1
|
Gupta N, Saha S. Polymer-Based Designer Particles as Drug Carriers: Strategies to Construct and Modify. ACS APPLIED BIO MATERIALS 2025. [PMID: 40405643 DOI: 10.1021/acsabm.5c00041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Abstract
Biological barriers present remarkable challenges for therapeutics delivery, requiring an advanced drug delivery system that can navigate through the complex physiological environment. Polymeric particles provide remarkable versatility due to their adaptable physiochemical properties, facilitating new designs that address complex delivery issues. This review focuses on recent advancements in the morphology of polymeric particles that emulate biological barriers to improve drug efficacy. It includes how structural engineering─such as designing rod-shaped particles for improved cellular uptake, red-blood-cell-shaped particles for prolonged circulation, worm-shaped carriers for improved tissue penetration, and multicompartmental systems for providing combination therapies─profoundly alters drug delivery capabilities. These designer particles exhibit enhanced target specificity, controlled release kinetics, and improved therapeutic outcomes relative to traditional spherical carriers. This particular review also emphasizes how a combination of polymer chemistry and fabrication methods facilitates achieving these advanced structures, while highlighting ongoing challenges in scale-up, reproducibility, and clinical translations. Through the analysis of structure-functional property correlations in various biomimetic designs, we have also attempted to provide insight into future advancements in polymeric delivery systems that have the potential to transform treatment strategies for complicated diseases via shape-directed biological interactions for better therapeutic outcomes.
Collapse
Affiliation(s)
- Nidhi Gupta
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
- International College of Semiconductor Technology, National Yang-Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Sampa Saha
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
2
|
Hu Z, Xiao X, Zhang G, Li Y. Revolutionizing fixed-dose combinations with long-acting microsphere. Eur J Pharm Sci 2025; 207:107032. [PMID: 39914724 DOI: 10.1016/j.ejps.2025.107032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/21/2024] [Accepted: 02/04/2025] [Indexed: 02/11/2025]
Abstract
Combination therapy, involving the concurrent use of multiple medications, has become crucial for managing complex diseases with diverse pathological mechanisms. Fixed-Dose Combinations (FDCs) are formulated to leverage the synergistic effects of multiple drugs, thereby enhancing therapeutic outcomes. However, conventional FDCs typically maintain therapeutic effects for only up to 24 h and require frequent dosing, which often results in patient non-compliance and inconsistent treatment responses, especially in chronic diseases. This highlights the urgent need for long-acting FDCs that can provide sustained drug release over extended periods-weeks, months, or even years-thereby reducing dosing frequency and enhancing patient adherence. Microspheres, with their ability to encapsulate and release multiple medications in predefined patterns, are highly advantageous for developing long-acting FDC drugs. This review emphasizes the increasing demand for long-acting FDC drugs that ensure sustained drug release, reduce dosing frequency, and ultimately improve patient adherence. We also highlight the potential of microsphere technology, which enables precise encapsulation and sustained release of multiple medications, as a promising approach for revolutionizing long-acting FDCs with enhanced therapeutic outcomes.
Collapse
Affiliation(s)
- Zhenhua Hu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Xiao Xiao
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; School of Pharmacy, Guizhou Medical University, Guiyang 550025, China
| | - Guiyun Zhang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; School of Pharmacy, Guizhou Medical University, Guiyang 550025, China
| | - Yuanyuan Li
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; School of Pharmacy, Guizhou Medical University, Guiyang 550025, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Pöttgen S, Mazurek-Budzyńska M, Wischke C. The role of porosity in polyester microparticles for drug delivery. Int J Pharm 2025; 672:125340. [PMID: 39954970 DOI: 10.1016/j.ijpharm.2025.125340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/10/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
Polymer microparticles are a cornerstone in the field of injectable sustained delivery systems: They allow the entrapment of various types of hydrophobic or hydrophilic drugs including biopharmaceuticals. Microparticles can be prepared from the material of choice and tailored to specific target sizes. Importantly, they can retain the drug at the local administration site to achieve a sustained drug release for long-term therapeutic effects. This review focuses on the role of porosity of microparticles as a tremendously important property. Principles to prepare porous carriers via different techniques and additives are discussed, emphasizing that porosity is not a static property but can be dynamic, e.g., for particles from polylactide or poly(lactide-co-glycolide). Considering the contribution of porosity in the overall assessment of drug carrier systems, as well as their manipulation/alteration post-production such as by pore closing, will enlarge the understanding of polymer microparticles as an important class of modern pharmaceutical dosage forms.
Collapse
Affiliation(s)
- Simon Pöttgen
- Martin-Luther-University Halle-Wittenberg, Institute of Pharmacy, Kurt-Mothes-Str. 3 06120 Halle, Germany
| | | | - Christian Wischke
- Martin-Luther-University Halle-Wittenberg, Institute of Pharmacy, Kurt-Mothes-Str. 3 06120 Halle, Germany.
| |
Collapse
|
4
|
Sharma S, Pankaj, Kumar S, Sharma N, Verma S. Cutting-Edge Developments and Patent Trends in Microspheres Drug Delivery: A Comprehensive Overview. RECENT PATENTS ON NANOTECHNOLOGY 2025; 19:434-452. [PMID: 39034723 DOI: 10.2174/0118722105296316240626071243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/04/2024] [Accepted: 05/28/2024] [Indexed: 07/23/2024]
Abstract
Microspheres have emerged as innovative drug delivery platforms with significant potential to improve the therapeutic efficacy of drugs with limited aqueous solubility and prolong their release. This abstract provides an overview of recent developments and patents granted in microsphere research, highlighting key trends and innovative approaches. Recent studies have focused on various aspects of microspheres, including formulation techniques, materials selection, and their applications in drug delivery. Recent breakthroughs in polymer science have paved the way for the creation of innovative biodegradable and biocompatible materials for microsphere fabrication, improving drug encapsulation effectiveness and release dynamics. Notably, the integration of nanomaterials and functionalized polymers has enabled precise control over drug release rates and enhanced targeting capabilities. The utilization of microspheres for administering a diverse array of therapeutic substances, including anticancer drugs, anti-inflammatory agents, and peptides, has gained significant attention. These microspheres have demonstrated the potential to enhance drug stability, minimize dosing frequency and enhance patient adherence.
Collapse
Affiliation(s)
- Shailesh Sharma
- Pharmaceutical Research Division, Department of Pharmaceutics, Amar Shaheed Baba Ajit Singh Jujhar Singh Memorial College of Pharmacy, BELA (Ropar) Punjab, India
| | - Pankaj
- Pharmaceutical Research Division, Department of Pharmaceutics, Amar Shaheed Baba Ajit Singh Jujhar Singh Memorial College of Pharmacy, BELA (Ropar) Punjab, India
| | - Subhash Kumar
- Pharmaceutical Research Division, Department of Pharmaceutics, Amar Shaheed Baba Ajit Singh Jujhar Singh Memorial College of Pharmacy, BELA (Ropar) Punjab, India
| | - Neelam Sharma
- Pharmaceutical Research Division, Department of Pharmaceutics, Amar Shaheed Baba Ajit Singh Jujhar Singh Memorial College of Pharmacy, BELA (Ropar) Punjab, India
| | - Surajpal Verma
- Department of Pharmaceutical Analysis, Delhi Pharmaceutical and Research University, New Delhi, India
| |
Collapse
|
5
|
Zhu YS, Wu J, Zhi F. Advances in conjugate drug delivery System: Opportunities and challenges. Int J Pharm 2024; 667:124867. [PMID: 39454974 DOI: 10.1016/j.ijpharm.2024.124867] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
Ideal drug delivery system is designed to accurately deliver the drug to its intended site. The development of conjugate drug delivery system introduces a novel pathway to precise drug delivery with advantages over traditional methods. The core of a conjugate drug delivery system comprises a molecule with two functional components, bounded by a linker structure. One component is responsible for delivering or stabilizing the conjugate, while the other is used to provide the therapeutic or diagnostic effects of the bioactivity. Conjugate drug delivery system improves patient health by maintaining the structural stability of drugs in molecular form, delivering therapeutics or diagnostic material to the target site, minimising off-target accumulation and promoting patient compliance. This system includes various types of drug conjugates that modulate drug pharmacokinetics, stability, absorption, and exposure in lesions and healthy tissues. In this review, we focus on the key characteristics and recent advances of various conjugate drug delivery systems and explore their mechanisms. We also point out the current challenges faced by conjugate drug delivery system and look forward to the future prospects.
Collapse
Affiliation(s)
- Yi-Shen Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, PuZhuNanLu No.30, Nanjing 211816, Jiangsu Province, China.
| | - Jiaqi Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, PuZhuNanLu No.30, Nanjing 211816, Jiangsu Province, China
| | - Feng Zhi
- Department of Neurosurgery, Clinical Medical Research Center, Third Affiliated Hospital of Soochow University, Juqian Road No.185, Changzhou 213000, Jiangsu Province, China
| |
Collapse
|
6
|
Michaelides K, Al Tahan MA, Zhou Y, Trindade GF, Cant DJH, Pei Y, Dulal P, Al-Khattawi A. New Insights on the Burst Release Kinetics of Spray-Dried PLGA Microspheres. Mol Pharm 2024; 21:6245-6256. [PMID: 39454183 PMCID: PMC11615953 DOI: 10.1021/acs.molpharmaceut.4c00686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/16/2024] [Accepted: 10/16/2024] [Indexed: 10/27/2024]
Abstract
Spray drying is one of the leading manufacturing methods for active pharmaceutical ingredients (APIs) owing to its rapid, single-step, and cost-effective nature. It also has the capacity to generate microspheres capable of controlled release of APIs including biomolecules and vaccines. However, one of the key challenges of spray-dried formulations especially with poly(lactic-co-glycolic acid) (PLGA)-based controlled-release injectables is burst release, where a significant fraction of the API is released prematurely within a short period of time following administration, leading to detrimental impact on the performance and quality of end products. This study uses a model API, bovine serum albumin (BSA) protein, to identify the sources of burst release that may affect the kinetics and performance of long-acting injectable microsphere formulations. Spray-dried microspheres with various formulations (i.e., variable BSA/PLGA ratios) were characterized in terms of their morphology, particle size, surface area, thermal properties, moisture content, as well as chemical compositions and their distributions to investigate the impact of spray drying on the burst release phenomenon. The results suggest that a relatively high initial release (85%) observed is mainly attributed to the protein distribution close to the particle surface. Morphology analysis provided evidence that the microspheres retained their spherical structure during the burst release phase. X-ray photoelectron spectroscopy, hard X-ray photoelectron spectroscopy, and argon cluster sputtering-assisted time-of-flight secondary ion mass spectrometry analysis suggest an enrichment of PLGA on particle surfaces with buried BSA protein. The statistically significant difference in particle size and surface area between three different formulations may be responsible for an initial variation in release but did not seem to alter the overall burst release profile. Considering the suggested source of burst release, the two-fluid spray-drying method, characterized by a single liquid feed delivering a preprepared emulsion, generated matrix-type microspheres with a surface layer of PLGA, as evidenced by surface analysis. The PLGA surface layer proved to be prone to degradation and pore formation, allowing for faster diffusion of BSA out of the microspheres, resulting in a burst release. Increasing the polymer concentration did not seem to halt this process.
Collapse
Affiliation(s)
| | | | - Yundong Zhou
- Chemical
and Biological Sciences Department, National
Physical Laboratory, Hampton Road, Teddington TW11 0LW, U.K.
| | - Gustavo F. Trindade
- Chemical
and Biological Sciences Department, National
Physical Laboratory, Hampton Road, Teddington TW11 0LW, U.K.
| | - David J. H. Cant
- Chemical
and Biological Sciences Department, National
Physical Laboratory, Hampton Road, Teddington TW11 0LW, U.K.
| | - Yiwen Pei
- Chemical
and Biological Sciences Department, National
Physical Laboratory, Hampton Road, Teddington TW11 0LW, U.K.
| | - Pawan Dulal
- aVaxziPen
Limited, Milton Park, Abingdon, Oxfordshire OX14 4SA, U.K.
| | - Ali Al-Khattawi
- School
of Pharmacy, Aston University, Birmingham B4 7ET, U.K.
| |
Collapse
|
7
|
Li X, Lai Y, Wan G, Zou J, He W, Yang P. Approved natural products-derived nanomedicines for disease treatment. Chin J Nat Med 2024; 22:1100-1116. [PMID: 39725511 DOI: 10.1016/s1875-5364(24)60726-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Indexed: 12/28/2024]
Abstract
In recent years, there has been an increasing emphasis on exploring innovative drug delivery approaches due to the limitations of conventional therapeutic strategies, such as inadequate drug targeting, insufficient therapeutic efficacy, and significant adverse effects. Nanomedicines have emerged as a promising solution with notable advantages, including extended drug circulation, targeted delivery, and improved bioavailability, potentially enhancing the clinical treatment of various diseases. Natural products/materials-derived nanomedicines, characterized by their natural therapeutic efficacy, superior biocompatibility, and safety profile, play a crucial role in nanomedicine-based treatments. This review provides a comprehensive overview of currently approved natural products-derived nanomedicines, emphasizing the essential properties of natural products-derived drug carriers, their applications in clinical diagnosis and treatment, and the current therapeutic potential and challenges. The aim is to offer guidance for the application and further development of these innovative therapeutic approaches.
Collapse
Affiliation(s)
- Xiaotong Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Yaoyao Lai
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Guanghan Wan
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Jiahui Zou
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Wei He
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China.
| | - Pei Yang
- School of Science, China Pharmaceutical University, Nanjing 2111198, China.
| |
Collapse
|
8
|
Lin X, Al Zouabi NN, Ward LE, Zhen Z, Darji M, Masese FK, Hargrove D, O'Reilly Beringhs A, Kasi RM, Li Q, Zhang Q, Qin B, Wang Y, Jay M, Yuan H, Lu X. Implant dynamics, inner structure, and their impact on drug release of in situ forming implants uncovered through CT imaging. J Control Release 2024; 375:802-811. [PMID: 39349184 DOI: 10.1016/j.jconrel.2024.09.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/20/2024] [Accepted: 09/26/2024] [Indexed: 10/02/2024]
Abstract
In situ forming implants (ISFIs) composed of biodegradable polymers and biocompatible solvents are generally designed for sustained drug release. In this study, a non-invasive computed tomography (CT) imaging approach is used to achieve real time imaging of ISFIs in vivo and in vitro using leuprolide acetate in situ forming implant as a model drug product. The process of implant formation, inner structure change and their impact on drug release were elucidated. Real-time drug distribution was unveiled by the CT contrast agent, iohexol, where it shows a core-shell structure of the deposition. The incorporation of leuprolide acetate (LA) led to a reduced extent of burst release, prolongated release profile, and extended implant size expansion. LA was found to interact with the solvent and slowed down the polymer phase inversion, thus significantly changed the drug distribution in the implant and reduced the drug release. The implant inner structure identified through SEM, implant size change, and polymer degradation along with the CT real time imaging all consistently support the implant formation differences and their implant on the drug release. Similar patterns of implant size expansion and iohexol distribution in the implants were observed both in vitro and in vivo for the implants with and without LA. The comprehensive understanding of the impact of implant formation on drug release through real time CT imaging facilitates the ISFI product development and evaluation.
Collapse
Affiliation(s)
- Xinhao Lin
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, United States of America
| | - Nour N Al Zouabi
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, United States of America
| | - Lauren Elizabeth Ward
- Department of Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Zixuan Zhen
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, United States of America
| | - Mittal Darji
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, United States of America
| | - Francis K Masese
- Department of Chemistry, University of Connecticut, Storrs, CT, United States of America
| | - Derek Hargrove
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, United States of America
| | - André O'Reilly Beringhs
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States of America
| | - Rajeswari M Kasi
- Department of Chemistry, University of Connecticut, Storrs, CT, United States of America
| | - Qi Li
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States of America
| | - Qiangnan Zhang
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States of America
| | - Bin Qin
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States of America
| | - Yan Wang
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States of America
| | - Michael Jay
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, United States of America
| | - Hong Yuan
- Department of Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Xiuling Lu
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, United States of America.
| |
Collapse
|
9
|
Asadi K, Azarpira N, Heidari R, Hamidi M, Yousefzadeh-Chabok S, Nemati MM, Ommati MM, Amini A, Gholami A. Trinitroglycerin-loaded chitosan nanogels accelerate angiogenesis in wound healing process. Int J Biol Macromol 2024; 278:134937. [PMID: 39179074 DOI: 10.1016/j.ijbiomac.2024.134937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Trinitroglycerin (TNG) with remarkable angiogenic, antibacterial, and antioxidative activity is a promising candidate to govern wound healing capacity. However, its clinical administration is limited due to associated complications and NO short half-life. In the current study, TNG-loaded chitosan nanogels (TNG-Ngs) were examined in-vitro and in-vivo to gain insight into their clinical application. We prepared TNG-Ngs and characterized their physiochemical properties. The potential of TNG-Ngs was assessed using biocompatibility, scratch assay, and a full-thickness skin wounds model, followed by histopathological and immunohistochemistry examinations. TNG-Ngs particle size 96 ± 18 and definite size distribution histogram. The loading capacity (LC) and encapsulation efficiency (EE) of prepared TNG-Ngs were 70.2 % and 2.1 %, respectively. The TNG-Ngs samples showed enhanced migration of HUVECs with no apparent cytotoxicity. The topical use of TNG-Ngs200 on the wounds revealed a complete wound closure ratio, skin component formation, less scar width, remarkable granulation tissue, promoted collagen deposition, and enhanced the relative mean density of α-SMA and CD31. TNG-Ngs accelerated wound healing by promoting collagen deposition and angiogenic activity, as well as reducing inflammation. The findings indicated that TNG-Ngs is expected to be well vascularized in the wound area and to be more effective in topical therapy.
Collapse
Affiliation(s)
- Khatereh Asadi
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Nanotechnology, School of Advanced Medical Science and Technology, Shiraz University of Medical Sciences, Shiraz, Iran; Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrdad Hamidi
- Department of Pharmaceutics, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran
| | | | - Mohammad Mehdi Nemati
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Mehdi Ommati
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Abbas Amini
- Abdullah Al Salem University (AASU), College of Engineering and Energy, Khaldiya, Kuwait; Centre for Infrastructure Engineering, Western Sydney University, Penrith, NSW, Australia
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Nanotechnology, School of Advanced Medical Science and Technology, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
10
|
Yang J, Zeng H, Luo Y, Chen Y, Wang M, Wu C, Hu P. Recent Applications of PLGA in Drug Delivery Systems. Polymers (Basel) 2024; 16:2606. [PMID: 39339068 PMCID: PMC11435547 DOI: 10.3390/polym16182606] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/18/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Poly(lactic-co-glycolic acid) (PLGA) is a widely used biodegradable and biocompatible copolymer in drug delivery systems (DDSs). In this article, we highlight the critical physicochemical properties of PLGA, including its molecular weight, intrinsic viscosity, monomer ratio, blockiness, and end caps, that significantly influence drug release profiles and degradation times. This review also covers the extensive literature on the application of PLGA in delivering small-molecule drugs, proteins, peptides, antibiotics, and antiviral drugs. Furthermore, we discuss the role of PLGA-based DDSs in the treating various diseases, including cancer, neurological disorders, pain, and inflammation. The incorporation of drugs into PLGA nanoparticles and microspheres has been shown to enhance their therapeutic efficacy, reduce toxicity, and improve patient compliance. Overall, PLGA-based DDSs holds great promise for the advancement of the treatment and management of multiple chronic conditions.
Collapse
Affiliation(s)
- Jie Yang
- Department of Burns & Plastic Surgery, Guangzhou Red Cross Hospital, Faculty of Medical Science, Jinan University, Guangzhou 510006, China
- College of Pharmacy, Jinan University, Guangzhou 510006, China
| | - Huiying Zeng
- College of Pharmacy, Jinan University, Guangzhou 510006, China
| | - Yusheng Luo
- International School, Jinan University, Guangzhou 510006, China
| | - Ying Chen
- Guangdong Institute for Drug Control, NMPA Key Laboratory for Quality Control and Evaluation of Pharmaceutical Excipients, Guangzhou 510660, China
| | - Miao Wang
- Guangdong Institute for Drug Control, NMPA Key Laboratory for Quality Control and Evaluation of Pharmaceutical Excipients, Guangzhou 510660, China
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 510006, China
| | - Ping Hu
- Department of Burns & Plastic Surgery, Guangzhou Red Cross Hospital, Faculty of Medical Science, Jinan University, Guangzhou 510006, China
- College of Pharmacy, Jinan University, Guangzhou 510006, China
| |
Collapse
|
11
|
Zhou X, Guo M, Wang Z, Wang Y, Zhang P. Rapid fabrication of biomimetic PLGA microsphere incorporated with natural porcine dermal aECM for bone regeneration. Regen Biomater 2024; 11:rbae099. [PMID: 39463918 PMCID: PMC11512121 DOI: 10.1093/rb/rbae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/22/2024] [Accepted: 07/18/2024] [Indexed: 10/29/2024] Open
Abstract
Bioactive microspheres coated with acellular extracellular matrix (aECM) have received extensive attention in bone tissue engineering. In this work, biomimetic microspheres with different aECM ratios, uniform size and controllable size were prepared easily by blending natural porcine dermal aECM and poly (lactic-co-glycolic acid) (PLGA) using electrohydrodynamic spraying and solidification actuated by solvent extraction method. In this work, the appropriate polymer concentration and preparation voltage were investigated, and the surface morphology of the microspheres was observed by scanning electron microscope. Sirius red was used to visualize aECM exposure on the surface of the microspheres. The in vitro and in vivo experiments were carried out to evaluate the bioactivity and osteogenic properties of the microspheres. The results showed that the morphology and size of PLGA microspheres had little influence on the aECM blending. In vitro experiments showed that the higher the content of aECM, the better the cell adhesion performance. In vivo, rat calvarial defect models were observed and characterized at 4 and 8 weeks postoperatively, and the values of BV/TV of 50aECM/PLGA were 47.57 ± 1.14% and 72.92 ± 2.19%, respectively. The results showed that the skull healing effect was better in aECM-containing microspheres. In conclusion, aECM/PLGA composite microspheres can increase cell adhesion performance through the addition of aECM. Moreover, in vivo experiments have proved that aECM/PLGA microspheres are beneficial to bone repair, which means the aECM/PLGA microspheres are a promising bone tissue engineering material.
Collapse
Affiliation(s)
- Xiaosong Zhou
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Min Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Zongliang Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Yu Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Peibiao Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
12
|
Xiong Y, Liu Z, Wang Y, Wang J, Zhou X, Li X. Development and Evaluation of a Water-Free In Situ Depot Gel Formulation for Long-Acting and Stable Delivery of Peptide Drug ACTY116. Pharmaceutics 2024; 16:620. [PMID: 38794282 PMCID: PMC11125081 DOI: 10.3390/pharmaceutics16050620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
In situ depot gel is a type of polymeric long-acting injectable (pLAI) drug delivery system; compared to microsphere technology, its preparation process is simpler and more conducive to industrialization. To ensure the chemical stability of peptide ACTY116, we avoided the use of harsh conditions such as high temperatures, high shear mixing, or homogenization; maintaining a water-free and oxygen-free environment was also critical to prevent hydrolysis and oxidation. Molecular dynamics (MDs) simulations were employed to assess the stability mechanism between ACTY116 and the pLAI system. The initial structure of ACTY116 with an alpha helix conformation was constructed using SYBYL-X, and the copolymer PLGA was generated by AMBER 16; results showed that PLGA-based in situ depot gel improved conformational stability of ACTY116 through hydrogen bonds formed between peptide ACTY116 and the components of the pLAI formulation, while PLGA (Poly(DL-lactide-co-glycolide)) also created steric hindrance and shielding effects to prevent conformational changes. As a result, the chemical and conformational stability and in vivo long-acting characteristics of ACTY116 ensure its enhanced efficacy. In summary, we successfully achieved our objective of developing a highly stable peptide-loaded long-acting injectable (LAI) in situ depot gel formulation that is stable for at least 3 months under harsh conditions (40 °C, above body temperature), elucidating the underlying stabilisation mechanism, and the high stability of the ACTY116 pLAI formulation creates favourable conditions for its in vivo pharmacological activity lasting for weeks or even months.
Collapse
Affiliation(s)
- Yingxin Xiong
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing 400038, China;
| | - Zhirui Liu
- Department of Pharmacy, Xinan Hospital, Army Medical University, Chongqing 400038, China;
| | - Yuanqiang Wang
- Chongqing School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (Y.W.); (J.W.)
| | - Jiawei Wang
- Chongqing School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (Y.W.); (J.W.)
| | - Xing Zhou
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming 650500, China
| | - Xiaohui Li
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing 400038, China;
- Engineering Research Center for Pharmacodynamics Evaluation, College of Pharmacy, Army Medical University, Chongqing 400038, China
| |
Collapse
|
13
|
Wang M, Wang S, Zhang C, Ma M, Yan B, Hu X, Shao T, Piao Y, Jin L, Gao J. Microstructure Formation and Characterization of Long-Acting Injectable Microspheres: The Gateway to Fully Controlled Drug Release Pattern. Int J Nanomedicine 2024; 19:1571-1595. [PMID: 38406600 PMCID: PMC10888034 DOI: 10.2147/ijn.s445269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/24/2024] [Indexed: 02/27/2024] Open
Abstract
Long-acting injectable microspheres have been on the market for more than three decades, but if calculated on the brand name, only 12 products have been approved by the FDA due to numerous challenges in achieving a fully controllable drug release pattern. Recently, more and more researches on the critical factors that determine the release kinetics of microspheres shifted from evaluating the typical physicochemical properties to exploring the microstructure. The microstructure of microspheres mainly includes the spatial distribution and the dispersed state of drug, PLGA and pores, which has been considered as one of the most important characteristics of microspheres, especially when comparative characterization of the microstructure (Q3) has been recommended by the FDA for the bioequivalence assessment. This review extracted the main variables affecting the microstructure formation from microsphere formulation compositions and preparation processes and highlighted the latest advances in microstructure characterization techniques. The further understanding of the microsphere microstructure has significant reference value for the development of long-acting injectable microspheres, particularly for the development of the generic microspheres.
Collapse
Affiliation(s)
- Mengdi Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, People’s Republic of China
| | - Shan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, People’s Republic of China
| | - Changhao Zhang
- College of Pharmacy, Key Laboratory of Natural Medicines of the Changbai Mountain of Ministry of Education, Yanbian University, Yanji, Jilin, 133002, People’s Republic of China
| | - Ming Ma
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, People’s Republic of China
| | - Bohua Yan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, People’s Republic of China
| | - Xinming Hu
- College of Pharmacy, Key Laboratory of Natural Medicines of the Changbai Mountain of Ministry of Education, Yanbian University, Yanji, Jilin, 133002, People’s Republic of China
| | - Tianjiao Shao
- College of Pharmacy, Key Laboratory of Natural Medicines of the Changbai Mountain of Ministry of Education, Yanbian University, Yanji, Jilin, 133002, People’s Republic of China
| | - Yan Piao
- College of Pharmacy, Key Laboratory of Natural Medicines of the Changbai Mountain of Ministry of Education, Yanbian University, Yanji, Jilin, 133002, People’s Republic of China
| | - Lili Jin
- College of Pharmacy, Key Laboratory of Natural Medicines of the Changbai Mountain of Ministry of Education, Yanbian University, Yanji, Jilin, 133002, People’s Republic of China
| | - Jing Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, People’s Republic of China
| |
Collapse
|
14
|
Wang S, Downing G, Olsen KF, Sawyer TK, Cone RD, Schwendeman SP. Aqueous remote loading of setmelanotide in poly(lactic-co-glycolic acid) microspheres for long-term obesity treatment. J Control Release 2023; 364:589-600. [PMID: 37678438 DOI: 10.1016/j.jconrel.2023.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Setmelanotide (Imcivree™) was developed as a daily injectable therapeutic peptide for the treatment of rare forms of syndromic obesity, such as POMC deficiency and leptin receptor deficiency. The important option of poly(lactic-co-glycolic acid) (PLGA) controlled release microspheres has become more attractive for this class of drugs upon the discovery that net positively charged peptides can be remote-loaded rapidly from aqueous peptide solution into blank microspheres at high loading and encapsulation efficiency. Here we sought to remote-load setmelanotide in PLGA microspheres and examine its potential for long-term controlled release and body weight control. The influence of PLGA microsphere porosity was investigated with respect to morphology, drug loading, and in vitro release profiles. Increased density of the microspheres inhibited the progress of encapsulation of the dicationic peptide. A diet-induced obese murine model was then used to determine the pharmacokinetic profile and to evaluate long-term efficacy of an optimal formulation. Remote loaded PLGA formulations encapsulated setmelanotide as high as ∼63% (∼6.3% w/w loading) and exhibited slow and continuous peptide release over ∼6 weeks in vitro largely independent of microsphere porosity. The obtained in vivo release pattern from deconvolution of the pharmacokinetics after subcutaneous microsphere injection was consistent with the in vitro release profile but with a lower initial burst release and overall slightly faster release rate. After a single injection of remote-loaded setmelanotide, continuous long-term inhibition of food intake and body weight control was observed over 17 and 30 days, respectively. The improvement in body weight control over drug-free microsphere vehicle-treated control groups matched the observed PK profile. This study provides the first report of long-acting release formulation for 1-month controlled release of setmelanotide and body weight control in a diet induced obese murine model, and supports the further development of long-acting treatment options for obese patients.
Collapse
Affiliation(s)
- Shuying Wang
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, North Campus Research Complex, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| | - Griffin Downing
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Karl F Olsen
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, North Campus Research Complex, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| | | | - Roger D Cone
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Steven P Schwendeman
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, North Campus Research Complex, 2800 Plymouth Road, Ann Arbor, MI 48109, USA.
| |
Collapse
|