1
|
Xiao Z, Xiong X, Sun Y, Tourang M, Chen S, Tang YJ. Metabolic analyses of Yarrowia lipolytica for biopolymer production reveals roadblocks and strategies for microbial utilizing volatile fatty acids as sustainable feedstocks. BIORESOURCE TECHNOLOGY 2025; 417:131855. [PMID: 39580096 DOI: 10.1016/j.biortech.2024.131855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/25/2024]
Abstract
This study quantifies metabolic features of engineered Yarrowia lipolytica strains for converting volatile fatty acids (VFAs) into poly-3-hydroxybutyrate (PHB) via 13C-metabolic flux analysis and RNA-Seq. Yarrowia lipolytica is unable to grow with C4 ∼ C6 VFAs due to substrate toxicity, while propionate (C3) metabolism leads to slow growth and minimal PHB production due to enzymatic limitations in substrate assimilation pathways. Acetate is a viable but challenging VFA feedstock. Comparing to glucose, acetate catabolism results in low ATP/ADP ratios, high enzyme usage, substantial CO2 release (>50 % of input carbon), and limited NADPH. Several strategies may overcome these roadblocks: 1) glucose-VFA co-catabolism improves energy charge, alleviates metabolic imbalances, reduces flux rigidity, and lowers the enzyme expression burden; 2) overexpressing acetyl-CoA synthetase and nitrogen limitation increase acetate uptake and PHB synthesis during glucose-acetate co-utilization; and 3) repression of oxidase facilitates fluxes towards PHB synthesis. The results provide insights into efficient utilization of acetate as feedstock.
Collapse
Affiliation(s)
- Zhengyang Xiao
- Department of Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, United States
| | - Xiaochao Xiong
- Department of Biological Systems Engineering, Washington State University, Pullman, WA 99164, United States
| | - Yufei Sun
- Department of Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, United States
| | - Masoud Tourang
- Department of Biological Systems Engineering, Washington State University, Pullman, WA 99164, United States
| | - Shulin Chen
- Department of Biological Systems Engineering, Washington State University, Pullman, WA 99164, United States.
| | - Yinjie J Tang
- Department of Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, United States.
| |
Collapse
|
2
|
Fachal-Suárez M, Krishnan S, Chaiprapat S, González D, Gabriel D. An overview of biomethanation and the use of membrane technologies as a candidate to overcome H 2 mass transfer limitations. Biotechnol Adv 2024; 77:108465. [PMID: 39413888 DOI: 10.1016/j.biotechadv.2024.108465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
Energy produced from renewable sources such as sun or wind are intermittent, depending on circumstantial factors. This fact explains why energy supply and demand do not match. In this context, the interest in biomethanation has increased as an interesting contribution to the Power-to-gas concept (P2G), transforming the extra amount of produced electricity into methane (CH4). The reaction between green hydrogen (H2) (produced by electrolysis) and CO2 (pollutant present in biogas) can be catalysed by different microorganisms to produce biomethane, that can be injected into existing natural gas grid if reaching the standards. Thus, energy storage for both hydrogen and electricity, as well as transportation problems would be solved. However, H2 diffusion to the liquid phase for its further biological conversion is the main bottleneck due to the low solubility of H2. This review includes the state-of-the-art in biological hydrogenotrophic methanation (BHM) and membrane-based technologies. Specifically, the use of hollow-fiber membrane bioreactors as a technology to overcome H2 diffusion limitations is reviewed. Furthermore, the influence of operating conditions, microbiology, H2 diffusion and H2 injection methods are critically discussed before setting the main recommendations about BHM.
Collapse
Affiliation(s)
- Manuel Fachal-Suárez
- GENOCOV Research Group, Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Santhana Krishnan
- Department of Civil and Environmental Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai 90110, Thailand
| | - Sumate Chaiprapat
- Department of Civil and Environmental Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai 90110, Thailand
| | - Daniel González
- GENOCOV Research Group, Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - David Gabriel
- GENOCOV Research Group, Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
3
|
Wang Y, He C, Xu C, Yang J, Feng J, Wang W. Influence of oxygen partial pressure on homoacetogenesis and promotion of acetic acid accumulation through low pH regulation under microaerobic conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:42766-42778. [PMID: 38878240 DOI: 10.1007/s11356-024-33952-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/05/2024] [Indexed: 07/04/2024]
Abstract
Homoacetogenesis is an important pathway for bio-utilization of CO2; however, oxygen is a key environmental influencing factor. This study explored the impact of different initial oxygen partial pressures (OPPs) on homoacetogenesis, while implementing low pH regulation enhanced acetic acid (HAc) accumulation under microaerobic conditions. Results indicated that cumulative HAc production increased by 18.2% in 5% OPP group, whereas decreases of 31.3% and 56.0% were observed in 10% and 20% OPP groups, respectively, compared to the control group. However, hydrogenotrophic methanogens adapted to microaerobic environment and competed with homoacetogens for CO2, thus limiting homoacetogenesis. Controlling influent pH 5.0 per cycle increased cumulative HAc production by 18.3% and 18.2% in 5% and 10% OPP groups, respectively, compared with the control group. Consequently, regulating low pH effectively inhibited methanogenic activity under microaerobic conditions, thus increasing HAc production. This study was expected to expand the practical application of homoacetogenesis in bio-utilization of CO2.
Collapse
Affiliation(s)
- Yuwei Wang
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
- Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei, 230009, China
| | - Chunhua He
- Department of Municipal Engineering, School of Environment and Energy Engineering, Anhui JianZhu University, Hefei, 230009, China
| | - Changwen Xu
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
- Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei, 230009, China
| | - Jing Yang
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
- Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei, 230009, China
| | - Jingwei Feng
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
- Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei, 230009, China
| | - Wei Wang
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China.
- Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei, 230009, China.
| |
Collapse
|
4
|
Sun S, Wang X, Cheng S, Lei Y, Sun W, Wang K, Li Z. A review of volatile fatty acids production from organic wastes: Intensification techniques and separation methods. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121062. [PMID: 38735068 DOI: 10.1016/j.jenvman.2024.121062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/11/2024] [Accepted: 04/29/2024] [Indexed: 05/14/2024]
Abstract
High value-added products from organic waste fermentation have garnered increasing concern in modern society. VFAs are short-chain fatty acids, produced as intermediate products during the anaerobic fermentation of organic matter. VFAs can serve as an essential organic carbon source to produce substitutable fuels, microbial fats and oils, and synthetic biodegradable plastics et al. Extracting VFAs from the fermentation broths is a challenging task as the composition of suspensions is rather complex. In this paper, a comprehensive review of methods for VFAs production, extraction and separation are provided. Firstly, the methods to enhance VFAs production and significant operating parameters are briefly reviewed. Secondly, the evaluation and detailed discussion of various VFAs extraction and separation technologies, including membrane separation, complex extraction, and adsorption methods, are presented, highlighting their specific advantages and limitations. Finally, the challenges encountered by different separation technologies and novel approaches to enhance process performance are highlighted, providing theoretical guidance for recycling VFAs from organic wastes efficiently.
Collapse
Affiliation(s)
- Shushuang Sun
- University of Science and Technology Beijing, School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, PR China.
| | - Xuemei Wang
- University of Science and Technology Beijing, School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, PR China.
| | - Shikun Cheng
- University of Science and Technology Beijing, School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, PR China
| | - Yuxin Lei
- University of Science and Technology Beijing, School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, PR China
| | - Wenjin Sun
- University of Science and Technology Beijing, School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, PR China
| | - Kexin Wang
- University of Science and Technology Beijing, School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, PR China
| | - Zifu Li
- University of Science and Technology Beijing, School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, PR China; International Science and Technology Cooperation Base for Environmental and Energy Technology of MOST, University of Science and Technology Beijing, Beijing 100083, PR China.
| |
Collapse
|
5
|
Electrochemical synthesis of propionic acid from reduction of ethanol and carbon dioxide at various applied potentials. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
6
|
Thulluru LP, Ghangrekar MM, Chowdhury S. Progress and perspectives on microbial electrosynthesis for valorisation of CO 2 into value-added products. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 332:117323. [PMID: 36716542 DOI: 10.1016/j.jenvman.2023.117323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/06/2023] [Accepted: 01/15/2023] [Indexed: 06/18/2023]
Abstract
Microbial electrosynthesis (MES) is a neoteric technology that facilitates biocatalysed synthesis of organic compounds with the aid of homoacetogenic bacteria, while feeding CO2 as an inorganic carbon source. Operating MES with surplus renewable electricity further enhances the sustainability of this innovative bioelectrochemical system (BES). However, several lacunae exist in the domain knowledge, stunting the widespread application of MES. Despite significant progress in this area over the past decade, the product yield efficiency is not on par with other contemporary technologies. This bottleneck can be overcome by adopting a holistic approach, i.e., applying innovative and integrated solutions to ensure a robust MES operation. Further, the widespread deployment of MES exclusively relies on its ability to mature a sessile biofilm over a biocompatible electrode, while offering minimal charge transfer resistance. Additionally, operating MES preferably at H2-generating reduction potential and valorising industrial off-gas as carbon substrate is crucial to accomplish economic sustainability. In light of the aforementioned, this review collates the latest progress in the design and development of MES-centred systems for valorisation of CO2 into value-added products. Specifically, it highlights the significance of inoculum pre-treatment for promoting biocatalytic activity and biofilm growth on the cathodic surface. In addition, it summarizes the diverse materials that are commonly used as electrodes in MES, with an emphasis on the importance of inexpensive, robust, and biocompatible electrode materials for the practical application of MES technology. Further, the review presents insights into media conditions, operational factors, and reactor configurations that affect the overall performance of MES process. Finally, the product range of MES, downstream processing requirements, and integration of MES with other environmental remediation technologies are also discussed.
Collapse
Affiliation(s)
- Lakshmi Pathi Thulluru
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Makarand M Ghangrekar
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Shamik Chowdhury
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
| |
Collapse
|
7
|
Annie Modestra J, Matsakas L, Rova U, Christakopoulos P. Prospects and trends in bioelectrochemical systems: Transitioning from CO 2 towards a low-carbon circular bioeconomy. BIORESOURCE TECHNOLOGY 2022; 364:128040. [PMID: 36182019 DOI: 10.1016/j.biortech.2022.128040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Resource scarcity and climate change are the most quested topics in view of environmental sustainability. CO2 sequestration through bioelectrochemical systems is an attractive option for fostering bioeconomy development upon several value-added products generation. This review details the state-of-the-art of bioelectrochemical systems for resource recovery from CO2 along with various biocatalysts capable of utilizing CO2. Two bioprocesses (photo-electrosynthesis and chemolithoelectrosynthesis) were discussed projecting their potential for biobased economy development from CO2. Significance of adopting circular strategies for efficient resource recycling, intensifying product value, integrations/interlinking of multiple process chains for the development of circular bioeconomy were discussed. Existing constrains as well as outlook for near establishment of circular bioeconomy from CO2 is presented by weighing fore-sighted plans with current actions. Need for developing CO2-based circular bioeconomy via innovative business models by analyzing social, technical, environmental and product related aspects are also discussed providing a roadmap of gaps to pursue for attaining practicality.
Collapse
Affiliation(s)
- J Annie Modestra
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 971‑87, Luleå, Sweden
| | - Leonidas Matsakas
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 971‑87, Luleå, Sweden.
| | - Ulrika Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 971‑87, Luleå, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 971‑87, Luleå, Sweden
| |
Collapse
|
8
|
Osmotically assisted reverse osmosis, simulated to achieve high solute concentrations, at low energy consumption. Sci Rep 2022; 12:13741. [PMID: 35962008 PMCID: PMC9374728 DOI: 10.1038/s41598-022-16974-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/19/2022] [Indexed: 11/25/2022] Open
Abstract
Microbial electrosynthesis (MES), is an emerging technology, for sustainable wastewater treatment. The dilute acetate solution, produced via MES, must be recovered, as dilute solutions can be expensive to store and transport. The acetate is expensive and environmentally damaging to recover by heat-intensive evaporative methods, such as distillation. In pursuit of a better energy economy, a membrane separation system is simulated to raise the concentration from 1 to 30 wt%, at a hydraulic pressure of approximately 50 bar. The concentrate is then simulated to be heat dried. Reverse osmosis (RO) could rase the acetate concentration to 8 wt%. A novel adaptation of osmotically assisted reverse osmosis (OARO) is then simulated to increase the concentration from 8 to 30 wt%. The inclusion of OARO, rather than a standalone RO unit, reduces the total heat and electric power requirement by a factor of 4.3. It adds to the membrane area requirement by a factor of 6. The OARO simulations are conducted by the internal concentration polarisation (ICP) model. Before the model is used, it is fitted to OARO experimental data, obtained from the literature. Membrane structure number of 701 µm and permeability coefficient of 2.51 L/m2/h/bar are ascertained from this model fitting exercise.
Collapse
|
9
|
Advances of Cobalt Phthalocyanine in Electrocatalytic CO2 Reduction to CO: a Mini Review. Electrocatalysis (N Y) 2022. [DOI: 10.1007/s12678-022-00766-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Baek G, Rossi R, Saikaly PE, Logan BE. High-rate microbial electrosynthesis using a zero-gap flow cell and vapor-fed anode design. WATER RESEARCH 2022; 219:118597. [PMID: 35609490 DOI: 10.1016/j.watres.2022.118597] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/08/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Microbial electrosynthesis (MES) cells use renewable energy to convert carbon dioxide into valuable chemical products such as methane and acetate, but chemical production rates are low and pH changes can adversely impact biocathodes. To overcome these limitations, an MES reactor was designed with a zero-gap electrode configuration with a cation exchange membrane (CEM) to achieve a low internal resistance, and a vapor-fed electrode to minimize pH changes. Liquid catholyte was pumped through a carbon felt cathode inoculated with anaerobic digester sludge, with humidified N2 gas flowing over the abiotic anode (Ti or C with a Pt catalyst) to drive water splitting. The ohmic resistance was 2.4 ± 0.5 mΩ m2, substantially lower than previous bioelectrochemical systems (20-25 mΩ m2), and the catholyte pH remained near-neutral (6.6-7.2). The MES produced a high methane production rate of 2.9 ± 1.2 L/L-d (748 mmol/m2-d, 17.4 A/m2; Ti/Pt anode) at a relatively low applied voltage of 3.1 V. In addition, acetate was produced at a rate of 940 ± 250 mmol/m2-d with 180 ± 30 mmol/m2-d for propionate. The biocathode microbial community was dominated by the methanogens of the genus Methanobrevibacter, and the acetogen of the genus Clostridium sensu stricto 1. These results demonstrate the utility of this zero-gap cell and vapor-fed anode design for increasing rates of methane and chemical production in MES.
Collapse
Affiliation(s)
- Gahyun Baek
- Department of Civil and Environmental Engineering, Penn State University, 231Q Sackett Building, University Park, PA 16802, United States; Environmental Research Group, Research Institute of Industrial Science and Technology (RIST), 67 Cheongam-ro, Nam-gu, Pohang-si, Gyeongsangbuk-do, 37673 Republic of Korea
| | - Ruggero Rossi
- Department of Civil and Environmental Engineering, Penn State University, 231Q Sackett Building, University Park, PA 16802, United States
| | - Pascal E Saikaly
- Environmental Science and Engineering Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Saudi Arabia
| | - Bruce E Logan
- Department of Civil and Environmental Engineering, Penn State University, 231Q Sackett Building, University Park, PA 16802, United States.
| |
Collapse
|
11
|
Hemdan B, Garlapati VK, Sharma S, Bhadra S, Maddirala S, K M V, Motru V, Goswami P, Sevda S, Aminabhavi TM. Bioelectrochemical systems-based metal recovery: Resource, conservation and recycling of metallic industrial effluents. ENVIRONMENTAL RESEARCH 2022; 204:112346. [PMID: 34742708 DOI: 10.1016/j.envres.2021.112346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/25/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Metals represent a large proportion of industrial effluents, which due to their high hazardous nature and toxicity are responsible to create environmental pollution that can pose significant threat to the global flora and fauna. Strict ecological rules compromise sustainable recovery of metals from industrial effluents by replacing unsustainable and energy-consuming physical and chemical techniques. Innovative technologies based on the bioelectrochemical systems (BES) are a rapidly developing research field with proven encouraging outcomes for many industrial commodities, considering the worthy options for recovering metals from industrial effluents. BES technology platform has redox capabilities with small energy-intensive processes. The positive stigma of BES in metals recovery is addressed in this review by demonstrating the significance of BES over the current physical and chemical techniques. The mechanisms of action of BES towards metal recovery have been postulated with the schematic representation. Operational limitations in BES-based metal recovery such as biocathode and metal toxicity are deeply discussed based on the available literature results. Eventually, a progressive inspection towards a BES-based metal recovery platform with possibilities of integration with other modern technologies is foreseen to meet the real-time challenges of viable industrial commercialization.
Collapse
Affiliation(s)
- Bahaa Hemdan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India; Water Pollution Research Department, Environmental Research Division, National Research Centre, 33 El-Bohouth St., Dokki, Giza, 12622, Egypt
| | - Vijay Kumar Garlapati
- Department of Biotechnology & Bioinformatics, Jaypee University of Information Technology (JUIT), Waknaghat, Himachal Pradesh, 173234, India
| | - Swati Sharma
- Department of Biotechnology & Bioinformatics, Jaypee University of Information Technology (JUIT), Waknaghat, Himachal Pradesh, 173234, India
| | - Sudipa Bhadra
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, 506004, India
| | - Shivani Maddirala
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, 506004, India
| | - Varsha K M
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, 506004, India
| | - Vineela Motru
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, 506004, India
| | - Pranab Goswami
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Surajbhan Sevda
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, 506004, India.
| | - Tejraj M Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka, 580 031, India.
| |
Collapse
|
12
|
Shenbagamuthuraman V, Patel A, Khanna S, Banerjee E, Parekh S, Karthick C, Ashok B, Velvizhi G, Nanthagopal K, Ong HC. State of art of valorising of diverse potential feedstocks for the production of alcohols and ethers: Current changes and perspectives. CHEMOSPHERE 2022; 286:131587. [PMID: 34303047 DOI: 10.1016/j.chemosphere.2021.131587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Alcohols could be the biggest factor for the improvement of world biofuel economy in the present century due to their excellent properties compared to petroleum products. The primary concerns of sustainable alcohol production for meeting the growing energy demand owing to the selection of viable feedstock and this might enhance the opportunities for developing numerous advanced techniques. In this review, the valorization of alcohol production from several production routes has been exposed by covering the traditional routes to the present state of the art technologies. Even though the fossil fuel conversion could be dominant method for methanol production, many recent innovations like photo electrochemical synthesis and electrolysis methods might play vital role in production of renewable methanol in future. There have been several production routes for production of ethanol and among which the fermentation of lignocellulose biomass would be the ultimate choice for large scale shoot up. The greenhouse gas recovery in the form of alcohols through electrochemistry technique and hydrogenation method are the important methods for commercialization of alcohols in future. It is also observed that algae based renewable bio-alcohols is highly influenced by carbohydrate content and sustainable approaches in algae conversion to bio-alcohols would bring greater demand in future market. There is a lack of innovation in higher alcohols production in single process and this could be bounded by combining dehydrogenation and decarboxylation techniques. Finally, this review enlists the opportunities and challenges of existing alcohols production and recommended the possible routes for making significant enhancement in production.
Collapse
Affiliation(s)
- V Shenbagamuthuraman
- Engine Testing Laboratory, School of Mechanical Engineering, Vellore Institute of Technology, Vellore, 632 014, India
| | - Adamya Patel
- School of Chemical Engineering, Vellore Institute of Technology, Vellore, 632 014, India
| | - Shaurya Khanna
- School of Chemical Engineering, Vellore Institute of Technology, Vellore, 632 014, India
| | - Eleena Banerjee
- School of Chemical Engineering, Vellore Institute of Technology, Vellore, 632 014, India
| | - Shubh Parekh
- School of Chemical Engineering, Vellore Institute of Technology, Vellore, 632 014, India
| | - C Karthick
- Engine Testing Laboratory, School of Mechanical Engineering, Vellore Institute of Technology, Vellore, 632 014, India
| | - B Ashok
- Engine Testing Laboratory, School of Mechanical Engineering, Vellore Institute of Technology, Vellore, 632 014, India.
| | - G Velvizhi
- CO(2) Research and Green Technology Center, Vellore Institute of Technology, Vellore, 632014, India
| | - K Nanthagopal
- Engine Testing Laboratory, School of Mechanical Engineering, Vellore Institute of Technology, Vellore, 632 014, India.
| | - Hwai Chyuan Ong
- School of Information, Systems and Modelling, Faculty of Engineering and Information Technology, University of Technology Sydney, NSW, 2007, Australia
| |
Collapse
|
13
|
Yang HY, Hou NN, Wang YX, Liu J, He CS, Wang YR, Li WH, Mu Y. Mixed-culture biocathodes for acetate production from CO 2 reduction in the microbial electrosynthesis: Impact of temperature. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148128. [PMID: 34098277 DOI: 10.1016/j.scitotenv.2021.148128] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
The temperature effect on bioelectrochemical reduction of CO2 to acetate with a mixed-culture biocathode in the microbial electrosynthesis was explored. The results showed that maximum acetate amount of 525.84 ± 1.55 mg L-1 and fastest acetate formation of 49.21 ± 0.49 mg L-1 d-1 were obtained under mesophilic conditions. Electron recovery efficiency for CO2 reduction to acetate ranged from 14.50 ± 2.20% to 64.86 ± 2.20%, due to propionate, butyrate and H2 generation. Mesophilic conditions were demonstrated to be more favorable for biofilm formation on the cathode, resulting in a stable and dense biofilm. At phylum level, the relative abundance of Bacteroidetes phylum in the biofilm remarkably increased under mesophilic conditions, compared with that at psychrophilic and thermophilic conditions. At genus level, the Clostridium, Treponema, Acidithiobacillus, Acetobacterium and Acetoanaerobium were found to be dominated genera in the biofilm under mesophilic conditions, while genera diversity decreased under psychrophilic and thermophilic conditions.
Collapse
Affiliation(s)
- Hou-Yun Yang
- CAS Key Laboratory for Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China; Key Laboratory of Water Pollution Control and Wastewater Reuse of Anhui Province, Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei, China
| | - Nan-Nan Hou
- CAS Key Laboratory for Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China; School of Physics and Materials Engineering, Hefei Normal University, Hefei, China
| | - Yi-Xuan Wang
- CAS Key Laboratory for Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China.
| | - Jing Liu
- CAS Key Laboratory for Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China
| | - Chuan-Shu He
- CAS Key Laboratory for Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China
| | - Yi-Ran Wang
- CAS Key Laboratory for Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China
| | - Wei-Hua Li
- Key Laboratory of Water Pollution Control and Wastewater Reuse of Anhui Province, Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei, China
| | - Yang Mu
- CAS Key Laboratory for Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China
| |
Collapse
|
14
|
Okoro‐Shekwaga CK, Ross A, Camargo‐Valero MA. Enhancing bioenergy production from food waste by in situ biomethanation: Effect of the hydrogen injection point. Food Energy Secur 2021. [DOI: 10.1002/fes3.288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Cynthia Kusin Okoro‐Shekwaga
- BioResource Systems Research Group School of Civil Engineering University of Leeds Leeds UK
- Department of Agricultural and Bioresources Engineering Federal University of Technology Minna Nigeria
| | - Andrew Ross
- School of Chemical and Process Engineering University of Leeds Leeds UK
| | - Miller Alonso Camargo‐Valero
- BioResource Systems Research Group School of Civil Engineering University of Leeds Leeds UK
- Departamento de Ingeniería Química Universidad Nacional de Colombia, Campus La Nubia Manizales Colombia
| |
Collapse
|
15
|
Shanthi Sravan J, Tharak A, Annie Modestra J, Seop Chang I, Venkata Mohan S. Emerging trends in microbial fuel cell diversification-Critical analysis. BIORESOURCE TECHNOLOGY 2021; 326:124676. [PMID: 33556705 DOI: 10.1016/j.biortech.2021.124676] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/30/2020] [Accepted: 01/02/2021] [Indexed: 06/12/2023]
Abstract
Global need for transformation from fossil-based to bio-based economy is constantly emerging for the production of low-carbon/renewable energy/products. Microbial fuel cell (MFC) catalysed by bio-electrochemical process gained significant attention initially for its unique potential to generate energy. Diversification of MFC is an emerging trend in the context of prioritising/enhancing product output while exploring the mechanism specificity of individual processes. Bioelectrochemical treatment system (BET), microbial electrosynthesis system (MES), bioelectrochemical system (BES), electro-fermentation (EF), microbial desalination cell (MDC), microbial electrolysis cell (MEC) and electro-methanogenesis (EM) are the diversified MFC systems that are being researched actively. Owing to its broad diversification, MFC domain is increasing its potential credibility as a platform technology. Microbial catalyzed electrochemical reactions are the key which directly/indirectly are proportionally linked to electrometabolic activity of microorganisms towards final anticipated output. This review intends to holistically document the mechanisms, applications and current trends of MFC diversifications towards multi-faced applications.
Collapse
Affiliation(s)
- J Shanthi Sravan
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Athmakuri Tharak
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India
| | - J Annie Modestra
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - In Seop Chang
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwag-iro, Buk-gu, Gwangju 61005, Republic of Korea
| | - S Venkata Mohan
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
16
|
Electrodeposited Hybrid Biocathode-Based CO 2 Reduction via Microbial Electro-Catalysis to Biofuels. MEMBRANES 2021; 11:membranes11030223. [PMID: 33810075 PMCID: PMC8004817 DOI: 10.3390/membranes11030223] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 11/30/2022]
Abstract
Microbial electrosynthesis is a new approach to converting C1 carbon (CO2) to more complex carbon-based products. In the present study, CO2, a potential greenhouse gas, was used as a sole carbon source and reduced to value-added chemicals (acetate, ethanol) with the help of bioelectrochemical reduction in microbial electrosynthesis systems (MES). The performance of MES was studied with varying electrode materials (carbon felt, stainless steel, and cobalt electrodeposited carbon felt). The MES performance was assessed in terms of acetic acid and ethanol production with the help of gas chromatography (GC). The electrochemical characterization of the system was analyzed with chronoamperometry and cyclic voltammetry. The study revealed that the MES operated with hybrid cobalt electrodeposited carbon felt electrode yielded the highest acetic acid (4.4 g/L) concentration followed by carbon felt/stainless steel (3.7 g/L), plain carbon felt (2.2 g/L), and stainless steel (1.87 g/L). The alcohol concentration was also observed to be highest for the hybrid electrode (carbon felt/stainless steel/cobalt oxide is 0.352 g/L) as compared to the bare electrodes (carbon felt is 0.22 g/L) tested, which was found to be in correspondence with the pH changes in the system. Electrochemical analysis revealed improved electrotrophy in the hybrid electrode, as confirmed by the increased redox current for the hybrid electrode as compared to plain electrodes. Cyclic voltammetry analysis also confirmed the role of the biocatalyst developed on the electrode in CO2 sequestration.
Collapse
|
17
|
Ma X, Zhang G, Li F, Jiao M, Yao S, Chen Z, Liu Z, Zhang Y, Lv M, Liu L. Boosting the Microbial Electrosynthesis of Acetate from CO2 by Hydrogen Evolution Catalysts of Pt Nanoparticles/rGO. Catal Letters 2021. [DOI: 10.1007/s10562-021-03537-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
18
|
Das S, Chakraborty I, Das S, Ghangrekar M. Application of novel modular reactor for microbial electrosynthesis employing imposed potential with concomitant separation of acetic acid. SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS 2021; 43:100902. [DOI: 10.1016/j.seta.2020.100902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
19
|
Rengasamy K, Ranaivoarisoa T, Bai W, Bose A. Magnetite nanoparticle anchored graphene cathode enhances microbial electrosynthesis of polyhydroxybutyrate by Rhodopseudomonas palustris TIE-1. NANOTECHNOLOGY 2021; 32:035103. [PMID: 33017807 DOI: 10.1088/1361-6528/abbe58] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Microbial electrosynthesis (MES) is an emerging technology that can convert carbon dioxide (CO2) into value-added organic carbon compounds using electrons supplied from a cathode. However, MES is affected by low product formation due to limited extracellular electron uptake by microbes. Herein, a novel cathode was developed from chemically synthesized magnetite nanoparticles and reduced graphene oxide nanocomposite (rGO-MNPs). This nanocomposite was electrochemically deposited on carbon felt (CF/rGO-MNPs), and the modified material was used as a cathode for MES production. The bioplastic, polyhydroxybutyrate (PHB) produced by Rhodopseudomonas palustris TIE-1 (TIE-1), was measured from reactors with modified and unmodified cathodes. Results demonstrate that the magnetite nanoparticle anchored graphene cathode (CF/rGO-MNPs) exhibited higher PHB production (91.31 ± 0.9 mg l-1). This is ∼4.2 times higher than unmodified carbon felt (CF), and 20 times higher than previously reported using graphite. This modified cathode enhanced electron uptake to -11.7 ± 0.1 μA cm-2, ∼5 times higher than CF cathode (-2.3 ± 0.08 μA cm-2). The faradaic efficiency of the modified cathode was ∼2 times higher than the unmodified cathode. Electrochemical analysis and scanning electron microscopy suggest that rGO-MNPs facilitated electron uptake and improved PHB production by TIE-1. Overall, the nanocomposite (rGO-MNPs) cathode modification enhances MES efficiency.
Collapse
Affiliation(s)
- Karthikeyan Rengasamy
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, 63130, United States of America
| | - Tahina Ranaivoarisoa
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, 63130, United States of America
| | - Wei Bai
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, 63130, United States of America
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, United States of America
| | - Arpita Bose
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, 63130, United States of America
| |
Collapse
|
20
|
Tharak A, Venkata Mohan S. Electrotrophy of biocathodes regulates microbial-electro-catalyzation of CO 2 to fatty acids in single chambered system. BIORESOURCE TECHNOLOGY 2021; 320:124272. [PMID: 33142252 DOI: 10.1016/j.biortech.2020.124272] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Microbial electrochemical conversion of CO2 to value-added products needs effectual biocathodes. In this study, three different working electrodes (biocathode) namely carbon cloth (CC, MES1), stainless steel mesh (SS, MES2) and hybrid electrode (CC + SS, MES3) were evaluated in membrane-less single-chambered Microbial electrosynthesis systems (MESs). Performance of MES was assessed by total volatile fatty acids (VFA) productivity and, reductive current generations upon continuous poised potential (-0.4 V vs. Ag/AgCl (3.5 M KCl)). MES3 showed higher VFA synthesis (CC + SS; 1.4 g VFA/L), followed by MES1 (CC; 1.1 g VFA/L) and MES2 (SS; 0.8 g VFA/L) with corresponding reductive current generation of -1.13 mA, -2.74 mA and -0.39 mA. Electro-kinetics revealed the biocathode efficacy towards enhanced electrotrophy with confined electron losses by regulating electron flux in the system. The study infers the potential of hybrid electrode as an efficient biocathode for the reduction of CO2 to VFA synthesis.
Collapse
Affiliation(s)
- Athmakuri Tharak
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering (DEEE), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
| | - S Venkata Mohan
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering (DEEE), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India.
| |
Collapse
|
21
|
Sarkar O, Venkata Mohan S. Synergy of anoxic microenvironment and facultative anaerobes on acidogenic metabolism in a self-induced electrofermentation system. BIORESOURCE TECHNOLOGY 2020; 313:123604. [PMID: 32540693 DOI: 10.1016/j.biortech.2020.123604] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
Metabolic potential of two different cultures, facultative (FB) and strict anaerobes (AB) under two microenvironments [anoxic (ANOX) and anaerobic (ANA)] was evaluated to understand acidogenic fermentation in a self-induced electrofermentation (EF) system for the production of short-chain fatty acids (SCFA: C2-C4) and biogas. ANA condition positively influenced FB and AB metabolism towards higher acetic (C2:2390 mg/L) and propionic acid (C3: 717 mg/L) production, while butyric acid (C4:1481 mg/L) favored ANOX microenvironment (AB). ANOX microenvironment showed a better self-induced potential compared to ANA metabolism (0.46 V (FBANOX); 0.45 V (ABANOX)). An improved H2 (>30%) fraction was noticed with FB while CH4 production was found favourable with AB. The study illustrated the role of system microenvironment in association with metabolic function towards regulating electrofermentation towards specific products synthesis.
Collapse
Affiliation(s)
- Omprakash Sarkar
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering (DEEE), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Campus, Hyderabad 500007, India
| | - S Venkata Mohan
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering (DEEE), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Campus, Hyderabad 500007, India.
| |
Collapse
|
22
|
Arunasri K, Yeruva DK, Vamshi Krishna K, Venkata Mohan S. Monitoring metabolic pathway alterations in Escherichia coli due to applied potentials in microbial electrochemical system. Bioelectrochemistry 2020; 134:107530. [DOI: 10.1016/j.bioelechem.2020.107530] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/27/2020] [Accepted: 04/04/2020] [Indexed: 12/18/2022]
|
23
|
Das S, Diels L, Pant D, Patil SA, Ghangrekar MM. Review—Microbial Electrosynthesis: A Way Towards The Production of Electro-Commodities Through Carbon Sequestration with Microbes as Biocatalysts. JOURNAL OF THE ELECTROCHEMICAL SOCIETY 2020; 167:155510. [DOI: 10.1149/1945-7111/abb836] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
There has been a considerable increment in the atmospheric CO2 concentration, which has majorly contributed to the problem of global warming. This issue can be extenuated by effectively developing microbial electrosynthesis (MES) for the sequestration of CO2 with the concurrent production of biochemical and biofuels. Though the MES technology is in its infancy, it has exhibited enormous potential for sustainable mitigation of CO2 and bioelectrosynthesis of multi-carbon organic compounds. The problem of storage of excess renewable electrical energy by conventional means can also be alleviated by employing MES, which stores it in the form of C–C bonds of chemicals. This review focuses on the various aspects of MES and recent developments made in this field to overcome its bottlenecks, such as the lower yield of organic compounds, separation of products of higher chain organic compounds, etc. In particular, the microbial catalysts and cathode materials employed in MES have also been emphasized. Keeping in mind the potential of this innovative technology, researchers should focus on improving the yield of MES by developing novel low-cost cathode materials and discovering efficient and robust micro-organisms, which would be a significant step forward towards the further advancement of this technology.
Collapse
|
24
|
Annie Modestra J, Venkata Mohan S. Capacitive biocathodes driving electrotrophy towards enhanced CO 2 reduction for microbial electrosynthesis of fatty acids. BIORESOURCE TECHNOLOGY 2019; 294:122181. [PMID: 31610485 DOI: 10.1016/j.biortech.2019.122181] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 06/10/2023]
Abstract
Electron transfer towards biocathode is a rate limiting step for CO2 reduction during microbial electrosynthesis (MES). Current study is designed to offer an understanding on electrotrophy using four different electrode materials viz., carbon cloth (CC), stainless-steel mesh (SS), combination of both (CC-SS) and a hybrid material (CC-SS-AC with activated carbon (AC)) as capacitive biocathodes for MES. Non turn-over and turn-over electrochemical investigations revealed electrode properties in terms of electron transfer, capacitance and redox catalytic currents relatively higher with CC-SS-AC and CC-SS. Acetic acid production was higher in CC-SS-AC (4.31 g/l) than CC-SS (4.21 g/l), CC (3.5 g/l) and SS (2.83 g/l) along with noticeable ethanol production with all the biocathodes except SS. Interestingly, long-term operation of all biocathodes witnessed reduction in resistance visualized through Nyquist impedance spectra relatively efficient with CC-SS-AC. Biocompatible property of CC-SS-AC with increased surface area was presumed to be a critical factor for enhancing electrotrophy linked with capacitive nature of biocathode towards enhanced bioelectrochemical CO2 reduction.
Collapse
Affiliation(s)
- J Annie Modestra
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Campus, Hyderabad, India
| | - S Venkata Mohan
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Campus, Hyderabad, India.
| |
Collapse
|
25
|
Das S, Das S, Das I, Ghangrekar M. Application of bioelectrochemical systems for carbon dioxide sequestration and concomitant valuable recovery: A review. MATERIALS SCIENCE FOR ENERGY TECHNOLOGIES 2019; 2:687-696. [DOI: 10.1016/j.mset.2019.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
26
|
Strategies for improving the electroactivity and specific metabolic functionality of microorganisms for various microbial electrochemical technologies. Biotechnol Adv 2019; 39:107468. [PMID: 31707076 DOI: 10.1016/j.biotechadv.2019.107468] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 11/02/2019] [Accepted: 11/04/2019] [Indexed: 01/31/2023]
Abstract
Electroactive microorganisms, which possess extracellular electron transfer (EET) capabilities, are the basis of microbial electrochemical technologies (METs) such as microbial fuel and electrolysis cells. These are considered for several applications ranging from the energy-efficient treatment of waste streams to the production of value-added chemicals and fuels, bioremediation, and biosensing. Various aspects related to the microorganisms, electrodes, separators, reactor design, and operational or process parameters influence the overall functioning of METs. The most fundamental and critical performance-determining factor is, however, the microorganism-electrode interactions. Modification of the electrode surfaces and microorganisms for optimizing their interactions has therefore been the major MET research focus area over the last decade. In the case of microorganisms, primarily their EET mechanisms and efficiencies along with the biofilm formation capabilities, collectively considered as microbial electroactivity, affect their interactions with the electrodes. In addition to electroactivity, the specific metabolic or biochemical functionality of microorganisms is equally crucial to the target MET application. In this article, we present the major strategies that are used to enhance the electroactivity and specific functionality of microorganisms pertaining to both anodic and cathodic processes of METs. These include simple physical methods based on the use of heat and magnetic field along with chemical, electrochemical, and growth media amendment approaches to the complex procedure-based microbial bioaugmentation, co-culture, and cell immobilization or entrapment, and advanced toolkit-based biofilm engineering, genetic modifications, and synthetic biology strategies. We further discuss the applicability and limitations of these strategies and possible future research directions for advancing the highly promising microbial electrochemistry-driven biotechnology.
Collapse
|
27
|
Jiang Y, Chu N, Zhang W, Ma J, Zhang F, Liang P, Zeng RJ. Zinc: A promising material for electrocatalyst-assisted microbial electrosynthesis of carboxylic acids from carbon dioxide. WATER RESEARCH 2019; 159:87-94. [PMID: 31078755 DOI: 10.1016/j.watres.2019.04.053] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 06/09/2023]
Abstract
Microbial electrosynthesis (MES) has been proposed as a sustainable platform to simultaneously achieve wastewater treatment, renewable energy generation and chemicals production. Currently, the CO2 valorization via MES is restricted by the low production rate, while that via electrochemical reduction is limited by the production of C1 products with high efficiency and selectivity. The electrocatalyst-assisted MES could potentially solve these bottlenecks of both MES and electrochemical reduction technology by increasing the production rate and expanding the product range. Here, four types of metals were evaluated for mixed culture-based, electrocatalyst-assisted MES with the fabrication of electrical-biological hybrid cathodes. Cathodes based on In, Zn, Ti and Cu showed high parallelism at 30 A/m2. However, no parallelism was observed at 50 A/m2, and only Zn experienced a further increase of the maximum acetic acid production rate (1.23 ± 0.02 g/L/d, 313 ± 5 g/m2/d) and titer (9.2 ± 0.1 g/L), with the highest value of the production rate normalized to the project area of the fiber cathodes. Other volatile fatty acids and ethanol were below 0.5 g/L. Moreover, it was the sharp H2 generation, which mainly caused the fluctuation of coulombic efficiency. The application of such Zn-based electrical-biological hybrid system shall provide a more efficient route for CO2 valorization.
Collapse
Affiliation(s)
- Yong Jiang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Na Chu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Wei Zhang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Junjun Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Fang Zhang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Raymond Jianxiong Zeng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.
| |
Collapse
|
28
|
Yellappa M, Sravan JS, Sarkar O, Reddy YVR, Mohan SV. Modified conductive polyaniline-carbon nanotube composite electrodes for bioelectricity generation and waste remediation. BIORESOURCE TECHNOLOGY 2019; 284:148-154. [PMID: 30928826 DOI: 10.1016/j.biortech.2019.03.085] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/14/2019] [Accepted: 03/16/2019] [Indexed: 05/15/2023]
Abstract
Anode with good electrocatalytic capabilities is more specifically required to reduce the ohimic losses during microbial fuel cell (MFC) operation. Highly conductive polymers viz., Polyaniline (PANi) and Polyaniline/Carbon nanotube (PANi/CNT) composite were prepared by in situ oxidative chemical polymerization method. Anodes were fabricated independently by coating PANi and CNT/PANi composites on the surface of SSM. The fabricated electrodes were evaluated as anode against stainless steel mess (SSM) as cathode during MFC operation. Maximum bioelectricity generation was observed in SSM-PANi/CNT-anode with power density of 48 mW/m2 and COD removal efficiency of 80% compared with SSM-PANi-anode (38 mW/m2; 65%) and SSM-anode (28 mW/m2; 58%). Bioelectrochemical characterization of the electrode materials using cyclic voltammetry and electrochemical impedance spectroscopy showed high electrocatalytic activity of PANi/CNT composite electrode. The study concluded the efficiency of PANi/CNT composite electrodes as bioanode in operation of MFCs towards achieving increased bioelectricity production along with wastewater treatment.
Collapse
Affiliation(s)
- Masapogu Yellappa
- Bioengineering and Environmental Sciences Lab, CEEFF, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India; Department of Chemistry, Sri Venkateswara University, Tirupati 517 502, Andhra Pradesh, India
| | - J Shanthi Sravan
- Bioengineering and Environmental Sciences Lab, CEEFF, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), Hyderabad, India
| | - Omprakash Sarkar
- Bioengineering and Environmental Sciences Lab, CEEFF, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), Hyderabad, India
| | - Y V Rami Reddy
- Department of Chemistry, Sri Venkateswara University, Tirupati 517 502, Andhra Pradesh, India
| | - S Venkata Mohan
- Bioengineering and Environmental Sciences Lab, CEEFF, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), Hyderabad, India.
| |
Collapse
|
29
|
Dai C, Qiu Y, He Y, Zhang Q, Liu R, Du J, Tao C. Controlled synthesis of a Bi2O3–CuO catalyst for selective electrochemical reduction of CO2 to formate. NEW J CHEM 2019. [DOI: 10.1039/c8nj05205k] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The electro-reduction of CO2 to produce energy sources has been considered as a visionary pathway with the help of renewable electricity, which can achieve carbon neutrality and mitigate global warming.
Collapse
Affiliation(s)
- Chaoneng Dai
- College of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing 401331
- P. R. China
| | - Yue Qiu
- College of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing 401331
- P. R. China
- Chongqing Academy of Metrology and Quality Inspection
| | - Yu He
- College of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing 401331
- P. R. China
| | - Qiang Zhang
- College of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing 401331
- P. R. China
| | - Renlong Liu
- College of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing 401331
- P. R. China
| | - Jun Du
- College of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing 401331
- P. R. China
| | - Changyuan Tao
- College of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing 401331
- P. R. China
| |
Collapse
|
30
|
Gadkari S, Shemfe M, Modestra JA, Mohan SV, Sadhukhan J. Understanding the interdependence of operating parameters in microbial electrosynthesis: a numerical investigation. Phys Chem Chem Phys 2019; 21:10761-10772. [DOI: 10.1039/c9cp01288e] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A mathematical model to predict the influence of system parameters such as substrate concentrations and operation cycle time on MES performance.
Collapse
Affiliation(s)
- Siddharth Gadkari
- Centre for Environment and Sustainability
- University of Surrey
- Surrey GU2 7XH
- UK
- Department of Chemical and Process Engineering
| | - Mobolaji Shemfe
- Department of Chemical and Process Engineering
- University of Surrey
- Guildford GU2 7XH
- UK
| | - J. Annie Modestra
- Bioengineering and Environmental Sciences Lab
- CEEFF Department
- CSIR-Indian Institute of Chemical Technology (CSIR-IICT)
- Hyderabad 500 007
- India
| | - S. Venkata Mohan
- Bioengineering and Environmental Sciences Lab
- CEEFF Department
- CSIR-Indian Institute of Chemical Technology (CSIR-IICT)
- Hyderabad 500 007
- India
| | - Jhuma Sadhukhan
- Centre for Environment and Sustainability
- University of Surrey
- Surrey GU2 7XH
- UK
- Department of Chemical and Process Engineering
| |
Collapse
|
31
|
Kumar M, Sahoo PC, Srikanth S, Bagai R, Puri SK, Ramakumar SSV. Photosensitization of electro-active microbes for solar assisted carbon dioxide transformation. BIORESOURCE TECHNOLOGY 2019; 272:300-307. [PMID: 30366289 DOI: 10.1016/j.biortech.2018.10.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 06/08/2023]
Abstract
Tandem bio-inorganic platform by combining efficient light harvesting properties of nano-inorganic semiconductor cadmium sulfide (CdS) with biocatalytic ability of electro-active bacteria (EAB) towards carbon dioxide (CO2) conversion is reported. Sulfur was obtained from either cysteine (EAB-Cys-CdS) or hydrogen sulfide (EAB-H2S-CdS) and experiments were carried out under similar conditions. Anchoring of the nano CdS cluster on the microbe surface was confirmed using electronic microscope. Bio-inorganic hybrid system was able to produce single and multi-carbon compounds from CO2 in visible spectrum (λ > 400 nm). Though, acetic acid was dominant (EAB-Cys-CdS, 1.46 g/l and EAB-H2S-CdS, 1.55 g/l) in both the microbe-CdS hybrids, its concentration as well as product slate varied significantly. EAB-H2S-CdS produced hexanoic acid and less methanol fraction, while the EAB-Cys-CdS produced no hexanoic acid along with almost double the concentration of methanol. Due to easy harvesting process, this bio-inorganic hybrid represents unique sustainable approach for solar-to-chemical production via CO2 transformation.
Collapse
Affiliation(s)
- Manoj Kumar
- Indian Oil Corporation Limited (IOCL), R&D Centre, Sector 13, Faridabad 121007, Haryana, India.
| | - Prakash C Sahoo
- Indian Oil Corporation Limited (IOCL), R&D Centre, Sector 13, Faridabad 121007, Haryana, India
| | - Sandipam Srikanth
- Indian Oil Corporation Limited (IOCL), R&D Centre, Sector 13, Faridabad 121007, Haryana, India
| | - Reshmi Bagai
- Indian Oil Corporation Limited (IOCL), R&D Centre, Sector 13, Faridabad 121007, Haryana, India
| | - S K Puri
- Indian Oil Corporation Limited (IOCL), R&D Centre, Sector 13, Faridabad 121007, Haryana, India
| | - S S V Ramakumar
- Indian Oil Corporation Limited (IOCL), R&D Centre, Sector 13, Faridabad 121007, Haryana, India
| |
Collapse
|
32
|
Jiang Z, Zhang D, Zhou L, Deng D, Duan M, Liu Y. Enhanced catalytic capability of electroactive biofilm modified with different kinds of carbon nanotubes. Anal Chim Acta 2018; 1035:51-59. [DOI: 10.1016/j.aca.2018.06.077] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 06/14/2018] [Accepted: 06/29/2018] [Indexed: 11/28/2022]
|
33
|
Jiang Y, Jianxiong Zeng R. Expanding the product spectrum of value added chemicals in microbial electrosynthesis through integrated process design-A review. BIORESOURCE TECHNOLOGY 2018; 269:503-512. [PMID: 30174268 DOI: 10.1016/j.biortech.2018.08.101] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 08/23/2018] [Accepted: 08/24/2018] [Indexed: 06/08/2023]
Abstract
Microbial electrosynthesis (MES) is a novel microbial electrochemical technology proposed for chemicals production with the storage of sustainable energy. However, the practical application of MES is currently restricted by the limited low market value of products in one-step conversion process, mostly acetate. A theme that is pervasive throughout this review is the challenges associated with the expanded product spectrum. Several recent research efforts to improve acetate production, using novel reactor configuration, renewable power supply, and various 3-D cathode are summarized. The importance of genetic modification, two-step hybrid process, as well as input substrates other than CO2 are highlighted in this review as the future research paths for higher value chemicals production. At last, how to integrate MES with existing biochemicals processes is proposed. Definitely, more studies are encouraged to evaluate the overall performances and economic efficiency of these integrated process designs to make MES more competitive.
Collapse
Affiliation(s)
- Yong Jiang
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Raymond Jianxiong Zeng
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
34
|
Srikanth S, Singh D, Vanbroekhoven K, Pant D, Kumar M, Puri SK, Ramakumar SSV. Electro-biocatalytic conversion of carbon dioxide to alcohols using gas diffusion electrode. BIORESOURCE TECHNOLOGY 2018; 265:45-51. [PMID: 29879650 DOI: 10.1016/j.biortech.2018.02.058] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/09/2018] [Accepted: 02/13/2018] [Indexed: 06/08/2023]
Abstract
Impact of gas diffusion electrodes (GDEs) was evaluated in enhancing the CO2 bio-availability for its transformation to C4-organics, especially to alcohols using selective mixed culture. Observed current density was more stable (9-11 A/m2) than submerged experiments reported and significantly varied with pH and respective CO2 solubility. Uncontrolled operating pH (starting with 8.0) showed its impact on shifting/triggering alternate metabolic pathways to increase the carbon length (butyric acid) as well as producing more reduced end products, i.e. alcohols. During the experiments, CO2 was transformed initially to a mixture of volatile fatty acids dominated with formic and acetic acids, and upon their accumulation, ethanol and butanol production was triggered. Overall, 21 g/l of alcohols and 13 g/l of organic acids were accumulated in 90 days with a coulombic efficiency (CE) of 49%. Ethanol and butanol occupied respectively about 45% and 16% of total products, indicating larger potential of this technology.
Collapse
Affiliation(s)
- Sandipam Srikanth
- Industrial Biotechnology Department, Research and Development Center, Indian Oil Corporation Limited, Sector-13, Faridabad, Haryana 121007, India
| | - Dheer Singh
- Industrial Biotechnology Department, Research and Development Center, Indian Oil Corporation Limited, Sector-13, Faridabad, Haryana 121007, India
| | - K Vanbroekhoven
- Separation and Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, Mol 2400, Belgium
| | - Deepak Pant
- Separation and Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, Mol 2400, Belgium
| | - Manoj Kumar
- Industrial Biotechnology Department, Research and Development Center, Indian Oil Corporation Limited, Sector-13, Faridabad, Haryana 121007, India.
| | - S K Puri
- Industrial Biotechnology Department, Research and Development Center, Indian Oil Corporation Limited, Sector-13, Faridabad, Haryana 121007, India
| | - S S V Ramakumar
- Industrial Biotechnology Department, Research and Development Center, Indian Oil Corporation Limited, Sector-13, Faridabad, Haryana 121007, India
| |
Collapse
|
35
|
Srikanth S, Kumar M, Puri SK. Bio-electrochemical system (BES) as an innovative approach for sustainable waste management in petroleum industry. BIORESOURCE TECHNOLOGY 2018; 265:506-518. [PMID: 29886049 DOI: 10.1016/j.biortech.2018.02.059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 02/09/2018] [Accepted: 02/13/2018] [Indexed: 06/08/2023]
Abstract
Petroleum industry is one of the largest and fast growing industries due to the ever increasing global energy demands. Petroleum refinery produces huge quantities of wastes like oily sludge, wastewater, volatile organic compounds, waste catalyst, heavy metals, etc., because of its high capacity and continuous operation of many units. Major challenge to this industry is to manage the huge quantities of waste generated from different processes due to the complexity of waste as well as changing stringent environmental regulations. To decrease the energy loss for treatment and also to conserve the energy stored in the chemical bonds of these waste organics, bio-electrochemical system (BES) may be an efficient tool that reduce the economics of waste disposal by transforming the waste into energy pool. The present review discusses about the feasibility of using BES as a potential option for harnessing energy from different waste generated from petroleum refineries.
Collapse
Affiliation(s)
- Sandipam Srikanth
- Industrial Biotechnology Department, Research and Development Center, Indian Oil Corporation Limited, Sector-13, Faridabad, Haryana 121007, India
| | - Manoj Kumar
- Industrial Biotechnology Department, Research and Development Center, Indian Oil Corporation Limited, Sector-13, Faridabad, Haryana 121007, India.
| | - S K Puri
- Industrial Biotechnology Department, Research and Development Center, Indian Oil Corporation Limited, Sector-13, Faridabad, Haryana 121007, India
| |
Collapse
|
36
|
Srikanth S, Kumar M, Singh D, Singh MP, Puri SK, Ramakumar SSV. Long-term operation of electro-biocatalytic reactor for carbon dioxide transformation into organic molecules. BIORESOURCE TECHNOLOGY 2018; 265:66-74. [PMID: 29883848 DOI: 10.1016/j.biortech.2017.12.075] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/22/2017] [Accepted: 12/23/2017] [Indexed: 06/08/2023]
Abstract
Electro-biocatalytic reactor was operated using selectively enriched mixed culture biofilm for about 320 days with CO2/bicarbonate as C-source. Biocathode consumed higher current (-16.2 ± 0.3 A/m2) for bicarbonate transformation yielding high product synthesis (0.74 g/l/day) compared to CO2 (-9.5 ± 2.8 A/m2; 0.41 g/l/day). Product slate includes butanol and butyric acid when CO2 gets transformed but propionic acid replaced both when bicarbonate gets transformed. Based on electroanalysis, the electron transfer might be H2 mediated along with direct transfer under bicarbonate turnover conditions, while it was restricted to direct under CO2. Efficiency and stability of biofilm was tested by removing the planktonic cells, and also confirmed in terms of Coulombic (85-97%) and carbon conversion efficiencies (42-48%) along with production rate (1.2-1.7 kg/m2 electrode) using bicarbonate as substrate. Selective enrichment of microbes and their growth as biofilm along with soluble CO2 have helped in efficient transformation of CO2 up to C4 organic molecules.
Collapse
Affiliation(s)
- Sandipam Srikanth
- Industrial Biotechnology Department, Research and Development Center, Indian Oil Corporation Limited, Sector-13, Faridabad, Haryana 121007, India
| | - Manoj Kumar
- Industrial Biotechnology Department, Research and Development Center, Indian Oil Corporation Limited, Sector-13, Faridabad, Haryana 121007, India.
| | - Dheer Singh
- Industrial Biotechnology Department, Research and Development Center, Indian Oil Corporation Limited, Sector-13, Faridabad, Haryana 121007, India
| | - M P Singh
- Industrial Biotechnology Department, Research and Development Center, Indian Oil Corporation Limited, Sector-13, Faridabad, Haryana 121007, India
| | - S K Puri
- Industrial Biotechnology Department, Research and Development Center, Indian Oil Corporation Limited, Sector-13, Faridabad, Haryana 121007, India
| | - S S V Ramakumar
- Industrial Biotechnology Department, Research and Development Center, Indian Oil Corporation Limited, Sector-13, Faridabad, Haryana 121007, India
| |
Collapse
|
37
|
Abstract
This study demonstrated the enhancement of biogenic coal conversion to methane in a bioelectrochemical anaerobic reactor with polarized electrodes. The electrode with 1.0 V polarization increased the methane yield of coal to 52.5 mL/g lignite, which is the highest value reported to the best of our knowledge. The electrode with 2.0 V polarization shortened the adaptation time for methane production from coal, although the methane yield was slightly less than that of the 1.0 V electrode. After the methane production from coal in the bioelectrochemical reactor, the hydrolysis product, soluble organic residue, was still above 3600 mg chemical oxygen demand (COD)/L. The hydrolysis product has a substrate inhibition effect and inhibited further conversion of coal to methane. The dilution of the hydrolysis product mitigates the substrate inhibition to methane production, and a 5.7-fold dilution inhibited the methane conversion rate by 50%. An additional methane yield of 55.3 mL/g lignite was obtained when the hydrolysis product was diluted 10-fold in the anaerobic toxicity test. The biogenic conversion of coal to methane was significantly improved by the polarization of the electrode in the bioelectrochemical anaerobic reactor, and the dilution of the hydrolysis product further improved the methane yield.
Collapse
|
38
|
|
39
|
Surpassing the current limitations of high purity H2 production in microbial electrolysis cell (MECs): Strategies for inhibiting growth of methanogens. Bioelectrochemistry 2018; 119:211-219. [DOI: 10.1016/j.bioelechem.2017.09.014] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 09/06/2017] [Accepted: 09/29/2017] [Indexed: 11/18/2022]
|
40
|
S. VM, P. C, Dahiya S, A. NK. Waste derived bioeconomy in India: A perspective. N Biotechnol 2018; 40:60-69. [DOI: 10.1016/j.nbt.2017.06.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 06/19/2017] [Accepted: 06/22/2017] [Indexed: 12/17/2022]
|
41
|
Butti SK, Mohan SV. Autotrophic biorefinery: dawn of the gaseous carbon feedstock. FEMS Microbiol Lett 2017; 364:4062148. [DOI: 10.1093/femsle/fnx166] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/02/2017] [Indexed: 12/23/2022] Open
|
42
|
Modestra JA, Mohan SV. Microbial electrosynthesis of carboxylic acids through CO 2 reduction with selectively enriched biocatalyst: Microbial dynamics. J CO2 UTIL 2017. [DOI: 10.1016/j.jcou.2017.05.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
43
|
Agneessens LM, Ottosen LDM, Voigt NV, Nielsen JL, de Jonge N, Fischer CH, Kofoed MVW. In-situ biogas upgrading with pulse H 2 additions: The relevance of methanogen adaption and inorganic carbon level. BIORESOURCE TECHNOLOGY 2017; 233:256-263. [PMID: 28285216 DOI: 10.1016/j.biortech.2017.02.016] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/03/2017] [Accepted: 02/04/2017] [Indexed: 05/07/2023]
Abstract
Surplus electricity from fluctuating renewable power sources may be converted to CH4 via biomethanisation in anaerobic digesters. The reactor performance and response of methanogen population of mixed-culture reactors was assessed during pulsed H2 injections. Initial H2 uptake rates increased immediately and linearly during consecutive pulse H2 injections for all tested injection rates (0.3 to 1.7LH2/Lsludge/d), while novel high throughput mcrA sequencing revealed an increased abundance of specific hydrogenotrophic methanogens. These findings illustrate the adaptability of the methanogen population to H2 injections and positively affects the implementation of biomethanisation. Acetate accumulated by a 10-fold following injections exceeding a 4:1 H2:CO2 ratio and may act as temporary storage prior to biomethanisation. Daily methane production decreased for headspace CO2 concentrations below 12% and may indicate a high sensitivity of hydrogenotrophic methanogens to CO2 limitation. This may ultimately decide the biogas upgrading potential which can be achieved by biomethanisation.
Collapse
Affiliation(s)
- Laura Mia Agneessens
- Biological and Chemical Engineering, Aarhus University, Hangøvej 2, DK-8200 Aarhus N, Denmark
| | | | - Niels Vinther Voigt
- Biological and Chemical Engineering, Aarhus University, Hangøvej 2, DK-8200 Aarhus N, Denmark
| | - Jeppe Lund Nielsen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, DK-9220 Aalborg, Denmark
| | - Nadieh de Jonge
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, DK-9220 Aalborg, Denmark
| | - Christian Holst Fischer
- Chemistry and Biotechnology, Danish Technological Institute, Kongsvang Allé 29, DK-8000 Aarhus, Denmark
| | | |
Collapse
|
44
|
Srikanth S, Alvarez-Gallego Y, Vanbroekhoven K, Pant D. Enzymatic Electrosynthesis of Formic Acid through Carbon Dioxide Reduction in a Bioelectrochemical System: Effect of Immobilization and Carbonic Anhydrase Addition. Chemphyschem 2017; 18:3174-3181. [DOI: 10.1002/cphc.201700017] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Sandipam Srikanth
- Separation and Conversion Technology; Flemish Institute for Technological Research (VITO); Boeretang 200 Mol 2400 Belgium), Fax: +32-1432 6586
| | - Yolanda Alvarez-Gallego
- Separation and Conversion Technology; Flemish Institute for Technological Research (VITO); Boeretang 200 Mol 2400 Belgium), Fax: +32-1432 6586
| | - Karolien Vanbroekhoven
- Separation and Conversion Technology; Flemish Institute for Technological Research (VITO); Boeretang 200 Mol 2400 Belgium), Fax: +32-1432 6586
| | - Deepak Pant
- Separation and Conversion Technology; Flemish Institute for Technological Research (VITO); Boeretang 200 Mol 2400 Belgium), Fax: +32-1432 6586
| |
Collapse
|
45
|
Competition between Methanogens and Acetogens in Biocathodes: A Comparison between Potentiostatic and Galvanostatic Control. Int J Mol Sci 2017; 18:ijms18010204. [PMID: 28106846 PMCID: PMC5297834 DOI: 10.3390/ijms18010204] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/02/2016] [Accepted: 01/14/2017] [Indexed: 01/15/2023] Open
Abstract
Microbial electrosynthesis is a useful form of technology for the renewable production of organic commodities from biologically catalyzed reduction of CO2. However, for the technology to become applicable, process selectivity, stability and efficiency need strong improvement. Here we report on the effect of different electrochemical control modes (potentiostatic/galvanostatic) on both the start-up characteristics and steady-state performance of biocathodes using a non-enriched mixed-culture inoculum. Based on our results, it seems that kinetic differences exist between the two dominant functional microbial groups (i.e., homoacetogens and methanogens) and that by applying different current densities, these differences may be exploited to steer product selectivity and reactor performance.
Collapse
|
46
|
Raes SMT, Jourdin L, Buisman CJN, Strik DPBTB. Continuous Long-Term Bioelectrochemical Chain Elongation to Butyrate. ChemElectroChem 2016. [DOI: 10.1002/celc.201600587] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Sanne M. T. Raes
- Sub-department of Environmental Technology; Wageningen University & Research; Axis- Z, Bornse Weilanden 9 6708 WG Wageningen The Netherlands
| | - Ludovic Jourdin
- Sub-department of Environmental Technology; Wageningen University & Research; Axis- Z, Bornse Weilanden 9 6708 WG Wageningen The Netherlands
| | - Cees J. N. Buisman
- Sub-department of Environmental Technology; Wageningen University & Research; Axis- Z, Bornse Weilanden 9 6708 WG Wageningen The Netherlands
| | - David P. B. T. B. Strik
- Sub-department of Environmental Technology; Wageningen University & Research; Axis- Z, Bornse Weilanden 9 6708 WG Wageningen The Netherlands
| |
Collapse
|
47
|
Humayun M, Qu Y, Raziq F, Yan R, Li Z, Zhang X, Jing L. Exceptional Visible-Light Activities of TiO 2-Coupled N-Doped Porous Perovskite LaFeO 3 for 2,4-Dichlorophenol Decomposition and CO 2 Conversion. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:13600-13610. [PMID: 27993053 DOI: 10.1021/acs.est.6b04958] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In this work, TiO2-coupled N-doped porous perovskite-type LaFeO3 nanocomposites as highly efficient, cheap, stable, and visible-light photocatalysts have successfully been prepared via wet chemical processes. It is shown that the amount-optimized nanocomposite exhibits exceptional visible-light photocatalytic activities for 2,4-dichlorophenol (2,4-DCP) degradation by ∼3-time enhancement and for CO2 conversion to fuels by ∼4-time enhancement, compared to the resulting porous LaFeO3 with rather high photoactivity due to its large surface area. It is clearly demonstrated, by means of various experimental data, especially for the ·OH amount evaluation, that the obviously enhanced photoactivities are attributed to the increased specific surface area by introducing pores, to the extended visible-light absorption by doping N to create surface states, and to the promoted charge transfer and separation by coupling TiO2. Moreover, it is confirmed from radical trapping experiments that the photogenerated holes are the predominant oxidants in the photocatalytic degradation of 2,4-DCP. Furthermore, a possible photocatalytic degradation mechanism for 2,4-DCP is proposed mainly based on the resultant crucial intermediate, 2-chlorosuccinic acid with m/z = 153, that readily transform into CO2 and H2O. This work opens up a new feasible route to synthesize visible-light-responsive high-activity perovskite-type nanophotocatalysts for efficient environmental remediation and energy production.
Collapse
Affiliation(s)
- Muhammad Humayun
- Key Laboratory of Functional Inorganic Materials Chemistry, Heilongjiang University , Ministry of Education, School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Harbin 150080, P. R. China
| | - Yang Qu
- Key Laboratory of Functional Inorganic Materials Chemistry, Heilongjiang University , Ministry of Education, School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Harbin 150080, P. R. China
| | - Fazal Raziq
- Key Laboratory of Functional Inorganic Materials Chemistry, Heilongjiang University , Ministry of Education, School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Harbin 150080, P. R. China
| | - Rui Yan
- Key Laboratory of Functional Inorganic Materials Chemistry, Heilongjiang University , Ministry of Education, School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Harbin 150080, P. R. China
| | - Zhijun Li
- Key Laboratory of Functional Inorganic Materials Chemistry, Heilongjiang University , Ministry of Education, School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Harbin 150080, P. R. China
| | - Xuliang Zhang
- Key Laboratory of Functional Inorganic Materials Chemistry, Heilongjiang University , Ministry of Education, School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Harbin 150080, P. R. China
| | - Liqiang Jing
- Key Laboratory of Functional Inorganic Materials Chemistry, Heilongjiang University , Ministry of Education, School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Harbin 150080, P. R. China
| |
Collapse
|
48
|
Bajracharya S, Vanbroekhoven K, Buisman CJN, Pant D, Strik DPBTB. Application of gas diffusion biocathode in microbial electrosynthesis from carbon dioxide. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:22292-22308. [PMID: 27436381 DOI: 10.1007/s11356-016-7196-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 07/06/2016] [Indexed: 05/19/2023]
Abstract
Microbial catalysis of carbon dioxide (CO2) reduction to multi-carbon compounds at the cathode is a highly attractive application of microbial electrosynthesis (MES). The microbes reduce CO2 by either taking the electrons or reducing the equivalents produced at the cathode. While using gaseous CO2 as the carbon source, the biological reduction process depends on the dissolution and mass transfer of CO2 in the electrolyte. In order to deal with this issue, a gas diffusion electrode (GDE) was investigated by feeding CO2 through the GDE into the MES reactor for its reduction at the biocathode. A combination of the catalyst layer (porous activated carbon and Teflon binder) and the hydrophobic gas diffusion layer (GDL) creates a three-phase interface at the electrode. So, CO2 and reducing equivalents will be available to the biocatalyst on the cathode surface. An enriched inoculum consisting of acetogenic bacteria, prepared from an anaerobic sludge, was used as a biocatalyst. The cathode potential was maintained at -1.1 V vs Ag/AgCl to facilitate direct and/or hydrogen-mediated CO2 reduction. Bioelectrochemical CO2 reduction mainly produced acetate but also extended the products to ethanol and butyrate. Average acetate production rates of 32 and 61 mg/L/day, respectively, with 20 and 80 % CO2 gas mixture feed were achieved with 10 cm2 of GDE. The maximum acetate production rate remained 238 mg/L/day for 20 % CO2 gas mixture. In conclusion, a gas diffusion biocathode supported bioelectrochemical CO2 reduction with enhanced mass transfer rate at continuous supply of gaseous CO2. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Suman Bajracharya
- Separation and Conversion Technologies, Flemish Institute for Technological Research (VITO), Mol, Belgium
- Sub-department of Environmental Technology, Wageningen University, Wageningen, The Netherlands
| | - Karolien Vanbroekhoven
- Separation and Conversion Technologies, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Cees J N Buisman
- Sub-department of Environmental Technology, Wageningen University, Wageningen, The Netherlands
| | - Deepak Pant
- Separation and Conversion Technologies, Flemish Institute for Technological Research (VITO), Mol, Belgium.
| | - David P B T B Strik
- Sub-department of Environmental Technology, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
49
|
Venkata Mohan S, Nikhil GN, Chiranjeevi P, Nagendranatha Reddy C, Rohit MV, Kumar AN, Sarkar O. Waste biorefinery models towards sustainable circular bioeconomy: Critical review and future perspectives. BIORESOURCE TECHNOLOGY 2016; 215:2-12. [PMID: 27068056 DOI: 10.1016/j.biortech.2016.03.130] [Citation(s) in RCA: 261] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 03/23/2016] [Accepted: 03/24/2016] [Indexed: 05/11/2023]
Abstract
Increased urbanization worldwide has resulted in a substantial increase in energy and material consumption as well as anthropogenic waste generation. The main source for our current needs is petroleum refinery, which have grave impact over energy-environment nexus. Therefore, production of bioenergy and biomaterials have significant potential to contribute and need to meet the ever increasing demand. In this perspective, a biorefinery concept visualizes negative-valued waste as a potential renewable feedstock. This review illustrates different bioprocess based technological models that will pave sustainable avenues for the development of biobased society. The proposed models hypothesize closed loop approach wherein waste is valorised through a cascade of various biotechnological processes addressing circular economy. Biorefinery offers a sustainable green option to utilize waste and to produce a gamut of marketable bioproducts and bioenergy on par to petro-chemical refinery.
Collapse
Affiliation(s)
- S Venkata Mohan
- Bioengineering and Environmental Sciences (BEES), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India, Academy of Scientific and Innovative Research (AcSIR), India.
| | - G N Nikhil
- Bioengineering and Environmental Sciences (BEES), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India, Academy of Scientific and Innovative Research (AcSIR), India
| | - P Chiranjeevi
- Bioengineering and Environmental Sciences (BEES), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India, Academy of Scientific and Innovative Research (AcSIR), India
| | - C Nagendranatha Reddy
- Bioengineering and Environmental Sciences (BEES), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India, Academy of Scientific and Innovative Research (AcSIR), India
| | - M V Rohit
- Bioengineering and Environmental Sciences (BEES), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India, Academy of Scientific and Innovative Research (AcSIR), India
| | - A Naresh Kumar
- Bioengineering and Environmental Sciences (BEES), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India, Academy of Scientific and Innovative Research (AcSIR), India
| | - Omprakash Sarkar
- Bioengineering and Environmental Sciences (BEES), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India, Academy of Scientific and Innovative Research (AcSIR), India
| |
Collapse
|
50
|
Rama Mohan S. Strategy and design of Innovation Policy Road Mapping for a waste biorefinery. BIORESOURCE TECHNOLOGY 2016; 215:76-83. [PMID: 27039350 DOI: 10.1016/j.biortech.2016.03.090] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/14/2016] [Accepted: 03/16/2016] [Indexed: 06/05/2023]
Abstract
Looming energy crisis, climate change concerns coupled with decreasing fossil fuel resources has garnered significant global attention toward development of alternative, renewable, carbon-neutral and eco-friendly fuels to fulfil burgeoning energy demands. Waste utilization and its management are being pursued with renewed interest due to the gamut of biobased products it can offer apart from providing enough energy to meet a major fraction of the world's energy demand. Biorefining is the sustainable processing of biomass into a spectrum of marketable products and energy. Integrating all components of waste treatment culminating into biobased products and energy recovery in a single integrated waste biorefinery is self sufficient, highly sustainable and is very beneficial. Designing systematic innovation policies are essential for development and commercialization of new technologies in this important futuristic research area. This communication explores Innovation Policy Road Mapping (IPRM) methodology available in the literature and applies it to design integrated waste biorefinery.
Collapse
Affiliation(s)
- S Rama Mohan
- Business Development and Technology Outreach Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India.
| |
Collapse
|