1
|
Nam JW, Sridharan B, Kang J, Lim HG. Current developments in diverse biomaterial formulations for ultrasound-mediated drug delivery. Drug Discov Today 2025; 30:104379. [PMID: 40355025 DOI: 10.1016/j.drudis.2025.104379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 04/18/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
In this review, we focus on advances in drug delivery systems (DDSs) pertaining to modern therapeutics, with a particular emphasis on the role of ultrasound (US)-mediated drug delivery (UMDD). We highlight the need for advanced systems in response to several challenges, such as the diversity of pharmacological agents and individual patient variations, over traditional methodologies. We detail the mechanisms of UMDD (thermal and mechanical), and discuss various material formulations suitable for UMDD. We also discuss new perspectives on the potential of US to innovate drug delivery methodologies and improve patient outcomes to emphasize the importance of development to enhance treatment effectiveness.
Collapse
Affiliation(s)
- Ji Won Nam
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Badrinathan Sridharan
- Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Juhyun Kang
- Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea.
| | - Hae Gyun Lim
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea; Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
2
|
Liu T, Liu F, Li X, Xu S, Wang L. Supramolecular Nanoplatforms with Activable Ultrasound and Magnetic Resonance Imaging for Cancer Diagnosis and Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2412566. [PMID: 40270338 DOI: 10.1002/smll.202412566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 04/09/2025] [Indexed: 04/25/2025]
Abstract
Excellent multifunctional platforms for cancer diagnosis and treatment are highly desirable. Herein, multifunctional nanocomposites are constructed by utilizing Mn2+ to coordinate to the imidazole moiety anchored on CuO2 nanoparticles through cyclodextrin-adamantane interaction. The encapsulated CuO2 nanoparticles (NPs) can generate hydrogen peroxide (H2O2) at tumor sites under acidic conditions upon decomposition, which is further turned into oxygen (O2) under Mn2+ catalysis, facilitating both ultrasound and magnetic resonance imaging (MRI). Moreover, the proposed nanomedicine enhances reactive oxygen species (ROS) generation and depletes glutathione (GSH), leading to increased lipid peroxidation (LPO) and effective ferroptosis-mediated cancer therapy. Such a strategy presents a promising approach for the development of theranostics for imaging-guided tumor therapy.
Collapse
Affiliation(s)
- Taoxia Liu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Fanqi Liu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xindi Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Suying Xu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Leyu Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
3
|
Fang H, Zhu D, Chen Y, Zhang C, Li G, Fang Q, Chang M, Chen Y, Gao Y. Ultrasound-Responsive 4D Bioscaffold for Synergistic Sonopiezoelectric-Gaseous Osteosarcoma Therapy and Enhanced Bone Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2417208. [PMID: 40178027 DOI: 10.1002/advs.202417208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/02/2025] [Indexed: 04/05/2025]
Abstract
Various antitumor strategies have emerged to address the escalating need for effective tumor eradication. However, achieving precise and spatiotemporally controlled dynamic therapies remains promising yet challenging. Sonopiezoelectric nanotherapy eliminates tumor cells by generating reactive oxygen species (ROS) through ultrasound stimulation, enabling spatiotemporal control and ensuring safety during deep tissue penetration. In this study, a hybrid bioscaffold incorporating few-layer black phosphorus (BP) and nitric oxide (NO) donors are rationally designed and engineered for sonopiezoelectric-gaseous synergistic therapy. This ultrasound-responsive system provides a stepwise countermeasure against tumor invasion in bone tissues. Ultrasonic vibration induces mechanical strain in BP nanosheets, leading to piezoelectric polarization and subsequent ROS generation. Moreover, ultrasound-triggered NO burst release from the donors enables spatiotemporally controlled gas therapy. The synergistic effects of sonopiezoelectric therapy and ultrasound-excited gas therapy enhance tumor eradication, effectively inhibiting tumor proliferation and metastasis while minimizing off-target cytotoxicity. Additionally, the biomineralization capability of degradable BP and proangiogenic effects of low-concentration NO establish the hybrid bioscaffold as a bioactive platform that facilitates subsequent bone regeneration. The development of this 4D multifunctional therapeutic platform, characterized by superior sonopiezoelectric efficacy, controlled NO release, and stimulatory effects on tissue regeneration, offers new insights into the comprehensive treatment of invasive bone tumors.
Collapse
Affiliation(s)
- Haoyu Fang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Daoyu Zhu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yixuan Chen
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Changqing Zhang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Gan Li
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Qihang Fang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Youshui Gao
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
4
|
Wang G, Wang D, Tian H, Xia L, Shen D, Wang Z, Dai Y. A metal-phenolic nanotuner induces cancer pyroptosis for sono-immunotherapy. Biomater Sci 2025; 13:446-456. [PMID: 39655454 DOI: 10.1039/d4bm01292e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
Although ultrasound therapy is efficacious and safe in clinical oncology, its capacity to elicit an anti-tumor immune response is constrained by ultrasound-induced apoptosis. Pyroptosis, which releases immunogenic damage-associated molecular patterns (DAMPs), can significantly enhance immune activation. It necessitates robust Gasdermin E (GSDME) expression in cancer cells for caspase-3-mediated pyroptosis. An epigenetic strategy is introduced to induce cancer pyroptosis during sonotherapy using a nanocoordinator (HTA) constructed through metal-phenolic coordination involving Aza (a DNA methyltransferase inhibitor), TiO2 nanoparticles, and polyphenol-modified hyaluronic acid. While Aza restores GSDME expression, TiO2 generates reactive oxygen species (ROS) under ultrasound stimulation, activating caspase-3 and inducing pyroptosis via GSDME cleavage. In an orthotopic breast cancer model, HTA enhanced anti-tumor immunity and improved the efficacy of sonodynamic therapy (SDT). This approach presents a novel strategy for augmenting SDT through epigenetically induced pyroptosis.
Collapse
Affiliation(s)
- Guohao Wang
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Dongmei Wang
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen, 361023, China
| | - Huimin Tian
- Medical College, Xiamen University, Xiamen, 361102, China
| | - Lu Xia
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Dongyan Shen
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Zhanxiang Wang
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China.
| | - Yunlu Dai
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China.
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, 999078, China
| |
Collapse
|
5
|
Cui M, Tang D, Zhang H, Liang G, Xu C, Xiao H. NIR-II Fluorescent Nanotheranostics with a Switchable Irradiation Mode for Immunogenic Sonodynamic Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2411328. [PMID: 39420648 DOI: 10.1002/adma.202411328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/22/2024] [Indexed: 10/19/2024]
Abstract
Nanotheranostics, which integrate diagnostic and therapeutic functionalities, offer significant potential for tumor treatment. However, current nanotheranostic systems typically involve multiple molecules, each providing a singular diagnostic or therapeutic function, leading to challenges such as complex structural composition, poor targeting efficiency, lack of spatiotemporal control, and dependence on a single therapeutic modality. This study introduces NPRBOXA, a nanoparticle functionalized with surface-bound cRGD for targeted delivery to αvβ3/αvβ5 receptors on tumor cells, achieving theranostic integration by sequentially switching its irradiation modes. Under 808 nm laser irradiation, NPRBOXA emits NIR-II fluorescence, which aids in identifying the nanoparticle's location and fluorescence intensity, thereby determining the optimal treatment window. Following this, the irradiation mode switches to ultrasound irradiation at the optimal treatment window. Ultrasound irradiation induces NPRBOXA to generate reactive oxygen species, promoting the reduction of OXA-IV to OXA-II, which in turn triggers immunogenic cell death. This mechanism enables a combination of sonodynamic therapy, chemotherapy, and immunotherapy for tumor treatment. The versatile design of NPRBOXA holds promise for advancing precision oncology through enhanced therapeutic efficacy and real-time imaging guidance.
Collapse
Affiliation(s)
- Minhui Cui
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Dongsheng Tang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hanchen Zhang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ganghao Liang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chun Xu
- Sydney Dental School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
6
|
Jeong YG, Park JH, Khang D. Sonodynamic and Acoustically Responsive Nanodrug Delivery System: Cancer Application. Int J Nanomedicine 2024; 19:11767-11788. [PMID: 39553460 PMCID: PMC11566213 DOI: 10.2147/ijn.s496028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/31/2024] [Indexed: 11/19/2024] Open
Abstract
The advent of acoustically responsive nanodrugs that are specifically optimized for sonodynamic therapy (SDT) is a novel approach for clinical applications. Examining the therapeutic applications of sono-responsive drug delivery systems, understanding their dynamic response to acoustic stimuli, and their crucial role in enhancing targeted drug delivery are intriguing issues for current cancer treatment. Specifically, the suggested review covers SDT, a modality that enhances the cytotoxic activity of specific compounds (sonosensitizers) using ultrasound (US). Notably, SDT offers significant advantages in cancer treatment by utilizing US energy to precisely target and activate sonosensitizers toward deep-seated malignant sites. The potential mechanisms underlying SDT involve the generation of radicals from sonosensitizers, physical disruption of cell membranes, and enhanced drug transport into cells via US-assisted sonoporation. In particular, SDT is emerging as a promising modality for noninvasive, site-directed elimination of solid tumors. Given the complexity and diversity of tumors, many studies have explored the integration of SDT with other treatments to enhance the overall efficacy. This trend has paved the way for SDT-based multimodal synergistic cancer therapies, including sonophototherapy, sonoimmunotherapy, and sonochemotherapy. Representative studies of these multimodal approaches are comprehensively presented, with a detailed discussion of their underlying mechanisms. Additionally, the application of audible sound waves in biological systems is explored, highlighting their potential to influence cellular processes and enhance therapeutic outcomes. Audible sound waves can modulate enzyme activities and affect cell behavior, providing novel avenues for the use of sound-based techniques in medical applications. This review highlights the current challenges and prospects in the development of SDT-based nanomedicines in this rapidly evolving research field. The anticipated growth of this SDT-based therapeutic approach promises to significantly improve the precision of cancer treatment.
Collapse
Affiliation(s)
- Yong-Gyu Jeong
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, South Korea
| | - Joo-Hwan Park
- Division of Medical Oncology, Department of Internal Medicine, Gachon University Gil Medical Center, College of Medicine, Gachon University, Incheon, 21565, South Korea
| | - Dongwoo Khang
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, South Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, South Korea
- Department of Physiology, College of Medicine, Gachon University, Incheon, 21999, South Korea
| |
Collapse
|
7
|
Han B, Liu Y, Zhou Q, Yu Y, Liu X, Guo Y, Zheng X, Zhou M, Yu H, Wang W. The advance of ultrasound-enabled diagnostics and therapeutics. J Control Release 2024; 375:1-19. [PMID: 39208935 DOI: 10.1016/j.jconrel.2024.08.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/27/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Point-of-care ultrasound demonstrates significant potential in biomedical research due to its noninvasive, real-time visualization, cost-effectiveness, and other biological benefits. Ultrasound irradiation can precisely control the mechanical and physicochemical effects on pathogenic lesions, enabling real-time visualization, tunable tissue penetration depth, and therapeutic applications. This review summarizes recent advancements in ultrasound-enabled diagnostics and therapeutics, focusing on mechanochemical effects that can be directly integrated into biomedical applications. Additionally, the structure-functionality relationships of sonotheranostic nanoplatforms are systematically discussed, providing insights into the underlying biological effects. Finally, the limitations of current ultrasonic medicine are discussed, along with potential expansions to facilitate patient-centered translations.
Collapse
Affiliation(s)
- Biying Han
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Yan Liu
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Qianqian Zhou
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Yuting Yu
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Xingxing Liu
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Yu Guo
- State Key Laboratory of Chemical Biology & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaohua Zheng
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Mengjiao Zhou
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China.
| | - Haijun Yu
- State Key Laboratory of Chemical Biology & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Weiqi Wang
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China.
| |
Collapse
|
8
|
Zhang M, Sun D, Huang H, Yang D, Song X, Feng W, Jing X, Chen Y. Nanosonosensitizer Optimization for Enhanced Sonodynamic Disease Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409663. [PMID: 39308222 DOI: 10.1002/adma.202409663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/16/2024] [Indexed: 11/16/2024]
Abstract
Low-intensity ultrasound-mediated sonodynamic therapy (SDT), which, by design, integrates sonosensitizers and molecular oxygen to generate therapeutic substances (e.g., toxic hydroxyl radicals, superoxide anions, or singlet oxygen) at disease sites, has shown enormous potential for the effective treatment of a variety of diseases. Nanoscale sonosensitizers play a crucial role in the SDT process because their structural, compositional, physicochemical, and biological characteristics are key determinants of therapeutic efficacy. In particular, advances in materials science and nanotechnology have invigorated a series of optimization strategies for augmenting the therapeutic efficacy of nanosonosensitizers. This comprehensive review systematically summarizes, discusses, and highlights state-of-the-art studies on the current achievements of nanosonosensitizer optimization in enhanced sonodynamic disease treatment, with an emphasis on the general design principles of nanosonosensitizers and their optimization strategies, mainly including organic and inorganic nanosonosensitizers. Additionally, recent advancements in optimized nanosonosensitizers for therapeutic applications aimed at treating various diseases, such as cancer, bacterial infections, atherosclerosis, and autoimmune diseases, are clarified in detail. Furthermore, the biological effects of the improved nanosonosensitizers for versatile SDT applications are thoroughly discussed. The review concludes by highlighting the current challenges and future opportunities in this rapidly evolving research field to expedite its practical clinical translation and application.
Collapse
Affiliation(s)
- Min Zhang
- Department of Ultrasound, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, P. R. China
| | - Dandan Sun
- Department of Ultrasound, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, P. R. China
| | - Hui Huang
- Materdicine Laboratory, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Dayan Yang
- Department of Ultrasound, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, P. R. China
| | - Xinran Song
- Materdicine Laboratory, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Wei Feng
- Materdicine Laboratory, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Xiangxiang Jing
- Department of Ultrasound, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, P. R. China
| | - Yu Chen
- Materdicine Laboratory, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute of Shanghai University, Wenzhou, Zhejiang, 325088, P. R. China
- Shanghai Institute of Materdicine, Shanghai, 200051, P. R. China
| |
Collapse
|
9
|
Hu F, Liang H, Xie J, Yuan M, Huang W, Lei Y, Li H, Lv L, Liu Q, Zhang J, Su W, Chen R, Wang Z, Chang YN, Li J, Wei C, Xing G, Xing G, Chen K. A novel shockwave-driven nanomotor composite microneedle transdermal delivery system for the localized treatment of osteoporosis: a basic science study. Int J Surg 2024; 110:6243-6256. [PMID: 39259829 PMCID: PMC11486941 DOI: 10.1097/js9.0000000000001280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/22/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Clinical protocols in osteoporosis treatment could not meet the requirement of increasing local bone mineral density. A local delivery system was brought in to fix this dilemma. The high-energy extracorporeal shock wave (ESW) can travel into the deep tissues with little heat loss. Hence, ESW-driven nanoparticles could be used for local treatment of osteoporosis. MATERIALS AND METHODS An ESW-actuated nanomotor (NM) sealed into microneedles (MNs) (ESW-NM-MN) was constructed for localized osteoporosis protection. The NM was made of calcium phosphate nanoparticles with a high Young's modulus, which allows it to absorb ESW energy efficiently and convert it into kinetic energy for solid tissue penetration. Zoledronic (ZOL), as an alternative phosphorus source, forms the backbone of the NM (ZOL-NM), leading to bone targeting and ESW-mediated drug release. RESULTS After the ZOL-NM is sealed into hyaluronic acid (HA)-made microneedles, the soluble MN tips could break through the stratum corneum, injecting the ZOL-NM into the skin. As soon as the ESW was applied, the ZOL-NM would absorb the ESW energy to move from the outer layer of skin into the deep tissue and be fragmented to release ZOL and Ca 2+ for anti-osteoclastogenesis and pro-osteogenesis. In vivo , the ZOL-NM increases localized bone parameters and reduces fracture risk, indicating its potential value in osteoporotic healing and other biomedical fields. CONCLUSION The ESW-mediated transdermal delivery platform (ESW-NM-MN) could be used as a new strategy to improve local bone mineral density and protect local prone-fracture areas.
Collapse
Affiliation(s)
- Fan Hu
- The Third Medical Center of Chinese People’s Liberation Army General Hospital
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanosciences and Technology, Chinese Academy of Sciences
- The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, Anhui Province, People’s Republic of China
| | - Haojun Liang
- The Third Medical Center of Chinese People’s Liberation Army General Hospital
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanosciences and Technology, Chinese Academy of Sciences
| | - Jing Xie
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing
| | - Meng Yuan
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanosciences and Technology, Chinese Academy of Sciences
| | - Wanxia Huang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanosciences and Technology, Chinese Academy of Sciences
| | - Yinze Lei
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing
| | - Hao Li
- The Third Medical Center of Chinese People’s Liberation Army General Hospital
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanosciences and Technology, Chinese Academy of Sciences
- The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, Anhui Province, People’s Republic of China
| | - Linwen Lv
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanosciences and Technology, Chinese Academy of Sciences
| | - Qiuyang Liu
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanosciences and Technology, Chinese Academy of Sciences
| | - Junhui Zhang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanosciences and Technology, Chinese Academy of Sciences
| | - Wenxi Su
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanosciences and Technology, Chinese Academy of Sciences
| | - Ranran Chen
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanosciences and Technology, Chinese Academy of Sciences
| | - Zhe Wang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanosciences and Technology, Chinese Academy of Sciences
| | - Ya-nan Chang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanosciences and Technology, Chinese Academy of Sciences
| | - Juan Li
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanosciences and Technology, Chinese Academy of Sciences
| | - Cunfeng Wei
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanosciences and Technology, Chinese Academy of Sciences
| | - Gengyan Xing
- The Third Medical Center of Chinese People’s Liberation Army General Hospital
- The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, Anhui Province, People’s Republic of China
| | - Gengmei Xing
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanosciences and Technology, Chinese Academy of Sciences
| | - Kui Chen
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanosciences and Technology, Chinese Academy of Sciences
| |
Collapse
|
10
|
Deng C, Zhang J, Hu F, Han S, Zheng M, An F, Wang F. A GSH-Responsive Prodrug with Simultaneous Triple-Activation Capacity for Photodynamic/Sonodynamic Combination Therapy with Inhibited Skin Phototoxicity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400667. [PMID: 38837658 DOI: 10.1002/smll.202400667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/17/2024] [Indexed: 06/07/2024]
Abstract
Herein, a dual-sensitizer prodrug, named pro-THPC, has been designed to function as both a photosensitizer and a sonosensitizer prodrug for precise antitumor combination therapy with minimized skin phototoxicity. Pro-THPC could be activated by glutathione (GSH) to release the dual-sensitizer, THPC, which simultaneously switches on fluorescence emission and combined capabilities of photodynamic therapy (PDT) and sonodynamic therapy (SDT). Pro-THPC is further formulated into nanoparticles (NPs) for water dispersity to enable in vivo applications. In vivo fluorescence imaging shows that the pro-THPC NPs group exhibits a significantly higher tumor-to-normal tissue ratio (T/N) (T/N = 5.2 ± 0.55) compared to the "always on" THPC NPs group (T/N = 2.9 ± 0.47) and the pro-THPC NPs group co-administrated with GSH synthesis inhibitor (buthionine sulfoximine, BSO) (T/N = 3.2 ± 0.63). In addition, the generation of the designed dual-sensitizer's reactive oxygen species (ROS) is effectively confined within the tumor tissues due to the relatively strong correlation between ROS generation and fluorescence emission. In vivo studies further demonstrate the remarkable efficacy of the designed pro-THPC NPs to eradicate tumors through the combination of PDT and SDT while significantly reducing skin phototoxicity.
Collapse
Affiliation(s)
- Caiting Deng
- Institute of Medical Engineering, School of Basic Medical Science, Health Science Center, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an, Shaanxi, 710061, China
- School of Public Health, Health Science Center, Xi'an Jiaotong University, No.76 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Jingjing Zhang
- School of Public Health, Health Science Center, Xi'an Jiaotong University, No.76 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Fanchun Hu
- School of Public Health, Health Science Center, Xi'an Jiaotong University, No.76 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Shupeng Han
- School of Public Health, Health Science Center, Xi'an Jiaotong University, No.76 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Meichen Zheng
- School of Public Health, Health Science Center, Xi'an Jiaotong University, No.76 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Feifei An
- Institute of Medical Engineering, School of Basic Medical Science, Health Science Center, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an, Shaanxi, 710061, China
- School of Public Health, Health Science Center, Xi'an Jiaotong University, No.76 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Fu Wang
- Institute of Medical Engineering, School of Basic Medical Science, Health Science Center, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an, Shaanxi, 710061, China
- Xianyang Key Laboratory of Molecular Imaging and Drug Synthesis, School of Pharmacy, Shaanxi University of International Trade & Commerce, Xianyang, Shaanxi, 712046, China
| |
Collapse
|
11
|
Su Y, Huang L, Zhang D, Zeng Z, Hong S, Lin X. Recent Advancements in Ultrasound Contrast Agents Based on Nanomaterials for Imaging. ACS Biomater Sci Eng 2024; 10:5496-5512. [PMID: 39246058 DOI: 10.1021/acsbiomaterials.4c00890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Ultrasound (US) is a type of mechanical wave that is capable of transmitting energy through biological tissues. By utilization of various frequencies and intensities, it can elicit specific biological effects. US imaging (USI) technology has been continuously developed with the advantages of safety and the absence of radiation. The advancement of nanotechnology has led to the utilization of various nanomaterials composed of both organic and inorganic compounds as ultrasound contrast agents (UCAs). These UCAs enhance USI, enabling real-time monitoring, diagnosis, and treatment of diseases, thereby facilitating the widespread adoption of UCAs in precision medicine. In this review, we introduce various UCAs based on nanomaterials for USI. Their principles can be roughly divided into the following categories: carrying and transporting gases, endogenous gas production, and the structural characteristics of the nanomaterial itself. Furthermore, the synergistic benefits of US in conjunction with various imaging modalities and their combined application in disease monitoring and diagnosis are introduced. In addition, the challenges and prospects for the development of UCAs are also discussed.
Collapse
Affiliation(s)
- Yina Su
- School of Medical Imaging, Fujian Medical University, Fuzhou 350122, Fujian, P. R. China
| | - Linjie Huang
- School of Medical Imaging, Fujian Medical University, Fuzhou 350122, Fujian, P. R. China
| | - Dongdong Zhang
- School of Medical Imaging, Fujian Medical University, Fuzhou 350122, Fujian, P. R. China
| | - Zheng Zeng
- School of Medical Imaging, Fujian Medical University, Fuzhou 350122, Fujian, P. R. China
| | - Shanni Hong
- School of Medical Imaging, Fujian Medical University, Fuzhou 350122, Fujian, P. R. China
| | - Xiahui Lin
- School of Medical Imaging, Fujian Medical University, Fuzhou 350122, Fujian, P. R. China
| |
Collapse
|
12
|
Na L, Fan F. Advances in nanobubbles for cancer theranostics: Delivery, imaging and therapy. Biochem Pharmacol 2024; 226:116341. [PMID: 38848778 DOI: 10.1016/j.bcp.2024.116341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Maximizing treatment efficacy and forecasting patient prognosis in cancer necessitates the strategic use of targeted therapy, coupled with the prompt precise detection of malignant tumors. Theutilizationof gaseous systems as an adaptable platform for creating nanobubbles (NBs) has garnered significant attention as theranostics, which involve combining contrast chemicals typically used for imaging with pharmaceuticals to diagnose and treattumorssynergistically in apersonalizedmanner for each patient. This review specifically examines the utilization of oxygen NBsplatforms as a theranostic weapon in the field of oncology. We thoroughly examine the key factors that impact the effectiveness of NBs preparations and the consequences of these treatment methods. This review extensively examines recent advancements in composition schemes, advanced developments in pre-clinical phases, and other groundbreaking inventions in the area of NBs. Moreover, this review offers a thorough examination of the optimistic future possibilities, addressing prospective methods for improvement and incorporation into widely accepted therapeutic practices. As we explore the ever-changing field of cancer theranostics, the incorporation of oxygen NBs appears as a promising development, providing new opportunities for precision medicine and marking a revolutionary age in cancer research and therapy.
Collapse
Affiliation(s)
- Liu Na
- Ultrasound Department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China.
| | - Fan Fan
- School of Automation, Xi'an University of Posts and Telecommunications, Xi'an 710121, China.
| |
Collapse
|
13
|
Song B, Wang X, Qin L, Hussain S, Liang W. Brain gliomas: Diagnostic and therapeutic issues and the prospects of drug-targeted nano-delivery technology. Pharmacol Res 2024; 206:107308. [PMID: 39019336 DOI: 10.1016/j.phrs.2024.107308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Glioma is the most common intracranial malignant tumor, with severe difficulty in treatment and a low patient survival rate. Due to the heterogeneity and invasiveness of tumors, lack of personalized clinical treatment design, and physiological barriers, it is often difficult to accurately distinguish gliomas, which dramatically affects the subsequent diagnosis, imaging treatment, and prognosis. Fortunately, nano-delivery systems have demonstrated unprecedented capabilities in diagnosing and treating gliomas in recent years. They have been modified and surface modified to efficiently traverse BBB/BBTB, target lesion sites, and intelligently release therapeutic or contrast agents, thereby achieving precise imaging and treatment. In this review, we focus on nano-delivery systems. Firstly, we provide an overview of the standard and emerging diagnostic and treatment technologies for glioma in clinical practice. After induction and analysis, we focus on summarizing the delivery methods of drug delivery systems, the design of nanoparticles, and their new advances in glioma imaging and treatment in recent years. Finally, we discussed the prospects and potential challenges of drug-delivery systems in diagnosing and treating glioma.
Collapse
Affiliation(s)
- Baoqin Song
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong 250117, China
| | - Xiu Wang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong 250117, China.
| | - Lijing Qin
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong 250117, China
| | - Shehbaz Hussain
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong 250117, China
| | - Wanjun Liang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong 250117, China.
| |
Collapse
|
14
|
谢 李, 杜 哲, 彭 秋, 张 坤, 方 超. [Classification and Application of Ultrasound-Responsive Nanomaterials in Anti-Inflammatory Therapy]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:793-799. [PMID: 39169999 PMCID: PMC11334277 DOI: 10.12182/20240760104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Indexed: 08/23/2024]
Abstract
Ultrasound, a high-frequency mechanical wave with excellent tissue penetration, has been widely applied in medical diagnostic imaging. Furthermore, it has been reported that ultrasound has broad prospects for extensive applications in the field of disease treatment in recent years due to its non-invasiveness and high efficiency. Ultrasound-responsive nanomaterials have the unique advantages of a small size and a high reactivity. Such materials have the capability for precision control of drug release under ultrasound stimulation, which provides a new approach to enhancing the efficiency of drug therapy. Therefore, these materials have attracted the attention of a wide range of scholars. Inflammation is a defensive response produced by organisms to deal with injuries. However, excessive inflammatory response may lead to various tissue damages in organisms and even endanger patients' lives. Many studies have demonstrated that limiting the inflammatory response using ultrasound-responsive nanomaterials is a viable way of treating diseases. Currently, there are still challenges in the application of ultrasound-responsive nanomaterials in anti-inflammatory therapy. The design and synthesis process of nanomaterials is complicated, and further verification of the biocompatibility and safety of these materials is needed. Therefore, in this review, we summarized and classified common ultrasound-responsive nanomaterials in the field of anti-inflammation and systematically introduced the properties of different nanomaterials. In addition, the anti-inflammatory applications of ultrasound-responsive nanomaterials in various diseases, such as bone diseases, skin and muscle diseases, autoimmune diseases, and respiratory diseases, are also described in detail. It is expected that this review will provide insights for further research and clinical applications in the realms of precision treatment, targeted drug delivery, and clinical trial validation of ultrasound-responsive nanomaterials used in anti-inflammatory therapies.
Collapse
Affiliation(s)
- 李欣 谢
- 上海市第十人民医院 超声科 (上海 200072)Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Shanghai 200072, China
| | - 哲菲 杜
- 上海市第十人民医院 超声科 (上海 200072)Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Shanghai 200072, China
| | - 秋霞 彭
- 上海市第十人民医院 超声科 (上海 200072)Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Shanghai 200072, China
| | - 坤 张
- 上海市第十人民医院 超声科 (上海 200072)Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Shanghai 200072, China
| | - 超 方
- 上海市第十人民医院 超声科 (上海 200072)Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Shanghai 200072, China
| |
Collapse
|
15
|
Quadrado RFN, Silvestri S, de Souza JF, Iglesias BA, Fajardo AR. Advances in porphyrins and chlorins associated with polysaccharides and polysaccharides-based materials for biomedical and pharmaceutical applications. Carbohydr Polym 2024; 334:122017. [PMID: 38553216 DOI: 10.1016/j.carbpol.2024.122017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 04/02/2024]
Abstract
Over the last decade, the convergence of advanced materials and innovative applications has fostered notable scientific progress within the biomedical and pharmaceutical fields. Porphyrins and their derivatives, distinguished by an extended conjugated π-electron system, have a relevant role in propelling these advancements, especially in drug delivery systems, photodynamic therapy, wound healing, and (bio)sensing. However, despite their promise, the practical clinical application of these macrocycles is hindered by their inherent challenges of low solubility and instability under physiological conditions. To address this limitation, researchers have exploited the synergistic association of porphyrins and chlorins with polysaccharides by engineering conjugated systems and composite/hybrid materials. This review compiles the principal advances in this growing research field, elucidating fundamental principles and critically examining the applications of such materials within biomedical and pharmaceutical contexts. Additionally, the review addresses the eventual challenges and outlines future perspectives for this poignant research field. It is expected that this review will serve as a comprehensive guide for students and researchers dedicated to exploring state-of-the-art materials for contemporary medicine and pharmaceutical applications.
Collapse
Affiliation(s)
- Rafael F N Quadrado
- Laboratório de Tecnologia e Desenvolvimento de Compósitos e Materiais Poliméricos (LaCoPol), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão s/n, 96010-900 Pelotas, RS, Brazil
| | - Siara Silvestri
- Laboratório de Tecnologia e Desenvolvimento de Compósitos e Materiais Poliméricos (LaCoPol), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão s/n, 96010-900 Pelotas, RS, Brazil; Laboratório de Engenharia de Meio Ambiente (LEMA), Universidade Federal de Santa Maria (UFSM), Campus Camobi, 97105-900 Santa Maria, RS, Brazil
| | - Jaqueline F de Souza
- Laboratório de Bioinorgânica e Materiais Porfirínicos, Universidade Federal de Santa Maria (UFSM), Campus Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Bernardo A Iglesias
- Laboratório de Bioinorgânica e Materiais Porfirínicos, Universidade Federal de Santa Maria (UFSM), Campus Camobi, 97105-900, Santa Maria, RS, Brazil.
| | - André R Fajardo
- Laboratório de Tecnologia e Desenvolvimento de Compósitos e Materiais Poliméricos (LaCoPol), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão s/n, 96010-900 Pelotas, RS, Brazil.
| |
Collapse
|
16
|
Wang Z, Wang X, Dai X, Xu T, Qian X, Chang M, Chen Y. 2D Catalytic Nanozyme Enables Cascade Enzyodynamic Effect-Boosted and Ca 2+ Overload-Induced Synergistic Ferroptosis/Apoptosis in Tumor. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312316. [PMID: 38501540 DOI: 10.1002/adma.202312316] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/21/2024] [Indexed: 03/20/2024]
Abstract
The introduction of glucose oxidase, exhibiting characteristics of glucose consumption and H2O2 production, represents an emerging antineoplastic therapeutic approach that disrupts nutrient supply and promotes efficient generation of reactive oxygen species (ROS). However, the instability of natural enzymes and their low therapeutic efficacy significantly impede their broader application. In this context, 2D Ca2Mn8O16 nanosheets (CMO NSs) designed and engineered to serve as a high-performance nanozyme, enhancing the enzyodynamic effect for a ferroptosis-apoptosis synergistic tumor therapy, are presented. In addition to mimicking activities of glutathione peroxidase, catalase, oxidase, and peroxidase, the engineered CMO NSs exhibit glucose oxidase-mimicking activities. This feature contributes to their antitumor performance through cascade catalytic reactions, involving the disruption of glucose supply, self-supply of H2O2, and subsequent efficient ROS generation. The exogenous Ca2+ released from CMO NSs, along with the endogenous Ca2+ enrichment induced by ROS from the peroxidase- and oxidase-mimicking activities of CMO NSs, collectively mediate Ca2+ overload, leading to apoptosis. Importantly, the ferroptosis process is triggered synchronously through ROS output and glutathione consumption. The application of exogenous ultrasound stimulation further enhances the efficiency of ferroptosis-apoptosis synergistic tumor treatment. This work underscores the crucial role of enzyodynamic performance in ferroptosis-apoptosis synergistic therapy against tumors.
Collapse
Affiliation(s)
- Zeyu Wang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Xue Wang
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, P. R. China
| | - Xinyue Dai
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Tianming Xu
- Department of Orthopedics, 905th Hospital of PLA Navy, Naval Medical University, Shanghai, 200050, P. R. China
| | - Xiaoqin Qian
- Department of Ultrasound Medicine, Northern Jiangsu People's Hospital, Yangzhou, 225009, P. R. China
| | - Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P. R. China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute of Shanghai University, Wenzhou, 325088, P. R. China
| |
Collapse
|
17
|
De A, Jee JP, Park YJ. Why Perfluorocarbon nanoparticles encounter bottlenecks in clinical translation despite promising oxygen carriers? Eur J Pharm Biopharm 2024; 199:114292. [PMID: 38636883 DOI: 10.1016/j.ejpb.2024.114292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/23/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Artificial Oxygen Carriers (AOCs) have emerged as ground-breaking biomedical solutions, showcasing tremendous potential for enhancing human health and saving lives. Perfluorocarbon (PFC)-based AOCs, in particular, have garnered significant interest among researchers, leading to numerous clinical trials since the 1980 s. However, despite decades of exploration, the success rate has remained notably limited. This comprehensive review article delves into the landscape of clinical trials involving PFC compounds, shedding light on the challenges and factors contributing to the lack of clinical success with PFC nanoparticles till date. By scrutinizing the existing trials, the article aims to uncover the underlying issues like pharmacological side effects of the PFC and the nanomaterials used for the designing, complex formulation strategy and poor clinical trial designs of the formulation. More over each generation of the PFC formulation were discussed with details for their failure in the clinical trials limitations that block the path of PFC-based AOCs' full potential. Furthermore, the review emphasizes a forward-looking approach by outlining the future pathways and strategies essential for achieving success in clinical trials. AOCs require advanced yet biocompatible single-componentformulations. The new trend might be a novel drug delivery technique, like gel emulsion or reverse PFC emulsion with fluoro surfactants. Most importantly, well-planned clinical trials may end in a success story.
Collapse
Affiliation(s)
- Anindita De
- College of Pharmacy, Ajou University, 206 Worldcup-ro , Yeongtong-gu, Suwon-si 16499, Republic of Korea.
| | - Jun-Pil Jee
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - Young-Joon Park
- College of Pharmacy, Ajou University, 206 Worldcup-ro , Yeongtong-gu, Suwon-si 16499, Republic of Korea; Research Center, IMDpharm Inc., 17 Daehak 4-ro, Yeongtong-gu, Suwon-si 16226, Korea.
| |
Collapse
|
18
|
Zhou Q, Liu Q, Wang Y, Chen J, Schmid O, Rehberg M, Yang L. Bridging Smart Nanosystems with Clinically Relevant Models and Advanced Imaging for Precision Drug Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308659. [PMID: 38282076 PMCID: PMC11005737 DOI: 10.1002/advs.202308659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Indexed: 01/30/2024]
Abstract
Intracellular delivery of nano-drug-carriers (NDC) to specific cells, diseased regions, or solid tumors has entered the era of precision medicine that requires systematic knowledge of nano-biological interactions from multidisciplinary perspectives. To this end, this review first provides an overview of membrane-disruption methods such as electroporation, sonoporation, photoporation, microfluidic delivery, and microinjection with the merits of high-throughput and enhanced efficiency for in vitro NDC delivery. The impact of NDC characteristics including particle size, shape, charge, hydrophobicity, and elasticity on cellular uptake are elaborated and several types of NDC systems aiming for hierarchical targeting and delivery in vivo are reviewed. Emerging in vitro or ex vivo human/animal-derived pathophysiological models are further explored and highly recommended for use in NDC studies since they might mimic in vivo delivery features and fill the translational gaps from animals to humans. The exploration of modern microscopy techniques for precise nanoparticle (NP) tracking at the cellular, organ, and organismal levels informs the tailored development of NDCs for in vivo application and clinical translation. Overall, the review integrates the latest insights into smart nanosystem engineering, physiological models, imaging-based validation tools, all directed towards enhancing the precise and efficient intracellular delivery of NDCs.
Collapse
Affiliation(s)
- Qiaoxia Zhou
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
- Department of Forensic PathologyWest China School of Preclinical and Forensic MedicineSichuan UniversityNo. 17 Third Renmin Road NorthChengdu610041China
- Burning Rock BiotechBuilding 6, Phase 2, Standard Industrial Unit, No. 7 LuoXuan 4th Road, International Biotech IslandGuangzhou510300China
| | - Qiongliang Liu
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
- Department of Thoracic SurgeryShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080China
| | - Yan Wang
- Qingdao Central HospitalUniversity of Health and Rehabilitation Sciences (Qingdao Central Medical Group)Qingdao266042China
| | - Jie Chen
- Department of Respiratory MedicineNational Key Clinical SpecialtyBranch of National Clinical Research Center for Respiratory DiseaseXiangya HospitalCentral South UniversityChangshaHunan410008China
- Center of Respiratory MedicineXiangya HospitalCentral South UniversityChangshaHunan410008China
- Clinical Research Center for Respiratory Diseases in Hunan ProvinceChangshaHunan410008China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory DiseaseChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalChangshaHunan410008P. R. China
| | - Otmar Schmid
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
| | - Markus Rehberg
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
| | - Lin Yang
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
| |
Collapse
|
19
|
Stoddart PR, Begeng JM, Tong W, Ibbotson MR, Kameneva T. Nanoparticle-based optical interfaces for retinal neuromodulation: a review. Front Cell Neurosci 2024; 18:1360870. [PMID: 38572073 PMCID: PMC10987880 DOI: 10.3389/fncel.2024.1360870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 03/04/2024] [Indexed: 04/05/2024] Open
Abstract
Degeneration of photoreceptors in the retina is a leading cause of blindness, but commonly leaves the retinal ganglion cells (RGCs) and/or bipolar cells extant. Consequently, these cells are an attractive target for the invasive electrical implants colloquially known as "bionic eyes." However, after more than two decades of concerted effort, interfaces based on conventional electrical stimulation approaches have delivered limited efficacy, primarily due to the current spread in retinal tissue, which precludes high-acuity vision. The ideal prosthetic solution would be less invasive, provide single-cell resolution and an ability to differentiate between different cell types. Nanoparticle-mediated approaches can address some of these requirements, with particular attention being directed at light-sensitive nanoparticles that can be accessed via the intrinsic optics of the eye. Here we survey the available known nanoparticle-based optical transduction mechanisms that can be exploited for neuromodulation. We review the rapid progress in the field, together with outstanding challenges that must be addressed to translate these techniques to clinical practice. In particular, successful translation will likely require efficient delivery of nanoparticles to stable and precisely defined locations in the retinal tissues. Therefore, we also emphasize the current literature relating to the pharmacokinetics of nanoparticles in the eye. While considerable challenges remain to be overcome, progress to date shows great potential for nanoparticle-based interfaces to revolutionize the field of visual prostheses.
Collapse
Affiliation(s)
- Paul R. Stoddart
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC, Australia
| | - James M. Begeng
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC, Australia
- Department of Biomedical Engineering, Faculty of Engineering & Information Technology, The University of Melbourne, Melbourne, VIC, Australia
| | - Wei Tong
- Department of Biomedical Engineering, Faculty of Engineering & Information Technology, The University of Melbourne, Melbourne, VIC, Australia
- School of Physics, The University of Melbourne, Melbourne, VIC, Australia
| | - Michael R. Ibbotson
- Department of Biomedical Engineering, Faculty of Engineering & Information Technology, The University of Melbourne, Melbourne, VIC, Australia
| | - Tatiana Kameneva
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC, Australia
| |
Collapse
|
20
|
Wu Z, Cai H, Tian C, Ao Z, Jiang L, Guo F. Exploiting Sound for Emerging Applications of Extracellular Vesicles. NANO RESEARCH 2024; 17:462-475. [PMID: 38712329 PMCID: PMC11073796 DOI: 10.1007/s12274-023-5840-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/08/2024]
Abstract
Extracellular vesicles are nano- to microscale, membrane-bound particles released by cells into extracellular space, and act as carriers of biomarkers and therapeutics, holding promising potential in translational medicine. However, the challenges remain in handling and detecting extracellular vesicles for disease diagnosis as well as exploring their therapeutic capability for disease treatment. Here, we review the recent engineering and technology advances by leveraging the power of sound waves to address the challenges in diagnostic and therapeutic applications of extracellular vesicles and biomimetic nanovesicles. We first introduce the fundamental principles of sound waves for understanding different acoustic-assisted extracellular vesicle technologies. We discuss the acoustic-assisted diagnostic methods including the purification, manipulation, biosensing, and bioimaging of extracellular vesicles. Then, we summarize the recent advances in acoustically enhanced therapeutics using extracellular vesicles and biomimetic nanovesicles. Finally, we provide perspectives into current challenges and future clinical applications of the promising extracellular vesicles and biomimetic nanovesicles powered by sound.
Collapse
Affiliation(s)
- Zhuhao Wu
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47405, United States
| | - Hongwei Cai
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47405, United States
| | - Chunhui Tian
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47405, United States
| | - Zheng Ao
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47405, United States
| | - Lei Jiang
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47405, United States
| | - Feng Guo
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47405, United States
| |
Collapse
|
21
|
Setia A, Mehata AK, Priya V, Pawde DM, Jain D, Mahto SK, Muthu MS. Current Advances in Nanotheranostics for Molecular Imaging and Therapy of Cardiovascular Disorders. Mol Pharm 2023; 20:4922-4941. [PMID: 37699355 DOI: 10.1021/acs.molpharmaceut.3c00582] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Cardiovascular diseases (CVDs) refer to a collection of conditions characterized by abnormalities in the cardiovascular system. They are a global problem and one of the leading causes of mortality and disability. Nanotheranostics implies to the combination of diagnostic and therapeutic capabilities inside a single nanoscale platform that has allowed for significant advancement in cardiovascular diagnosis and therapy. These advancements are being developed to improve imaging capabilities, introduce personalized therapies, and boost cardiovascular disease patient treatment outcomes. Significant progress has been achieved in the integration of imaging and therapeutic capabilities within nanocarriers. In the case of cardiovascular disease, nanoparticles provide targeted delivery of therapeutics, genetic material, photothermal, and imaging agents. Directing and monitoring the movement of these therapeutic nanoparticles may be done with pinpoint accuracy by using imaging modalities such as cardiovascular magnetic resonance (CMR), computed tomography (CT), positron emission tomography (PET), photoacoustic/ultrasound, and fluorescence imaging. Recently, there has been an increasing demand of noninvasive for multimodal nanotheranostic platforms. In these platforms, various imaging technologies such as optical and magnetic resonance are integrated into a single nanoparticle. This platform helps in acquiring more accurate descriptions of cardiovascular diseases and provides clues for accurate diagnosis. Advances in surface functionalization methods have strengthened the potential application of nanotheranostics in cardiovascular diagnosis and therapy. In this Review, we have covered the potential impact of nanomedicine on CVDs. Additionally, we have discussed the recently developed various nanoparticles for CVDs imaging. Moreover, advancements in the CMR, CT, PET, ultrasound, and photoacoustic imaging for the CVDs have been discussed. We have limited our discussion to nanomaterials based clinical trials for CVDs and their patents.
Collapse
Affiliation(s)
- Aseem Setia
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Vishnu Priya
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Datta Maroti Pawde
- School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-be University, Shirpur, Dhule, Maharashtra 425405, India
| | - Dharmendra Jain
- Department of Cardiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Sanjeev Kumar Mahto
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
22
|
Liao S, Zhou M, Wang Y, Lu C, Yin B, Zhang Y, Liu H, Yin X, Song G. Emerging biomedical imaging-based companion diagnostics for precision medicine. iScience 2023; 26:107277. [PMID: 37520706 PMCID: PMC10371849 DOI: 10.1016/j.isci.2023.107277] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023] Open
Abstract
The tumor heterogeneity, which leads to individual variations in tumor microenvironments, causes poor prognoses and limits therapeutic response. Emerging technology such as companion diagnostics (CDx) detects biomarkers and monitors therapeutic responses, allowing identification of patients who would benefit most from treatment. However, currently, most US Food and Drug Administration-approved CDx tests are designed to detect biomarkers in vitro and ex vivo, making it difficult to dynamically report variations of targets in vivo. Various medical imaging techniques offer dynamic measurement of tumor heterogeneity and treatment response, complementing CDx tests. Imaging-based companion diagnostics allow for patient stratification for targeted medicines and identification of patient populations benefiting from alternative therapeutic methods. This review summarizes recent developments in molecular imaging for predicting and assessing responses to cancer therapies, as well as the various biomarkers used in imaging-based CDx tests. We hope this review provides informative insights into imaging-based companion diagnostics and advances precision medicine.
Collapse
Affiliation(s)
- Shiyi Liao
- State Key Laboratory for Chemo, Biosensing and Chemometrics, College of Chemistry and Chemical, Engineering, Hunan University, Changsha 410082, China
| | - Mengjie Zhou
- State Key Laboratory for Chemo, Biosensing and Chemometrics, College of Chemistry and Chemical, Engineering, Hunan University, Changsha 410082, China
| | - Youjuan Wang
- State Key Laboratory for Chemo, Biosensing and Chemometrics, College of Chemistry and Chemical, Engineering, Hunan University, Changsha 410082, China
| | - Chang Lu
- State Key Laboratory for Chemo, Biosensing and Chemometrics, College of Chemistry and Chemical, Engineering, Hunan University, Changsha 410082, China
| | - Baoli Yin
- State Key Laboratory for Chemo, Biosensing and Chemometrics, College of Chemistry and Chemical, Engineering, Hunan University, Changsha 410082, China
| | - Ying Zhang
- State Key Laboratory for Chemo, Biosensing and Chemometrics, College of Chemistry and Chemical, Engineering, Hunan University, Changsha 410082, China
| | - Huiyi Liu
- State Key Laboratory for Chemo, Biosensing and Chemometrics, College of Chemistry and Chemical, Engineering, Hunan University, Changsha 410082, China
| | - Xia Yin
- State Key Laboratory for Chemo, Biosensing and Chemometrics, College of Chemistry and Chemical, Engineering, Hunan University, Changsha 410082, China
| | - Guosheng Song
- State Key Laboratory for Chemo, Biosensing and Chemometrics, College of Chemistry and Chemical, Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
23
|
Pavelić K, Pavelić SK, Bulog A, Agaj A, Rojnić B, Čolić M, Trivanović D. Nanoparticles in Medicine: Current Status in Cancer Treatment. Int J Mol Sci 2023; 24:12827. [PMID: 37629007 PMCID: PMC10454499 DOI: 10.3390/ijms241612827] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer is still a leading cause of deaths worldwide, especially due to those cases diagnosed at late stages with metastases that are still considered untreatable and are managed in such a way that a lengthy chronic state is achieved. Nanotechnology has been acknowledged as one possible solution to improve existing cancer treatments, but also as an innovative approach to developing new therapeutic solutions that will lower systemic toxicity and increase targeted action on tumors and metastatic tumor cells. In particular, the nanoparticles studied in the context of cancer treatment include organic and inorganic particles whose role may often be expanded into diagnostic applications. Some of the best studied nanoparticles include metallic gold and silver nanoparticles, quantum dots, polymeric nanoparticles, carbon nanotubes and graphene, with diverse mechanisms of action such as, for example, the increased induction of reactive oxygen species, increased cellular uptake and functionalization properties for improved targeted delivery. Recently, novel nanoparticles for improved cancer cell targeting also include nanobubbles, which have already demonstrated increased localization of anticancer molecules in tumor tissues. In this review, we will accordingly present and discuss state-of-the-art nanoparticles and nano-formulations for cancer treatment and limitations for their application in a clinical setting.
Collapse
Affiliation(s)
- Krešimir Pavelić
- Faculty of Medicine, Juraj Dobrila University of Pula, Zagrebačka 30, 52100 Pula, Croatia
| | - Sandra Kraljević Pavelić
- Faculty of Health Studies, University of Rijeka, Ulica Viktora Cara Emina 5, 51000 Rijeka, Croatia
| | - Aleksandar Bulog
- Teaching Institute for Public Health of Primorsko-Goranska County, Krešimirova Ulica 52, 51000 Rijeka, Croatia
- Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Andrea Agaj
- Faculty of Medicine, Juraj Dobrila University of Pula, Zagrebačka 30, 52100 Pula, Croatia
| | - Barbara Rojnić
- Faculty of Medicine, Juraj Dobrila University of Pula, Zagrebačka 30, 52100 Pula, Croatia
| | - Miroslav Čolić
- Clear Water Technology Inc., 13008 S Western Avenue, Gardena, CA 90429, USA;
| | - Dragan Trivanović
- Faculty of Medicine, Juraj Dobrila University of Pula, Zagrebačka 30, 52100 Pula, Croatia
- Department of Oncology and Hematology, General Hospital Pula, Santorijeva 24a, 52200 Pula, Croatia
| |
Collapse
|
24
|
Wu JR, Hernandez Y, Miyasaki KF, Kwon EJ. Engineered nanomaterials that exploit blood-brain barrier dysfunction fordelivery to the brain. Adv Drug Deliv Rev 2023; 197:114820. [PMID: 37054953 DOI: 10.1016/j.addr.2023.114820] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 04/15/2023]
Abstract
The blood-brain barrier (BBB) is a highly regulated physical and functional boundarythat tightly controls the transport of materials between the blood and the brain. There is an increasing recognition that the BBB is dysfunctional in a wide range of neurological disorders; this dysfunction can be symptomatic of the disease but can also play a role in disease etiology. BBB dysfunction can be exploited for the delivery of therapeutic nanomaterials. Forexample, there can be a transient, physical disruption of the BBB in diseases such as brain injury and stroke, which allows temporary access of nanomaterials into the brain. Physicaldisruption of the BBB through external energy sources is now being clinically pursued toincrease therapeutic delivery into the brain. In other diseases, the BBB takes on new properties that can beleveraged by delivery carriers. For instance, neuroinflammation induces the expression ofreceptors on the BBB that can be targeted by ligand-modified nanomaterials and theendogenous homing of immune cells into the diseased brain can be hijacked for the delivery ofnanomaterials. Lastly, BBB transport pathways can be altered to increase nanomaterial transport. In this review, we will describe changes that can occur in the BBB in disease, and how these changes have been exploited by engineered nanomaterials forincreased transport into the brain.
Collapse
Affiliation(s)
- Jason R Wu
- Department of Bioengineering, University of California San Diego, La Jolla, CA
| | - Yazmin Hernandez
- Department of Bioengineering, University of California San Diego, La Jolla, CA
| | - Katelyn F Miyasaki
- Department of Bioengineering, University of California San Diego, La Jolla, CA
| | - Ester J Kwon
- Department of Bioengineering, University of California San Diego, La Jolla, CA; Sanford Consortium for Regenerative Medicine.
| |
Collapse
|