The Third Affiliated Medical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Weijin Chi
- 1st School of Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Kai Meng
- Department of Orthopaedics Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, PR China.
| | - Haibin Wang
- Department of Orthopaedics, First Affiliated Hospital, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou 510405, PR China.
| | - Peng Chen
- Department of Orthopaedics, First Affiliated Hospital, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou 510405, PR China.
| |
Collapse
|
37
|
Fu W, Xu L, Chen Z, Kan L, Ma Y, Qian H, Wang W. Recent advances on emerging nanomaterials for diagnosis and treatment of inflammatory bowel disease. J Control Release 2023; 363:149-179. [PMID: 37741461 DOI: 10.1016/j.jconrel.2023.09.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic idiopathic inflammatory disorder that affects the entire gastrointestinal tract and is associated with an increased risk of colorectal cancer. Mainstream clinical testing methods are time-consuming, painful for patients, and insufficiently sensitive to detect early symptoms. Currently, there is no definitive cure for IBD, and frequent doses of medications with potentially severe side effects may affect patient response. In recent years, nanomaterials have demonstrated considerable potential for IBD management due to their diverse structures, composition, and physical and chemical properties. In this review, we provide an overview of the advances in nanomaterial-based diagnosis and treatment of IBD in recent five years. Multi-functional bio-nano platforms, including contrast agents, near-infrared (NIR) fluorescent probes, and bioactive substance detection agents have been developed for IBD diagnosis. Based on a series of pathogenic characteristics of IBD, the therapeutic strategies of antioxidant, anti-inflammatory, and intestinal microbiome regulation of IBD based on nanomaterials are systematically introduced. Finally, the future challenges and prospects in this field are presented to facilitate the development of diagnosis and treatment of IBD.
Collapse
Affiliation(s)
- Wanyue Fu
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, China
| | - Lingling Xu
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, China
| | - Zetong Chen
- School of Stomatology, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Lingling Kan
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, China
| | - Yan Ma
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, China.
| | - Haisheng Qian
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, China.
| | - Wanni Wang
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, China.
| |
Collapse
|
38
|
Hu J, Xu Z, Liao D, Jiang Y, Pu H, Wu Z, Xu X, Zhao Z, Liu J, Lu X, Liu X, Li B. An H 2 S-BMP6 Dual-Loading System with Regulating Yap/Taz and Jun Pathway for Synergistic Critical Limb Ischemia Salvaging Therapy. Adv Healthc Mater 2023; 12:e2301316. [PMID: 37531238 DOI: 10.1002/adhm.202301316] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/12/2023] [Indexed: 08/04/2023]
Abstract
Critical limb ischemia, the final course of peripheral artery disease, is characterized by an insufficient supply of blood flow and excessive oxidative stress. H2 S molecular therapy possesses huge potential for accelerating revascularization and scavenging intracellular reactive oxygen species (ROS). Moreover, it is found that BMP6 is the most significantly up-expressed secreted protein-related gene in HUVECs treated with GYY4137, a H2 S donor, based on the transcriptome analysis. Herein, a UIO-66-NH2 @GYY4137@BMP6 co-delivery nanoplatform to strengthen the therapeutic effects of limb ischemia is developed. The established UIO-66-NH2 @GYY4137@BMP6 nanoplatform exerts its proangiogenic and anti-oxidation functions by regulating key pathways. The underlying molecular mechanisms of UIO-66-NH2 @GYY4137@BMP6 dual-loading system lie in the upregulation of phosphorylated YAP/TAZ and Jun to promote HUVECs proliferation and downregulation of phosphorylated p53/p21 to scavenge excessive ROS. Meanwhile, laser-doppler perfusion imaging (LDPI), injury severity evaluation, and histological analysis confirm the excellent therapeutic effects of UIO-66-NH2 @GYY4137@BMP6 in vivo. This work may shed light on the treatment of critical limb ischemia by regulating YAP, Jun, and p53 signaling pathways based on gas-protein synergistic therapy.
Collapse
Affiliation(s)
- Jiateng Hu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Vascular Centre of Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Zhijue Xu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Vascular Centre of Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Donghui Liao
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Zhanjiang, 523700, China
| | - Yihong Jiang
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Vascular Centre of Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Hongji Pu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Vascular Centre of Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Zhaoyu Wu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Vascular Centre of Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Xintong Xu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Vascular Centre of Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Zhen Zhao
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Vascular Centre of Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Jianqiang Liu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Zhanjiang, 523700, China
| | - Xinwu Lu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Vascular Centre of Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Xiaobing Liu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Vascular Centre of Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Bo Li
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Vascular Centre of Shanghai Jiao Tong University, Shanghai, 200011, China
| |
Collapse
|
39
|
Kang K, Deng X, Xie W, Chen J, Lin H, Chen Z. Rhodotorula mucilaginosa ZTHY2 Attenuates Cyclophosphamide-Induced Immunosuppression in Mice. Animals (Basel) 2023; 13:3376. [PMID: 37958131 PMCID: PMC10648412 DOI: 10.3390/ani13213376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Rhodotorula mucilaginosa (R. mucilaginosa) can enhance the immune and antioxidant function of the body. However, whether R. mucilaginosa has an immunoregulatory effect on cyclophosphamide (CTX)-induced immunosuppressed animals remains to be clarified. In this study, the R. mucilaginosa ZTHY2 that we isolated from the coastal waters of the South China Sea previously was prepared in order to investigate its immunoprotective effect on CTX-induced immunosuppression in mice, and the effects were compared to those of Lactobacillus acidophilus (LA) (a well-known probiotic). Seventy-two male SPF mice were divided into six groups: The C group (control); IM group (immunosuppressive model group) (+CTX); Rl, Rm, and Rh groups (+CTX+low, medium, and high concentration of R. mucilaginosa, respectively); and PC (positive control) group (+CTX+LA). After a 28-day feeding trial, blood samples were taken for biochemical and serum immunological analysis, and the thymus and spleen were collected to analyze the organ index, lymphocyte proliferation and differentiation, and antioxidant capacity. The findings showed that R. mucilaginosa ZTHY2 improved the spleen and thymus indices, effectively attenuated immune organ atrophy caused by CTX, and enhanced the proliferation of T and B lymphocytes induced by ConA and LPS. R. mucilaginosa ZTHY2 promoted the secretion of cytokines and immunoglobulins and significantly increased the contents of IL-2, IL-4, IL-6, TNF-α, IFN-γ, IgA, IgG, IgM, CD4, CD8, CD19, and CD20 in serum. The proportion of CD4+, CD8+, CD19+, and CD20+ lymphocytes in spleen, thymus, and mesenteric lymph nodes were increased. In addition, R. mucilaginosa ZTHY2 reduced the reactive oxygen species (ROS) and malondialdehyde (MDA) levels and increased glutathione (GSH), total superoxide dismutase (SOD), and catalase (CAT) levels. Our results indicated that R. mucilaginosa ZTHY2 can significantly enhance the immune function of immunosuppressed mice, and improving antioxidant capacity thus attenuates CTX-induced immunosuppression and immune organ atrophy.
Collapse
Affiliation(s)
- Kai Kang
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (K.K.); (X.D.); (W.X.); (J.C.); (H.L.)
| | - Xinyi Deng
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (K.K.); (X.D.); (W.X.); (J.C.); (H.L.)
| | - Weitian Xie
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (K.K.); (X.D.); (W.X.); (J.C.); (H.L.)
| | - Jinjun Chen
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (K.K.); (X.D.); (W.X.); (J.C.); (H.L.)
| | - Hongying Lin
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (K.K.); (X.D.); (W.X.); (J.C.); (H.L.)
| | - Zhibao Chen
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (K.K.); (X.D.); (W.X.); (J.C.); (H.L.)
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center Zhanjiang, Zhanjiang 524088, China
| |
Collapse
|
40
|
Pashirova T, Shaihutdinova Z, Tatarinov D, Mansurova M, Kazakova R, Bogdanov A, Chabrière E, Jacquet P, Daudé D, Akhunzianov AA, Miftakhova RR, Masson P. Tuning the Envelope Structure of Enzyme Nanoreactors for In Vivo Detoxification of Organophosphates. Int J Mol Sci 2023; 24:15756. [PMID: 37958742 PMCID: PMC10649860 DOI: 10.3390/ijms242115756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Encapsulated phosphotriesterase nanoreactors show their efficacy in the prophylaxis and post-exposure treatment of poisoning by paraoxon. A new enzyme nanoreactor (E-nRs) containing an evolved multiple mutant (L72C/Y97F/Y99F/W263V/I280T) of Saccharolobus solfataricus phosphotriesterase (PTE) for in vivo detoxification of organophosphorous compounds (OP) was made. A comparison of nanoreactors made of three- and di-block copolymers was carried out. Two types of morphology nanoreactors made of di-block copolymers were prepared and characterized as spherical micelles and polymersomes with sizes of 40 nm and 100 nm, respectively. The polymer concentrations were varied from 0.1 to 0.5% (w/w) and enzyme concentrations were varied from 2.5 to 12.5 μM. In vivo experiments using E-nRs of diameter 106 nm, polydispersity 0.17, zeta-potential -8.3 mV, and loading capacity 15% showed that the detoxification efficacy against paraoxon was improved: the LD50 shift was 23.7xLD50 for prophylaxis and 8xLD50 for post-exposure treatment without behavioral alteration or functional physiological changes up to one month after injection. The pharmacokinetic profiles of i.v.-injected E-nRs made of three- and di-block copolymers were similar to the profiles of the injected free enzyme, suggesting partial enzyme encapsulation. Indeed, ELISA and Western blot analyses showed that animals developed an immune response against the enzyme. However, animals that received several injections did not develop iatrogenic symptoms.
Collapse
Affiliation(s)
- Tatiana Pashirova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, 420088 Kazan, Russia; (Z.S.); (D.T.); (A.B.)
| | - Zukhra Shaihutdinova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, 420088 Kazan, Russia; (Z.S.); (D.T.); (A.B.)
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (M.M.); (R.K.); (A.A.A.); (R.R.M.)
| | - Dmitry Tatarinov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, 420088 Kazan, Russia; (Z.S.); (D.T.); (A.B.)
| | - Milana Mansurova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (M.M.); (R.K.); (A.A.A.); (R.R.M.)
| | - Renata Kazakova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (M.M.); (R.K.); (A.A.A.); (R.R.M.)
| | - Andrei Bogdanov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, 420088 Kazan, Russia; (Z.S.); (D.T.); (A.B.)
| | - Eric Chabrière
- Gene&GreenTK, 19–21 Boulevard Jean Moulin, 13005 Marseille, France; (E.C.); (P.J.); (D.D.)
- IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix Marseille Université, 19–21 Boulevard Jean Moulin, 13005 Marseille, France
| | - Pauline Jacquet
- Gene&GreenTK, 19–21 Boulevard Jean Moulin, 13005 Marseille, France; (E.C.); (P.J.); (D.D.)
| | - David Daudé
- Gene&GreenTK, 19–21 Boulevard Jean Moulin, 13005 Marseille, France; (E.C.); (P.J.); (D.D.)
| | - Almaz A. Akhunzianov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (M.M.); (R.K.); (A.A.A.); (R.R.M.)
| | - Regina R. Miftakhova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (M.M.); (R.K.); (A.A.A.); (R.R.M.)
| | - Patrick Masson
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (M.M.); (R.K.); (A.A.A.); (R.R.M.)
| |
Collapse
|
41
|
Wang K, Mao W, Song X, Chen M, Feng W, Peng B, Chen Y. Reactive X (where X = O, N, S, C, Cl, Br, and I) species nanomedicine. Chem Soc Rev 2023; 52:6957-7035. [PMID: 37743750 DOI: 10.1039/d2cs00435f] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Reactive oxygen, nitrogen, sulfur, carbonyl, chlorine, bromine, and iodine species (RXS, where X = O, N, S, C, Cl, Br, and I) have important roles in various normal physiological processes and act as essential regulators of cell metabolism; their inherent biological activities govern cell signaling, immune balance, and tissue homeostasis. However, an imbalance between RXS production and consumption will induce the occurrence and development of various diseases. Due to the considerable progress of nanomedicine, a variety of nanosystems that can regulate RXS has been rationally designed and engineered for restoring RXS balance to halt the pathological processes of different diseases. The invention of radical-regulating nanomaterials creates the possibility of intriguing projects for disease treatment and promotes advances in nanomedicine. In this comprehensive review, we summarize, discuss, and highlight very-recent advances in RXS-based nanomedicine for versatile disease treatments. This review particularly focuses on the types and pathological effects of these reactive species and explores the biological effects of RXS-based nanomaterials, accompanied by a discussion and the outlook of the challenges faced and future clinical translations of RXS nanomedicines.
Collapse
Affiliation(s)
- Keyi Wang
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China.
| | - Weipu Mao
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, P. R. China
| | - Xinran Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Ming Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, P. R. China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Bo Peng
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| |
Collapse
|
42
|
Hou J, Xianyu Y. Tailoring the Surface and Composition of Nanozymes for Enhanced Bacterial Binding and Antibacterial Activity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302640. [PMID: 37322391 DOI: 10.1002/smll.202302640] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/17/2023] [Indexed: 06/17/2023]
Abstract
With the advantages of diverse structures, tunable enzymatic activity, and high stability, nanozymes are widely used in medicine, chemistry, food, environment, and other fields. As an alternative to traditional antibiotics, nanozymes attract more and more attention from the scientific researchers in recent years. Developing nanozymes-based antibacterial materials opens up a new avenue for the bacterial disinfection and sterilization. In this review, the classification of nanozymes and their antibacterial mechanisms are discussed. The surface and composition of nanozymes are critical for the antibacterial efficacy, which can be tailored to enhance both the bacterial binding and the antibacterial activity. On the one hand, the surface modification of nanozymes enables binding and targeting of bacteria that improves the antibacterial performance of nanozymes including the biochemical recognition, the surface charge, and the surface topography. On the other hand, the composition of nanozymes can be modulated to achieve enhanced antibacterial performance including the single nanozyme-mediated synergistic and multiple nanozymes-mediated cascade catalytic antibacterial applications. In addition, the current challenges and future prospects of tailoring nanozymes for antibacterial applications are discussed. This review can provide insights into the design of future nanozymes-based materials for the antibacterial treatments.
Collapse
Affiliation(s)
- Jinjie Hou
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yunlei Xianyu
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P. R. China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou, 310016, P. R. China
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100, P. R. China
| |
Collapse
|
43
|
Liu C, Wang Q, Wu YL. Recent Advances in Nanozyme-Based Materials for Inflammatory Bowel Disease. Macromol Biosci 2023; 23:e2300157. [PMID: 37262405 DOI: 10.1002/mabi.202300157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/07/2023] [Indexed: 06/03/2023]
Abstract
Inflammatory bowel disease (IBD) is a type of chronic inflammatory disorder that interferes with the patient's lifestyle and, in extreme situations, can be deadly. Fortunately, with the ever-deepening understanding of the pathological cause of IBD, recent studies using nanozyme-based materials have indicated the potential toward effective IBD treatment. In this review, the recent advancement of nanozymes for the treatment of enteritis is summarized from the perspectives of the structural design of nanozyme-based materials and therapeutic strategies, intending to serve as a reference to produce effective nanozymes for moderating inflammation in the future. Last but not least, the potential and current restrictions for using nanozymes in IBD will also be discussed. In short, this review may provide a guidance for the development of innovative enzyme-mimetic nanomaterials that offer a novel and efficient approach toward the effective treatment of IBD.
Collapse
Affiliation(s)
- Chuyi Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Qi Wang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
44
|
Wang Y, Qi JJ, Yin YJ, Jiang H, Zhang JB, Liang S, Yuan B. Ferulic Acid Enhances Oocyte Maturation and the Subsequent Development of Bovine Oocytes. Int J Mol Sci 2023; 24:14804. [PMID: 37834252 PMCID: PMC10573426 DOI: 10.3390/ijms241914804] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/19/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
Improving the quality of oocytes matured in vitro is integral to enhancing the efficacy of in vitro embryo production. Oxidative stress is one of the primary causes of quality decline in oocytes matured in vitro. In this study, ferulic acid (FA), a natural antioxidant found in plant cell walls, was investigated to evaluate its impact on bovine oocyte maturation and subsequent embryonic development. Bovine cumulus-oocyte complexes (COCs) were treated with different concentrations of FA (0, 2.5, 5, 10, 20 μM) during in vitro maturation (IVM). Compared to the control group, supplementation with 5 μM FA significantly enhanced the maturation rates of bovine oocytes and the expansion of the cumulus cells area, as well as the subsequent cleavage and blastocyst formation rates after in vitro fertilization (IVF) and somatic cell nuclear transfer (SCNT). Furthermore, FA supplementation was observed to effectively decrease the levels of ROS in bovine oocytes and improve their mitochondrial function. Our experiments demonstrate that FA can maintain the levels of antioxidants (GSH, SOD, CAT) in oocytes, thereby alleviating the oxidative stress induced by H2O2. RT-qPCR results revealed that, after FA treatment, the relative mRNA expression levels of genes related to oocyte maturation (GDF-9 and BMP-15), cumulus cell expansion (HAS2, PTX3, CX37, and CX43), and embryo pluripotency (OCT4, SOX2, and CDX2) were significantly increased. In conclusion, these findings demonstrate that FA supplementation during bovine oocyte IVM can enhance oocyte quality and the developmental potential of subsequent embryos.
Collapse
Affiliation(s)
| | | | | | | | | | - Shuang Liang
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun 130062, China; (Y.W.); (J.-J.Q.); (Y.-J.Y.); (H.J.); (J.-B.Z.)
| | - Bao Yuan
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun 130062, China; (Y.W.); (J.-J.Q.); (Y.-J.Y.); (H.J.); (J.-B.Z.)
| |
Collapse
|
45
|
Sahu A, Min K, Jeon SH, Kwon K, Tae G. Self-assembled hemin-conjugated heparin with dual-enzymatic cascade reaction activities for acute kidney injury. Carbohydr Polym 2023; 316:121088. [PMID: 37321716 DOI: 10.1016/j.carbpol.2023.121088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/16/2023] [Accepted: 06/01/2023] [Indexed: 06/17/2023]
Abstract
Nanozymes have prominent catalytic activities with high stability as a substitute for unstable and expensive natural enzymes. However, most nanozymes are metal/inorganic nanomaterials, facing difficulty in clinical translation due to their unproven biosafety and limited biodegradability issues. Hemin, an organometallic porphyrin, was newly found to possess superoxide dismutase (SOD) mimetic activity along with previously known catalase (CAT) mimetic activity. However, hemin has poor bioavailability due to its low water solubility. Therefore, a highly biocompatible and biodegradable organic-based nanozyme system with SOD/CAT mimetic cascade reaction activity was developed by conjugating hemin to heparin (HepH) or chitosan (CS-H). Between them, Hep-H formed a smaller (<50 nm) and more stable self-assembled nanostructure and even possessed much higher and more stable SOD and CAT activities as well as the cascade reaction activity compared to CS-H and free hemin. Hep-H also showed a better cell protection effect against reactive oxygen species (ROS) compared to CS-H and hemin in vitro. Furthermore, Hep-H was selectively delivered to the injured kidney upon intravenous administration at the analysis time point (24 h) and exhibited excellent therapeutic effects on an acute kidney injury model by efficiently removing ROS, reducing inflammation, and minimizing structural and functional damage to the kidney.
Collapse
Affiliation(s)
- Abhishek Sahu
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Kiyoon Min
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Sae Hyun Jeon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Kiyoon Kwon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Giyoong Tae
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
| |
Collapse
|
46
|
Liu Y, Weng T, Pan X, Wen Y, Yang H, Chen J, Xia L. Construction of an alanine dehydrogenase gene deletion strain for vaccine development against Nocardia seriolae in hybrid snakehead (Channa maculata ♀ × Channa argus ♂). FISH & SHELLFISH IMMUNOLOGY 2023; 138:108827. [PMID: 37207887 DOI: 10.1016/j.fsi.2023.108827] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 05/21/2023]
Abstract
Nocardia seriolae is the main pathogen of fish nocardiosis. In our previous study, alanine dehydrogenase was identified as a potential virulence factor of N. seriolae. On the basis of this fact, the alanine dehydrogenase gene of N. seriolae (NsAld) was knocked out to establish the strain ΔNsAld for vaccine development against fish nocardiosis in this study. The LD50 of strain ΔNsAld was 3.90 × 105 CFU/fish, higher than that of wild strain (5.28 × 104 CFU/fish) significantly (p < 0.05). When the strain ΔNsAld was used as a live vaccine to immunize hybrid snakehead (Channa maculata ♀ × Channa argus ♂) at 2.47 × 105 CFU/fish by intraperitoneal injection, the non-specific immune indexes (LZM, CAT, AKP, ACP and SOD activities), specific antibody (IgM) titers and several immune-related genes (CD4, CD8α, IL-1β, MHCIα, MHCIIα and TNFα) were up-regulated in different tissues, indicating that this vaccine could induce humoral and cell-mediated immune responses. Furthermore, the relative percentage survival (RPS) of ΔNsAld vaccine was calculated as 76.48% after wild N. seriolae challenge. All these results suggest that the strain ΔNsAld could be a potential candidate for live vaccine development to control fish nocardiosis in aquaculture.
Collapse
Affiliation(s)
- Yansheng Liu
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Tingting Weng
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Xuhao Pan
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Yiming Wen
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Huiyuan Yang
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Jianlin Chen
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, Guangdong, China.
| | - Liqun Xia
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, Guangdong, China.
| |
Collapse
|
47
|
Zeng Z, Li C, Liu Y, Chen H, Feng X. Delivery of Transcriptional Factors for Activating Antioxidant Defenses against Inflammatory Bowel Disease. ACS APPLIED BIO MATERIALS 2023; 6:1306-1312. [PMID: 36881502 DOI: 10.1021/acsabm.3c00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Oxidative stress caused by the overproduction of reactive oxygen species (ROS) plays an important role in inflammatory bowel disease (IBD). It is well-known that the Nrf2-ARE (antioxidative response element) pathway is important in the regulation mechanism of antioxidant defense. Therefore, Nrf2 activation may be an effective therapeutic strategy for IBD. Here, we reported the development of a nucleus-targeted Nrf2 delivery nanoplatform, termed N/LC, that could accumulate in inflamed colonic epithelium, reduce inflammatory responses, and restore epithelium barriers in a murine model of acute colitis. N/LC nanocomposites could quickly escape from lysosomes, so Nrf2 largely accumulated in the nucleus of colonic cells, activated the Nrf2-ARE signaling pathway, further elevated the expression levels of downstream detoxification and antioxidant genes, and protected cells from oxidative damage. These results suggested that N/LC might be a potential nanoplatform for IBD therapy. The study provided the basis for the biomedical applications of Nrf2-based therapeutics in various diseases.
Collapse
Affiliation(s)
- Zhiying Zeng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Centre, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Changying Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Centre, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Ye Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Centre, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Hui Chen
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Centre, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Xuli Feng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Centre, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| |
Collapse
|
48
|
Pu Y, Fan X, Zhang Z, Guo Z, Pan Q, Gao W, Luo K, He B. Harnessing polymer-derived drug delivery systems for combating inflammatory bowel disease. J Control Release 2023; 354:1-18. [PMID: 36566845 DOI: 10.1016/j.jconrel.2022.12.044] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022]
Abstract
The inflammatory bowel disease (IBD) is incurable, chronic, recrudescent disorders in the inflamed intestines. Current clinic treatments are challenged by systemic exposure-induced severe side effects, inefficiency after long-term treatment, and increased risks of infection and malignancy due to immunosuppression. Fortunately, naturally bioactive small molecules, reactive oxygen species scavengers (or antioxidants), and gut microbiota modulators have emerged as promising candidates for the IBD treatment. Polymeric systems have been engineered as a delivery vehicle to improve the bioavailability and efficacy of these therapeutic agents through targeting the mucosa and enhancing intestinal adhesion and retention, and reduce their systemic toxicity. Herein we survey polymer-derived drug delivery systems for combating the IBD. Advanced delivery technologies, therapeutic intervention strategies, and the principles for the construction of hierarchical, mucosa-targeting, and bioresponsive systems are elaborated, providing insights into design and development of from-bench-to-bedside drug delivery polymeric systems for the IBD treatment.
Collapse
Affiliation(s)
- Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xi Fan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Zhuangzhuang Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Zhaoyuan Guo
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Qingqing Pan
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Wenxia Gao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610041, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
49
|
Yang Y, Wang XH, Wang J, Zhang JY, Chen W, Yang H, He P, Tang XQ, Yu JH. A New Nanoscale Ultrasound Phase-Variant Contrast Agent for Phase Variant Low-Frequency Medical Ultrasound Imaging That Can Scavenge Reactive Oxygen Species. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Nanoscale phase-variant ultrasound contrast agents have attracted the interest of many researchers. However, it is a challenge to design nanobubbles that are activated by low-frequency medical ultrasound that do not cause damage to normal tissues. In this study, we designed a new type
of nanoparticle consisting of perfluoropentane and iron polyphthalocyanine loaded into liposomes. These nanoparticles can be activated by a low-frequency medical ultrasound imager at a frequency of 5 MHz for ultrasound imaging and clear reactive oxygen species at a rate of more than 50%. This
ability to scavenge excess reactive oxygen species can alleviate the damage these species cause and protect macrophages. Moreover, these nanoparticles can effectively enhance ultrasound contrast imaging for real-time visualization in the diagnosis and treatment of diseases.
Collapse
|
50
|
Chen L, Yang J, Fu X, Huang W, Yu X, Leng F, Yu C, Yang Z. A targeting mesoporous dopamine nanodrug platform with NIR responsiveness for atherosclerosis improvement. BIOMATERIALS ADVANCES 2022; 136:212775. [PMID: 35929293 DOI: 10.1016/j.bioadv.2022.212775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/07/2022] [Accepted: 03/21/2022] [Indexed: 05/27/2023]
Abstract
Atherosclerosis (AS), the formation of plaque lesions in the walls of arteries, causes many mortalities and morbidities worldwide. Currently, achieving site-specific delivery and controlled release at plaques is difficult. Herein, we implemented the strategy of constructing a bionic multifunctional nanoplatform (BM-NP) for targeting and improving plaques. BM-NPs were prepared based on probucol-loaded mesoporous polydopamine (MPDA) carriers and were coated with platelet membranes to impart bionic properties. In vitro experiments confirmed that BM-NPs, which respond to near-infrared (NIR) for drug release, remove reactive oxygen species (ROS), thereby reducing the level of oxidized low-density lipoprotein (ox-LDL) and ultimately helping to inhibit macrophage foaming. In vivo experiments proved that BM-NPs actively accumulated in plaques in the mouse right carotid artery (RCA) ligation model. During treatment, BM-NPs with NIR laser irradiation more effectively reduced the area of plaque deposition and slowed the thickening of the arterial wall intima. More importantly, BM-NPs showed the advantage of inhibiting the increase in triglyceride (TG) content in the body, and good biocompatibility. Hence, our research results indicate that intelligent BM-NPs can be used as a potential nanotherapy to precisely and synergistically improve AS.
Collapse
Affiliation(s)
- Lu Chen
- College of Pharmacy, Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing pharmacodynamic evaluation engineering technology research center, Chongqing 400016, China
| | - Jiaxin Yang
- College of Pharmacy, Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing pharmacodynamic evaluation engineering technology research center, Chongqing 400016, China
| | - Xiaoxue Fu
- College of Pharmacy, Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing pharmacodynamic evaluation engineering technology research center, Chongqing 400016, China
| | - Wenyan Huang
- College of Pharmacy, Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing pharmacodynamic evaluation engineering technology research center, Chongqing 400016, China
| | - Xiaojuan Yu
- College of Pharmacy, Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing pharmacodynamic evaluation engineering technology research center, Chongqing 400016, China
| | - Feng Leng
- College of Pharmacy, Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing pharmacodynamic evaluation engineering technology research center, Chongqing 400016, China
| | - Chao Yu
- College of Pharmacy, Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing pharmacodynamic evaluation engineering technology research center, Chongqing 400016, China.
| | - Zhangyou Yang
- College of Pharmacy, Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing pharmacodynamic evaluation engineering technology research center, Chongqing 400016, China.
| |
Collapse
|