1
|
Ahmadi S, Gohari-Lasaki S, Jahangiri N, Ejlalidiz M, Saberiyan M. The multifaceted roles of exosomes in corneal biology: elucidation of underlying mechanisms and therapeutic applications. Mol Biol Rep 2025; 52:527. [PMID: 40448864 DOI: 10.1007/s11033-025-10642-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Accepted: 05/22/2025] [Indexed: 06/02/2025]
Abstract
The cornea, as the essential part of the eye with the duty of maintaining transparency and vision, is susceptible to various diseases and genetic abnormalities. Vision loss due to corneal disorders is a global concern, prompting research into innovative treatment approaches. The investigations have provided a significant role that exosomes play in maintaining corneal homeostasis and promoting intercellular communication. The cornea is made up of cellular and acellular components. The cellular components include the epithelial cells, stromal keratocytes, and endothelial cells, which secrete exosomes that contribute to preserving corneal transparency, immune privilege, and tissue repair. These nanosized vesicles contain molecules that regulate immune responses, promote cell proliferation and migration, and protect against stress-induced cell death. In this review, we try to survey the therapeutic potential and effects of exosomes in treating various corneal conditions, which can contribute to enhance corneal healing, reduce scarring, and improve visual outcomes.
Collapse
Affiliation(s)
- Samaneh Ahmadi
- Department of Medical Genetics, Faculty of Medicine, School of Medical Sciences, Hormozgan University of Medical Sciences, P.O.Box: 7919693116, Bandar Abbas, Iran
| | - Sahar Gohari-Lasaki
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Negin Jahangiri
- Department of Biology, Faculty of Basic Sciences and Engineering, Gonbad Kavous University, Gonbad Kavous, Iran
| | - Mahsa Ejlalidiz
- Medical Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammadreza Saberiyan
- Department of Medical Genetics, Faculty of Medicine, School of Medical Sciences, Hormozgan University of Medical Sciences, P.O.Box: 7919693116, Bandar Abbas, Iran.
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
2
|
Qian HD, Song XY, He GW, Peng XN, Chen Y, Huang P, Zhang J, Lin XY, Gao Q, Zhu SM, Li T, Chi ZL. Müller Glial-Derived Small Extracellular Vesicles Mitigate RGC Degeneration by Suppressing Microglial Activation via Cx3cl1-Cx3cr1 Signaling. Adv Healthc Mater 2025; 14:e2404306. [PMID: 40130669 DOI: 10.1002/adhm.202404306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 03/06/2025] [Indexed: 03/26/2025]
Abstract
Retinal ganglion cell (RGC) degeneration leads to irreversible blindness. Müller glia (MG) play pivotal roles in retinal homeostasis and disease through paracrine signaling. Small extracellular vesicles (sEVs) are bioactive nanomaterials derived from all types of live cells and are recognized as a potential strategy for neuroprotective therapy. The aim of this study is to investigate the potential roles of MG-derived sEVs (MG-sEVs) in a mouse model of optic nerve injury (ONC). It is found that MG-sEVs treatment effectively mitigates RGC degeneration and suppresses microglial activation, thereby improves visual function in ONC mice. Retinal transcriptomic analysis reveals a strong correlation between C-x3-c motif chemokine ligand 1 (Cx3cl1)-mediated glial activation and inflammation. Subsequently, it is confirmed that the expression levels of Cx3cl1 and proinflammatory cytokines are significantly decreased in retinas treated with MG-sEVs. The components analysis of MG-sEVs cargo identifies that miR-125b-5p and miR-16-5p target Cx3cl1 gene to regulate its expression. It is also observed that Cx3cl1 colocalizes on the microglia of transgenic C-x3-c motif chemokine receptor 1 (Cx3Cr1)-GFP mice. In conclusion, MG-sEVs mitigate RGC degeneration by suppressing microglial activation via Cx3cl1-Cx3cr1 signaling. This research provides additional opportunities for the treatment of RGC degeneration.
Collapse
Affiliation(s)
- Hai-Dong Qian
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiang-Yuan Song
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Guan-Wen He
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Xue-Ni Peng
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Ying Chen
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Pan Huang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Jing Zhang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiao-Yan Lin
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Qiao Gao
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Sen-Miao Zhu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Tong Li
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Zai-Long Chi
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| |
Collapse
|
3
|
Yu P, Liu B, Dong C, Chang Y. Induced Pluripotent Stem Cells-Based Regenerative Therapies in Treating Human Aging-Related Functional Decline and Diseases. Cells 2025; 14:619. [PMID: 40277944 PMCID: PMC12025799 DOI: 10.3390/cells14080619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 04/26/2025] Open
Abstract
A significant increase in life expectancy worldwide has resulted in a growing aging population, accompanied by a rise in aging-related diseases that pose substantial societal, economic, and medical challenges. This trend has prompted extensive efforts within many scientific and medical communities to develop and enhance therapies aimed at delaying aging processes, mitigating aging-related functional decline, and addressing aging-associated diseases to extend health span. Research in aging biology has focused on unraveling various biochemical and genetic pathways contributing to aging-related changes, including genomic instability, telomere shortening, and cellular senescence. The advent of induced pluripotent stem cells (iPSCs), derived through reprogramming human somatic cells, has revolutionized disease modeling and understanding in humans by addressing the limitations of conventional animal models and primary human cells. iPSCs offer significant advantages over other pluripotent stem cells, such as embryonic stem cells, as they can be obtained without the need for embryo destruction and are not restricted by the availability of healthy donors or patients. These attributes position iPSC technology as a promising avenue for modeling and deciphering mechanisms that underlie aging and associated diseases, as well as for studying drug effects. Moreover, iPSCs exhibit remarkable versatility in differentiating into diverse cell types, making them a promising tool for personalized regenerative therapies aimed at replacing aged or damaged cells with healthy, functional equivalents. This review explores the breadth of research in iPSC-based regenerative therapies and their potential applications in addressing a spectrum of aging-related conditions.
Collapse
Affiliation(s)
- Peijie Yu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hunghom, Hong Kong 999077, China; (P.Y.); (B.L.)
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - Bin Liu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hunghom, Hong Kong 999077, China; (P.Y.); (B.L.)
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - Cheng Dong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hunghom, Hong Kong 999077, China; (P.Y.); (B.L.)
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - Yun Chang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hunghom, Hong Kong 999077, China; (P.Y.); (B.L.)
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
4
|
Zhang Q, Su J, Li Z, Han S, Wang C, Sun Z. Migrasomes as intercellular messengers: potential in the pathological mechanism, diagnosis and treatment of clinical diseases. J Nanobiotechnology 2025; 23:302. [PMID: 40254563 PMCID: PMC12009535 DOI: 10.1186/s12951-025-03362-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 04/01/2025] [Indexed: 04/22/2025] Open
Abstract
Migrasomes are newly identified organelles that were first discovered in 2015. Since then, their biological structure, formation process, and physiological functions have been gradually elucidated. Research in recent years has expanded our understanding of these aspects, highlighting their significance in various physiological and pathological processes. Migrasomes have been found to play crucial roles in normal physiological functions, including embryonic development, vascular homeostasis, material transport, and mitochondrial quality control. Additionally, emerging evidence suggests their involvement in various diseases; however, clinical research on their roles remains limited. Current studies indicate that migrasomes may contribute to disease pathogenesis and hold potential for diagnostic and therapeutic applications. This review consolidates existing clinical research on migrasomes, focusing on their role in disease mechanisms and their use in medical applications. By examining their biological structure and function, this review aims to generate insights that encourage further research, ultimately contributing to advancements in disease prevention and treatment.
Collapse
Affiliation(s)
- Qingfu Zhang
- Department of Cardiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 11000, Liaoning Province, People's Republic of China
| | - Jianyao Su
- Department of Cardiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 11000, Liaoning Province, People's Republic of China
| | - Zhichao Li
- Department of Cardiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 11000, Liaoning Province, People's Republic of China
| | - Su Han
- Department of Cardiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 11000, Liaoning Province, People's Republic of China.
| | - Chuanhe Wang
- Department of Cardiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 11000, Liaoning Province, People's Republic of China.
| | - Zhijun Sun
- Department of Cardiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 11000, Liaoning Province, People's Republic of China.
| |
Collapse
|
5
|
Chen P, Zeng L, Wang T, He J, Xiong S, Chen G, Wang Q, Chen H, Xie J. The communication role of extracellular vesicles in the osteoarthritis microenvironment. Front Immunol 2025; 16:1549833. [PMID: 40165965 PMCID: PMC11955493 DOI: 10.3389/fimmu.2025.1549833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 02/26/2025] [Indexed: 04/02/2025] Open
Abstract
Osteoarthritis (OA) is the most common degenerative joint disease worldwide, characterized by synovial inflammation, cartilage loss, and reactive hyperplasia of subchondral bone, affecting the quality of life of hundreds of millions of people. However, the molecular mechanisms underlying the occurrence and progression of OA remain unclear, and there is no therapy can substantially interrupt or reverse the destructive process of OA. More insight into the pathogenesis of OA may result in innovative therapeutics. The OA microenvironment plays a pivotal role in the development and progression of OA, which encompasses chondrocytes, adipocytes, synovial fibroblasts, endothelial cells, and immune cells. Extracellular vesicles (EVs) have emerged as a novel form of intercellular communication, mediating the transfer of a range of bioactive molecules to create a specific microenvironment. Recent studies have reported that the cargos of EVs play a crucial role in the pathogenesis of OA, including noncoding RNAs (ncRNAs), proteins, and lipids. This review systematically analyzes and summarizes the biological characteristics and functionalities of EVs derived from diverse cellular sources, especially how EVs mediate communication between different cells in the OA microenvironment, with a view to providing new insights into the pathogenesis of OA.
Collapse
Affiliation(s)
- Pu Chen
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Lingfeng Zeng
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Bone and Joint Research Team of Degeneration and Injury, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Ting Wang
- Department of Operating Room, Ji’an County Traditional Chinese Medicine Hospital, Ji’an, Jiangxi, China
| | - Jianbo He
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Shuai Xiong
- School of Anesthesiology, Shandong Second Medical University, Weifang, Shandong, China
| | - Gang Chen
- Department of Orthopedic Surgery, Jiangxi University of Traditional Chinese Medicine Affiliated Hospital, Nanchang, Jiangxi, China
| | - Qingfu Wang
- Department of Orthopedic Surgery, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Haiyun Chen
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Zhuhai Hospital, Zhuhai, China
| | - Jiewei Xie
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
6
|
Tang Z, Ye F, Ni N, Fan X, Lu L, Gu P. Frontier applications of retinal nanomedicine: progress, challenges and perspectives. J Nanobiotechnology 2025; 23:143. [PMID: 40001147 PMCID: PMC11863789 DOI: 10.1186/s12951-025-03095-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/04/2025] [Indexed: 02/27/2025] Open
Abstract
The human retina is a fragile and sophisticated light-sensitive tissue in the central nervous system. Unhealthy retinas can cause irreversible visual deterioration and permanent vision loss. Effective therapeutic strategies are restricted to the treatment or reversal of these conditions. In recent years, nanoscience and nanotechnology have revolutionized targeted management of retinal diseases. Pharmaceuticals, theranostics, regenerative medicine, gene therapy, and retinal prostheses are indispensable for retinal interventions and have been significantly advanced by nanomedical innovations. Hence, this review presents novel insights into the use of versatile nanomaterial-based nanocomposites for frontier retinal applications, including non-invasive drug delivery, theranostic contrast agents, therapeutic nanoagents, gene therapy, stem cell-based therapy, retinal optogenetics and retinal prostheses, which have mainly been reported within the last 5 years. Furthermore, recent progress, potential challenges, and future perspectives in this field are highlighted and discussed in detail, which may shed light on future clinical translations and ultimately, benefit patients with retinal disorders.
Collapse
Affiliation(s)
- Zhimin Tang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Fuxiang Ye
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Ni Ni
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China.
| | - Linna Lu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China.
| | - Ping Gu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
7
|
You T, Yang Y, A L, Cheng X, Lin X, Liang Q, Ge L, Xie J, Chen S, Liu N, He J, Xu H, Ma X. IFNγ preconditioning improves neuroprotection of MSC-derived vesicles on injured retinal ganglion cells by suppressing microglia activation via miRNA-dependent ribosome activity. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2025; 6:87-111. [PMID: 40206798 PMCID: PMC11977360 DOI: 10.20517/evcna.2024.66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/19/2025] [Accepted: 01/25/2025] [Indexed: 04/11/2025]
Abstract
Aim: Microglial activation plays a pivotal role in the pathogenesis of retinal ganglion cell (RGC) degeneration resulting from optic nerve crush (ONC). Small extracellular vesicles (sEVs) secreted by mesenchymal stem cells (MSCs) have the potential to prevent retinal degeneration by modulating microglial activation. In this study, we elucidated the specific effects of sEVs derived from IFN-γ-primed MSCs on the phenotypic transition of microglia and the associated pathways in ONC mice. Methods: The ONC mice model was established and administered intravitreal injection with the sEVs derived from native MSCs (native sEVs) and the sEVs derived from MSCs primed with IFN-γ (IFNγ-sEVs). Their respective effects on the survival of the retinal ganglion cells (RGCs) and the transition of microglia phenotypes were determined through visual function testing and immunohistochemical staining. Combined with mRNA seq and microRNA seq techniques, we elucidated the mechanism of modulation of microglia phenotypic transformation by sEVs derived from MSCs primed by IFNγ. Results: It demonstrated that IFNγ-sEVs exhibited superior protective effects against RGC loss and reduced inflammatory responses in the ONC retina compared to native sEVs. Both types of sEVs promoted microglia activation to disease-associated microglia (DAM) phenotype, while IFNγ-sEVs especially suppressed interferon-responsive microglia (IRM) activation during RGCs degeneration. Subsequent miRNA sequencing suggested that miR-423-5p, which exhibited the most significant differential expression between the two sEVs types and elevated expression in IFNγ-sEVs, inhibited the expression of IRM and ribosomal genes. Conclusion: These findings suggest that IFN-γ-preconditioned MSCs may enhance sEVs of neuroprotection on RGCs by suppressing IRM activation through the secretion of sEVs containing specific microRNAs in ONC mice.
Collapse
Affiliation(s)
- Tianjing You
- Department of Ophthalmology, The First Affiliated Hospital of Dalian Medical University, Dalian 116014, Liaoning, China
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Amy Medical University), Chongqing 400038, China
- Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing 400038, China
- Authors contributed equally
| | - Yuanxing Yang
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Amy Medical University), Chongqing 400038, China
- Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing 400038, China
- Authors contributed equally
| | - Luodan A
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Amy Medical University), Chongqing 400038, China
- Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing 400038, China
- Authors contributed equally
| | - Xuan Cheng
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Amy Medical University), Chongqing 400038, China
- Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing 400038, China
| | - Xi Lin
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Amy Medical University), Chongqing 400038, China
- Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing 400038, China
| | - Qingle Liang
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Amy Medical University), Chongqing 400038, China
- Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing 400038, China
| | - Lingling Ge
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Amy Medical University), Chongqing 400038, China
- Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing 400038, China
| | - Jing Xie
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Amy Medical University), Chongqing 400038, China
- Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing 400038, China
| | - Siyu Chen
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Amy Medical University), Chongqing 400038, China
- Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing 400038, China
| | - Na Liu
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Amy Medical University), Chongqing 400038, China
- Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing 400038, China
| | - Juncai He
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Amy Medical University), Chongqing 400038, China
- Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing 400038, China
- Department of Ophthalmology, The 920 Hospital of PLA Joint Logistics Support Force, Kunming 650032, Yunnan, China
| | - Haiwei Xu
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Amy Medical University), Chongqing 400038, China
- Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing 400038, China
| | - Xiang Ma
- Department of Ophthalmology, The First Affiliated Hospital of Dalian Medical University, Dalian 116014, Liaoning, China
| |
Collapse
|
8
|
Kowalczyk A, Wrzecińska M, Gałęska E, Czerniawska-Piątkowska E, Camiña M, Araujo JP, Dobrzański Z. Exosomal ncRNAs in reproductive cancers†. Biol Reprod 2025; 112:225-244. [PMID: 39561105 PMCID: PMC11833474 DOI: 10.1093/biolre/ioae170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/09/2024] [Accepted: 11/15/2024] [Indexed: 11/21/2024] Open
Abstract
Extracellular vesicles, particularly exosomes, play a pivotal role in the cellular mechanisms underlying cancer. This review explores the various functions of exosomes in the progression, growth, and metastasis of cancers affecting the male and female reproductive systems. Exosomes are identified as key mediators in intercellular communication, capable of transferring bioactive molecules such as microRNAs, proteins, and other nucleic acids that influence cancer cell behavior and tumor microenvironment interactions. It has been shown that non-coding RNAs transported by exosomes play an important role in tumor growth processes. Significant molecules that may serve as biomarkers in the development and progression of male reproductive cancers include miR-125a-5p, miR-21, miR-375, the miR-371 ~ 373 cluster, and miR-145-5p. For female reproductive cancers, significant microRNAs include miR-26a-5p, miR-148b, miR-205, and miRNA-423-3p. This review highlights the potential of these noncoding RNAs as biomarkers and prognostics in tumor diagnostics. Understanding the diverse roles of exosomes may hold promise for developing new therapeutic strategies and improving treatment outcomes for cancer patients.
Collapse
Affiliation(s)
- Alicja Kowalczyk
- Department of Environment Hygiene and Animal Welfare, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Marcjanna Wrzecińska
- Department of Ruminant Science, West Pomeranian University of Technology in Szczecin, Szczecin, Poland
| | - Elżbieta Gałęska
- Department of Environment Hygiene and Animal Welfare, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | | | - Mercedes Camiña
- Department of Physiology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Jose P Araujo
- Mountain Research Centre (CIMO), Instituto Politécnico de Viana do Castelo, Ponte de Lima, Portugal
| | - Zbigniew Dobrzański
- Department of Environment Hygiene and Animal Welfare, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
9
|
Menezes Ferreira A, da Silva Felix JH, Chaves de Lima RK, Martins de Souza MC, Sousa
dos Santos JC. Advancements and Prospects in Nanorobotic Applications for Ophthalmic Therapy. ACS Biomater Sci Eng 2025; 11:958-980. [PMID: 39818739 PMCID: PMC11815637 DOI: 10.1021/acsbiomaterials.4c02368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/19/2025]
Abstract
This study provides a bibliometric and bibliographic review of emerging applications of micro- and nanotechnology in treating ocular diseases, with a primary focus on glaucoma. We aim to identify key research trends and analyze advancements in devices and drug delivery systems for ocular treatments. The methodology involved analyzing 385 documents indexed on the Web of Science using tools such as VOSviewer and Bibliometrix. The results show a marked increase in scientific output, highlighting prominent authors and institutions, with England leading in the field. Key findings suggest that nanotechnology holds the potential to address the limitations of conventional treatments, including low ocular bioavailability and adverse side effects. Nanoparticles, nanovesicles, and polymer-based systems appear promising for prolonged and controlled drug release, potentially offering enhanced therapeutic efficacy. In conclusion, micro- and nanotechnology could transform ocular disease treatment, although challenges remain concerning the biocompatibility and scalability of these devices. Further clinical studies are necessary to establish these innovations within the therapeutic context of ophthalmology.
Collapse
Affiliation(s)
- Antonio
Átila Menezes Ferreira
- Instituto de Engenharias
e Desenvolvimento Sustentável, Universidade
da Integração Internacional da Lusofonia Afro-Brasileira,
Campus das Auroras, Redenção, Ceará CEP 62790-970, Brazil
| | - John Hebert da Silva Felix
- Instituto de Engenharias
e Desenvolvimento Sustentável, Universidade
da Integração Internacional da Lusofonia Afro-Brasileira,
Campus das Auroras, Redenção, Ceará CEP 62790-970, Brazil
| | - Rita Karolinny Chaves de Lima
- Instituto de Engenharias
e Desenvolvimento Sustentável, Universidade
da Integração Internacional da Lusofonia Afro-Brasileira,
Campus das Auroras, Redenção, Ceará CEP 62790-970, Brazil
| | - Maria Cristiane Martins de Souza
- Instituto de Engenharias
e Desenvolvimento Sustentável, Universidade
da Integração Internacional da Lusofonia Afro-Brasileira,
Campus das Auroras, Redenção, Ceará CEP 62790-970, Brazil
| | - José Cleiton Sousa
dos Santos
- Instituto de Engenharias
e Desenvolvimento Sustentável, Universidade
da Integração Internacional da Lusofonia Afro-Brasileira,
Campus das Auroras, Redenção, Ceará CEP 62790-970, Brazil
| |
Collapse
|
10
|
Ganesh BH, Padinjarathil H, Rajendran RL, Ramani P, Gangadaran P, Ahn BC. The Role of Extracellular Vesicles in Aging and Age-Related Disorders. Antioxidants (Basel) 2025; 14:177. [PMID: 40002364 PMCID: PMC11851802 DOI: 10.3390/antiox14020177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/18/2025] [Accepted: 01/31/2025] [Indexed: 02/27/2025] Open
Abstract
A variety of molecular and cellular changes distinguish the multifaceted biological process of aging. Recent studies in this decade have demonstrated the essential role of extracellular vesicles (EVs) in the aging process. Mitochondrial malfunction and increased oxidative stress are major contributors for the aging process. This review investigates the role of EVs in intercellular communication, tissue regeneration, and inflammation in the context of aging. We also discuss the exosome and its utility to reduce oxidative stress, which is a key part of aging, as well as the possibility of using the exosomes (EVs) as anti-aging drugs. Changes in cargo composition can influence the aging phenotype and impact the functionality of cells and tissues. Additionally, the role of EVs in oxidative stress during the aging process addresses potential treatment strategies and the development of biomarkers for age-associated disorders. The review also highlighted the role of exosomes in providing antioxidant properties, which help reduce excessive reactive oxygen species (ROS) and strengthen cellular defenses against oxidative stress. Additionally, it emphasized the role of extracellular vesicles (EVs) in age-related pathologies, such as neurodegenerative diseases, cardiovascular disorders, and immunosenescence, offering insights into targeted interventions for promoting healthy aging. This article provides a comprehensive analysis of the current body of knowledge regarding the therapeutic effects of EVs on aging, with a particular emphasis on the implications of this emerging field of research and its relationship to oxidative stress.
Collapse
Affiliation(s)
- Bharathi Hassan Ganesh
- Dhanvanthri Laboratory, Department of Chemistry, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India; (B.H.G.); (H.P.)
- Center of Excellence in Advanced Materials and Green Technologies (CoE-AMGT), Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India
| | - Himabindu Padinjarathil
- Dhanvanthri Laboratory, Department of Chemistry, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India; (B.H.G.); (H.P.)
- Center of Excellence in Advanced Materials and Green Technologies (CoE-AMGT), Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (R.L.R.); (P.G.)
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Prasanna Ramani
- Dhanvanthri Laboratory, Department of Chemistry, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India; (B.H.G.); (H.P.)
- Center of Excellence in Advanced Materials and Green Technologies (CoE-AMGT), Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (R.L.R.); (P.G.)
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (R.L.R.); (P.G.)
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
11
|
Liukkonen M, Heloterä H, Siintamo L, Ghimire B, Mattila P, Kivinen N, Kostanek J, Watala C, Hytti M, Hyttinen J, Koskela A, Blasiak J, Kaarniranta K. Oxidative Stress and Inflammation-Related mRNAs Are Elevated in Serum of a Finnish Wet AMD Cohort. Invest Ophthalmol Vis Sci 2024; 65:30. [PMID: 39546296 DOI: 10.1167/iovs.65.13.30] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024] Open
Abstract
Purpose Localized diseases can be affected by and affect the systemic environment via blood circulation. In this study, we explored the differences in circulating serum mRNAs between patients with wet AMD (wAMD) and controls. Methods Blood samples were obtained from 60 Finnish patients with wAMD and 64 controls. After serum preparation and RNA sequencing, the count data was examined for differentially expressed genes (DEGs) and further checked for enriched molecular pathways and ontology terms as well as links to clinical data. Results We found many DEGs and some enriched pathways, including the inflammation and cell survival-associated pathway tumour necrosis factor alpha (TNF-α) signaling via nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). The related DEGs were oxidized low-density lipoprotein receptor 1 (OLR1), salt inducible kinase 1 (SIK1), and coagulation factor III (F3). DEGs from degradative macular and retinal processes were also examined, many of which were also related to cardiovascular disease and maintenance. Additionally, DEG counts were inspected in relation to clinical and anti-VEGF treatment parameters, and glutamine amidotransferase-like class 1 domain-containing 3A (GATD3A) levels were found to be significantly lower in patients with wAMD treated with anti-VEGF. Conclusions Differentially expressed systemic mRNAs that are linked to mitochondrial function, oxidative stress, and inflammation may have a role in the pathology of wAMD. Our observations provide new data for the understanding of the progression of wAMD.
Collapse
Affiliation(s)
- Mikko Liukkonen
- Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland
| | - Hanna Heloterä
- Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland
| | - Leea Siintamo
- Department of Ophthalmology, Kuopio University Hospital, Kuopio, Finland
| | - Bishwa Ghimire
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
- MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Pirkko Mattila
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Niko Kivinen
- Department of Ophthalmology, Kuopio University Hospital, Kuopio, Finland
| | - Joanna Kostanek
- Department of Haemostatic Disorders, Medical University of Lodz, Lodz, Poland
| | - Cezary Watala
- Department of Haemostatic Disorders, Medical University of Lodz, Lodz, Poland
| | - Maria Hytti
- Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland
| | - Juha Hyttinen
- Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland
| | - Ali Koskela
- Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland
| | - Janusz Blasiak
- Faculty of Medicine, Mazovian Academy in Plock, Plock, Poland
| | - Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland
- Department of Ophthalmology, Kuopio University Hospital, Kuopio, Finland
- Department of Molecular Genetics, University of Lodz, Lodz, Poland
| |
Collapse
|
12
|
Hyttinen JMT, Koskela A, Blasiak J, Kaarniranta K. Autophagy in drusen biogenesis secondary to age-related macular degeneration. Acta Ophthalmol 2024; 102:759-772. [PMID: 39087629 DOI: 10.1111/aos.16744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/11/2024] [Indexed: 08/02/2024]
Abstract
Age-related macular degeneration (AMD) is an emerging cause of blindness in aged people worldwide. One of the key signs of AMD is the degeneration of the retinal pigment epithelium (RPE), which is indispensable for the maintenance of the adjacent photoreceptors. Because of impaired energy metabolism resulting from constant light exposure, hypoxia, and oxidative stress, accumulation of drusen in AMD-affected eyes is observed. Drusen contain damaged cellular proteins, lipoprotein particles, lipids and carbohydrates and they are related to impaired protein clearance, inflammation, and extracellular matrix modification. When autophagy, a major cellular proteostasis pathway, is impaired, the accumulations of intracellular lipofuscin and extracellular drusen are detected. As these aggregates grow over time, they finally cause the disorganisation and destruction of the RPE and photoreceptors leading to visual loss. In this review, the role of autophagy in drusen biogenesis is discussed since impairment in removing cellular waste in RPE cells plays a key role in AMD progression. In the future, means which improve intracellular clearance might be of use in AMD therapy to slow the progression of drusen formation.
Collapse
Affiliation(s)
- Juha M T Hyttinen
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Ali Koskela
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Janusz Blasiak
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Plock, Plock, Poland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Molecular Genetics, University of Lodz, Lodz, Poland
- Department of Ophthalmology, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
13
|
Ale Y, Nainwal N. Exosomes as nanocarrier for Neurotherapy: Journey from application to challenges. J Drug Deliv Sci Technol 2024; 101:106312. [DOI: 10.1016/j.jddst.2024.106312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
14
|
Singh M, Negi R, Alka, Vinayagam R, Kang SG, Shukla P. Age-Related Macular Degeneration (AMD): Pathophysiology, Drug Targeting Approaches, and Recent Developments in Nanotherapeutics. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1647. [PMID: 39459435 PMCID: PMC11509623 DOI: 10.3390/medicina60101647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/26/2024] [Accepted: 10/06/2024] [Indexed: 10/28/2024]
Abstract
The most prevalent reason for vision impairment in aging inhabitants is age-related macular degeneration (AMD), a posterior ocular disease with a poor understanding of the anatomic, genetic, and pathophysiological progression of the disease. Recently, new insights exploring the role of atrophic changes in the retinal pigment epithelium, extracellular drusen deposits, lysosomal lipofuscin, and various genes have been investigated in the progression of AMD. Hence, this review explores the incidence and risk factors for AMD, such as oxidative stress, inflammation, the complement system, and the involvement of bioactive lipids and their role in angiogenesis. In addition to intravitreal anti-vascular endothelial growth factor (VEGF) therapy and other therapeutic interventions such as oral kinase inhibitors, photodynamic, gene, and antioxidant therapy, as well as their benefits and drawbacks as AMD treatment options, strategic drug delivery methods, including drug delivery routes with a focus on intravitreal pharmacokinetics, are investigated. Further, the recent advancements in nanoformulations such as polymeric and lipid nanocarriers, liposomes, etc., intended for ocular drug delivery with pros and cons are too summarized. Therefore, the purpose of this review is to give new researchers an understanding of AMD pathophysiology, with an emphasis on angiogenesis, inflammation, the function of bioactive lipids, and therapy options. Additionally, drug delivery options that focus on the development of drug delivery system(s) via several routes of delivery can aid in the advancement of therapeutic choices.
Collapse
Affiliation(s)
- Mahendra Singh
- Department of Biotechnology, Institute of Biotechnology, School of Life and Applied Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Riyakshi Negi
- Department of Pharmaceutical Sciences, School of Heath Sciences and Technology, UPES, Dehradun 246008, India; (R.N.); (A.)
| | - Alka
- Department of Pharmaceutical Sciences, School of Heath Sciences and Technology, UPES, Dehradun 246008, India; (R.N.); (A.)
| | - Ramachandran Vinayagam
- Department of Biotechnology, Institute of Biotechnology, School of Life and Applied Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Sang Gu Kang
- Department of Biotechnology, Institute of Biotechnology, School of Life and Applied Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Prashant Shukla
- Department of Pharmaceutical Sciences, School of Heath Sciences and Technology, UPES, Dehradun 246008, India; (R.N.); (A.)
| |
Collapse
|
15
|
Cvekl A, Vijg J. Aging of the eye: Lessons from cataracts and age-related macular degeneration. Ageing Res Rev 2024; 99:102407. [PMID: 38977082 DOI: 10.1016/j.arr.2024.102407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/18/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
Aging is the greatest risk factor for chronic human diseases, including many eye diseases. Geroscience aims to understand the effects of the aging process on these diseases, including the genetic, molecular, and cellular mechanisms that underlie the increased risk of disease over the lifetime. Understanding of the aging eye increases general knowledge of the cellular physiology impacted by aging processes at various biological extremes. Two major diseases, age-related cataract and age-related macular degeneration (AMD) are caused by dysfunction of the lens and retina, respectively. Lens transparency and light refraction are mediated by lens fiber cells lacking nuclei and other organelles, which provides a unique opportunity to study a single aging hallmark, i.e., loss of proteostasis, within an environment of limited metabolism. In AMD, local dysfunction of the photoreceptors/retinal pigmented epithelium/Bruch's membrane/choriocapillaris complex in the macula leads to the loss of photoreceptors and eventually loss of central vision, and is driven by nearly all the hallmarks of aging and shares features with Alzheimer's disease, Parkinson's disease, cardiovascular disease, and diabetes. The aging eye can function as a model for studying basic mechanisms of aging and, vice versa, well-defined hallmarks of aging can be used as tools to understand age-related eye disease.
Collapse
Affiliation(s)
- Ales Cvekl
- Departments of Genetics and Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Jan Vijg
- Departments of Genetics and Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
16
|
Rui S, Dai L, Zhang X, He M, Xu F, Wu W, Armstrong DG, You Y, Xiao X, Ma Y, Chen Y, Deng W. Exosomal miRNA-26b-5p from PRP suppresses NETs by targeting MMP-8 to promote diabetic wound healing. J Control Release 2024; 372:221-233. [PMID: 38909697 DOI: 10.1016/j.jconrel.2024.06.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/28/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
The utilization of platelet-rich plasma (PRP) has exhibited potential as a therapeutic approach for the management of diabetic foot ulcers (DFUs). However, it is currently not well understood how the diabetic environment may influence PRP-derived exosomes (PRP-Exos) and their potential impact on neutrophil extracellular traps (NETs). This study aims to investigate the effects of the diabetic environment on PRP-Exos, their communication with neutrophils, and the subsequent influence on NETs and wound healing. Through bulk-seq and Western blotting, we confirmed the increased expression of MMP-8 in DFUs. Additionally, we discovered that miRNA-26b-5p plays a significant role in the communication between DFUs and PRP-Exos. In our experiments, we found that PRP-Exos miR-26b-5p effectively improved diabetic wound healing by inhibiting NETs. Further tests validated the inhibitory effect of miR-26b-5p on NETs by targeting MMP-8. Both in vitro and in vivo experiments showed that miRNA-26b-5p from PRP-Exos promoted wound healing by reducing neutrophil infiltration through its targeting of MMP-8. This study establishes the importance of miR-26b-5p in the communication between DFUs and PRP-Exos, disrupting NETs formation in diabetic wounds by targeting MMP-8. These findings provide valuable insights for developing novel therapeutic strategies to enhance wound healing in individuals suffering from DFUs.
Collapse
Affiliation(s)
- Shunli Rui
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Centre, Chongqing 400014, China
| | - Linrui Dai
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Centre, Chongqing 400014, China
| | - Xiaoshi Zhang
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Centre, Chongqing 400014, China
| | - Min He
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Centre, Chongqing 400014, China
| | - Fan Xu
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Centre, Chongqing 400014, China
| | - Wei Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - David G Armstrong
- Department of Surgery, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| | - Yuehua You
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Xiaoqiu Xiao
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Yu Ma
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Centre, Chongqing 400014, China.
| | - Yan Chen
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Centre, Chongqing 400014, China.
| | - Wuquan Deng
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Centre, Chongqing 400014, China.
| |
Collapse
|
17
|
Zhang H, Wu LZ, Liu ZY, Jin ZB. Patient-derived induced pluripotent stem cells with a MERTK mutation exhibit cell junction abnormalities and aberrant cellular differentiation potential. World J Stem Cells 2024; 16:512-524. [PMID: 38817331 PMCID: PMC11135251 DOI: 10.4252/wjsc.v16.i5.512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/29/2024] [Accepted: 04/01/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND Human induced pluripotent stem cell (hiPSC) technology is a valuable tool for generating patient-specific stem cells, facilitating disease modeling, and investigating disease mechanisms. However, iPSCs carrying specific mutations may limit their clinical applications due to certain inherent characteristics. AIM To investigate the impact of MERTK mutations on hiPSCs and determine whether hiPSC-derived extracellular vesicles (EVs) influence anomalous cell junction and differentiation potential. METHODS We employed a non-integrating reprogramming technique to generate peripheral blood-derived hiPSCs with and hiPSCs without a MERTK mutation. Chromosomal karyotype analysis, flow cytometry, and immunofluorescent staining were utilized for hiPSC identification. Transcriptomics and proteomics were employed to elucidate the expression patterns associated with cell junction abnormalities and cellular differentiation potential. Additionally, EVs were isolated from the supernatant, and their RNA and protein cargos were examined to investigate the involvement of hiPSC-derived EVs in stem cell junction and differentiation. RESULTS The generated hiPSCs, both with and without a MERTK mutation, exhibited normal karyotype and expressed pluripotency markers; however, hiPSCs with a MERTK mutation demonstrated anomalous adhesion capability and differentiation potential, as confirmed by transcriptomic and proteomic profiling. Furthermore, hiPSC-derived EVs were involved in various biological processes, including cell junction and differentiation. CONCLUSION HiPSCs with a MERTK mutation displayed altered junction characteristics and aberrant differentiation potential. Furthermore, hiPSC-derived EVs played a regulatory role in various biological processes, including cell junction and differentiation.
Collapse
Affiliation(s)
- Hang Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Ling-Zi Wu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Zhen-Yu Liu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China.
| |
Collapse
|
18
|
Cao L, Ouyang H. Intercellular crosstalk between cancer cells and cancer-associated fibroblasts via exosomes in gastrointestinal tumors. Front Oncol 2024; 14:1374742. [PMID: 38463229 PMCID: PMC10920350 DOI: 10.3389/fonc.2024.1374742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/08/2024] [Indexed: 03/12/2024] Open
Abstract
Gastrointestinal (GI) tumors are a significant global health threat, with high rates of morbidity and mortality. Exosomes contain various biologically active molecules like nucleic acids, proteins, and lipids and can serve as messengers for intercellular communication. They play critical roles in the exchange of information between tumor cells and the tumor microenvironment (TME). The TME consists of mesenchymal cells and components of the extracellular matrix (ECM), with fibroblasts being the most abundant cell type in the tumor mesenchyme. Cancer-associated fibroblasts (CAFs) are derived from normal fibroblasts and mesenchymal stem cells that are activated in the TME. CAFs can secrete exosomes to modulate cell proliferation, invasion, migration, drug resistance, and other biological processes in tumors. Additionally, tumor cells can manipulate the function and behavior of fibroblasts through direct cell-cell interactions. This review provides a summary of the intercellular crosstalk between GI tumor cells and CAFs through exosomes, along with potential underlying mechanisms.
Collapse
Affiliation(s)
- Longyang Cao
- Department of Gastroenterology, The First Peoples' Hospital of Hangzhou Linan District, Hangzhou, China
| | - Hong Ouyang
- Department of Gastroenterology, The First Peoples' Hospital of Hangzhou Linan District, Hangzhou, China
| |
Collapse
|
19
|
Zheng J, Wang R, Wang Y. New concepts drive the development of delivery tools for sustainable treatment of diabetic complications. Biomed Pharmacother 2024; 171:116206. [PMID: 38278022 DOI: 10.1016/j.biopha.2024.116206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 01/28/2024] Open
Abstract
Diabetic complications, especially diabetic retinopathy, diabetic nephropathy and painful diabetic neuropathy, account for a large portion of patients with diabetes and display rising global prevalence. They are the leading causes of blindness, kidney failure and hypersensitivity to pain caused by diabetes. Current approved therapeutics against the diabetic complications are few and exhibit limited efficacy. The enhanced cell-specificity, stability, biocompatibility, and loading capacity of drugs are essential for the mitigation of diabetic complications. In the article, we have critically discussed the recent studies over the past two years in material sciences and biochemistry. The insightful concepts in these studies drive the development of novel nanoparticles and mesenchymal stem cells-derived extracellular vesicles to meet the need for treatment of diabetic complications. Their underlying biochemical principles, advantages and limitations have been in-depth analyzed. The nanoparticles discussed in the article include double-headed nanodelivery system, nanozyme, ESC-HCM-B system, soft polymer nanostars, tetrahedral DNA nanostructures and hydrogels. They ameliorate the diabetic complication through attenuation of inflammation, apoptosis and restoration of metabolic homeostasis. Moreover, mesenchymal stem cell-derived extracellular vesicles efficiently deliver therapeutic proteins to the retinal cells to suppress the angiogenesis, inflammation, apoptosis and oxidative stress to reverse diabetic retinopathy. Collectively, we provide a critical discussion on the concept, mechanism and therapeutic applicability of new delivery tools to treat these three devastating diabetic complications.
Collapse
Affiliation(s)
- Jianan Zheng
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Ru Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, China.
| | - Yibing Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, China.
| |
Collapse
|