1
|
Song J, Zeng J, Chen X, Wang J, Zhang Y, Gao Y, Wang R, Jiang N, Lin Y, Li R. Anti-neuroinflammatory agent rhein lysinate-based self-assembled injectable hydrogel loaded with ZL006 for promoting post-stroke functional recovery. Biomaterials 2025; 318:123124. [PMID: 39884131 DOI: 10.1016/j.biomaterials.2025.123124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/27/2024] [Accepted: 01/23/2025] [Indexed: 02/01/2025]
Abstract
The therapeutic agent-based self-assembled hydrogel is gaining interest for biomedical applications, because it overcomes the poor biodegradability and low therapeutic agent loading of conventional polymer gelator-based hydrogel. Here, we present rhein lysinate (RHL), a therapeutic agent that self-assembles to form a stable hydrogel through the π-π stacking and hydrogen bonding interactions, while also exerting anti-neuroinflammatory effect. As a small molecular hydrogelator, RHL has significantly improved water solubility and enhanced self-assembly and gelation capabilities compared to the natural anthraquinone rhein. The relaxed gel-forming conditions enhance the practical application potential of self-assembled hydrogel of RHL (RHL gel). The RHL gel can be loaded with the bioactive agents such as 5-Fluorouracil, temozolomide, edaravone, and ZL006, mainly based on efficient stacking between aromatic rings in the bioactive agents and anthraquinone rings in the hydrogel network structure. The pre-gelled RHL gel and ZL006-loaded RHL gel (ZL006-RHL gel) exhibit shear-thinning behavior, flowing like a liquid under high shear stress during injection. Once this shear stress is removal within the body, they rapidly recover to the initial solid-like state. When a single dose of ZL006-RHL gel is administrated to stroke cavity in the subacute phase of stroke, RHL gel matrix effectively reduces post-stroke neuroinflammation, creates a favorable environment for ZL006 to enhance neuroplasticity, and confers a sustained and stable action to ZL006, leading to a long-lasting improvement of motor performance. This study may provide a valuable strategy for therapeutic intervention to promote post-stroke functional recovery, for which there are no clinically available drugs.
Collapse
Affiliation(s)
- Jiamei Song
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Jiaqi Zeng
- The Affiliated Yixing Hospital of Jiangsu University, Yixing, 214200, China
| | - Xi Chen
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Jiayu Wang
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Ying Zhang
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Yuhao Gao
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Ruiqi Wang
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Nan Jiang
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China; National Vaccine Innovation Platform, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| | - Yuhui Lin
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| | - Rui Li
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
2
|
Kang D, Zhang Y, Yu DG, Kim I, Song W. Integrating synthetic polypeptides with innovative material forming techniques for advanced biomedical applications. J Nanobiotechnology 2025; 23:101. [PMID: 39939886 PMCID: PMC11823111 DOI: 10.1186/s12951-025-03166-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/25/2025] [Indexed: 02/14/2025] Open
Abstract
Polypeptides are highly valued in biomedical science for their biocompatibility and biodegradability, making them valuable in drug delivery, tissue engineering, and antibacterial dressing. The diverse design of polymer chains and self-assembly techniques allow different side chains and secondary structures, enhancing their biomedical potential. However, the traditional solid powder form of polypeptides presents challenges in skin applications, shipping, and recycling, limiting their practical utility. Recent advancements in material forming methods and polypeptide synthesis have produced biomaterials with uniform, distinct shapes, improving usability. This review outlines the progress in polypeptide synthesis and material-forming methods over the past decade. The main synthesis techniques include solid-phase synthesis and ring-opening polymerization of N-carboxyanhydrides while forming methods like electrospinning, 3D printing, and coating are explored. Integrating structural design with these methods is emphasized, leading to diverse polypeptide materials with unique shapes. The review also identifies research hotspots using VOSviewer software, which are visually presented in circular packing images. It further discusses emerging applications such as drug delivery, wound healing, and tissue engineering, emphasizing the crucial role of material shape in enhancing performance. The review concludes by exploring future trends in developing distinct polypeptide shapes for advanced biomedical applications, encouraging further research.
Collapse
Affiliation(s)
- Dandan Kang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Yu Zhang
- School of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, P. R. China.
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Il Kim
- School of Chemical Engineering, Pusan National University, Busan, 46241, Republic of Korea.
| | - Wenliang Song
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China.
| |
Collapse
|
3
|
Li W, Sun J, Feng S, La Rosa A, Zhang P, Wu EY, Loeser R, Li C. Secreted PD-L1 alleviates inflammatory arthritis in mice through local and systemic AAV gene therapy. Front Immunol 2025; 16:1527858. [PMID: 39963137 PMCID: PMC11830590 DOI: 10.3389/fimmu.2025.1527858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/15/2025] [Indexed: 02/20/2025] Open
Abstract
Introduction Rheumatoid arthritis (RA) primarily affects the joints but can also affect multiple organs and profoundly impacts patients' ability to carry out daily activities, mental health, and life expectancy. Current treatments for RA are limited in terms of duration, efficacy, and adverse effects. PD-L1 is a checkpoint protein that plays important roles in immune regulation and has been implicated in the initiation and progression of multiple autoimmune diseases. Method In a previous study, we demonstrated that intra-articular injection with adeno-associated virus (AAV) vectors encoding wild type PD-L1 improved local inflammation in the joint in the collagen-induced arthritis (CIA) mouse model of RA. To further improve efficacy, we explored AAV-mediated delivery of the soluble PD-L1 (sPD-L1) to CIA mice. Result After intra-articular injection of AAV6 vectors expressing the optimal isoform of sPD-L1 (shPD-L1), more potency was observed when compared to wild type PD-L1, with a lower dose of AAV6/shPD-L1 needed for arthritis improvement. To study the therapeutic effect of systemic expression of sPD-L1, we administered AAV8/shPD-L1 gene therapy in CIA mice via retro-orbital injection and found significant improvements in joint inflammation and paw swelling, exhibiting similar phenotypes to that in naïve mice. The levels of total immunoglobulin and anti-collagen specific antibodies were lower in AAV8/shPD-L1 treated CIA mice than those in controls. The levels of pro-inflammatory cytokines in blood were also significantly decreased in shPD-L1 treated mice. Additionally, T cell apoptosis rates in the spleen showed a 2-fold increase in treated mice. Finally, we investigated the therapeutic effect of AAV/shPD-L1 via intramuscular injection. After injection of AAV6/shPD-L1, decreased paw swelling, reduced joint inflammation, and lower levels of pro-inflammatory cytokines in blood were achieved. The therapeutic effect of shPD-L1 was dose dependent via intramuscular treatment with AAV vectors. Conclusion In conclusion, the findings in this study suggest that intra-articular injection of AAV vectors encoding sPD-L1 results in greater therapeutic benefit on arthritis, and systemic AAV/sPD-L1 is able to block the development of inflammatory arthritis with inhibition of the systemic immune response, underlining the potential of gene therapy with systemic delivery of shPD-L1 via AAV vectors in RA.
Collapse
Affiliation(s)
- Wenjun Li
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Division of Oral and Craniofacial Biomedicine, University of North Carolina Adams School of Dentistry, Chapel Hill, NC, United States
| | - Junjiang Sun
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Susi Feng
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ariana La Rosa
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Panli Zhang
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Eveline Y. Wu
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Richard Loeser
- Division of Rheumatology, Allergy, and Immunology, University of North Carolina, Chapel Hill, NC, United States
| | - Chengwen Li
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
4
|
Wang X, Zhang P, Suo J, Li Q, Zhang Y. The diagnosis and treatment progress of infectious endophthalmitis. Eye (Lond) 2025; 39:492-504. [PMID: 39616279 PMCID: PMC11794455 DOI: 10.1038/s41433-024-03474-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 10/22/2024] [Accepted: 11/06/2024] [Indexed: 02/06/2025] Open
Abstract
Endophthalmitis is a blinding disease that may lead to permanent vision loss. The diagnosis of endophthalmitis relies on clinical findings. It is crucial to identify causative microorganisms in time for subsequent treatment and saving vision. For a long time, cultures of vitreous and/or aqueous humours have been the gold standard for the diagnosis of endophthalmitis. The development of modern molecular diagnostic techniques has brought new opportunities for identifying pathogens rapidly and improving sensitivity. Intravitreal antibiotic injection has the become standard treatment option for infectious endophthalmitis in clinical practice, however, the role and timing of pars plana vitrectomy remains controversial. Moreover, the development of new drugs for intravitreal injection and posterior segment drug delivery systems is expected to achieve the transition from invasive to non-invasive management. Thus, endophthalmitis is an ophthalmic emergency and timely diagnosis and treatment are crucial for preserving vision.
Collapse
Affiliation(s)
- Xin Wang
- Department of Ophthalmology, Huashan Hospital, Fudan University, Shanghai, China
| | - Pei Zhang
- Department of Ophthalmology, Huashan Hospital, Fudan University, Shanghai, China
| | - JinShan Suo
- Department of Ophthalmology, Huashan Hospital, Fudan University, Shanghai, China
| | - QingJian Li
- Department of Ophthalmology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yu Zhang
- Department of Ophthalmology, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Jakobsen TS, Adsersen RL, Askou AL, Corydon TJ. Functional Roles of Pigment Epithelium-Derived Factor in Retinal Degenerative and Vascular Disorders: A Scoping Review. Invest Ophthalmol Vis Sci 2024; 65:41. [PMID: 39728690 PMCID: PMC11684118 DOI: 10.1167/iovs.65.14.41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 11/29/2024] [Indexed: 12/28/2024] Open
Abstract
Purpose This review explores the role of pigment epithelium-derived factor (PEDF) in retinal degenerative and vascular disorders and assesses its potential both as an adjunct to established vascular endothelial growth factor inhibiting treatments for retinal vascular diseases and as a neuroprotective therapeutic agent. Methods A comprehensive literature review was conducted, focusing on the neuroprotective and anti-angiogenic properties of PEDF. The review evaluated its effects on retinal health, its dysregulation in ocular disorders, and its therapeutic application in preclinical models. Advances in drug delivery, including gene therapy, were also examined. Results PEDF, initially identified for promoting neuronal differentiation, is also a potent endogenous angiogenesis inhibitor. Strong anti-angiogenic and neuroprotective effects are observed in preclinical studies. It has pro-apoptotic and antiproliferative effects on endothelial cells thereby reducing neovascularization. Although promising, clinical development is limited with only a single conducted phase I clinical trial for macular neovascularization. Development of PEDF-derived peptides enhances potency and specificity, and emerging gene therapy approaches offer sustained PEDF expression for long-term treatment. However, questions regarding dosage, durability, and efficacy remain, particularly in large animal models. Conclusions PEDF shows significant therapeutic potential in preclinical models of retinal degeneration and vascular disorders. Despite inconclusive evidence on PEDF downregulation as a primary disease driver, many studies highlight its therapeutic benefits and favorable safety profile. Advances in gene therapy could enable long-acting PEDF-based treatments, but further research is needed to optimize dosage and durability, potentially leading to clinical trials and expanding treatment options for retinal disorders.
Collapse
Affiliation(s)
- Thomas Stax Jakobsen
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
- Department of Ophthalmology, Aarhus University Hospital, Aarhus N, Denmark
| | | | - Anne Louise Askou
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
- Department of Ophthalmology, Aarhus University Hospital, Aarhus N, Denmark
| | - Thomas J. Corydon
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
- Department of Ophthalmology, Aarhus University Hospital, Aarhus N, Denmark
| |
Collapse
|
6
|
Li Y, Jie C, Wang J, Zhang W, Wang J, Deng Y, Liu Z, Hou X, Bi X. Global research trends and future directions in diabetic macular edema research: A bibliometric and visualized analysis. Medicine (Baltimore) 2024; 103:e38596. [PMID: 38905408 PMCID: PMC11191902 DOI: 10.1097/md.0000000000038596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 05/24/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND Diabetic Macular Edema (DME) significantly impairs vision in diabetics, with varied patient responses to current treatments like anti-vascular endothelial growth factor (VEGF) therapy underscoring the necessity for continued research into more effective strategies. This study aims to evaluate global research trends and identify emerging frontiers in DME to guide future research and clinical management. METHODS A qualitative and quantitative analysis of publications related to diabetic macular edema retrieved from the Web of Science Core Collection (WoSCC) between its inception and September 4, 2023, was conducted. Microsoft Excel, CiteSpace, VOSviewer, Bibliometrix Package, and Tableau were used for the bibliometric analysis and visualization. This encompasses an examination of the overall distribution of annual output, major countries, regions, institutions, authors, core journals, co-cited references, and keyword analyses. RESULTS Overall, 5624 publications were analyzed, indicating an increasing trend in DME research. The United States was identified as the leading country in DME research, with the highest h-index of 135 and 91,841 citations. Francesco Bandello emerged as the most prolific author with 97 publications. Neil M. Bressler has the highest h-index and highest total citation count of 46 and 9692, respectively. The journals "Retina - the Journal of Retinal and Vitreous Diseases" and "Ophthalmology" were highlighted as the most prominent in this field. "Retina" leads with 354 publications, a citation count of 11,872, and an h-index of 59. Meanwhile, "Ophthalmology" stands out with the highest overall citation count of 31,558 and the highest h-index of 90. The primary research focal points in diabetic macular edema included "prevalence and risk factors," "pathological mechanisms," "imaging modalities," "treatment strategies," and "clinical trials." Emerging research areas encompassed "deep learning and artificial intelligence," "novel treatment modalities," and "biomarkers." CONCLUSION Our bibliometric analysis delineates the leading role of the United States in DME research. We identified current research hotspots, including epidemiological studies, pathophysiological mechanisms, imaging advancements, and treatment innovations. Emerging trends, such as the integration of artificial intelligence and novel therapeutic approaches, highlight future directions. These insights underscore the importance of collaborative and interdisciplinary approaches in advancing DME research and clinical management.
Collapse
Affiliation(s)
- Yuanyuan Li
- Eye Hospital China Academy of Chinese Medical Sciences, Beijing, China
| | - Chuanhong Jie
- Eye Hospital China Academy of Chinese Medical Sciences, Beijing, China
| | - Jianwei Wang
- Eye Hospital China Academy of Chinese Medical Sciences, Beijing, China
| | - Weiqiong Zhang
- Eye Hospital China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingying Wang
- Eye Hospital China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu Deng
- Eye Hospital China Academy of Chinese Medical Sciences, Beijing, China
| | - Ziqiang Liu
- Eye Hospital China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoyu Hou
- Eye Hospital China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuqi Bi
- Eye Hospital China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Liu X, Huang K, Zhang F, Huang G, Wang L, Wu G, Ren H, Yang G, Lin Z. Multifunctional nano-in-micro delivery systems for targeted therapy in fundus neovascularization diseases. J Nanobiotechnology 2024; 22:354. [PMID: 38902775 PMCID: PMC11191225 DOI: 10.1186/s12951-024-02614-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/03/2024] [Indexed: 06/22/2024] Open
Abstract
Fundus neovascularization diseases are a series of blinding eye diseases that seriously impair vision worldwide. Currently, the means of treating these diseases in clinical practice are continuously evolving and have rapidly revolutionized treatment opinions. However, key issues such as inadequate treatment effectiveness, high rates of recurrence, and poor patient compliance still need to be urgently addressed. Multifunctional nanomedicine can specifically respond to both endogenous and exogenous microenvironments, effectively deliver drugs to specific targets and participate in activities such as biological imaging and the detection of small molecules. Nano-in-micro (NIM) delivery systems such as metal, metal oxide and up-conversion nanoparticles (NPs), quantum dots, and carbon materials, have shown certain advantages in overcoming the presence of physiological barriers within the eyeball and are widely used in the treatment of ophthalmic diseases. Few studies, however, have evaluated the efficacy of NIM delivery systems in treating fundus neovascular diseases (FNDs). The present study describes the main clinical treatment strategies and the adverse events associated with the treatment of FNDs with NIM delivery systems and summarizes the anatomical obstacles that must be overcome. In this review, we wish to highlight the principle of intraocular microenvironment normalization, aiming to provide a more rational approach for designing new NIM delivery systems to treat specific FNDs.
Collapse
Affiliation(s)
- Xin Liu
- Department of Ophthalmology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Keke Huang
- Department of Ophthalmology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
| | - Fuxiao Zhang
- Department of Ophthalmology, The Second People's Hospital of Chengdu, The Affiliated Hospital of Chengdu Medical College, Chengdu, 610031, China
| | - Ge Huang
- Department of Ophthalmology, The Second People's Hospital of Chengdu, The Affiliated Hospital of Chengdu Medical College, Chengdu, 610031, China
| | - Lu Wang
- Department of Ophthalmology, The Second People's Hospital of Chengdu, The Affiliated Hospital of Chengdu Medical College, Chengdu, 610031, China
| | - Guiyu Wu
- Department of Ophthalmology, The Second People's Hospital of Chengdu, The Affiliated Hospital of Chengdu Medical College, Chengdu, 610031, China
| | - Hui Ren
- Department of Ophthalmology, The Second People's Hospital of Chengdu, The Affiliated Hospital of Chengdu Medical College, Chengdu, 610031, China.
| | - Guang Yang
- Department of Ophthalmology, The Second People's Hospital of Chengdu, The Affiliated Hospital of Chengdu Medical College, Chengdu, 610031, China.
| | - Zhiqing Lin
- Department of Ophthalmology, The Second People's Hospital of Chengdu, The Affiliated Hospital of Chengdu Medical College, Chengdu, 610031, China.
| |
Collapse
|
8
|
Wang H, Song M, Xu J, Liu Z, Peng M, Qin H, Wang S, Wang Z, Liu K. Long-Acting Strategies for Antibody Drugs: Structural Modification, Controlling Release, and Changing the Administration Route. Eur J Drug Metab Pharmacokinet 2024; 49:295-316. [PMID: 38635015 DOI: 10.1007/s13318-024-00891-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2024] [Indexed: 04/19/2024]
Abstract
Because of their high specificity, high affinity, and targeting, antibody drugs have been widely used in the treatment of many diseases and have become the most favored new drugs for research in the world. However, some antibody drugs (such as small-molecule antibody fragments) have a short half-life and need to be administered frequently, and are often associated with injection-site reactions and local toxicities during use. Increasing attention has been paid to the development of antibody drugs that are long-acting and have fewer side effects. This paper reviews existing strategies to achieve long-acting antibody drugs, including modification of the drug structure, the application of drug delivery systems, and changing their administration route. Among these, microspheres have been studied extensively regarding their excellent tolerance at the injection site, controllable loading and release of drugs, and good material safety. Subcutaneous injection is favored by most patients because it can be quickly self-administered. Subcutaneous injection of microspheres is expected to become the focus of developing long-lasting antibody drug strategies in the near future.
Collapse
Affiliation(s)
- Hao Wang
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai Ocean University, Hucheng Ring Road, Shanghai, 201306, China
| | - Mengdi Song
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai Ocean University, Hucheng Ring Road, Shanghai, 201306, China
| | - Jiaqi Xu
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai Ocean University, Hucheng Ring Road, Shanghai, 201306, China
| | - Zhenjing Liu
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai Ocean University, Hucheng Ring Road, Shanghai, 201306, China
| | - Mingyue Peng
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai Ocean University, Hucheng Ring Road, Shanghai, 201306, China
| | - Haoqiang Qin
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai Ocean University, Hucheng Ring Road, Shanghai, 201306, China
| | - Shaoqian Wang
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai Ocean University, Hucheng Ring Road, Shanghai, 201306, China
| | - Ziyang Wang
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai Ocean University, Hucheng Ring Road, Shanghai, 201306, China
| | - Kehai Liu
- College of Food, Shanghai Ocean University, 999 Hucheng Ring Road, Nanhui New Town, Pudong New Area, Shanghai, 201306, China.
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai Ocean University, Hucheng Ring Road, Shanghai, 201306, China.
| |
Collapse
|
9
|
Waheed I, Ali A, Tabassum H, Khatoon N, Lai WF, Zhou X. Lipid-based nanoparticles as drug delivery carriers for cancer therapy. Front Oncol 2024; 14:1296091. [PMID: 38660132 PMCID: PMC11040677 DOI: 10.3389/fonc.2024.1296091] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/22/2024] [Indexed: 04/26/2024] Open
Abstract
Cancer is a severe disease that results in death in all countries of the world. A nano-based drug delivery approach is the best alternative, directly targeting cancer tumor cells with improved drug cellular uptake. Different types of nanoparticle-based drug carriers are advanced for the treatment of cancer, and to increase the therapeutic effectiveness and safety of cancer therapy, many substances have been looked into as drug carriers. Lipid-based nanoparticles (LBNPs) have significantly attracted interest recently. These natural biomolecules that alternate to other polymers are frequently recycled in medicine due to their amphipathic properties. Lipid nanoparticles typically provide a variety of benefits, including biocompatibility and biodegradability. This review covers different classes of LBNPs, including their characterization and different synthesis technologies. This review discusses the most significant advancements in lipid nanoparticle technology and their use in medicine administration. Moreover, the review also emphasized the applications of lipid nanoparticles that are used in different cancer treatment types.
Collapse
Affiliation(s)
- Ibtesam Waheed
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Anwar Ali
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Department of Biochemical and Biotechnological Sciences, School of Precision Medicine, University of Campania, Naples, Italy
| | - Huma Tabassum
- Institute of Social and Cultural Studies, Department of Public Health, University of the Punjab, Lahore, Pakistan
| | - Narjis Khatoon
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Wing-Fu Lai
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- School of Food Science and Nutrition, University of Leeds, Leeds, United Kingdom
| | - Xin Zhou
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
10
|
Dang M, Shoichet MS. Long-Acting Ocular Injectables: Are We Looking In The Right Direction? ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306463. [PMID: 38018313 PMCID: PMC10885661 DOI: 10.1002/advs.202306463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/24/2023] [Indexed: 11/30/2023]
Abstract
The complex anatomy and physiological barriers of the eye make delivering ocular therapeutics challenging. Generally, effective drug delivery to the eye is hindered by rapid clearance and limited drug bioavailability. Biomaterial-based approaches have emerged to enhance drug delivery to ocular tissues and overcome existing limitations. In this review, some of the most promising long-acting injectables (LAIs) in ocular drug delivery are explored, focusing on novel design strategies to improve therapeutic outcomes. LAIs are designed to enable sustained therapeutic effects, thereby extending local drug residence time and facilitating controlled and targeted drug delivery. Moreover, LAIs can be engineered to enhance drug targeting and penetration across ocular physiological barriers.
Collapse
Affiliation(s)
- Mickael Dang
- Department of Chemical Engineering and Applied ChemistryUniversity of Toronto200 College StreetTorontoONM5S 3E5Canada
- Donnelly Centre for Cellular and Biomolecular ResearchUniversity of Toronto160 College StreetTorontoONM5S 3E1Canada
| | - Molly S. Shoichet
- Department of Chemical Engineering and Applied ChemistryUniversity of Toronto200 College StreetTorontoONM5S 3E5Canada
- Donnelly Centre for Cellular and Biomolecular ResearchUniversity of Toronto160 College StreetTorontoONM5S 3E1Canada
- Institute of Biomedical Engineering164 College StreetTorontoONM5S 3G9Canada
| |
Collapse
|
11
|
Biswas A, Choudhury AD, Bisen AC, Agrawal S, Sanap SN, Verma SK, Mishra A, Kumar S, Bhatta RS. Trends in Formulation Approaches for Sustained Drug Delivery to the Posterior Segment of the Eye. AAPS PharmSciTech 2023; 24:217. [PMID: 37891392 DOI: 10.1208/s12249-023-02673-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
The eye, an intricate organ comprising physical and physiological barriers, poses a significant challenge for ophthalmic physicians seeking to treat serious ocular diseases affecting the posterior segment, such as age-related macular degeneration (AMD) and diabetic retinopathy (DR). Despite extensive efforts, the delivery of therapeutic drugs to the rear part of the eye remains an unresolved issue. This comprehensive review delves into conventional and innovative formulation strategies for drug delivery to the posterior segment of the eye. By utilizing alternative nanoformulation approaches such as liposomes, nanoparticles, and microneedle patches, researchers and clinicians can overcome the limitations of conventional eye drops and achieve more effective drug delivery to the posterior segment of the eye. These innovative strategies offer improved drug penetration, prolonged residence time, and controlled release, enhancing therapeutic outcomes for ocular diseases. Moreover, this article explores recently approved delivery systems that leverage diverse polymer technologies, such as chitosan and hyaluronic acid, to regulate drug-controlled release over an extended period. By offering a comprehensive understanding of the available formulation strategies, this review aims to empower researchers and clinicians in their pursuit of developing highly effective treatments for posterior-segment ocular diseases.
Collapse
Affiliation(s)
- Arpon Biswas
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Jawaharlal Nehru University, New Delhi, 110067, India
| | - Abhijit Deb Choudhury
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Jawaharlal Nehru University, New Delhi, 110067, India
| | - Amol Chhatrapati Bisen
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Sristi Agrawal
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Sachin Nashik Sanap
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Sarvesh Kumar Verma
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Jawaharlal Nehru University, New Delhi, 110067, India
| | - Anjali Mishra
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Shivansh Kumar
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Rabi Sankar Bhatta
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India.
| |
Collapse
|
12
|
Castleberry S. Preclinical modeling of intravitreal suspensions. Int J Pharm 2023; 636:122807. [PMID: 36898620 DOI: 10.1016/j.ijpharm.2023.122807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023]
Abstract
There are a number of obstacles that complicate the development of intravitreal delivered small molecules therapies. One serious complication is the potential need for complex polymer depot formulations early in the drug discovery process. The development of such formulations often requires substantial investment of time and material which may not be readily available in preclinical development. Herein I present a diffusion limited pseudo-steady state model to provide prediction of drug release from an intravitreally administered suspension formulation. By using such a model, a preclinical formulator may be able to more confidently determine if development of a complex formulation is required or if a simple suspension may work to support a study design. In this report, the model is used to predict the intravitreal preformance of two different molecules (triamcinolone acetonide and GNE-947) at multiple dose levels in rabbit eyes as well as provide a prediction for the performance of a marketed formulation of Trimacinolone Acetonide in humans.
Collapse
Affiliation(s)
- Steven Castleberry
- Small Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| |
Collapse
|
13
|
Garkal A, Bangar P, Mehta T. Thin-film nanofibers for treatment of age-related macular degeneration. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|