1
|
Noske S, Krueger M, Ewe A, Aigner A. Analysis of Polymer/siRNA Nanoparticle Efficacy and Biocompatibility in 3D Air-Liquid Interface Culture Compared to 2D Cell Culture. Pharmaceutics 2025; 17:339. [PMID: 40143003 PMCID: PMC11946471 DOI: 10.3390/pharmaceutics17030339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
Background: Polymeric nanoparticles have been explored as efficient tools for siRNA delivery to induce RNAi-mediated gene knockdown. Chemical modifications of polyethylenimines (PEI) enhance nanoparticle efficacy and biocompatibility. Their in vivo use, however, benefits from prior analyses in relevant in vitro 3D conditions. Methods: We utilize a 3D ALI cell culture model for testing the biological activities and toxicities of a set of different PEI-based nanoparticles with different chemical modifications. This also includes a novel, fluoroalkyl-modified PEI. Reporter gene knockdown is directly compared to 2D cell culture. In parallel, biocompatibility is assessed by measuring cell viability and lactate dehydrogenase (LDH) release. Results: Knockdown efficacies in the 3D ALI model are dependent on the chemical modification and complex preparation conditions. Results only correlate in part with gene knockdown in 2D cell culture, identifying nanoparticle penetration and cellular internalization under 3D conditions as important parameters. The 3D ALI cell culture is also suitable for the quantitative determination of nanoparticle effects on cell viability and acute toxicity, with biocompatibility benefitting from PEI modifications. Conclusions: The 3D ALI cell model allows for a more realistic assessment of biological nanoparticle effects. A novel fluoroalkyl-modified PEI is described. Optimal preparations of PEI-based nanoparticles for siRNA delivery and gene knockdown are identified.
Collapse
Affiliation(s)
- Sandra Noske
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Faculty of Medicine, Leipzig University, 04107 Leipzig, Germany; (S.N.); (A.E.)
| | - Martin Krueger
- Institute of Anatomy, Leipzig University, Liebigstraße 13, 04103 Leipzig, Germany;
| | - Alexander Ewe
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Faculty of Medicine, Leipzig University, 04107 Leipzig, Germany; (S.N.); (A.E.)
| | - Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Faculty of Medicine, Leipzig University, 04107 Leipzig, Germany; (S.N.); (A.E.)
| |
Collapse
|
2
|
Luong QXT, Hoang PT, Ho PT, Ayun RQ, Lee TK, Lee S. Potential Broad-Spectrum Antiviral Agents: A Key Arsenal Against Newly Emerging and Reemerging Respiratory RNA Viruses. Int J Mol Sci 2025; 26:1481. [PMID: 40003946 PMCID: PMC11855616 DOI: 10.3390/ijms26041481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/05/2024] [Accepted: 12/16/2024] [Indexed: 02/27/2025] Open
Abstract
Respiratory viral infections present significant global health challenges, causing substantial morbidity and mortality, particularly among highly susceptible components of the population. The emergence of pandemics and epidemics, such as those caused by influenza viruses and coronaviruses, emphasizes the urgent need for effective antiviral therapeutics. In this review, we explore the potential of broad-spectrum antiviral agents targeting respiratory RNA viruses, including influenza viruses, coronaviruses, respiratory syncytial virus, human metapneumovirus, human parainfluenza viruses, and rhinoviruses. Various broad-spectrum direct-acting and host-targeting antivirals are discussed, including monoclonal antibodies targeting conserved regions of viral surface proteins, molecules interfering with host cell receptors or viral replication machinery, viral protease inhibitors, siRNA therapies, ribonuclease, and 3D8 scFv. Advancements in host-targeting approaches to reduce resistance and RNA-based therapeutics offer significant potential for combating respiratory viral threats. Despite challenges, broad-spectrum antiviral agents represent a crucial strategy, particularly when specific viral pathogens are unidentified or rapid intervention is essential, such as during pandemics or outbreaks.
Collapse
Affiliation(s)
- Quynh Xuan Thi Luong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea; (Q.X.T.L.); (P.T.H.); (P.T.H.); (R.Q.A.)
| | - Phuong Thi Hoang
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea; (Q.X.T.L.); (P.T.H.); (P.T.H.); (R.Q.A.)
| | - Phuong Thi Ho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea; (Q.X.T.L.); (P.T.H.); (P.T.H.); (R.Q.A.)
| | - Ramadhani Qurrota Ayun
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea; (Q.X.T.L.); (P.T.H.); (P.T.H.); (R.Q.A.)
| | - Taek Kyun Lee
- Risk Assessment Research Center, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea
| | - Sukchan Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea; (Q.X.T.L.); (P.T.H.); (P.T.H.); (R.Q.A.)
| |
Collapse
|
3
|
Bowden-Reid E, Moles E, Kelleher A, Ahlenstiel C. Harnessing antiviral RNAi therapeutics for pandemic viruses: SARS-CoV-2 and HIV. Drug Deliv Transl Res 2025:10.1007/s13346-025-01788-x. [PMID: 39833468 DOI: 10.1007/s13346-025-01788-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2024] [Indexed: 01/22/2025]
Abstract
Using the knowledge from decades of research into RNA-based therapies, the COVID-19 pandemic response saw the rapid design, testing and production of the first ever mRNA vaccines approved for human use in the clinic. This breakthrough has been a significant milestone for RNA therapeutics and vaccines, driving an exponential growth of research into the field. The development of novel RNA therapeutics targeting high-threat pathogens, that pose a substantial risk to global health, could transform the future of health delivery. In this review, we provide a detailed overview of the two RNA interference (RNAi) pathways and how antiviral RNAi therapies can be used to treat acute or chronic diseases caused by the pandemic viruses SARS-CoV-2 and HIV, respectively. We also provide insights into short-interfering RNA (siRNA) delivery systems, with a focus on how lipid nanoparticles can be functionalized to achieve targeted delivery to specific sites of disease. This review will provide the current developments of SARS-CoV-2 and HIV targeted siRNAs, highlighting strategies to advance the progression of antiviral siRNA along the clinical development pathway.
Collapse
Affiliation(s)
| | - Ernest Moles
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, 2052, Australia.
- Australian Centre for Nanomedicine, Faculty of Engineering, UNSW Sydney, Sydney, 2052, Australia.
- School of Clinical Medicine, Medicine and Health, UNSW Sydney, Sydney, 2052, Australia.
- UNSW RNA Institute, UNSW Sydney, Sydney, 2052, Australia.
| | - Anthony Kelleher
- The Kirby Institute, UNSW Sydney, Sydney, 2052, Australia
- UNSW RNA Institute, UNSW Sydney, Sydney, 2052, Australia
| | - Chantelle Ahlenstiel
- The Kirby Institute, UNSW Sydney, Sydney, 2052, Australia.
- UNSW RNA Institute, UNSW Sydney, Sydney, 2052, Australia.
| |
Collapse
|
4
|
De Jesús-González LA, León-Juárez M, Lira-Hernández FI, Rivas-Santiago B, Velázquez-Cervantes MA, Méndez-Delgado IM, Macías-Guerrero DI, Hernández-Castillo J, Hernández-Rodríguez X, Calderón-Sandate DN, Mata-Martínez WS, Reyes-Ruíz JM, Osuna-Ramos JF, García-Herrera AC. Advances and Challenges in Antiviral Development for Respiratory Viruses. Pathogens 2024; 14:20. [PMID: 39860981 PMCID: PMC11768830 DOI: 10.3390/pathogens14010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/26/2024] [Accepted: 12/28/2024] [Indexed: 01/27/2025] Open
Abstract
The development of antivirals for respiratory viruses has advanced markedly in response to the growing threat of pathogens such as Influenzavirus (IAV), respiratory syncytial virus (RSV), and SARS-CoV-2. This article reviews the advances and challenges in this field, highlighting therapeutic strategies that target critical stages of the viral replication cycle, including inhibitors of viral entry, replication, and assembly. In addition, innovative approaches such as inhibiting host cellular proteins to reduce viral resistance and repurposing existing drugs are explored, using advanced bioinformatics tools that optimize the identification of antiviral candidates. The analysis also covers emerging technologies such as nanomedicine and CRISPR gene editing, which promise to improve the stability and efficacy of treatments. While current antivirals offer valuable options, they face challenges such as viral evolution and the need for accessible treatments for vulnerable populations. This article underscores the importance of continued innovation in biotechnology to overcome these limitations and provide safe and effective treatments. Combining traditional and advanced approaches in developing antivirals is essential in order to address respiratory viral diseases that affect global health.
Collapse
Affiliation(s)
- Luis Adrián De Jesús-González
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas 98000, Mexico; (F.I.L.-H.); (B.R.-S.); (I.M.M.-D.); (D.I.M.-G.); (X.H.-R.); (D.N.C.-S.); (W.S.M.-M.); (A.C.G.-H.)
| | - Moisés León-Juárez
- Laboratorio de Virología Perinatal y Diseño Molecular de Antígenos y Biomarcadores, Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Ciudad de México 11000, Mexico;
| | - Flor Itzel Lira-Hernández
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas 98000, Mexico; (F.I.L.-H.); (B.R.-S.); (I.M.M.-D.); (D.I.M.-G.); (X.H.-R.); (D.N.C.-S.); (W.S.M.-M.); (A.C.G.-H.)
| | - Bruno Rivas-Santiago
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas 98000, Mexico; (F.I.L.-H.); (B.R.-S.); (I.M.M.-D.); (D.I.M.-G.); (X.H.-R.); (D.N.C.-S.); (W.S.M.-M.); (A.C.G.-H.)
| | - Manuel Adrián Velázquez-Cervantes
- Laboratorio de Virología Perinatal y Diseño Molecular de Antígenos y Biomarcadores, Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Ciudad de México 11000, Mexico;
| | - Iridiana Monserrat Méndez-Delgado
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas 98000, Mexico; (F.I.L.-H.); (B.R.-S.); (I.M.M.-D.); (D.I.M.-G.); (X.H.-R.); (D.N.C.-S.); (W.S.M.-M.); (A.C.G.-H.)
- Especialidad en Medicina Familiar, Unidad Académica de Medicina Humana y Ciencias de la Salud, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico
- Instituto Mexicano del Seguro Social, Unidad de Medicina Familiar # 4, Servicio de Medicina Familiar, Guadalupe, Zacatecas 98618, Mexico
| | - Daniela Itzel Macías-Guerrero
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas 98000, Mexico; (F.I.L.-H.); (B.R.-S.); (I.M.M.-D.); (D.I.M.-G.); (X.H.-R.); (D.N.C.-S.); (W.S.M.-M.); (A.C.G.-H.)
- Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico
| | - Jonathan Hernández-Castillo
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City 07360, Mexico;
| | - Ximena Hernández-Rodríguez
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas 98000, Mexico; (F.I.L.-H.); (B.R.-S.); (I.M.M.-D.); (D.I.M.-G.); (X.H.-R.); (D.N.C.-S.); (W.S.M.-M.); (A.C.G.-H.)
- Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico
| | - Daniela Nahomi Calderón-Sandate
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas 98000, Mexico; (F.I.L.-H.); (B.R.-S.); (I.M.M.-D.); (D.I.M.-G.); (X.H.-R.); (D.N.C.-S.); (W.S.M.-M.); (A.C.G.-H.)
- Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico
| | - Willy Salvador Mata-Martínez
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas 98000, Mexico; (F.I.L.-H.); (B.R.-S.); (I.M.M.-D.); (D.I.M.-G.); (X.H.-R.); (D.N.C.-S.); (W.S.M.-M.); (A.C.G.-H.)
- Especialidad en Medicina Familiar, Unidad Académica de Medicina Humana y Ciencias de la Salud, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico
- Instituto Mexicano del Seguro Social, Unidad de Medicina Familiar # 4, Servicio de Medicina Familiar, Guadalupe, Zacatecas 98618, Mexico
| | - José Manuel Reyes-Ruíz
- División de Investigación en Salud, Unidad Médica de Alta Especialidad, Hospital de Especialidades No. 14, Centro Médico Nacional “Adolfo Ruiz Cortines”, Instituto Mexicano del Seguro Social (IMSS), Veracruz 91897, Mexico;
- Facultad de Medicina, Región Veracruz, Universidad Veracruzana (UV), Veracruz 91700, Mexico
| | | | - Ana Cristina García-Herrera
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas 98000, Mexico; (F.I.L.-H.); (B.R.-S.); (I.M.M.-D.); (D.I.M.-G.); (X.H.-R.); (D.N.C.-S.); (W.S.M.-M.); (A.C.G.-H.)
| |
Collapse
|
5
|
Chokwassanasakulkit T, Oti VB, Idris A, McMillan NA. SiRNAs as antiviral drugs - Current status, therapeutic potential and challenges. Antiviral Res 2024; 232:106024. [PMID: 39454759 DOI: 10.1016/j.antiviral.2024.106024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
Traditionally, antiviral drugs target viral enzymes and or structural proteins, identified through large drug screens or rational drug design. The screening, chemical optimisation, small animal toxicity studies and clinical trials mean time to market is long for a new compound, and in the event of a novel virus or pandemic, weeks, and months matter. Small interfering RNAs (siRNAs) as a gene silencing platform is an alluring alternative. SiRNAs are now approved for use in the clinic to treat a range of diseases, are cost effective, scalable, and can be easily programmed to target any viral target in a matter of days. Despite the large number of preclinical studies that clearly show siRNAs are highly effective antivirals this has not translated into clinical success with no products on the market. This review provides a comprehensive overview of both the clinical and preclinical work in this area and outlines the challenges the field faces going forward that need to be addressed in order to see siRNA antivirals become a clinical reality.
Collapse
Affiliation(s)
- Trairong Chokwassanasakulkit
- Institute of Biomedicine and Glycomics and School and Pharmacy and Medical Sciences, Griffith University, Southport, QLD, Australia
| | - Victor Baba Oti
- Institute of Biomedicine and Glycomics and School and Pharmacy and Medical Sciences, Griffith University, Southport, QLD, Australia
| | - Adi Idris
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - Nigel Aj McMillan
- Institute of Biomedicine and Glycomics and School and Pharmacy and Medical Sciences, Griffith University, Southport, QLD, Australia.
| |
Collapse
|
6
|
Nazir F, John Kombe Kombe A, Khalid Z, Bibi S, Zhang H, Wu S, Jin T. SARS-CoV-2 replication and drug discovery. Mol Cell Probes 2024; 77:101973. [PMID: 39025272 DOI: 10.1016/j.mcp.2024.101973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
The coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has killed millions of people and continues to wreak havoc across the globe. This sudden and deadly pandemic emphasizes the necessity for anti-viral drug development that can be rapidly administered to reduce morbidity, mortality, and virus propagation. Thus, lacking efficient anti-COVID-19 treatment, and especially given the lengthy drug development process as well as the critical death tool that has been associated with SARS-CoV-2 since its outbreak, drug repurposing (or repositioning) constitutes so far, the ideal and ready-to-go best approach in mitigating viral spread, containing the infection, and reducing the COVID-19-associated death rate. Indeed, based on the molecular similarity approach of SARS-CoV-2 with previous coronaviruses (CoVs), repurposed drugs have been reported to hamper SARS-CoV-2 replication. Therefore, understanding the inhibition mechanisms of viral replication by repurposed anti-viral drugs and chemicals known to block CoV and SARS-CoV-2 multiplication is crucial, and it opens the way for particular treatment options and COVID-19 therapeutics. In this review, we highlighted molecular basics underlying drug-repurposing strategies against SARS-CoV-2. Notably, we discussed inhibition mechanisms of viral replication, involving and including inhibition of SARS-CoV-2 proteases (3C-like protease, 3CLpro or Papain-like protease, PLpro) by protease inhibitors such as Carmofur, Ebselen, and GRL017, polymerases (RNA-dependent RNA-polymerase, RdRp) by drugs like Suramin, Remdesivir, or Favipiravir, and proteins/peptides inhibiting virus-cell fusion and host cell replication pathways, such as Disulfiram, GC376, and Molnupiravir. When applicable, comparisons with SARS-CoV inhibitors approved for clinical use were made to provide further insights to understand molecular basics in inhibiting SARS-CoV-2 replication and draw conclusions for future drug discovery research.
Collapse
Affiliation(s)
- Farah Nazir
- Center of Disease Immunity and Investigation, College of Medicine, Lishui University, Lishui, 323000, China
| | - Arnaud John Kombe Kombe
- Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Zunera Khalid
- Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Shaheen Bibi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China, Anhui, China
| | - Hongliang Zhang
- Center of Disease Immunity and Investigation, College of Medicine, Lishui University, Lishui, 323000, China
| | - Songquan Wu
- Center of Disease Immunity and Investigation, College of Medicine, Lishui University, Lishui, 323000, China.
| | - Tengchuan Jin
- Center of Disease Immunity and Investigation, College of Medicine, Lishui University, Lishui, 323000, China; Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China, Anhui, China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China; Biomedical Sciences and Health Laboratory of Anhui Province, University of Science & Technology of China, Hefei, 230027, China; Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230001, China.
| |
Collapse
|
7
|
Hussein M, Liu Y, Vink M, Kroon PZ, Das AT, Berkhout B, Herrera-Carrillo E. Evaluation of the effect of RNA secondary structure on Cas13d-mediated target RNA cleavage. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102278. [PMID: 39220269 PMCID: PMC11364014 DOI: 10.1016/j.omtn.2024.102278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 07/16/2024] [Indexed: 09/04/2024]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas13d system was adapted as a powerful tool for targeting viral RNA sequences, making it a promising approach for antiviral strategies. Understanding the influence of template RNA structure on Cas13d binding and cleavage efficiency is crucial for optimizing its therapeutic potential. In this study, we investigated the effect of local RNA secondary structure on Cas13d activity. To do so, we varied the stability of a hairpin structure containing the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) target sequence, allowing us to determine the threshold RNA stability at which Cas13d activity is affected. Our results demonstrate that Cas13d possesses the ability to effectively bind and cleave highly stable RNA structures. Notably, we only observed a decrease in Cas13d activity in the case of exceptionally stable RNA hairpins with completely base-paired stems, which are rarely encountered in natural RNA molecules. A comparison of Cas13d and RNA interference (RNAi)-mediated cleavage of the same RNA targets demonstrated that RNAi is more sensitive for local target RNA structures than Cas13d. These results underscore the suitability of the CRISPR-Cas13d system for targeting viruses with highly structured RNA genomes.
Collapse
Affiliation(s)
- Mouraya Hussein
- Amsterdam UMC, University of Amsterdam, Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Ye Liu
- Amsterdam UMC, University of Amsterdam, Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Monique Vink
- Amsterdam UMC, University of Amsterdam, Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Pascal Z. Kroon
- Amsterdam UMC, University of Amsterdam, Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Atze T. Das
- Amsterdam UMC, University of Amsterdam, Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Ben Berkhout
- Amsterdam UMC, University of Amsterdam, Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Elena Herrera-Carrillo
- Amsterdam UMC, University of Amsterdam, Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| |
Collapse
|
8
|
Gordhan BG, Liebenberg D, Scarlatti G, Herrera C, Chiodi F, Martinson N, Fox J, Kana BD. Ex vivo challenge models for infectious diseases. Crit Rev Microbiol 2024; 50:785-804. [PMID: 37909097 DOI: 10.1080/1040841x.2023.2274855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 11/02/2023]
Abstract
Traditionally, molecular mechanisms of pathogenesis for infectious agents were studied in cell culture or animal models but have limitations on the extent to which the resulting data reflect natural infection in humans. The COVID-19 pandemic has highlighted the urgent need to rapidly develop laboratory models that enable the study of host-pathogen interactions, particularly the relative efficacy of preventive measures. Recently, human and animal ex vivo tissue challenge models have emerged as a promising avenue to study immune responses, screen potential therapies and triage vaccine candidates. This approach offers the opportunity to closely approximate human disease from the perspective of pathology and immune response. It has advantages compared to animal models which are expensive, lengthy and often require containment facilities. Herein, we summarize some recent advances in the development of ex vivo tissue challenge models for COVID-19, HIV-1 and other pathogens. We focus on the contribution of these models to enhancing knowledge of host-pathogen interactions, immune modulation, and their value in testing therapeutic agents. We further highlight the advantages and limitations of using ex vivo challenge models and briefly summarize how the use of organoids provides a useful advancement over current approaches. Collectively, these developments have enormous potential for the study of infectious diseases.
Collapse
Affiliation(s)
- Bhavna Gowan Gordhan
- Department of Science and Innovation/National Research Foundation Centre of Excellence for Biomedical TB Research, Faculty of Health Sciences, University of the Witwatersrand, National Health Laboratory Service, Johannesburg, South Africa
| | - Dale Liebenberg
- Department of Science and Innovation/National Research Foundation Centre of Excellence for Biomedical TB Research, Faculty of Health Sciences, University of the Witwatersrand, National Health Laboratory Service, Johannesburg, South Africa
| | - Gabriella Scarlatti
- Viral Evolution and Transmission Unit, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Carolina Herrera
- Department of Infectious Disease, Imperial College London, London, UK
| | - Francesca Chiodi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Neil Martinson
- Perinatal HIV Research Unit (PHRU), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Julie Fox
- Guys and St. Thomas' NHS Foundation Trust and King's College London, London, UK
| | - Bavesh Davandra Kana
- Department of Science and Innovation/National Research Foundation Centre of Excellence for Biomedical TB Research, Faculty of Health Sciences, University of the Witwatersrand, National Health Laboratory Service, Johannesburg, South Africa
| |
Collapse
|
9
|
Grau M, Wagner E. Strategies and mechanisms for endosomal escape of therapeutic nucleic acids. Curr Opin Chem Biol 2024; 81:102506. [PMID: 39096817 DOI: 10.1016/j.cbpa.2024.102506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/25/2024] [Accepted: 07/12/2024] [Indexed: 08/05/2024]
Abstract
Despite impressive recent establishment of therapeutic nucleic acids as drugs and vaccines, their broader medical use is impaired by modest performance in intracellular delivery. Inefficient endosomal escape presents a major limitation responsible for inadequate cytosolic cargo release. Depending on the carrier, this endosomal barrier can strongly limit or even abolish nucleic acid delivery. Different recent endosomal escape strategies and their hypothesized mechanisms are reviewed.
Collapse
Affiliation(s)
- Melina Grau
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, 81377 Munich, Germany; CNATM - Cluster for Nucleic Acid Therapeutics Munich, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, 81377 Munich, Germany; CNATM - Cluster for Nucleic Acid Therapeutics Munich, Germany; Center for Nanoscience (CeNS), LMU Munich, 80799 Munich, Germany.
| |
Collapse
|
10
|
Adams F, Zimmermann CM, Baldassi D, Pehl TM. Pulmonary siRNA Delivery with Sophisticated Amphiphilic Poly(Spermine Acrylamides) for the Treatment of Lung Fibrosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308775. [PMID: 38126895 PMCID: PMC7616748 DOI: 10.1002/smll.202308775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/16/2023] [Indexed: 12/23/2023]
Abstract
RNA interference (RNAi) is an efficient strategy to post-transcriptionally silence gene expression. While all siRNA drugs on the market target the liver, the lung offers a variety of currently undruggable targets, which can potentially be treated with RNA therapeutics. To achieve this goal, the synthesis of poly(spermine acrylamides) (P(SpAA) is reported herein. Polymers are prepared via polymerization of N-acryloxysuccinimide (NAS) and afterward this active ester is converted into spermine-based pendant groups. Copolymerizations with decylacrylamide are employed to increase the hydrophobicity of the polymers. After deprotection, polymers show excellent siRNA encapsulation to obtain perfectly sized polyplexes at very low polymer/RNA ratios. In vitro 2D and 3D cell culture, ex vivo and in vivo experiments reveal superior properties of amphiphilic spermine-copolymers with respect to delivery of siRNA to lung cells in comparison to commonly used lipid-based transfection agents. In line with the in vitro results, siRNA delivery to human lung explants confirm more efficient gene silencing of protease-activated receptor 2 (PAR2), a G protein-coupled receptor involved in fibrosis. This study reveals the importance of the balance between efficient polyplex formation, cellular uptake, gene knockdown, and toxicity for efficient siRNA delivery in vitro, in vivo, and in fibrotic human lung tissue ex vivo.
Collapse
Affiliation(s)
- Friederike Adams
- Pharmaceutical Technology and Biopharmaceutics, Department Pharmacy Ludwig-Maximilians-University Munich, Butenandtstr. 5−13, 81377Munich, Germany
- Institute of Polymer Chemistry Chair of Macromolecular Materials and Fiber Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569Stuttgart, Germany
- Center for Ophthalmology University Eye Hospital Tübingen, Elfriede-Aulhorn-Straße 7, 72076 Tübingen, Germany
| | | | - Domizia Baldassi
- Pharmaceutical Technology and Biopharmaceutics, Department Pharmacy Ludwig-Maximilians-University Munich, Butenandtstr. 5−13, 81377Munich, Germany
| | - Thomas M. Pehl
- WACKER-Chair of Macromolecular Chemistry, Catalysis Research Center, Department of Chemistry, Technical University Munich, Lichtenbergstr. 4, 85748Garching bei München, Germany
| |
Collapse
|
11
|
Saglam-Metiner P, Yildiz-Ozturk E, Tetik-Vardarli A, Cicek C, Goksel O, Goksel T, Tezcanli B, Yesil-Celiktas O. Organotypic lung tissue culture as a preclinical model to study host- influenza A viral infection: A case for repurposing of nafamostat mesylate. Tissue Cell 2024; 87:102319. [PMID: 38359705 DOI: 10.1016/j.tice.2024.102319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/11/2024] [Accepted: 01/29/2024] [Indexed: 02/17/2024]
Abstract
Reliable and effective models for recapitulation of host-pathogen interactions are imperative for the discovery of potential therapeutics. Ex vivo models can fulfill these requirements as the multicellular native environment in the tissue is preserved and be utilized for toxicology, vaccine, infection and drug efficacy studies due to the presence of immune cells. Drug repurposing involves the identification of new applications for already approved drugs that are not related to the prime medical indication and emerged as a strategy to cope with slow pace of drug discovery due to high costs and necessary phases to reach the patients. Within the scope of the study, broad-spectrum serine protease inhibitor nafamostat mesylate was repurposed to inhibit influenza A infection and evaluated by a translational ex vivo organotypic model, in which human organ-level responses can be achieved in preclinical safety studies of potential antiviral agents, along with in in vitro lung airway culture. The safe doses were determined as 10 µM for in vitro, whereas 22 µM for ex vivo to be applied for evaluation of host-pathogen interactions, which reduced virus infectivity, increased cell/tissue viability, and protected total protein content by reducing cell death with the inflammatory response. When the gene expression levels of specific pro-inflammatory, anti-inflammatory and cell surface markers involved in antiviral responses were examined, the significant inflammatory response represented by highly elevated mRNA gene expression levels of cytokines and chemokines combined with CDH5 downregulated by 5.1-fold supported the antiviral efficacy of NM and usability of ex vivo model as a preclinical infection model.
Collapse
Affiliation(s)
- Pelin Saglam-Metiner
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Izmir, Turkey; Translational Pulmonary Research Center (EgeSAM), Ege University, Izmir 35100, Turkey
| | - Ece Yildiz-Ozturk
- Translational Pulmonary Research Center (EgeSAM), Ege University, Izmir 35100, Turkey; Department of Food Processing, Food Technology Programme, Yasar University, 35100 Izmir, Turkey
| | - Aslı Tetik-Vardarli
- Translational Pulmonary Research Center (EgeSAM), Ege University, Izmir 35100, Turkey; Department of Medical Biology, Faculty of Medicine, Ege University, Izmir 35100, Turkey
| | - Candan Cicek
- Department of Medical Microbiology, Faculty of Medicine, Ege University, Izmir 35100, Turkey
| | - Ozlem Goksel
- Translational Pulmonary Research Center (EgeSAM), Ege University, Izmir 35100, Turkey; Department of Pulmonary Medicine, Division of Allergy and Immunology, Faculty of Medicine, Ege University, Izmir 35100, Turkey
| | - Tuncay Goksel
- Translational Pulmonary Research Center (EgeSAM), Ege University, Izmir 35100, Turkey; Department of Pulmonary Medicine, Division of Allergy and Immunology, Faculty of Medicine, Ege University, Izmir 35100, Turkey
| | | | - Ozlem Yesil-Celiktas
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Izmir, Turkey; Translational Pulmonary Research Center (EgeSAM), Ege University, Izmir 35100, Turkey.
| |
Collapse
|
12
|
Bogaert B, Debisschop A, Ehouarne T, Van Eeckhoutte HP, De Volder J, Jacobs A, Pottie E, De Rycke R, Crabbé A, Mestdagh P, Lentacker I, Brusselle GG, Stove C, Verstraelen S, Maes T, Bracke KR, De Smedt SC, Raemdonck K. Selective Replacement of Cholesterol with Cationic Amphiphilic Drugs Enables the Design of Lipid Nanoparticles with Improved RNA Delivery. NANO LETTERS 2024; 24:2961-2971. [PMID: 38477058 DOI: 10.1021/acs.nanolett.3c03345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
The delivery of RNA across biological barriers can be achieved by encapsulation in lipid nanoparticles (LNPs). Cationic amphiphilic drugs (CADs) are pharmacologically diverse compounds with ionizable lipid-like features. In this work, we applied CADs as a fifth component of state-of-the-art LNPs via microfluidic mixing. Improved cytosolic delivery of both siRNA and mRNA was achieved by partly replacing the cholesterol fraction of LNPs with CADs. The LNPs could cross the mucus layer in a mucus-producing air-liquid interface model of human primary bronchial epithelial cells following nebulization. Moreover, CAD-LNPs demonstrated improved epithelial and endothelial targeting following intranasal administration in mice, without a marked pro-inflammatory signature. Importantly, quantification of the CAD-LNP molar composition, as demonstrated for nortriptyline, revealed a gradual leakage of the CAD from the formulation during LNP dialysis. Altogether, these data suggest that the addition of a CAD prior to the rapid mixing process might have an impact on the composition, structure, and performance of LNPs.
Collapse
Affiliation(s)
- Bram Bogaert
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Aliona Debisschop
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Thomas Ehouarne
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Hannelore P Van Eeckhoutte
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Joyceline De Volder
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - An Jacobs
- Health Unit, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
| | - Eline Pottie
- Laboratory of Toxicology, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Riet De Rycke
- Ghent University Expertise Center for Transmission Electron Microscopy and VIB BioImaging Core, 9000 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, VIB Center for Inflammation Research, 9052 Ghent, Belgium
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Pieter Mestdagh
- Department of Biomolecular Medicine, OncoRNAlab, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Ine Lentacker
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Guy G Brusselle
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Christophe Stove
- Laboratory of Toxicology, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Sandra Verstraelen
- Health Unit, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
| | - Tania Maes
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Ken R Bracke
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Stefaan C De Smedt
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Koen Raemdonck
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| |
Collapse
|
13
|
Chen Y, Li Z, Ji G, Wang S, Mo C, Ding B. Lung regeneration: diverse cell types and the therapeutic potential. MedComm (Beijing) 2024; 5:e494. [PMID: 38405059 PMCID: PMC10885188 DOI: 10.1002/mco2.494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/27/2024] Open
Abstract
Lung tissue has a certain regenerative ability and triggers repair procedures after injury. Under controllable conditions, lung tissue can restore normal structure and function. Disruptions in this process can lead to respiratory system failure and even death, causing substantial medical burden. The main types of respiratory diseases are chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), and acute respiratory distress syndrome (ARDS). Multiple cells, such as lung epithelial cells, endothelial cells, fibroblasts, and immune cells, are involved in regulating the repair process after lung injury. Although the mechanism that regulates the process of lung repair has not been fully elucidated, clinical trials targeting different cells and signaling pathways have achieved some therapeutic effects in different respiratory diseases. In this review, we provide an overview of the cell type involved in the process of lung regeneration and repair, research models, and summarize molecular mechanisms involved in the regulation of lung regeneration and fibrosis. Moreover, we discuss the current clinical trials of stem cell therapy and pharmacological strategies for COPD, IPF, and ARDS treatment. This review provides a reference for further research on the molecular and cellular mechanisms of lung regeneration, drug development, and clinical trials.
Collapse
Affiliation(s)
- Yutian Chen
- The Department of Endovascular SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan UniversityChengduChina
| | - Zhen Li
- The Department of Endovascular SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Gaili Ji
- Department of GynecologyThe Third Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Shaochi Wang
- Department of Translational MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Chunheng Mo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan UniversityChengduChina
| | - Bi‐Sen Ding
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
14
|
Carneiro S, Müller JT, Merkel OM. Targeted Molecular Therapeutics for Pulmonary Diseases: Addressing the Need for Precise Drug Delivery. Handb Exp Pharmacol 2024; 284:313-328. [PMID: 38177399 DOI: 10.1007/164_2023_703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Respiratory diseases are a major concern in public health, impacting a large population worldwide. Despite the availability of therapies that alleviate symptoms, selectively addressing the critical points of pathopathways remains a major challenge. Innovative formulations designed for reaching these targets within the airways, enhanced selectivity, and prolonged therapeutic effects offer promising solutions. To provide insights into the specific medical requirements of chronic respiratory diseases, the initial focus of this chapter is directed on lung physiology, emphasizing the significance of lung barriers. Current treatments involving small molecules and the potential of gene therapy are also discussed. Additionally, we will explore targeting approaches, with a particular emphasis on nanoparticles, comparing targeted and non-targeted formulations for pulmonary administration. Finally, the potential of inhaled sphingolipids in the context of respiratory diseases is briefly discussed, highlighting their promising prospects in the field.
Collapse
Affiliation(s)
- Simone Carneiro
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Joschka T Müller
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Olivia M Merkel
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-University Munich, Munich, Germany.
- Center for NanoScience (CeNS), Ludwig-Maximilians-University Munich, Munich, Germany.
- Institute of Lung Health and Immunity (LHI) and Comprehensive Pneumology Center (CPC) with the CPC-M bioArchive, Helmholtz Munich, German Center for Lung Research (DZL), Munich, Germany.
| |
Collapse
|
15
|
Baldassi D, Ngo TMH, Merkel OM. Optimization of Lung Surfactant Coating of siRNA Polyplexes for Pulmonary Delivery. Pharm Res 2024; 41:77-91. [PMID: 36447020 PMCID: PMC9708138 DOI: 10.1007/s11095-022-03443-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/18/2022] [Indexed: 12/05/2022]
Abstract
PURPOSE The aim of this study was to understand how coating with a pulmonary surfactant, namely Alveofact, affects the physicochemical parameters as well as in vitro behavior of polyethylenimine (PEI) polyplexes for pulmonary siRNA delivery. METHODS Alveofact-coated polyplexes were prepared at different Alveofact:PEI coating ratios and analyzed in terms of size, PDI and zeta potential as well as morphology by transmission electron microscopy. The biological behavior was evaluated in a lung epithelial cell line regarding cell viability, cellular uptake via flow cytometry and gene downregulation by qRT-PCR. Furthermore, a 3D ALI culture model was established to test the mucus diffusion and cellular uptake by confocal microscopy as well as gene silencing activity by qRT-PCR. RESULTS After optimizing the coating process by testing different Alveofact:PEI coating ratios, a formulation with suitable parameters for lung delivery was obtained. In lung epithelial cells, Alveofact-coated polyplexes were well tolerated and internalized. Furthermore, the coating improved the siRNA-mediated gene silencing efficiency. Alveofact-coated polyplexes were then tested on a 3D air-liquid interface (ALI) culture model that, by expressing tight junctions and secreting mucus, resembles important traits of the lung epithelium. Here, we identified the optimal Alveofact:PEI coating ratio to achieve diffusion through the mucus layer while retaining gene silencing activity. Interestingly, the latter underlined the importance of establishing appropriate in vitro models to achieve more consistent results that better predict the in vivo activity. CONCLUSION The addition of a coating with pulmonary surfactant to polymeric cationic polyplexes represents a valuable formulation strategy to improve local delivery of siRNA to the lungs.
Collapse
Affiliation(s)
- Domizia Baldassi
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians University of Munich, Butenandtstraße 5, 81377, Munich, Germany
| | - Thi My Hanh Ngo
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians University of Munich, Butenandtstraße 5, 81377, Munich, Germany
| | - Olivia M Merkel
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians University of Munich, Butenandtstraße 5, 81377, Munich, Germany.
| |
Collapse
|
16
|
Carneiro SP, Müller JT, Merkel OM. Fluorescent Techniques for RNA Detection in Nanoparticles. Methods Mol Biol 2024; 2822:187-203. [PMID: 38907920 DOI: 10.1007/978-1-0716-3918-4_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
The utilization of drug delivery systems, such as lipid nanoparticles and polyplexes/micelleplexes, has shown promise in intracellularly delivering nucleic acids for addressing various diseases. Accurate quantification of the nucleic acid cargo within nanoparticles is essential for the development of safe and effective nanomedicines. Currently, the RiboGreen and SYBR Gold methods are regarded as standard techniques for the precise quantification of RNA in lipid nanoparticles and polyplexes/micelleplexes, respectively. In this chapter, we present a comprehensive protocol for the precise evaluation of the encapsulation efficiency in such formulations using these methods. Additionally, we offer detailed instructions for nanoparticle preparation, characterization, and a comparative analysis of the sensitivity of both methods in quantifying unencapsulated siRNA.
Collapse
Affiliation(s)
- Simone P Carneiro
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-University Munich, Munich, Germany
- Center for NanoScience (CeNS), Ludwig-Maximilians-University Munich, Munich, Germany
| | - Joschka T Müller
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Olivia M Merkel
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-University Munich, Munich, Germany.
- Center for NanoScience (CeNS), Ludwig-Maximilians-University Munich, Munich, Germany.
- Institute of Lung Health and Immunity (LHI) and Comprehensive Pneumology Center (CPC) with the CPC-M bioArchive, Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany.
| |
Collapse
|
17
|
Dighe S, Jog S, Momin M, Sawarkar S, Omri A. Intranasal Drug Delivery by Nanotechnology: Advances in and Challenges for Alzheimer's Disease Management. Pharmaceutics 2023; 16:58. [PMID: 38258068 PMCID: PMC10820353 DOI: 10.3390/pharmaceutics16010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/11/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
Alzheimer's disease, a progressive neurodegenerative condition, is characterized by a gradual decline in cognitive functions. Current treatment approaches primarily involve the administration of medications through oral, parenteral, and transdermal routes, aiming to improve cognitive function and alleviate symptoms. However, these treatments face limitations, such as low bioavailability and inadequate permeation. Alternative invasive methods, while explored, often entail discomfort and require specialized assistance. Therefore, the development of a non-invasive and efficient delivery system is crucial. Intranasal delivery has emerged as a potential solution, although it is constrained by the unique conditions of the nasal cavity. An innovative approach involves the use of nano-carriers based on nanotechnology for intranasal delivery. This strategy has the potential to overcome current limitations by providing enhanced bioavailability, improved permeation, effective traversal of the blood-brain barrier, extended retention within the body, and precise targeting of the brain. The comprehensive review focuses on the advancements in designing various types of nano-carriers, including polymeric nanoparticles, metal nanoparticles, lipid nanoparticles, liposomes, nanoemulsions, Quantum dots, and dendrimers. These nano-carriers are specifically tailored for the intranasal delivery of therapeutic agents aimed at combatting Alzheimer's disease. In summary, the development and utilization of intranasal delivery systems based on nanotechnology show significant potential in surmounting the constraints of current Alzheimer's disease treatment strategies. Nevertheless, it is essential to acknowledge regulatory as well as toxicity concerns associated with this route; meticulous consideration is required when engineering a carrier. This comprehensive review underscores the potential to revolutionize Alzheimer's disease management and highlights the importance of addressing regulatory considerations for safe and effective implementations. Embracing this strategy could lead to substantial advancements in the field of Alzheimer's disease treatment.
Collapse
Affiliation(s)
- Sayali Dighe
- Department of Pharmaceutics, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai 400056, India
| | - Sunil Jog
- Department of Pharmaceutics, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai 400056, India
- Indoco Remedies Private Limited, Mumbai 400098, India
| | - Munira Momin
- Department of Pharmaceutics, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai 400056, India
| | - Sujata Sawarkar
- Department of Pharmaceutics, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai 400056, India
| | - Abdelwahab Omri
- The Novel Drug & Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON P3E 2C6, Canada
| |
Collapse
|
18
|
Zimmermann CM, Deßloch L, Jürgens DC, Luciani P, Merkel OM. Evaluation of the effects of storage conditions on spray-dried siRNA-LNPs before and after subsequent drying. Eur J Pharm Biopharm 2023; 193:218-226. [PMID: 37956785 DOI: 10.1016/j.ejpb.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/26/2023] [Accepted: 11/06/2023] [Indexed: 11/15/2023]
Abstract
In an ideal world, pharmaceutical drugs would have infinite shelf life, no susceptibility to degradation, chemical reactions or loss of efficacy. In reality, these processes occur, however, making it desirable to extend a drugs' shelf life. Nucleic acid-based drugs are most commonly stored as aqueous suspension where they are vulnerable to microbial growth and degradation processes. Drying procedures, such as lyophilization and spray drying, help to reduce the products' residual moisture while increasing the products' shelf life and stability. The present study was designed to evaluate 90 days of storage of spray-dried siRNA-lipid nanoparticles (LNPs) at 4 °C and 25 °C. An updated Onpattro® composition modified with a positively charged helper lipid was used as the LNP carrier system. In an attempt to further reduce the residual moisture of our previously reported formulations, all LNP samples were subjected to a secondary drying step in the spray drying tower for 20 min. The measurement of physicochemical properties of spray-dried and subsequently dried LNPs resulted in sizes of 180 nm, PDI values of 0.1-0.15 and zeta potentials of + 3 mV. Spray drying resulted in residual moisture levels of 3.6-4 % and was reduced by subsequent drying to 2.8-3.1 %. Aerodynamic properties after storage showed discrepancies depending on the storage conditions. MMADs remained at 2.8 µm when stored at 4 °C, whereas an increase to 5 µm at 25 °C was observed. Subsequent drying led to sizes of 3.6-3.8 µm, independent of the storage conditions. Spray-dried LNPs maintained bioactivity resulting in > 95 % protein downregulation and confirming the lack of cytotoxic effects in a lung adenocarcinoma cell line. Furthermore, the spray-dried and subsequently dried LNPs stored for 3 months at 4 °C and 25 °C achieved up to 50 % gene silencing of the house-keeping gene GAPDH after deposition on the mucus layer of Calu-3 cells. This study confirms the stability of spray-dried and subsequently dried LNPs over at least 90 days at 4 °C and 25 °C emphasizing the potential of dry powder inhalation of RNA-loaded LNPs as a therapy option for pulmonary diseases.
Collapse
Affiliation(s)
- Christoph M Zimmermann
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Leonie Deßloch
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - David C Jürgens
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Paola Luciani
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Olivia M Merkel
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; Ludwig-Maximilians-Universität München, Member of the German Center for Lung Research (DZL), Munich, Germany.
| |
Collapse
|
19
|
Carranza-Rosales P, Valencia-Mercado D, Esquivel-Hernández O, González-Geroniz MI, Bañuelos-García JI, Castruita-Ávila AL, Sánchez-Prieto MA, Viveros-Valdez E, Morán-Martínez J, Balderas-Rentería I, Guzmán-Delgado NE, Carranza-Torres IE. Breast Cancer Tissue Explants: An Approach to Develop Personalized Therapy in Public Health Services. J Pers Med 2023; 13:1521. [PMID: 37888132 PMCID: PMC10608341 DOI: 10.3390/jpm13101521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/18/2023] [Accepted: 10/21/2023] [Indexed: 10/28/2023] Open
Abstract
Breast cancer is one of the main causes of death worldwide. Lately, there is great interest in developing methods that assess individual sensitivity and/or resistance of tumors to antineoplastics to provide personalized therapy for patients. In this study we used organotypic culture of human breast tumor slices to predict the experimental effect of antineoplastics on the viability of tumoral tissue. Samples of breast tumor were taken from 27 patients with clinically advanced breast cancer; slices were obtained and incubated separately for 48 h with paclitaxel, docetaxel, epirubicin, 5-fluorouracil, cyclophosphamide, and cell culture media (control). We determined an experimental tumor sensitivity/resistance (S/R) profile by evaluating tissue viability using the Alamar Blue® metabolic test, and by structural viability (histopathological analyses, necrosis, and inflammation). These parameters were related to immunohistochemical expression of the estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2. The predominant histological type found was infiltrating ductal carcinoma (85.2%), followed by lobular carcinoma (7.4%) and mixed carcinoma (7.4%). Experimental drug resistance was related to positive hormone receptor status in 83% of samples treated with cyclophosphamide (p = 0.027). Results suggest that the tumor S/R profile can help to predict personalized therapy or optimize chemotherapeutic treatments in breast cancer.
Collapse
Affiliation(s)
- Pilar Carranza-Rosales
- Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Calle Jesús Dionisio González # 501, Col. Independencia, Monterrey 64720, NL, Mexico;
| | - Daniel Valencia-Mercado
- Unidad Médica de Alta Especialidad, Hospital de Ginecología y Obstetricia No. 23, Instituto Mexicano del Seguro Social, Avenida Constitución y Félix U, Gómez s/n, Colonia Centro, Monterrey 64000, NL, Mexico; (D.V.-M.); (O.E.-H.); (M.I.G.-G.); (J.I.B.-G.)
| | - Olga Esquivel-Hernández
- Unidad Médica de Alta Especialidad, Hospital de Ginecología y Obstetricia No. 23, Instituto Mexicano del Seguro Social, Avenida Constitución y Félix U, Gómez s/n, Colonia Centro, Monterrey 64000, NL, Mexico; (D.V.-M.); (O.E.-H.); (M.I.G.-G.); (J.I.B.-G.)
| | - Manuel Ismael González-Geroniz
- Unidad Médica de Alta Especialidad, Hospital de Ginecología y Obstetricia No. 23, Instituto Mexicano del Seguro Social, Avenida Constitución y Félix U, Gómez s/n, Colonia Centro, Monterrey 64000, NL, Mexico; (D.V.-M.); (O.E.-H.); (M.I.G.-G.); (J.I.B.-G.)
| | - José Inocente Bañuelos-García
- Unidad Médica de Alta Especialidad, Hospital de Ginecología y Obstetricia No. 23, Instituto Mexicano del Seguro Social, Avenida Constitución y Félix U, Gómez s/n, Colonia Centro, Monterrey 64000, NL, Mexico; (D.V.-M.); (O.E.-H.); (M.I.G.-G.); (J.I.B.-G.)
| | - Ana Lilia Castruita-Ávila
- Unidad Médica de Alta Especialidad, Hospital de Especialidades No. 25, Instituto Mexicano del Seguro Social, Av Fidel Velázquez s/n, Mitras Nte., Monterrey 64180, NL, Mexico; (A.L.C.-Á.); (M.A.S.-P.)
| | - Mario Alberto Sánchez-Prieto
- Unidad Médica de Alta Especialidad, Hospital de Especialidades No. 25, Instituto Mexicano del Seguro Social, Av Fidel Velázquez s/n, Mitras Nte., Monterrey 64180, NL, Mexico; (A.L.C.-Á.); (M.A.S.-P.)
| | - Ezequiel Viveros-Valdez
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Av. Pedro de Alba s/n, San Nicolás de los Garza 66450, NL, Mexico;
| | - Javier Morán-Martínez
- Departamento de Biología Celular y Ultraestructura, Facultad de Medicina, Universidad Autónoma de Coahuila, Av. Morelos 900-Oriente, Primera de Cobián Centro, Torreón 27000, CH, Mexico;
| | - Isaías Balderas-Rentería
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Av. Pedro de Alba s/n, San Nicolás de los Garza 66450, NL, Mexico;
| | - Nancy Elena Guzmán-Delgado
- Unidad Médica de Alta Especialidad, Hospital de Cardiología No. 34, Instituto Mexicano del Seguro Social, Av. Lincoln S/N, Col. Valle Verde 2do. Sector, Monterrey 64360, NL, Mexico
| | - Irma Edith Carranza-Torres
- Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Calle Jesús Dionisio González # 501, Col. Independencia, Monterrey 64720, NL, Mexico;
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Av. Pedro de Alba s/n, San Nicolás de los Garza 66450, NL, Mexico;
| |
Collapse
|
20
|
Rahman A, Roy KJ, Deb GK, Ha T, Rahman S, Aktar MK, Ali MI, Kafi MA, Choi JW. Nano-Enabled Antivirals for Overcoming Antibody Escaped Mutations Based SARS-CoV-2 Waves. Int J Mol Sci 2023; 24:13130. [PMID: 37685938 PMCID: PMC10488153 DOI: 10.3390/ijms241713130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
This review discusses receptor-binding domain (RBD) mutations related to the emergence of various SARS-CoV-2 variants, which have been highlighted as a major cause of repetitive clinical waves of COVID-19. Our perusal of the literature reveals that most variants were able to escape neutralizing antibodies developed after immunization or natural exposure, pointing to the need for a sustainable technological solution to overcome this crisis. This review, therefore, focuses on nanotechnology and the development of antiviral nanomaterials with physical antagonistic features of viral replication checkpoints as such a solution. Our detailed discussion of SARS-CoV-2 replication and pathogenesis highlights four distinct checkpoints, the S protein (ACE2 receptor coupling), the RBD motif (ACE2 receptor coupling), ACE2 coupling, and the S protein cleavage site, as targets for the development of nano-enabled solutions that, for example, prevent viral attachment and fusion with the host cell by either blocking viral RBD/spike proteins or cellular ACE2 receptors. As proof of this concept, we highlight applications of several nanomaterials, such as metal and metal oxide nanoparticles, carbon-based nanoparticles, carbon nanotubes, fullerene, carbon dots, quantum dots, polymeric nanoparticles, lipid-based, polymer-based, lipid-polymer hybrid-based, surface-modified nanoparticles that have already been employed to control viral infections. These nanoparticles were developed to inhibit receptor-mediated host-virus attachments and cell fusion, the uncoating of the virus, viral gene expression, protein synthesis, the assembly of progeny viral particles, and the release of the virion. Moreover, nanomaterials have been used as antiviral drug carriers and vaccines, and nano-enabled sensors have already been shown to enable fast, sensitive, and label-free real-time diagnosis of viral infections. Nano-biosensors could, therefore, also be useful in the remote testing and tracking of patients, while nanocarriers probed with target tissue could facilitate the targeted delivery of antiviral drugs to infected cells, tissues, organs, or systems while avoiding unwanted exposure of non-target tissues. Antiviral nanoparticles can also be applied to sanitizers, clothing, facemasks, and other personal protective equipment to minimize horizontal spread. We believe that the nanotechnology-enabled solutions described in this review will enable us to control repeated SAR-CoV-2 waves caused by antibody escape mutations.
Collapse
Affiliation(s)
- Aminur Rahman
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.R.); (K.J.R.); (S.R.); (M.K.A.); (M.I.A.)
| | - Kumar Jyotirmoy Roy
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.R.); (K.J.R.); (S.R.); (M.K.A.); (M.I.A.)
| | - Gautam Kumar Deb
- Department of Biotechnology, Bangladesh Livestock Research Institute, Dhaka 1341, Bangladesh;
| | - Taehyeong Ha
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea;
| | - Saifur Rahman
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.R.); (K.J.R.); (S.R.); (M.K.A.); (M.I.A.)
| | - Mst. Khudishta Aktar
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.R.); (K.J.R.); (S.R.); (M.K.A.); (M.I.A.)
| | - Md. Isahak Ali
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.R.); (K.J.R.); (S.R.); (M.K.A.); (M.I.A.)
| | - Md. Abdul Kafi
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.R.); (K.J.R.); (S.R.); (M.K.A.); (M.I.A.)
| | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea;
| |
Collapse
|
21
|
Loo CY, Lee WH, Zhou QT. Recent Advances in Inhaled Nanoformulations of Vaccines and Therapeutics Targeting Respiratory Viral Infections. Pharm Res 2023; 40:1015-1036. [PMID: 37186073 PMCID: PMC10129308 DOI: 10.1007/s11095-023-03520-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023]
Abstract
With the rapid outbreak of respiratory viral infections, various biological (e.g. vaccines, peptides, recombinant proteins, antibodies and genes) and antiviral agents (e.g. ribavirin, palivizumab and valaciclovir) have been successfully developed for the treatment of respiratory virus infections such as influenza, respiratory syncytial virus and SARS-CoV-2 infections. These therapeutics are conventionally delivered via oral, intramuscular or injection route and are associated with several adverse events due to systemic toxicity. The inherent in vivo instability of biological therapeutics may hinder them from being administered without proper formulations. Therefore, we have witnessed a boom in nanotechnology coupled with a needle-free administration approach such as the inhalation route for the delivery of complex therapeutics to treat respiratory infections. This review discussed the recent advances in the inhalation strategies of nanoformulations that target virus respiratory infections.
Collapse
Affiliation(s)
- Ching-Yee Loo
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur (UniKL RCMP), 30450, Perak, Malaysia.
| | - Wing-Hin Lee
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur (UniKL RCMP), 30450, Perak, Malaysia
| | - Qi Tony Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN, 47907, USA.
| |
Collapse
|
22
|
Hussein M, Andrade dos Ramos Z, Vink MA, Kroon P, Yu Z, Enjuanes L, Zuñiga S, Berkhout B, Herrera-Carrillo E. Efficient CRISPR-Cas13d-Based Antiviral Strategy to Combat SARS-CoV-2. Viruses 2023; 15:v15030686. [PMID: 36992394 PMCID: PMC10051389 DOI: 10.3390/v15030686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
The current SARS-CoV-2 pandemic forms a major global health burden. Although protective vaccines are available, concerns remain as new virus variants continue to appear. CRISPR-based gene-editing approaches offer an attractive therapeutic strategy as the CRISPR-RNA (crRNA) can be adjusted rapidly to accommodate a new viral genome sequence. This study aimed at using the RNA-targeting CRISPR-Cas13d system to attack highly conserved sequences in the viral RNA genome, thereby preparing for future zoonotic outbreaks of other coronaviruses. We designed 29 crRNAs targeting highly conserved sequences along the complete SARS-CoV-2 genome. Several crRNAs demonstrated efficient silencing of a reporter with the matching viral target sequence and efficient inhibition of a SARS-CoV-2 replicon. The crRNAs that suppress SARS-CoV-2 were also able to suppress SARS-CoV, thus demonstrating the breadth of this antiviral strategy. Strikingly, we observed that only crRNAs directed against the plus-genomic RNA demonstrated antiviral activity in the replicon assay, in contrast to those that bind the minus-genomic RNA, the replication intermediate. These results point to a major difference in the vulnerability and biology of the +RNA versus −RNA strands of the SARS-CoV-2 genome and provide important insights for the design of RNA-targeting antivirals.
Collapse
Affiliation(s)
- Mouraya Hussein
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Zaria Andrade dos Ramos
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Monique A. Vink
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Pascal Kroon
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Zhenghao Yu
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Luis Enjuanes
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Sonia Zuñiga
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Elena Herrera-Carrillo
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Correspondence:
| |
Collapse
|
23
|
Chen J, Li Y, Liu Z. Functional nucleic acids as potent therapeutics against SARS-CoV-2 infection. CELL REPORTS. PHYSICAL SCIENCE 2023; 4:101249. [PMID: 36714073 PMCID: PMC9869493 DOI: 10.1016/j.xcrp.2023.101249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The COVID-19 pandemic has posed a severe threat to human life and the global economy. Although conventional treatments, including vaccines, antibodies, and small-molecule inhibitors, have been broadly developed, they usually fall behind the constant mutation of SARS-CoV-2, due to the long screening process and high production cost. Functional nucleic acid (FNA)-based therapeutics are a newly emerging promising means against COVID-19, considering their timely adaption to different mutants and easy design for broad-spectrum virus inhibition. In this review, we survey typical FNA-related therapeutics against SARS-CoV-2 infection, including aptamers, aptamer-integrated DNA frameworks, functional RNA, and CRISPR-Cas technology. We first introduce the pathogenesis, transmission, and evolution of SARS-CoV-2, then analyze the existing therapeutic and prophylactic strategies, including their pros and cons. Subsequently, the FNAs are recommended as potent alternative therapeutics from their screening process and controllable engineering to effective neutralization. Finally, we put forward the remaining challenges of the existing field and sketch out the future development directions.
Collapse
Affiliation(s)
- Jingran Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ying Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
24
|
Steffens RC, Wagner E. Directing the Way-Receptor and Chemical Targeting Strategies for Nucleic Acid Delivery. Pharm Res 2023; 40:47-76. [PMID: 36109461 PMCID: PMC9483255 DOI: 10.1007/s11095-022-03385-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/29/2022] [Indexed: 11/20/2022]
Abstract
Nucleic acid therapeutics have shown great potential for the treatment of numerous diseases, such as genetic disorders, cancer and infections. Moreover, they have been successfully used as vaccines during the COVID-19 pandemic. In order to unfold full therapeutical potential, these nano agents have to overcome several barriers. Therefore, directed transport to specific tissues and cell types remains a central challenge to receive carrier systems with enhanced efficiency and desired biodistribution profiles. Active targeting strategies include receptor-targeting, mediating cellular uptake based on ligand-receptor interactions, and chemical targeting, enabling cell-specific delivery as a consequence of chemically and structurally modified carriers. With a focus on synthetic delivery systems including polyplexes, lipid-based systems such as lipoplexes and lipid nanoparticles, and direct conjugates optimized for various types of nucleic acids (DNA, mRNA, siRNA, miRNA, oligonucleotides), we highlight recent achievements, exemplified by several nucleic acid drugs on the market, and discuss challenges for targeted delivery to different organs such as brain, eye, liver, lung, spleen and muscle in vivo.
Collapse
Affiliation(s)
- Ricarda Carolin Steffens
- Pharmaceutical Biotechnology, Center for System-Based Drug Research, Ludwig-Maximilians-Universität, 81377, Munich, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for System-Based Drug Research, Ludwig-Maximilians-Universität, 81377, Munich, Germany.
- Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität, 81377, Munich, Germany.
| |
Collapse
|
25
|
Gholizadeh O, Yasamineh S, Amini P, Afkhami H, Delarampour A, Akbarzadeh S, Karimi Matloub R, Zahedi M, Hosseini P, Hajiesmaeili M, Poortahmasebi V. Therapeutic and diagnostic applications of nanoparticles in the management of COVID-19: a comprehensive overview. Virol J 2022; 19:206. [PMID: 36463213 PMCID: PMC9719161 DOI: 10.1186/s12985-022-01935-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/25/2022] [Indexed: 12/04/2022] Open
Abstract
In December 2019, Coronavirus Disease 2019 (COVID-19) was reported in Wuhan, China. Comprehensive strategies for quick identification, prevention, control, and remedy of COVID-19 have been implemented until today. Advances in various nanoparticle-based technologies, including organic and inorganic nanoparticles, have created new perspectives in this field. These materials were extensively used to control COVID-19 because of their specific attribution to preparing antiviral face masks, various safety sensors, etc. In this review, the most current nanoparticle-based technologies, applications, and achievements against the coronavirus were summarized and highlighted. This paper also offers nanoparticle preventive, diagnostic, and treatment options to combat this pandemic.
Collapse
Affiliation(s)
- Omid Gholizadeh
- Department of Bacteriology and Virology, Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Parya Amini
- Department of Microbiology, School of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Hamed Afkhami
- Department of Medical Microbiology, Faculty of Medicine, Shahed University of Medical Science, Tehran, Iran
| | - Abbasali Delarampour
- Microbiology Department, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Sama Akbarzadeh
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | | | - Mahlagha Zahedi
- Department of Pathology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Parastoo Hosseini
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrnaz Hajiesmaeili
- Department of Microbiology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Vahdat Poortahmasebi
- Department of Bacteriology and Virology, Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
26
|
Wang H, Qin L, Zhang X, Guan J, Mao S. Mechanisms and challenges of nanocarriers as non-viral vectors of therapeutic genes for enhanced pulmonary delivery. J Control Release 2022; 352:970-993. [PMID: 36372386 PMCID: PMC9671523 DOI: 10.1016/j.jconrel.2022.10.061] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022]
Abstract
With the rapid development of biopharmaceuticals and the outbreak of COVID-19, the world has ushered in a frenzy to develop gene therapy. Therefore, therapeutic genes have received enormous attention. However, due to the extreme instability and low intracellular gene expression of naked genes, specific vectors are required. Viral vectors are widely used attributed to their high transfection efficiency. However, due to the safety concerns of viral vectors, nanotechnology-based non-viral vectors have attracted extensive investigation. Still, issues of low transfection efficiency and poor tissue targeting of non-viral vectors need to be addressed. Especially, pulmonary gene delivery has obvious advantages for the treatment of inherited lung diseases, lung cancer, and viral pneumonia, which can not only enhance lung targeting and but also reduce enzymatic degradation. For systemic diseases therapy, pulmonary gene delivery can enhance vaccine efficacy via inducing not only cellular, humoral immunity but also mucosal immunity. This review provides a comprehensive overview of nanocarriers as non-viral vectors of therapeutic genes for enhanced pulmonary delivery. First of all, the characteristics and therapeutic mechanism of DNA, mRNA, and siRNA are provided. Thereafter, the advantages and challenges of pulmonary gene delivery in exerting local and systemic effects are discussed. Then, the inhalation dosage forms for nanoparticle-based drug delivery systems are introduced. Moreover, a series of materials used as nanocarriers for pulmonary gene delivery are presented, and the endosomal escape mechanisms of nanocarriers based on different materials are explored. The application of various non-viral vectors for pulmonary gene delivery are summarized in detail, with the perspectives of nano-vectors for pulmonary gene delivery.
Collapse
Affiliation(s)
| | | | - Xin Zhang
- Corresponding authors at: School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, 110016 Shenyang, China
| | | | - Shirui Mao
- Corresponding authors at: School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, 110016 Shenyang, China
| |
Collapse
|
27
|
Costa VG, Costa SM, Saramago M, Cunha MV, Arraiano CM, Viegas SC, Matos RG. Developing New Tools to Fight Human Pathogens: A Journey through the Advances in RNA Technologies. Microorganisms 2022; 10:2303. [PMID: 36422373 PMCID: PMC9697208 DOI: 10.3390/microorganisms10112303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 09/18/2024] Open
Abstract
A long scientific journey has led to prominent technological advances in the RNA field, and several new types of molecules have been discovered, from non-coding RNAs (ncRNAs) to riboswitches, small interfering RNAs (siRNAs) and CRISPR systems. Such findings, together with the recognition of the advantages of RNA in terms of its functional performance, have attracted the attention of synthetic biologists to create potent RNA-based tools for biotechnological and medical applications. In this review, we have gathered the knowledge on the connection between RNA metabolism and pathogenesis in Gram-positive and Gram-negative bacteria. We further discuss how RNA techniques have contributed to the building of this knowledge and the development of new tools in synthetic biology for the diagnosis and treatment of diseases caused by pathogenic microorganisms. Infectious diseases are still a world-leading cause of death and morbidity, and RNA-based therapeutics have arisen as an alternative way to achieve success. There are still obstacles to overcome in its application, but much progress has been made in a fast and effective manner, paving the way for the solid establishment of RNA-based therapies in the future.
Collapse
Affiliation(s)
| | | | | | | | | | - Sandra C. Viegas
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal; (V.G.C.); (S.M.C.); (M.S.); (M.V.C.); (C.M.A.)
| | - Rute G. Matos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal; (V.G.C.); (S.M.C.); (M.S.); (M.V.C.); (C.M.A.)
| |
Collapse
|
28
|
Monroe MK, Wang H, Anderson CF, Jia H, Flexner C, Cui H. Leveraging the therapeutic, biological, and self-assembling potential of peptides for the treatment of viral infections. J Control Release 2022; 348:1028-1049. [PMID: 35752254 PMCID: PMC11022941 DOI: 10.1016/j.jconrel.2022.06.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/06/2022] [Accepted: 06/20/2022] [Indexed: 12/12/2022]
Abstract
Peptides and peptide-based materials have an increasing role in the treatment of viral infections through their use as active pharmaceutical ingredients, targeting moieties, excipients, carriers, or structural components in drug delivery systems. The discovery of peptide-based therapeutic compounds, coupled with the development of new stabilization and formulation strategies, has led to a resurgence of antiviral peptide therapeutics over the past two decades. The ability of peptides to bind cell receptors and to facilitate membrane penetration and subsequent intracellular trafficking enables their use in various antiviral systems for improved targeting efficiency and treatment efficacy. Importantly, the self-assembly of peptides into well-defined nanostructures provides a vast library of discrete constructs and supramolecular biomaterials for systemic and local delivery of antiviral agents. We review here the recent progress in exploiting the therapeutic, biological, and self-assembling potential of peptides, peptide conjugates, and their supramolecular assemblies in treating human viral infections, with an emphasis on the treatment strategies for Human Immunodeficiency Virus (HIV).
Collapse
Affiliation(s)
- Maya K Monroe
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, United States of America; Institute for NanoBioTechnology, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, United States of America
| | - Han Wang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, United States of America; Institute for NanoBioTechnology, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, United States of America
| | - Caleb F Anderson
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, United States of America; Institute for NanoBioTechnology, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, United States of America
| | - Hongpeng Jia
- Department of Surgery, The Johns Hopkins University School of Medicine, United States of America
| | - Charles Flexner
- Divisions of Clinical Pharmacology and Infectious Diseases, The Johns Hopkins University School of Medicine and Bloomberg School of Public Health, Baltimore, MD 21205, United States of America.
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, United States of America; Institute for NanoBioTechnology, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, United States of America; Deptartment of Oncology and Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States of America; Center for Nanomedicine, The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, 400 North Broadway, Baltimore, MD 21231, United States of America.
| |
Collapse
|
29
|
Kianpour M, Akbarian M, Uversky VN. Nanoparticles for Coronavirus Control. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1602. [PMID: 35564311 PMCID: PMC9104235 DOI: 10.3390/nano12091602] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 01/18/2023]
Abstract
More than 2 years have passed since the SARS-CoV-2 outbreak began, and many challenges that existed at the beginning of this pandemic have been solved. Some countries have been able to overcome this global challenge by relying on vaccines against the virus, and vaccination has begun in many countries. Many of the proposed vaccines have nanoparticles as carriers, and there are different nano-based diagnostic approaches for rapid detection of the virus. In this review article, we briefly examine the biology of SARS-CoV-2, including the structure of the virus and what makes it pathogenic, as well as describe biotechnological methods of vaccine production, and types of the available and published nano-based ideas for overcoming the virus pandemic. Among these issues, various physical and chemical properties of nanoparticles are discussed to evaluate the optimal conditions for the production of the nano-mediated vaccines. At the end, challenges facing the international community and biotechnological answers for future viral attacks are reviewed.
Collapse
Affiliation(s)
- Maryam Kianpour
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan;
| | - Mohsen Akbarian
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Vladimir N. Uversky
- Department of Molecular Medicine and Health Byrd Alzheimer’s Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center ‘‘Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences’’, 142290 Pushchino, Moscow Region, Russia
| |
Collapse
|
30
|
Merkel OM. Can pulmonary RNA delivery improve our pandemic preparedness? J Control Release 2022; 345:549-556. [PMID: 35358609 PMCID: PMC8958776 DOI: 10.1016/j.jconrel.2022.03.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 03/20/2022] [Indexed: 12/17/2022]
Abstract
The coronavirus pandemic has changed our perception of RNA medicines, and RNA vaccines have revolutionized our pandemic preparedness. But are we indeed prepared for the next variant or the next emerging virus? How can we prepare? And what does the role of inhaled antiviral RNA play in this regard? When the pandemic started, I rerouted much of the ongoing inhaled RNA delivery research in my group towards the inhibition and treatment of respiratory viral infections. Two years later, I have taken the literature, past and ongoing clinical trials into consideration and have gained new insights based on our collaborative research which I will discuss in this oration.
Collapse
Affiliation(s)
- Olivia M Merkel
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University of Munich, Butenandtstraße 5, 81377 Munich, Germany.
| |
Collapse
|