1
|
Nazari M, Taremi S, Elahi R, Mostanadi P, Esmeilzadeh A. Therapeutic Properties of M2 Macrophages in Chronic Wounds: An Innovative Area of Biomaterial-Assisted M2 Macrophage Targeted Therapy. Stem Cell Rev Rep 2025; 21:390-422. [PMID: 39556244 DOI: 10.1007/s12015-024-10806-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2024] [Indexed: 11/19/2024]
Abstract
Wound healing is a dynamic, multi-stage process essential for restoring skin integrity. Dysregulated wound healing is often linked to impaired macrophage function, particularly in individuals with chronic underlying conditions. Macrophages, as key regulators of wound healing, exhibit significant phenotypic diversity, ranging from the pro-healing M2 phenotype to the pro-inflammatory M1 phenotype. Imbalances in the M1/M2 ratio or hyperactivation of the M1 phenotype can delay the normal healing. Consequently, strategies aimed at suppressing the M1 phenotype or promoting the shift of local skin macrophages toward the M2 phenotype can potentially treat chronic non-healing wounds. This manuscript provides an overview of macrophages' role in normal and pathological wound-healing processes. It examines various therapeutic approaches targeting M2 macrophages, such as ex vivo-activated macrophage therapy, immunopharmacological strategies, and biomaterial-directed macrophage polarization. However, it also highlights that M2 macrophage therapies and immunopharmacological interventions may have drawbacks, including rapid phenotypic changes, adverse effects on other skin cells, biotoxicity, and concerns related to biocompatibility, stability, and drug degradation. Therefore, there is a need for more targeted macrophage-based therapies that ensure optimal biosafety, allowing for effective reprogramming of dysregulated macrophages and improved therapeutic outcomes. Recent advances in nano-biomaterials have demonstrated promising regenerative potential compared to traditional treatments. This review discusses the progress of biomaterial-assisted macrophage targeting in chronic wound repair and addresses the challenges faced in its clinical application. Additionally, it explores novel design concepts for combinational therapies, such as incorporating regenerative particles like exosomes into dressing materials or encapsulating them in microneedling systems to enhance wound healing rates.
Collapse
Affiliation(s)
- Mahdis Nazari
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Siavash Taremi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Reza Elahi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Parsa Mostanadi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Abdolreza Esmeilzadeh
- Department of Immunology, Zanjan University of Medical Sciences, Zanjan, Iran.
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
2
|
Tanito K, Nii T, Wakuya K, Hamabe Y, Yoshimi T, Hosokawa T, Kishimura A, Mori T, Katayama Y. Inflammation-Triggering Engineered Macrophages (MacTriggers) Enhance Reactivity of Immune Checkpoint Inhibitor Only in Tumor Tissues. Cancers (Basel) 2024; 16:3787. [PMID: 39594742 PMCID: PMC11592725 DOI: 10.3390/cancers16223787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Background: We have previously reported engineered macrophages (MacTriggers) that can accelerate the release of tumor necrosis factor-α in response to M2 polarization. MacTriggers are characterized by two original characteristics of macrophages: (1) migration to tumors; and (2) polarization to the M2 phenotype in tumors. Intravenously administered MacTriggers efficiently accumulated in the tumors and induced tumor-specific inflammation. This study reports a novel methodology for enhancing the anti-tumor effects of immune checkpoint inhibitors (ICIs). Results: In this study, we newly found that the intravenously administered MacTriggers in BALB/c mouse models upregulated the expression levels of immune checkpoint proteins, such as programmed cell death (PD)-1 in CD8+ T cells and PD-ligand 1 (PD-L1) in cancer cells and macrophages. Consequently, in two ICI-resistant tumor-inoculated mouse models, the combined administration of MacTrigger and anti-PD-1 antibody (aPD-1) synergistically inhibited tumor growth, whereas monotherapy with aPD-1 did not exhibit anti-tumor effects. This synergistic effect was mainly from aPD-1 enhancing the tumor-attacking ability of CD8+ T cells, which could infiltrate into the tumors following MacTrigger treatment. Importantly, no side effects were observed in normal tissues, particularly in the liver and spleen, indicating that the MacTriggers did not enhance the aPD-1 reactivity in normal tissues. This specificity was from the MacTriggers not polarizing to the M2 phenotype in normal tissues, thereby avoiding inflammation and increased PD-1/PD-L1 expression. MacTriggers could enhance aPD-1 reactivity only in tumors following tumor-specific inflammation induction. Conclusions: Our findings suggest that the MacTrigger and aPD-1 combination therapy is a novel approach for potentially overcoming the current low ICI response rates while avoiding side effects.
Collapse
Affiliation(s)
- Kenta Tanito
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Teruki Nii
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kanae Wakuya
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yusuke Hamabe
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Toma Yoshimi
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takanatsu Hosokawa
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Akihiro Kishimura
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- International Research Center for Molecular Systems, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takeshi Mori
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshiki Katayama
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- International Research Center for Molecular Systems, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Biomedical Engineering, Chung Yuan Christian University, 200 Chung Pei Rd., Chung Li 32023, Taiwan
| |
Collapse
|
3
|
Nii T, Hijii S, Kaneko R, Tanito K, Yamanaka K, Kishimura A, Mori T, Katayama Y. In vitro evaluation of novel SN-38 prodrug activated by α-rhamnosidase of exogenous enzyme. ANAL SCI 2024; 40:1529-1535. [PMID: 38748393 DOI: 10.1007/s44211-024-00593-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 04/25/2024] [Indexed: 07/26/2024]
Abstract
This study introduces the α-rhamnose (Rham)-conjugated prodrug of SN-38 (Rham-SN-38) as a promising alternative to irinotecan. α-rhamnosidase, responsible for SN-38 release from Rham-SN-38, does not express in human cells, minimizing individual variability and side effects. The injection of the α-rhamnosidase into the tumor tissues makes it possible, for the first time, to activate the Rham-SN-38. Furthermore, α-rhamnosidase demonstrates significantly higher activity than carboxylesterase, the specific enzyme activating irinotecan. SN-38 release mediated by α-rhamnosidase completes within 2 h, with a kcat/Km value approximately 5.0 × 104-fold higher than that of irinotecan. The 50% inhibition concentration (IC50) of Rham-SN-38 against three types of cancer cells and one normal cell exceeds 4.5 × 103 nM. The addition of α-rhamnosidase significantly increases cytotoxicity, with IC50 comparable to free SN-38. The QIC50, an index reflecting the difference in cytotoxicity with and without α-rhamnosidase, exceeds approximately 1.0 × 102-fold. Rham-SN-38, synthesized in this study, demonstrates significant potential as a prodrug for cancer therapy.
Collapse
Affiliation(s)
- Teruki Nii
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fu-Kuoka, 819-0395, Japan.
| | - Shoichi Hijii
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Ryosuke Kaneko
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fu-Kuoka, 819-0395, Japan
| | - Kenta Tanito
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Kota Yamanaka
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Akihiro Kishimura
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fu-Kuoka, 819-0395, Japan
- Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
- International Research Center for Molecular Systems, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Takeshi Mori
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fu-Kuoka, 819-0395, Japan
- Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yoshiki Katayama
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fu-Kuoka, 819-0395, Japan.
- Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
- International Research Center for Molecular Systems, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
- Department of Biomedical Engineering, Chung Yuan Christian University, 200 Chung Pei Rd., Chung Li, 3203 ROC, Taiwan.
| |
Collapse
|
4
|
Chen Y, Gong L, Cao Y, Liu Z, Wang Y, Cheng H, Feng Y, Yao S, Yin Y, Wu Z, Huang Z. Reprogramming tumor-associated macrophages by a dually targeted milk exosome system as a potent monotherapy for cancer. J Control Release 2024; 366:395-409. [PMID: 38184235 DOI: 10.1016/j.jconrel.2023.12.058] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/20/2023] [Accepted: 12/31/2023] [Indexed: 01/08/2024]
Abstract
Tumor-associated macrophages (TAMs) play a key role in inducing an immunosuppressive tumor microenvironment (TME) and cancer immune escape. We previously revealed that PDL1 (a key immune checkpoint) was upregulated in TAMs and induced M2 polarization, highlighting PDL1 in TAMs as a promising cancer therapeutic target. In this study, we developed an engineered milk exosome (mExo) system decorated with M2pep (an M2 macrophage binding peptide) and 7D12 (an anti-EGFR nanobody) (7D12-mExo-M2pep-siPDL1) to specifically deliver siPDL1 into M2 TAMs. A series of in vitro and in vivo assays showed that the dually targeted engineered mExos efficiently delivered siPDL1 into M2 TAMs and repolarized them into M1 macrophages, restoring CD8+ T cell immune activity and remodeling TME. Importantly, systemically administered 7D12-mExo-M2pep-siPDL1 showed efficient single-agent antitumor activity, resulting in nearly 90% tumor growth inhibition in a mouse model of orthotopic epidermal growth factor receptor (EGFR) cancer. Collectively, our study indicates that PDL1 is a promising target for TAM-based cancer immunotherapy, and our engineered mExo-based nanomedicine represents a novel tool for specifically targeting M2 TAMs, distinguishing this novel therapeutic method from other TAM-targeting therapies and highlighting its promising clinical potential.
Collapse
Affiliation(s)
- Ying Chen
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, China.; Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Liang Gong
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, China.; Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Yulin Cao
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, China.; Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhiang Liu
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, China.; Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuanben Wang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, China.; Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Han Cheng
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, China.; Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuyang Feng
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Surui Yao
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, China.; Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Yuan Yin
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, China.; Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Zhimeng Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Zhaohui Huang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, China.; Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
5
|
Harary PM, Jgamadze D, Kim J, Wolf JA, Song H, Ming GL, Cullen DK, Chen HI. Cell Replacement Therapy for Brain Repair: Recent Progress and Remaining Challenges for Treating Parkinson's Disease and Cortical Injury. Brain Sci 2023; 13:1654. [PMID: 38137103 PMCID: PMC10741697 DOI: 10.3390/brainsci13121654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Neural transplantation represents a promising approach to repairing damaged brain circuitry. Cellular grafts have been shown to promote functional recovery through "bystander effects" and other indirect mechanisms. However, extensive brain lesions may require direct neuronal replacement to achieve meaningful restoration of function. While fetal cortical grafts have been shown to integrate with the host brain and appear to develop appropriate functional attributes, the significant ethical concerns and limited availability of this tissue severely hamper clinical translation. Induced pluripotent stem cell-derived cells and tissues represent a more readily scalable alternative. Significant progress has recently been made in developing protocols for generating a wide range of neural cell types in vitro. Here, we discuss recent progress in neural transplantation approaches for two conditions with distinct design needs: Parkinson's disease and cortical injury. We discuss the current status and future application of injections of dopaminergic cells for the treatment of Parkinson's disease as well as the use of structured grafts such as brain organoids for cortical repair.
Collapse
Affiliation(s)
- Paul M. Harary
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.M.H.)
| | - Dennis Jgamadze
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.M.H.)
| | - Jaeha Kim
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.M.H.)
| | - John A. Wolf
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.M.H.)
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Guo-li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - D. Kacy Cullen
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.M.H.)
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - H. Isaac Chen
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.M.H.)
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
6
|
Gong X, Liu Y, Liang K, Chen Z, Ding K, Qiu L, Wei J, Du H. Cucurbitacin I Reverses Tumor-Associated Macrophage Polarization to Affect Cancer Cell Metastasis. Int J Mol Sci 2023; 24:15920. [PMID: 37958903 PMCID: PMC10650020 DOI: 10.3390/ijms242115920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
The tumor microenvironment plays a critical role in tumor progression and immune regulation. As one of the most important components of the tumor microenvironment, macrophages have become a new therapeutic target for inhibiting tumor progression. Despite the well-documented anticancer activity of cucurbitacin I, its effect on macrophages remains unclear. In this study, we established a coculture system of macrophages and cancer cells under hypoxic conditions to simulate the tumor-promoting environment mediated by M2-like macrophages. We determined whether cucurbitacin I modulates M2-like polarization in macrophages in vitro and conducted RNA sequencing to identify gene expression changes induced by cucurbitacin I in macrophages. The results indicated a remarkable inhibition of the M2-like polarization phenotype in macrophages following treatment with cucurbitacin I, which was accompanied by the significant downregulation of heme oxygenase-1. Moreover, we found that cucurbitacin I-treated macrophages reduced the migration of cancer cells by inhibiting the M2 polarization in vitro. These findings highlight the potential of cucurbitacin I as a therapeutic agent that targets M2-like macrophages to inhibit cancer cell metastasis. Our study provides novel insights into the intricate interplay among macrophage polarization, cucurbitacin I, and heme oxygenase-1, thereby opening new avenues for cancer treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jinfen Wei
- School of Biology and Biological Engineering, South China University of Technology, University Town Campus, Guangzhou Higher Education Mega Centre, Panyu District, Guangzhou 510006, China; (X.G.); (Y.L.); (K.L.); (Z.C.); (K.D.); (L.Q.)
| | - Hongli Du
- School of Biology and Biological Engineering, South China University of Technology, University Town Campus, Guangzhou Higher Education Mega Centre, Panyu District, Guangzhou 510006, China; (X.G.); (Y.L.); (K.L.); (Z.C.); (K.D.); (L.Q.)
| |
Collapse
|
7
|
Ji ZZ, Chan MKK, Chan ASW, Leung KT, Jiang X, To KF, Wu Y, Tang PMK. Tumour-associated macrophages: versatile players in the tumour microenvironment. Front Cell Dev Biol 2023; 11:1261749. [PMID: 37965573 PMCID: PMC10641386 DOI: 10.3389/fcell.2023.1261749] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023] Open
Abstract
Tumour-Associated Macrophages (TAMs) are one of the pivotal components of the tumour microenvironment. Their roles in the cancer immunity are complicated, both pro-tumour and anti-cancer activities are reported, including not only angiogenesis, extracellular matrix remodeling, immunosuppression, drug resistance but also phagocytosis and tumour regression. Interestingly, TAMs are highly dynamic and versatile in solid tumours. They show anti-cancer or pro-tumour activities, and interplay between the tumour microenvironment and cancer stem cells and under specific conditions. In addition to the classic M1/M2 phenotypes, a number of novel dedifferentiation phenomena of TAMs are discovered due to the advanced single-cell technology, e.g., macrophage-myofibroblast transition (MMT) and macrophage-neuron transition (MNT). More importantly, emerging information demonstrated the potential of TAMs on cancer immunotherapy, suggesting by the therapeutic efficiency of the checkpoint inhibitors and chimeric antigen receptor engineered cells based on macrophages. Here, we summarized the latest discoveries of TAMs from basic and translational research and discussed their clinical relevance and therapeutic potential for solid cancers.
Collapse
Affiliation(s)
- Zoey Zeyuan Ji
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Max Kam-Kwan Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Alex Siu-Wing Chan
- Department of Applied Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Kam-Tong Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Xiaohua Jiang
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yi Wu
- MOE Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Patrick Ming-Kuen Tang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
8
|
Khalili S, Zeinali F, Moghadam Fard A, Taha SR, Fazlollahpour Naghibi A, Bagheri K, Shariat Zadeh M, Eslami Y, Fattah K, Asadimanesh N, Azarimatin A, Khalesi B, Almasi F, Payandeh Z. Macrophage-Based Therapeutic Strategies in Hematologic Malignancies. Cancers (Basel) 2023; 15:3722. [PMID: 37509382 PMCID: PMC10378576 DOI: 10.3390/cancers15143722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/15/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Macrophages are types of immune cells, with ambivalent functions in tumor growth, which depend on the specific environment in which they reside. Tumor-associated macrophages (TAMs) are a diverse population of immunosuppressive myeloid cells that play significant roles in several malignancies. TAM infiltration in malignancies has been linked to a poor prognosis and limited response to treatments, including those using checkpoint inhibitors. Understanding the precise mechanisms through which macrophages contribute to tumor growth is an active area of research as targeting these cells may offer potential therapeutic approaches for cancer treatment. Numerous investigations have focused on anti-TAM-based methods that try to eliminate, rewire, or target the functional mediators released by these cells. Considering the importance of these strategies in the reversion of tumor resistance to conventional therapies and immune modulatory vaccination could be an appealing approach for the immunosuppressive targeting of myeloid cells in the tumor microenvironment (TME). The combination of reprogramming and TAM depletion is a special feature of this approach compared to other clinical strategies. Thus, the present review aims to comprehensively overview the pleiotropic activities of TAMs and their involvement in various stages of cancer development as a potent drug target, with a focus on hematologic tumors.
Collapse
Affiliation(s)
- Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran 1678815811, Iran
| | - Fatemeh Zeinali
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran
| | - Atousa Moghadam Fard
- Universal Scientific Education and Research Network (USERN), Tehran 4188783417, Iran
| | - Seyed Reza Taha
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Andarz Fazlollahpour Naghibi
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol 4717641367, Iran
| | - Kimia Bagheri
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol 4717641367, Iran
| | - Mahdieh Shariat Zadeh
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Yeghaneh Eslami
- Faculty of Medicine, Mazandaran University of Medical Sciences, Sari 4815733971, Iran
| | - Khashayar Fattah
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717411, Iran
| | - Naghmeh Asadimanesh
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717411, Iran
| | - Armin Azarimatin
- Department of Veterinary Medicine, Shabestar Branch, Islamic Azad University, Shabestar 5381637181, Iran
| | - Bahman Khalesi
- Department of Research and Production of Poultry Viral Vaccine, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj 3197619751, Iran
| | - Faezeh Almasi
- Pharmaceutical Biotechnology Lab, Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran 1416634793, Iran
| | - Zahra Payandeh
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, SE 106 91 Stockholm, Sweden
| |
Collapse
|
9
|
Collery P, Desmaële D, Harikrishnan A, Veena V. Remarkable Effects of a Rhenium(I)-diselenoether Drug on the Production of Cathepsins B and S by Macrophages and their Polarizations. Curr Pharm Des 2023; 29:2396-2407. [PMID: 37859327 DOI: 10.2174/0113816128268963231013074433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/21/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND/OBJECTIVE Tumor-associated macrophages (TAMs) produce an excessive amount of cysteine proteases, and we aimed to study the effects of anticancer rhenium(I)-diselenoether (Re-diSe) on the production of cathepsins B and S by macrophages. We investigated the effect of Re-diSe on lipopolysaccharides (LPS) induced M1 macrophages, or by interleukin 6 (IL-6) induced M2 macrophages. METHODS Non-stimulated or prestimulated murine Raw 264 or human THP-1 macrophages were exposed to increasing concentrations of the drug (5, 10, 20, 50 and 100 μM) and viability was assayed by the MTT assay. The amount of cysteine proteases was evaluated by ELISA tests, the number of M1 and M2 macrophages by the expression of CD80 or CD206 biomarkers. The binding of Re-diSe with GSH as a model thiol-containing protein was studied by mass spectrometry. RESULTS A dose-dependent decrease in cathepsins B and S was observed in M1 macrophages. There was no effect in non-stimulated cells. The drug induced a dramatic dose-dependent increase in M1 expression in both cells, significantly decreased the M2 expression in Raw 264 and had no effect in non-stimulated macrophages. The binding of the Re atom with the thiols was clearly demonstrated. CONCLUSION The increase in the number of M1 and a decrease in M2 macrophages treated by Re-diSe could be related to the decrease in cysteine proteases upon binding of their thiol residues with the Re atom.
Collapse
Affiliation(s)
- Philippe Collery
- Society for the Coordination of Therapeutic Researches, 20220 Algajola, France
| | - Didier Desmaële
- Department of Chemistry, Institut Galien, Université Paris-Saclay, 91400 Orsay, France
| | - Adhikesavan Harikrishnan
- Department of Chemistry, School of Arts and Science, Vinayaka Mission Research Foundation- AV Campus, Chennai 560064, India
| | - Vijay Veena
- School of Allied Healthcare and Sciences, Jain University, Bangalore 560066, India
| |
Collapse
|