1
|
Wang L, Qiu C, Chen R, Li J, Wan H, Guan G. Synergistic integration of bimetallic PtCu alloy modulating proton supply for efficient artificial photosynthesis of methanol. J Colloid Interface Sci 2025; 689:137201. [PMID: 40054253 DOI: 10.1016/j.jcis.2025.02.209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/26/2025]
Abstract
Photocatalytic CO2 reduction with H2O into valuable solar fuels is a huge potential to alleviate carbon emissions and energy issues. However, selective photocatalytic CO2 reduction with H2O into desired chemicals is still a grand challenge owing to the unfavorable kinetics of multistep proton-coupled electrons. Herein, we employed a facile photo-deposition strategy to load Pt-Cu alloy over BiOBr1-xClx (BOBC) for CO2 photoreduction with H2O as a proton donor. The optimal Pt-Cu/BOBC with Pt-Cu pair sites exhibited a remarkable performance of CO2 photoreduction yielding CH3OH of 16.52 μmol·g-1·h-1 with 97.14 % electron-based selectivity. The experimental and theoretical analysis revealed the synergistic effect of Pt-Cu pair sites in BOBC, which enabled Pt to promote the formation of protons from dissociated H2O while Cu accelerate the protonation of CO2, thus advancing the highly selective production of CH3OH. This work highlighted the role of proton supply from H2O oxidation to promote the kinetics of CO2 protonation during photocatalytic reaction.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 210009, PR China
| | - Chenhui Qiu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 210009, PR China
| | - Ruijie Chen
- School of Materials and Chemical Engineering, Chuzhou University, Chuzhou, Anhui 239000, PR China
| | - Jun Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 210009, PR China
| | - Hui Wan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 210009, PR China.
| | - Guofeng Guan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 210009, PR China.
| |
Collapse
|
2
|
Amoo CC, Ge Q, Ordomsky V, Sun J. Synthesizing Liquid Fuels Over Carbon-Based Catalysts Via CO 2 Conversion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410280. [PMID: 40009516 PMCID: PMC11967774 DOI: 10.1002/advs.202410280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/03/2025] [Indexed: 02/28/2025]
Abstract
The unique characteristics of carbon materials make them flexible for applications in heterogeneous catalysis. Their interest is expanding in the conscious efforts being made toward sustainable fuel production. A notable application is the heterogenous conversion of CO2 to liquid fuels, which exploits the characteristics of carbon materials, taking advantage of their electronic configurations, high surface area, pore properties, and synergistic role in catalysis. In this review, a critical overview of this rapidly developing field is presented. Various carbon allotropes and derivatives, as well as some strategies for fabricating carbon-based catalysts are keenly highlighted within thermal-, electro-, and photocatalytic CO2 conversion to liquid fuels. Distinct emphasis is placed on the role of different carbon materials by investigating the unique synergy attained at catalyst interfaces, the physicochemical properties attained, and their influence in enhancing the specific liquid fuels synthesis. Finally, the work is concluded, followed by an outlook detailing key challenges that need addressing.
Collapse
Affiliation(s)
- Cederick Cyril Amoo
- Dalian National Laboratory for Clean EnergyDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
- University of Chinese Academy of SciencesBeijing100049China
| | - Qingjie Ge
- Dalian National Laboratory for Clean EnergyDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
| | - Vitaly Ordomsky
- Université Lille Cité ScientifiqueBâtiment C3Villeneuve d'Ascq Cedex59650France
| | - Jian Sun
- Dalian National Laboratory for Clean EnergyDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
| |
Collapse
|
3
|
Verma A, Fu YP. The prospect of Cu xO-based catalysts in photocatalysis: From pollutant degradation, CO 2 reduction, and H 2 production to N 2 fixation. ENVIRONMENTAL RESEARCH 2024; 241:117656. [PMID: 37980987 DOI: 10.1016/j.envres.2023.117656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 10/30/2023] [Accepted: 11/11/2023] [Indexed: 11/21/2023]
Abstract
The topic of photocatalysis and CuxO-based materials has been intertwined for quite a long time. Its relatively high abundance in the earth's crust makes it an important target for researchers around the globe. One of the properties exploited by researchers is its ability to exist in different oxidation states (Cu0, Cu+, Cu2+, and Cu3+) and its implications on photocatalytic efficiency improvement. Recently, they have been extensively used as photocatalytic materials for dye and pollutant degradation. However, it has almost reached saturation levels, therefore, currently, they are being mostly utilized for CO2 reduction and H2 evolution. Hence, this review will discuss the evolution (in application) of CuxO-based photocatalysts, relating to their past, present, and future. Moreover, photocatalytic efficiency improvement strategies such as doping, heterojunction formation, and carbonaceous construction with other materials will also be touched upon. Finally, the prospect of Cu2O-based photocatalysts will be discussed in the field of photocatalytic N2 fixation to ammonia. The significance of N2 chemisorption on photocatalysts to maximize ammonia production will also be given importance.
Collapse
Affiliation(s)
- Atul Verma
- Department of Materials Science and Engineering, National Dong Hwa University, Shou-Feng, Hualien 97401, Taiwan
| | - Yen-Pei Fu
- Department of Materials Science and Engineering, National Dong Hwa University, Shou-Feng, Hualien 97401, Taiwan
| |
Collapse
|
4
|
Su Q, Zuo C, Liu M, Tai X. A Review on Cu 2O-Based Composites in Photocatalysis: Synthesis, Modification, and Applications. Molecules 2023; 28:5576. [PMID: 37513448 PMCID: PMC10384216 DOI: 10.3390/molecules28145576] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Photocatalysis technology has the advantages of being green, clean, and environmentally friendly, and has been widely used in CO2 reduction, hydrolytic hydrogen production, and the degradation of pollutants in water. Cu2O has the advantages of abundant reserves, a low cost, and environmental friendliness. Based on the narrow bandgap and strong visible light absorption ability of Cu2O, Cu2O-based composite materials show infinite development potential in photocatalysis. However, in practical large-scale applications, Cu2O-based composites still pose some urgent problems that need to be solved, such as the high composite rate of photogenerated carriers, and poor photocatalytic activity. This paper introduces a series of Cu2O-based composites, based on recent reports, including pure Cu2O and Cu2O hybrid materials. The modification strategies of photocatalysts, critical physical and chemical parameters of photocatalytic reactions, and the mechanism for the synergistic improvement of photocatalytic performance are investigated and explored. In addition, the application and photocatalytic performance of Cu2O-based photocatalysts in CO2 photoreduction, hydrogen production, and water pollution treatment are discussed and evaluated. Finally, the current challenges and development prospects are pointed out, to provide guidance in applying Cu2O-based catalysts in renewable energy utilization and environmental protection.
Collapse
Affiliation(s)
- Qian Su
- College of Chemistry & Chemical and Environmental Engineering, Weifang University, Weifang 261061, China
| | - Cheng Zuo
- College of Chemistry & Chemical and Environmental Engineering, Weifang University, Weifang 261061, China
| | - Meifang Liu
- College of Chemistry & Chemical and Environmental Engineering, Weifang University, Weifang 261061, China
| | - Xishi Tai
- College of Chemistry & Chemical and Environmental Engineering, Weifang University, Weifang 261061, China
| |
Collapse
|
5
|
Ganji P, Chowdari RK, Likozar B. Photocatalytic Reduction of Carbon Dioxide to Methanol: Carbonaceous Materials, Kinetics, Industrial Feasibility, and Future Directions. ENERGY & FUELS : AN AMERICAN CHEMICAL SOCIETY JOURNAL 2023; 37:7577-7602. [PMID: 37283706 PMCID: PMC10240497 DOI: 10.1021/acs.energyfuels.3c00714] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/26/2023] [Indexed: 06/08/2023]
Abstract
Photocatalytic carbon dioxide reduction (PCCR) for methanol synthesis (CH3OH) targeting renewable energy resources is an attractive way to create a sustainable environment and also balance the carbon-neutral series. The application of PCCR to methanol enables the generation of solar energy while reducing CO2, killing two birds with one stone in terms of energy and the environment. In recent years, research on CO2 utilization has focused on hydrogenation of CO2 to methanol due to global warming. This article mainly focuses on selective carbonaceous materials such as graphene, mesoporous carbon, and carbon nanotubes (CNTs) as catalysts for heterogeneous photocatalytic CO2 reduction to methanol. In addition, special emphasis will be placed on the state of the art of PCCR catalysts as this type of research will be of great benefit for further development in this field. The main features of the reaction kinetics, techno-economic study, and current technological developments in PCCR are covered in detail.
Collapse
|
6
|
Kandathil V, Manoj N. Advances in CO 2 utilization employing anisotropic nanomaterials as catalysts: a review. Front Chem 2023; 11:1175132. [PMID: 37304687 PMCID: PMC10248019 DOI: 10.3389/fchem.2023.1175132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/18/2023] [Indexed: 06/13/2023] Open
Abstract
Anisotropic nanomaterials are materials with structures and properties that vary depending on the direction in which they are measured. Unlike isotropic materials, which exhibit uniform physical properties in all directions, anisotropic materials have different mechanical, electrical, thermal, and optical properties in different directions. Examples of anisotropic nanomaterials include nanocubes, nanowires, nanorods, nanoprisms, nanostars, and so on. These materials have unique properties that make them useful in a variety of applications, such as electronics, energy storage, catalysis, and biomedical engineering. One of the key advantages of anisotropic nanomaterials is their high aspect ratio, which refers to the ratio of their length to their width, which can enhance their mechanical and electrical properties, making them suitable for use in nanocomposites and other nanoscale applications. However, the anisotropic nature of these materials also presents challenges in their synthesis and processing. For example, it can be difficult to align the nanostructures in a specific direction to impart modulation of a specific property. Despite these challenges, research into anisotropic nanomaterials continues to grow, and scientists are working to develop new synthesis methods and processing techniques to unlock their full potential. Utilization of carbon dioxide (CO2) as a renewable and sustainable source of carbon has been a topic of increasing interest due to its impact on reducing the level of greenhouse gas emissions. Anisotropic nanomaterials have been used to improve the efficiency of CO2 conversion into useful chemicals and fuels using a variety of processes such as photocatalysis, electrocatalysis, and thermocatalysis. More study is required to improve the usage of anisotropic nanomaterials for CO2 consumption and to scale up these technologies for industrial use. The unique properties of anisotropic nanomaterials, such as their high surface area, tunable morphology, and high activity, make them promising catalysts for CO2 utilization. This review article discusses briefly about various approaches towards the synthesis of anisotropic nanomaterials and their applications in CO2 utilization. The article also highlights the challenges and opportunities in this field and the future direction of research.
Collapse
|
7
|
Li CF, Guo RT, Zhang ZR, Wu T, Pan WG. Converting CO 2 into Value-Added Products by Cu 2 O-Based Catalysts: From Photocatalysis, Electrocatalysis to Photoelectrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207875. [PMID: 36772913 DOI: 10.1002/smll.202207875] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/19/2023] [Indexed: 05/11/2023]
Abstract
Converting CO2 into value-added products by photocatalysis, electrocatalysis, and photoelectrocatalysis is a promising method to alleviate the global environmental problems and energy crisis. Among the semiconductor materials applied in CO2 catalytic reduction, Cu2 O has the advantages of abundant reserves, low price and environmental friendliness. Moreover, Cu2 O has unique adsorption and activation properties for CO2 , which is conducive to the generation of C2+ products through CC coupling. This review introduces the basic principles of CO2 reduction and summarizes the pathways for the generation of C1 , C2 , and C2+ products. The factors affecting CO2 reduction performance are further discussed from the perspective of the reaction environment, medium, and novel reactor design. Then, the properties of Cu2 O-based catalysts in CO2 reduction are summarized and several optimization strategies to enhance their stability and redox capacity are discussed. Subsequently, the application of Cu2 O-based catalysts in photocatalytic, electrocatalytic, and photoelectrocatalytic CO2 reduction is described. Finally, the opportunities, challenges and several research directions of Cu2 O-based catalysts in the field of CO2 catalytic reduction are presented, which is guidance for its wide application in the energy and environmental fields is provided.
Collapse
Affiliation(s)
- Chu-Fan Li
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Rui-Tang Guo
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
- Shanghai Non-Carbon Energy Conversion and Utilization Institute, Shanghai, 200090, P. R. China
| | - Zhen-Rui Zhang
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Tong Wu
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Wei-Guo Pan
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
- Shanghai Non-Carbon Energy Conversion and Utilization Institute, Shanghai, 200090, P. R. China
| |
Collapse
|
8
|
Li X, Xiong J, Tang Z, He W, Wang Y, Wang X, Zhao Z, Wei Y. Recent Progress in Metal Oxide-Based Photocatalysts for CO 2 Reduction to Solar Fuels: A Review. Molecules 2023; 28:molecules28041653. [PMID: 36838641 PMCID: PMC9961657 DOI: 10.3390/molecules28041653] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
One of the challenges in developing practical CO2 photoconversion catalysts is the design of materials with a low cost, high activity and good stability. In this paper, excellent photocatalysts based on TiO2, WO3, ZnO, Cu2O and CeO2 metal oxide materials, which are cost-effective, long-lasting, and easy to fabricate, are evaluated. The characteristics of the nanohybrid catalysts depend greatly on their architecture and design. Thus, we focus on outstanding materials that offer effective and practical solutions. Strategies to improve CO2 conversion efficiency are summarized, including heterojunction, ion doping, defects, sensitization and morphology control, which can inspire the future improvement in photochemistry. The capacity of CO2 adsorption is also pivotal, which varies with the morphological and electronic structures. Forms of 0D, 1D, 2D and 3DOM (zero/one/two-dimensional- and three-dimensional-ordered macroporous, respectively) are involved. Particularly, the several advantages of the 3DOM material make it an excellent candidate material for CO2 conversion. Hence, we explain its preparation method. Based on the discussion, new insights and prospects for designing high-efficient metallic oxide photocatalysts to reduce CO2 emissions are presented.
Collapse
Affiliation(s)
- Xuanzhen Li
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, China
| | - Jing Xiong
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, China
- Key Laboratory of Optical Detection Technology for Oil and Gas, China University of Petroleum, Beijing 102249, China
| | - Zhiling Tang
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, China
| | - Wenjie He
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, China
| | - Yingli Wang
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, China
| | - Xiong Wang
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, China
| | - Zhen Zhao
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, China
| | - Yuechang Wei
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, China
- Key Laboratory of Optical Detection Technology for Oil and Gas, China University of Petroleum, Beijing 102249, China
- Correspondence:
| |
Collapse
|
9
|
Wu Y, Li Y, Li H, Guo H, Yang Q, Li X. Tunning heterostructures interface of Cu2O@HKUST-1 for enhanced photocatalytic degradation of tetracycline hydrochloride. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
10
|
Izadpanah Ostad M, Niknam Shahrak M, Galli F. The effect of different reaction media on photocatalytic activity of Au- and Cu-decorated zeolitic imidazolate Framework-8 toward CO2 photoreduction to methanol. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
11
|
Zheng MW, Yang SJ, Pu YC, Liu SH. Mechanisms of biochar enhanced Cu 2O photocatalysts in the visible-light photodegradation of sulfamethoxazole. CHEMOSPHERE 2022; 307:135984. [PMID: 35964722 DOI: 10.1016/j.chemosphere.2022.135984] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/16/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Cu2O nanoparticles are decorated with biochars derived from spent coffee grounds (denoted as Cu2O/SCG) and applied as visible-light-active photocatalysts in the sulfamethoxazole (SMX) degradation. The physicochemical properties of Cu2O/SCG are identified by various spectral analysis, electrochemical and photochemical techniques. As a result, the Cu2O/SCG exhibits the higher removal efficiency of SMX than the pristine Cu2O under visible light irradiation. We can observe that Cu2O could be incorporated onto the SCG biochars with rich oxygen vacancies/adsorbed hydroxyl groups. In addition, the Cu2O/SCG has the lower charge transfer resistance, faster interfacial electron transfer kinetics, decreased recombination of charge carriers and superior absorbance of visible light. The construction of band diagrams for Cu2O/SCG and pristine Cu2O via UV-vis spectra and Mott-Schottky plots suggest that the band energy shifts and higher carrier density of Cu2O/SCG may be responsible for the photocatalytic activity enhancements. From the radical scavenger experiments and electron paramagnetic resonance spectra, the aforementioned energy shifts could decrease the energy requirement of transferring photoinduced electrons to the potential for the formation of active superoxide radicals (·O2-) via one and two-electron reduction routes in the photocatalytic reaction. A proposed degradation pathway shows that ·O2- and h+ are two main active species which can efficiently degrade SMX into reaction intermediates by oxidation, hydroxylation, and ring opening. This research demonstrates the alternative replacement of conventional carbon materials for the preparation of biochar-assisted Cu2O photocatalysts which are applied in the environmental decontamination by using solar energy.
Collapse
Affiliation(s)
- Meng-Wei Zheng
- Department of Environmental Engineering, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Shan-Jen Yang
- Department of Materials Science, National University of Tainan, Tainan, 70005, Taiwan
| | - Ying-Chih Pu
- Department of Materials Science, National University of Tainan, Tainan, 70005, Taiwan
| | - Shou-Heng Liu
- Department of Environmental Engineering, National Cheng Kung University, Tainan, 70101, Taiwan.
| |
Collapse
|
12
|
Mubarak S, Dhamodharan D, Byun HS, Arya S, Pattanayak DK. Effective photoelectrocatalytic reduction of CO2 to formic acid using controllably annealed TiO2 nanoparticles derived from porous structured Ti foil. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
13
|
Khan M, Assal ME, Nawaz Tahir M, Khan M, Ashraf M, Rafe Hatshan M, Khan M, Varala R, Mohammed Badawi N, Farooq Adil S. Graphene/Inorganic Nanocomposites: Evolving Photocatalysts for Solar Energy Conversion for Environmental Remediation. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Okoye-Chine CG, Otun K, Shiba N, Rashama C, Ugwu SN, Onyeaka H, Okeke CT. Conversion of carbon dioxide into fuels—A review. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
15
|
Yang SJ, Lin YK, Pu YC, Hsu YJ. Crystal Facet Dependent Energy Band Structures of Polyhedral Cu 2O Nanocrystals and Their Application in Solar Fuel Production. J Phys Chem Lett 2022; 13:6298-6305. [PMID: 35786932 DOI: 10.1021/acs.jpclett.2c01632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We demonstrated a facile hydrothermal method to synthesize the (100)-, (110)- and (111)-oriented Cu2O nanocrystals (NCs) by controlling the concentration of the incorporated anions (CO32- and SO32-). The crystal facet dependent activity of the orientation controlled Cu2O NCs in the rhodamine B (RhB) photodegradation and photocatalytic hydrogen (H2) evolution was found to follow the trend: (111) > (110) > (100). The mechanism was investigated by characterizing the optical property, energy band structure, interfacial charge carrier dynamics and reducing ability. The results indicated that the (111)-oriented Cu2O NCs exhibit the higher conduction band (CB) potential as compared with the (110)-oriented and (100)-oriented Cu2O NCs, which resulted in the largest driving force of interfacial electron transfer for (111)-oriented Cu2O NCs to carry out solar fuel generation. The current study offers an easy strategy for crystal facet engineering of semiconductors and provides important physical insights into their electronic properties for the desired solar energy conversions.
Collapse
Affiliation(s)
- Shan-Jen Yang
- Department of Materials Science, National University of Tainan, Tainan 70005, Taiwan
| | - Yin-Kai Lin
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan 30010, Taiwan
| | - Ying-Chih Pu
- Department of Materials Science, National University of Tainan, Tainan 70005, Taiwan
| | - Yung-Jung Hsu
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan 30010, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
16
|
Wang W, Wang L, Su W, Xing Y. Photocatalytic CO2 reduction over copper-based materials: A review. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
17
|
Du H, Gao X, Ma Q, Yang X, Zhao TS. Cu/PCN Metal-Semiconductor Heterojunction by Thermal Reduction for Photoreaction of CO 2-Aerated H 2O to CH 3OH and C 2H 5OH. ACS OMEGA 2022; 7:16817-16826. [PMID: 35601319 PMCID: PMC9118400 DOI: 10.1021/acsomega.2c01827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/18/2022] [Indexed: 06/15/2023]
Abstract
g-C3N4-based materials show potential for photoreduction of CO2 to oxygenates but are subjected to fast recombination of photogenerated charge carriers. Here, a novel Cu-dispersive protonated g-C3N4 (PCN) metal-semiconductor (m-s) heterojunction from thermal reduction of a Cu2O/PCN precursor was prepared and characterized using in situ X-ray diffraction, scanning transmission electron microscopy, X-ray photoelectron spectroscopy, ultraviolet-visible (UV-vis) spectra, photoluminescence (PL) spectra, transient photocurrent response, and electrochemical impedance spectroscopy (EIS). The Cu amount in Cu/PCN and the reduction temperature affected the generation of CH3OH and C2H5OH from the photoreaction of CO2-aerated H2O. During calcination of Cu2O/PCN in N2 at 550 °C, Cu2O was completely reduced to Cu with even dispersion, and a m-s heterojunction was obtained. With thermal exfoliation, Cu/PCN showed a specific surface area and layer spacing larger than those of PCN. Cu/PCN-0.5 (12.8 wt % Cu) exhibited a total carbon yield of 25.0 μmol·g-1 under UV-vis irradiation for 4 h, higher than that of Cu2O/PCN (13.6 μmol·g-1) and PCN (6.0 μmol·g-1). The selectivity for CH3OH and C2H5OH was 51.42 and 46.14%, respectively. The PL spectra, transient photocurrent response, and EIS characterizations indicated that Cu/PCN heterojunction promotes the separation of electrons and holes and suppresses their recombination. The calculated conduction band position was more negative, which is conducive to the multielectron reactions for CH3OH and C2H5OH generation.
Collapse
|
18
|
Du H, Ma Q, Gao X, Zhao TS. Cu/ZnV 2O 4 Heterojunction Interface Promoted Methanol and Ethanol Generation from CO 2 and H 2O under UV-Vis Light Irradiation. ACS OMEGA 2022; 7:7278-7286. [PMID: 35252717 PMCID: PMC8892670 DOI: 10.1021/acsomega.1c07108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Adopting the concurrent reduction of Cu2O during hydrothermal preparation of ZnV2O4, metal-semiconductor heterojunction Cu/ZnV2O4 nanorods were synthesized and applied to the catalytic generation of methanol and ethanol from CO2 aerated water under UV-vis light irradiation. 10Cu/ZnV2O4 obtained from 10 wt % composite amount of Cu2O exhibited a total carbon yield of 6.49 μmol·g-1·h-1. The yield of CH3OH and C2H5OH reached 3.30 and 0.86 μmol·g-1·h-1, respectively. 2.5Cu/ZnV2O4 displayed the highest ethanol yield of 1.58 μmol·g-1·h-1 due to the strong absorption in the visible light. Cu/ZnV2O4 was characterized using X-ray diffraction (XRD), scanning transmission electron microscopy (STEM), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible (UV-vis) spectra, photoluminescence (PL) spectra, transient photocurrent response, and electrochemical impedance spectroscopy (EIS). Results showed that composite Cu0-ZnV2O4 increased the surface area and tuned the energy band position, which matches the reaction potential toward methanol and ethanol. The photocatalytic activity toward CH3OH and C2H5OH on Cu/ZnV2O4 is attributed to faster transmission and a slow recombination rate of photogenerated carriers at the heterojunction interface. Multielectron reactions for the production of CH3OH and C2H5OH are promoted. Free radical capture experiments indicated that the active species boost the reaction in the order of •OH > e- > h+.
Collapse
Affiliation(s)
- Huihui Du
- State Key Laboratory of High-efficiency
Utilization of Coal and Green Chemical Engineering, College of Chemistry
& Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Qingxiang Ma
- State Key Laboratory of High-efficiency
Utilization of Coal and Green Chemical Engineering, College of Chemistry
& Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Xinhua Gao
- State Key Laboratory of High-efficiency
Utilization of Coal and Green Chemical Engineering, College of Chemistry
& Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Tian-Sheng Zhao
- State Key Laboratory of High-efficiency
Utilization of Coal and Green Chemical Engineering, College of Chemistry
& Chemical Engineering, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
19
|
Abstract
Constantly increasing hydrocarbon fuel combustion along with high levels of carbon dioxide emissions has given rise to a global energy crisis and environmental alterations. Photocatalysis is an effective technique for addressing this energy and environmental crisis. Clean and renewable solar energy is a very favourable path for photocatalytic CO2 reduction to value-added products to tackle problems of energy and the environment. The synthesis of various products such as CH4, CH3OH, CO, EtOH, etc., has been expanded through the photocatalytic reduction of CO2. Among these products, methanol is one of the most important and highly versatile chemicals widely used in industry and in day-to-day life. This review emphasizes the recent progress of photocatalytic CO2 hydrogenation to CH3OH. In particular, Metal organic frameworks (MOFs), mixed-metal oxide, carbon, TiO2 and plasmonic-based nanomaterials are discussed for the photocatalytic reduction of CO2 to methanol. Finally, a summary and perspectives on this emerging field are provided.
Collapse
|
20
|
Zhao GQ, Hu J, Long X, Zou J, Yu JG, Jiao FP. A Critical Review on Black Phosphorus-Based Photocatalytic CO 2 Reduction Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102155. [PMID: 34309180 DOI: 10.1002/smll.202102155] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/22/2021] [Indexed: 06/13/2023]
Abstract
Energy shortages and greenhouse effects are two unavoidable problems that need to be solved. Photocatalytically converting CO2 into a series of valuable chemicals is considered to be an effective means of solving the above dilemmas. Among these photocatalysts, the utilization of black phosphorus for CO2 photocatalytic reduction deserves a lightspot not only for its excellent catalytic activity through different reaction routes, but also on account of the great preponderance of this relatively cheap catalyst. Herein, this review offers a summary of the recent advances in synthesis, structure, properties, and application for CO2 photocatalytic reduction. In detail, the review starts from the basic principle of CO2 photocatalytic reduction. In the following section, the synthesis, structure, and properties, as well as CO2 photocatalytic reduction process of black phosphorus-based photocatalyst are discussed. In addition, some possible influencing factors and reaction mechanism are also summarized. Finally, a summary and the possible future perspectives of black phosphorus-based photocatalyst for CO2 reduction are established.
Collapse
Affiliation(s)
- Guo-Qing Zhao
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Jun Hu
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Xuan Long
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Jiao Zou
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Jin-Gang Yu
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Fei-Peng Jiao
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| |
Collapse
|
21
|
Baran T, Visibile A, Busch M, He X, Wojtyla S, Rondinini S, Minguzzi A, Vertova A. Copper Oxide-Based Photocatalysts and Photocathodes: Fundamentals and Recent Advances. Molecules 2021; 26:7271. [PMID: 34885863 PMCID: PMC8658916 DOI: 10.3390/molecules26237271] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 11/25/2022] Open
Abstract
This work aims at reviewing the most impactful results obtained on the development of Cu-based photocathodes. The need of a sustainable exploitation of renewable energy sources and the parallel request of reducing pollutant emissions in airborne streams and in waters call for new technologies based on the use of efficient, abundant, low-toxicity and low-cost materials. Photoelectrochemical devices that adopts abundant element-based photoelectrodes might respond to these requests being an enabling technology for the direct use of sunlight to the production of energy fuels form water electrolysis (H2) and CO2 reduction (to alcohols, light hydrocarbons), as well as for the degradation of pollutants. This review analyses the physical chemical properties of Cu2O (and CuO) and the possible strategies to tune them (doping, lattice strain). Combining Cu with other elements in multinary oxides or in composite photoelectrodes is also discussed in detail. Finally, a short overview on the possible applications of these materials is presented.
Collapse
Affiliation(s)
- Tomasz Baran
- SajTom Light Future, Wężerów 37/1, 32-090 Wężerów, Poland; (T.B.); (S.W.)
| | - Alberto Visibile
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, 41296 Gothenburg, Sweden;
| | - Michael Busch
- Department of Chemistry and Material Science, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland;
| | - Xiufang He
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy; (X.H.); (S.R.); (A.V.)
| | - Szymon Wojtyla
- SajTom Light Future, Wężerów 37/1, 32-090 Wężerów, Poland; (T.B.); (S.W.)
| | - Sandra Rondinini
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy; (X.H.); (S.R.); (A.V.)
| | - Alessandro Minguzzi
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy; (X.H.); (S.R.); (A.V.)
| | - Alberto Vertova
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy; (X.H.); (S.R.); (A.V.)
| |
Collapse
|
22
|
Liu B, Yao X, Zhang Z, Li C, Zhang J, Wang P, Zhao J, Guo Y, Sun J, Zhao C. Synthesis of Cu 2O Nanostructures with Tunable Crystal Facets for Electrochemical CO 2 Reduction to Alcohols. ACS APPLIED MATERIALS & INTERFACES 2021; 13:39165-39177. [PMID: 34382393 DOI: 10.1021/acsami.1c03850] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Electrochemical CO2 reduction enables the conversion of intermittent renewable energy to value-added chemicals and fuel, presenting a promising strategy to relieve CO2 emission and achieve clean energy storage. In this work, we developed nanosized Cu2O catalysts using the hydrothermal method for electrochemical CO2 reduction to alcohols. Cu2O nanoparticles (NPs) of various morphologies that were enclosed with different crystal facets, named as Cu2O-c (cubic structure with (100) facets), Cu2O-o (octahedron structure with (111) facets), Cu2O-t (truncated octahedron structure with both (100) and (111) facets), and Cu2O-u (urchin-like structure with (100), (220), and (222) facets), were prepared by regulating the content of a polyvinyl pyrrolidone (PVP) template. The electrochemical CO2 reduction performance of the different Cu2O NPs was evaluated in the CO2-saturated 0.5 M KHCO3 electrolyte. The as-synthesized Cu2O nanostructures were capable of reducing CO2 to produce alcohols including methanol, ethanol, and isopropanol. The alcohol selectivity of the different Cu2O NPs followed the order of Cu2O-t < Cu2O-u < Cu2O-c < Cu2O-o (with the total Faradaic efficiencies of alcohol products of 10.7, 25.0, 26.2, and 35.4%). The facet-dependent effects were associated with the varied concentrations of oxygen-vacancy defects, different energy barriers of CO2 reduction, and distinct Cu-O bond lengths over the different crystal facets. The desired Cu2O-o catalyst exhibited good reduction activity with the highest partial current density of 0.51 mA/cm2 for alcohols. The Faradaic efficiencies of alcohol products were 4.9% for methanol, 17.9% for ethanol, and 12.6% for isopropanol. The good electrochemical CO2 reduction performance was also associated with the surface reconstruction of Cu2O, which endowed the catalyst with abundant Cu0 and Cu+ sites for promoted CO2 activation and stabilized CO* adsorption for enhanced C-C coupling. This work will provide a new route for enhancing the alcohol selectivity of nanostructured Cu2O catalysts by crystal facet engineering.
Collapse
Affiliation(s)
- Bingqian Liu
- School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210042, China
| | - Xi Yao
- School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210042, China
| | - Zijing Zhang
- School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210042, China
| | - Changhai Li
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, China
| | - Jiaqing Zhang
- State Grid Anhui Electric Power Research Institute, Hefei 230022, China
| | - Puyao Wang
- School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210042, China
| | - Jiayi Zhao
- School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210042, China
| | - Yafei Guo
- School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210042, China
| | - Jian Sun
- School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210042, China
| | - Chuanwen Zhao
- School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210042, China
| |
Collapse
|
23
|
Kou Z, Li X, Wang T, Ma Y, Zang W, Nie G, Wang J. Fundamentals, On-Going Advances and Challenges of Electrochemical Carbon Dioxide Reduction. ELECTROCHEM ENERGY R 2021. [DOI: 10.1007/s41918-021-00096-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
24
|
Zhang YH, Liu MM, Chen JL, Fang SM, Zhou PP. Recent advances in Cu 2O-based composites for photocatalysis: a review. Dalton Trans 2021; 50:4091-4111. [PMID: 33710176 DOI: 10.1039/d0dt04434b] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cu2O-based composites for photocatalysis have been extensively explored owing to their promising application in solving environmental and energy problems. At present, the research on photocatalysis is focused on improving the photocatalytic performance of materials. It has been reported that adjusting the morphology and size of Cu2O can effectively improve its photocatalytic property. However, photocorrosion is still an inevitable problem, which hinders the application of Cu2O in photocatalysis. The strategies of constructing heterogeneous nanostructures and ion doping can significantly improve the light stability, light absorption capacity and separation efficiency of electron-hole pairs. Cu2O-based composites exhibit superior performances in degrading organic matter, producing hydrogen, reducing CO2 and sterilization. Therefore, the construction of multi-materials will be one of the future directions in their photocatalytic application. This review summarizes the recent strategies for enhancing the photocatalytic activity of Cu2O by analyzing different Cu2O-based photocatalysts, and the charge transfer pathway is further discussed in detail. Finally, several opportunities and challenges in the field of photocatalysis are illustrated.
Collapse
Affiliation(s)
- Yong-Hui Zhang
- College of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China.
| | | | | | | | | |
Collapse
|
25
|
Huang X, Gu W, Ma Y, Liu D, Ding N, Zhou L, Lei J, Wang L, Zhang J. Recent advances of doped graphite carbon nitride for photocatalytic reduction of CO2: a review. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04278-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
26
|
Altaf N, Liang S, Iqbal R, Hayat M, Reina TR, Wang Q. Cu-CuOx/rGO catalyst derived from hybrid LDH/GO with enhanced C2H4 selectivity by CO2 electrochemical reduction. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
27
|
Roy S. Tale of Two Layered Semiconductor Catalysts toward Artificial Photosynthesis. ACS APPLIED MATERIALS & INTERFACES 2020; 12:37811-37833. [PMID: 32805975 DOI: 10.1021/acsami.0c11245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The ever-increasing reliance on nonrenewable fossil fuels due to massive urbanization and industrialization created problems such as depletion of the primary feedstock and raised the atmospheric CO2 levels causing global warming. A smart and promising approach is artificial photosynthesis that photocatalytically valorizes CO2 into high-value chemicals. The inexpensive layered semiconductors like g-C3N4 and rGO or GO have the potential to make the process practically feasible for real applications. The suitable band positions with respect to the reduction potentials coupled with the typical surface properties of these layered semiconductors play a beneficial role in photoreduction of CO2. Additionally, the creation of heterojunction interfaces to achieve the Z-scheme by anchoring g-C3N4 and rGO with another semiconductor with proper band alignment and dispersing plasmonic nano metals to obtain Schottky barriers on the layered surfaces also help retarding the electron-hole recombination and boost up the catalytic efficacy. Extensive exploration happened in recent years toward artificial photosynthesis over these materials, which needs a critical compendium. Surprisingly, in spite of the recent explosion of studies on photocatalytic reduction of CO2 over metal-free semiconductors, there is not a single review on comparing the mechanistic aspects of photoreduction of CO2 over the layered semiconductors g-C3N4 and rGO. This review stands out as a unique documentation, where the mechanism of photocatalytic reduction of CO2 over this set of materials is critically examined in the context of band and surface modifications. An overall conclusion and outlook at the end indicates the need to develop prototypes for artificial photosynthesis with these well-studied semiconducting layered materials to yield solar fuels.
Collapse
Affiliation(s)
- Sounak Roy
- Department of Chemistry, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad 500078, India
| |
Collapse
|
28
|
Ong W, Putri LK, Mohamed AR. Rational Design of Carbon‐Based 2D Nanostructures for Enhanced Photocatalytic CO
2
Reduction: A Dimensionality Perspective. Chemistry 2020; 26:9710-9748. [DOI: 10.1002/chem.202000708] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/03/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Wee‐Jun Ong
- School of Energy and Chemical Engineering Xiamen University Malaysia Selangor Darul Ehsan 43900 Malaysia
- College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P.R.China
| | - Lutfi Kurnianditia Putri
- Low Carbon Economy (LCE) Research Group School of Chemical Engineering Universiti Sains Malaysia Nibong Tebal 14300 Pulau Pinang Malaysia
| | - Abdul Rahman Mohamed
- Low Carbon Economy (LCE) Research Group School of Chemical Engineering Universiti Sains Malaysia Nibong Tebal 14300 Pulau Pinang Malaysia
| |
Collapse
|
29
|
Aranda-Aguirre A, Ojeda J, Ferreira de Brito J, Garcia-Segura S, Boldrin Zanoni MV, Alarcon H. Photoelectrodes of Cu2O with interfacial structure of topological insulator Bi2Se3 contributes to selective photoelectrocatalytic reduction of CO2 towards methanol. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101154] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
30
|
Zheng Q, Wei Y, Zeng X, Xia W, Lu Q, Sun J, Li Z, Fang W. Effect of bandgap alignment on the photoreduction of CO 2 into methane based on Cu 2O-decorated CuO microspheres. NANOTECHNOLOGY 2020; 31:425402. [PMID: 32575093 DOI: 10.1088/1361-6528/ab9f74] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Semiconductors' band gap alignment is important for the photoreduction of CO2 to methane. In the paper, two kinds of Cu2O-decorated CuO microspheres composed with nanoflakes were prepared by using two different methods. Their electron behaviors were studied from the XPS spectra and photoelectrochemical measurements. Both samples are p-type CuO covered with an amount of Cu2O nanoparticles on their surface. Combined with their bandgaps and flat band potentials, CuO-Mic has a well-matched bandgap alignment between Cu2O and CuO, which is favorable for the separation of photogenerated electron-hole pairs. Those photogenerated carriers are beneficial for the conversion of CO2 to CH4, as an 8-electron process for the conversion of CO2 to CH4 will consume more photogenerated electrons for the chemical reactions than that of the 2-electron process for CO2 reduction to CO. Therefore, CuO-Mic has much better photocatalytic activity for CO2 reduction to CH4 with a CH4 yield ten times higher than that of CuO-Hyd under a visible light irradiation, the CO yields of the CO2 reduction are identical.
Collapse
Affiliation(s)
- Qian Zheng
- College of Physics Science and Technology & Institute of Optoelectronic Technology, Yangzhou University, Yangzhou 225002, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Pu YC, Wang LC, Wu SN, Chang JC, Yeh CS. Aspect Ratio-Dependent Charge Carrier Dynamics in Matchstick-like Ag 2S-ZnS Nanorods for Solar Hydrogen Generation. J Phys Chem Lett 2020; 11:2150-2157. [PMID: 32090570 DOI: 10.1021/acs.jpclett.0c00413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Matchstick-like Ag2S-ZnS nanorods (NRs) with a tunable aspect ratio (AR) were synthesized using one-pot thermal decomposition. The ultraviolet photoelectron spectra and time-resolved photoluminescence spectra of the Ag2S-ZnS NRs were collected to study their electronic band structures and charge carrier dynamics. The energy difference (ΔE) at the interface between the ZnS stem and Ag2S tip was altered as the AR of Ag2S-ZnS NRs increased from 11.9 to 18.4, resulting in an enlarged driving force for the delocalized electrons along the conduction band of ZnS being injected into that of Ag2S. The interfacial electron transfer rate constant (ket) from ZnS to Ag2S could be enhanced by ∼2 orders of magnitude from 5.27 × 106 to 3.24 × 108 s-1, leading to a significant improvement in the efficiency of solar hydrogen generation. This investigation provides new physical insights into the manipulation of charge carrier dynamics by means of AR adjustment in semiconductor nanoheterostructures for photoelectric conversions.
Collapse
Affiliation(s)
- Ying-Chih Pu
- Department of Materials Science, National University of Tainan, Tainan 70005, Taiwan
| | - Liu-Chun Wang
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Shu-Ning Wu
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Jui-Cheng Chang
- Bachelor Program in Interdisciplinary Studies, National Yunlin University of Science and Technology, Douliu, Yunlin 64002, Taiwan
| | - Chen-Sheng Yeh
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan 701, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
32
|
Guil-López R, Mota N, Llorente J, Millán E, Pawelec B, Fierro J, Navarro RM. Methanol Synthesis from CO 2: A Review of the Latest Developments in Heterogeneous Catalysis. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E3902. [PMID: 31779127 PMCID: PMC6926878 DOI: 10.3390/ma12233902] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 11/25/2022]
Abstract
Technological approaches which enable the effective utilization of CO2 for manufacturing value-added chemicals and fuels can help to solve environmental problems derived from large CO2 emissions associated with the use of fossil fuels. One of the most interesting products that can be synthesized from CO2 is methanol, since it is an industrial commodity used in several chemical products and also an efficient transportation fuel. In this review, we highlight the recent advances in the development of heterogeneous catalysts and processes for the direct hydrogenation of CO2 to methanol. The main efforts focused on the improvement of conventional Cu/ZnO based catalysts and the development of new catalytic systems targeting the specific needs for CO2 to methanol reactions (unfavourable thermodynamics, production of high amount of water and high methanol selectivity under high or full CO2 conversion). Major studies on the development of active and selective catalysts based on thermodynamics, mechanisms, nano-synthesis and catalyst design (active phase, promoters, supports, etc.) are highlighted in this review. Finally, a summary concerning future perspectives on the research and development of efficient heterogeneous catalysts for methanol synthesis from CO2 will be presented.
Collapse
Affiliation(s)
- R. Guil-López
- Instituto de Catálisis y Petroleoquímica, CSIC, C/Marie Curie 2, Cantoblanco, 28049 Madrid, Spain; (N.M.); (J.L.); (E.M.); (B.P.); (J.L.G.F.)
| | | | | | | | | | | | - R. M. Navarro
- Instituto de Catálisis y Petroleoquímica, CSIC, C/Marie Curie 2, Cantoblanco, 28049 Madrid, Spain; (N.M.); (J.L.); (E.M.); (B.P.); (J.L.G.F.)
| |
Collapse
|