1
|
Waalders NJB, Kox M, Pickkers P. Haemoadsorption to remove inflammatory mediators in sepsis: past, present, and future. Intensive Care Med Exp 2025; 13:38. [PMID: 40117010 PMCID: PMC11928715 DOI: 10.1186/s40635-025-00740-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 02/23/2025] [Indexed: 03/23/2025] Open
Abstract
While a dysregulated immune response is at the center of the sepsis definition, standard care is still solely focussed on prompt administration of antimicrobial therapy, source control, resuscitation and organ supportive therapies. Extracorporeal blood purification therapies, such as haemoadsorption, have been proposed as a possible adjunctive therapy to standard care in sepsis. These adsorption devices aim to rebalance the dysregulated immune response by removal of excessive amounts of circulating inflammatory mediators, including cytokines and endotoxins. Thus far, the effects of haemoadsorption on clinical outcomes have been insufficiently studied and although its routine use is not justified based on the current evidence, multiple centers use these devices in patients with severe septic shock. This narrative review describes the most well-studied adsorption devices as well as a novel selective adsorption device called the 'IL-6-Sieve', including in vitro data showing its capturing potential. Finally, it addresses important considerations for future trials on haemoadsorption in septic patients.
Collapse
Affiliation(s)
- Nicole J B Waalders
- Department of Intensive Care Medicine, Radboud university medical center, Nijmegen, The Netherlands
- Radboud university medical center, Radboud Center for Infectious Diseases (RCI), Nijmegen, The Netherlands
| | - Matthijs Kox
- Department of Intensive Care Medicine, Radboud university medical center, Nijmegen, The Netherlands
- Radboud university medical center, Radboud Center for Infectious Diseases (RCI), Nijmegen, The Netherlands
| | - Peter Pickkers
- Department of Intensive Care Medicine, Radboud university medical center, Nijmegen, The Netherlands.
- Radboud university medical center, Radboud Center for Infectious Diseases (RCI), Nijmegen, The Netherlands.
| |
Collapse
|
2
|
Dal-Pizzol F, Kluwe-Schiavon B, Dal-Pizzol HR, da Silveira Prestes G, Dominguini D, Girardi CS, Santos L, Moreira JCF, Gelain DP, Walz R, Barichello T, Ritter C. Association of systemic inflammation and long-term dysfunction in COVID-19 patients: A prospective cohort. Psychoneuroendocrinology 2025; 172:107269. [PMID: 39778322 DOI: 10.1016/j.psyneuen.2024.107269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 12/19/2024] [Accepted: 12/22/2024] [Indexed: 01/11/2025]
Abstract
COVID-19 has significant long-term impacts, including a chronic syndrome known as long-COVID, characterized by persistent symptoms post-recovery. The inflammatory response during acute infection is hypothesized to influence long-term outcomes. This study aimed to identify inflammatory biomarkers predictive of functional outcomes one year after hospital discharge. A prospective cohort study was conducted with 213 COVID-19 patients admitted to ICUs in Southern Brazil between June and November 2020. After exclusions and follow-ups, 109 patients were evaluated for one-year post-discharge. Plasma levels of Th1 (TNF-α, INF-γ, IL-12), Th2 (IL-4, IL-5, IL-6, IL-10, IL-13), and Th17 (IL-17, IL-22) cytokines were measured. Functional outcomes in psychiatric, cognitive, general health, and health perception domains were assessed. Statistical analyses included multivariate regression, regularized partial correlation network analysis, and K-means clustering. We demonstrate that plasma levels of various cytokines, along with demographic and clinical characteristics, can predict four distinct domains of functional outcomes one year following hospital discharge due to COVID-19 and that an hyperinflammatory phenotype was associated with the occurrence of a worse in psychiatric, general health, and health perception domains. The network analysis highlighted complex interconnections among immune markers and clinical variables, elucidating their roles in long-term health. These findings support using biomarkers for patient stratification and indicate potential targets for therapeutic interventions.
Collapse
Affiliation(s)
- Felipe Dal-Pizzol
- Laboratory of Experimental Physiopathology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil; Hospital São José Research Center, Criciúma, SC, Brazil.
| | - Bruno Kluwe-Schiavon
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77054, USA
| | - Henrique Ritter Dal-Pizzol
- Center of Oxidative Stress Studies, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul - UFRGS, Porto Alegre 90035-003, Brazil
| | - Gabriele da Silveira Prestes
- Laboratory of Experimental Physiopathology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Diogo Dominguini
- Laboratory of Experimental Physiopathology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Carolina Saibro Girardi
- Center of Oxidative Stress Studies, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul - UFRGS, Porto Alegre 90035-003, Brazil
| | - Lucas Santos
- Center of Oxidative Stress Studies, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul - UFRGS, Porto Alegre 90035-003, Brazil
| | - José Cláudio Fonseca Moreira
- Center of Oxidative Stress Studies, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul - UFRGS, Porto Alegre 90035-003, Brazil
| | - Daniel Pens Gelain
- Center of Oxidative Stress Studies, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul - UFRGS, Porto Alegre 90035-003, Brazil
| | - Roger Walz
- Center for Applied Neuroscience, University Hospital (HU), Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil; Neurology Division, Department of Internal Medicine, University Hospital, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Tatiana Barichello
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77054, USA
| | - Cristiane Ritter
- Laboratory of Experimental Physiopathology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil; Hospital São José Research Center, Criciúma, SC, Brazil
| |
Collapse
|
3
|
Srinivasan R, Ramadoss R, Kandasamy V, Ranganadin P, Green SR, Kasirajan A, Pillai AB. Exploring the regulatory role of small RNAs in modulating host-pathogen interactions: implications for bacterial and viral infections. Mol Biol Rep 2025; 52:115. [PMID: 39799541 DOI: 10.1007/s11033-024-10214-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/30/2024] [Indexed: 01/15/2025]
Abstract
MicroRNAs (miRNAs) and transfer RNA-derived stress-induced RNAs (tiRNAs) have emerged as crucial players in the post-transcriptional regulation of gene expression in various cellular processes, including immunity and host defense against infections. In recent years, increasing evidence has highlighted their complex role in influencing the host response during viral and bacterial infections. miRNAs have been shown to play multiple roles in host-pathogen interaction like TLR activation and altered disease virulence during bacterial infections. In the context of viral infections, miRNAs are involved in regulating viral replication, pathogenesis, and immune evasion. Similarly, tiRNAs have recently emerged as novel players in bacterial and viral infections such as modulating bacterial growth, adaptation to stress conditions, host antiviral responses, and impacting viral replication and pathogenesis. This review provides a comprehensive analysis of the potential of miRNA expression profiles as diagnostic biomarkers to differentiate between bacterial and viral infections. Further discusses the key pathways through which small RNAs regulate bacterial and viral infection-related diseases.
Collapse
Affiliation(s)
- Rajesh Srinivasan
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607402, India
| | - Ramya Ramadoss
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607402, India
| | - Vanathy Kandasamy
- Department of Microbiology, Mahatma Gandhi Medical College and Research Institute (MGMCRI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607402, India
| | - Pajanivel Ranganadin
- Department of Pulmonary Medicine, Mahatma Gandhi Medical College and Research Institute (MGMCRI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607402, India
| | - Siva Ranganathan Green
- Department of General Medicine, Mahatma Gandhi Medical College and Research Institute (MGMCRI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607402, India
| | - Anand Kasirajan
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607402, India
| | - Agieshkumar Balakrishna Pillai
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607402, India.
- Institute of Advanced Virology, Trivandrum, Kerala, 695 317, India.
| |
Collapse
|
4
|
Wu KH, Wu PH, Wang HS, Shiau HM, Hsu YS, Lee CY, Lin YT, Hsiao CT, Lin LC, Chang CP, Chang PJ. Biochemical analysis of soft tissue infectious fluids and its diagnostic value in necrotizing soft tissue infections: a 5-year cohort study. Crit Care 2024; 28:354. [PMID: 39487543 PMCID: PMC11531168 DOI: 10.1186/s13054-024-05146-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Necrotizing soft tissue infections (NSTI) are rapidly progressing and life-threatening conditions that require prompt diagnosis. However, differentiating NSTI from other non-necrotizing skin and soft tissue infections (SSTIs) remains challenging. We aimed to evaluate the diagnostic value of the biochemical analysis of soft tissue infectious fluid in distinguishing NSTIs from non-necrotizing SSTIs. METHODS This cohort study prospectively enrolled adult patients between May 2023 and April 2024, and retrospectively included patients from April 2019 to April 2023. Patients with a clinical suspicion of NSTI in the limbs who underwent successful ultrasound-guided aspiration to obtain soft tissue infectious fluid for biochemical analysis were evaluated and classified into the NSTI and non-necrotizing SSTI groups based on their final discharge diagnosis. Common extravascular body fluid (EBF) criteria were applied. RESULTS Of the 72 patients who met the inclusion criteria, 10 patients with abscesses identified via ultrasound-guided aspiration were excluded. Based on discharge diagnoses, 39 and 23 patients were classified into the NSTI and non-necrotizing SSTI groups, respectively. Biochemical analysis revealed significantly higher albumin, lactate, lactate dehydrogenase (LDH), and total protein levels in the NSTI group than in the non-necrotizing SSTI group, and the NSTI group had significantly lower glucose levels and pH in soft tissue fluids. In the biochemical analysis, LDH demonstrated outstanding discrimination (area under the curve (AUC) = 0.955; p < 0.001) among the biochemical markers. Albumin (AUC = 0.884; p < 0.001), lactate (AUC = 0.891; p < 0.001), and total protein (AUC = 0.883; p < 0.001) levels also showed excellent discrimination. Glucose level (AUC = 0.774; p < 0.001) and pH (AUC = 0.780; p < 0.001) showed acceptable discrimination. When the EBF criteria were evaluated, the total scores of Light's criteria (AUC = 0.925; p < 0.001), fluid-to-serum LDH ratio (AUC = 0.929; p < 0.001), and fluid-to-serum total protein ratio (AUC = 0.927; p < 0.001) demonstrated outstanding discrimination. CONCLUSION Biochemical analysis and EBF criteria demonstrated diagnostic performances ranging from acceptable to outstanding for NSTI when analyzing soft tissue infectious fluid. These findings provide valuable diagnostic insights into the recognition of NSTI. Further research is required to validate these findings.
Collapse
Affiliation(s)
- Kai-Hsiang Wu
- Department of Emergency Medicine, Chang Gung Memorial Hospital, Chiayi, 613, Taiwan
- Department of Nursing, Chang Gung University of Science and Technology, Chiayi Campus, Chiayi, 613, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Po-Han Wu
- Department of Emergency Medicine, Chang Gung Memorial Hospital, Chiayi, 613, Taiwan
| | - Hung-Sheng Wang
- Department of Emergency Medicine, Chang Gung Memorial Hospital, Chiayi, 613, Taiwan
| | - Hsiu-Mei Shiau
- Department of Emergency Medicine, Chang Gung Memorial Hospital, Chiayi, 613, Taiwan
| | - Yung-Sung Hsu
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Chiayi, 613, Taiwan
| | - Chih-Yi Lee
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Chiayi, 613, Taiwan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Yin-Ting Lin
- Division of Infectious Diseases, Department of Internal Medicine, Chang Gung Memorial Hospital, Chiayi, 613, Taiwan
| | - Cheng-Ting Hsiao
- Department of Emergency Medicine, Chang Gung Memorial Hospital, Chiayi, 613, Taiwan
| | - Leng-Chieh Lin
- Department of Emergency Medicine, Chang Gung Memorial Hospital, Chiayi, 613, Taiwan
| | - Chia-Peng Chang
- Department of Emergency Medicine, Chang Gung Memorial Hospital, Chiayi, 613, Taiwan.
- Department of Nursing, Chang Gung University of Science and Technology, Chiayi Campus, Chiayi, 613, Taiwan.
| | - Pey-Jium Chang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan.
- Department of Nephrology, Chang Gung Memorial Hospital, Chiayi, 613, Taiwan.
| |
Collapse
|
5
|
Erhan S, Bilgic B, Ergen E, Erek M, Ergul Ekiz E, Ozcan M, Or ME, Dokuzeylul B, Matur E. Evaluation of the Diversities in the Inflammatory Responses in Cats With Bacterial and Viral Infections. Vet Med Sci 2024; 10:e70098. [PMID: 39474776 PMCID: PMC11522849 DOI: 10.1002/vms3.70098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/22/2024] [Accepted: 10/11/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Understanding the nature of inflammatory responses in cats with bacterial and viral infections is essential for accurately managing the infection. This study aimed to investigate the diversities of inflammatory responses between bacterial and viral infections in cats to figure out their role in the pathophysiology of these infections. METHODS Seventy-five owned cats were included in the study. The evaluations were performed based on three groups: healthy control, bacterial infection group (those with bronchopneumonia and gastrointestinal tract and urinary tract infections) and viral infection group (21 with feline coronavirus [FCoV], 3 with feline leukaemia virus [FeLV] and 1 with feline calicivirus), each containing 25 individuals. Total and differential leukocyte counts, C-reactive protein (CRP), transforming growth factor beta (TGF-β), interleukin-6 (IL-6), tumour necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β) and interleukin-10 (IL-10) concentrations were assessed in the blood samples collected from sick and healthy animals. RESULTS No statistically significant difference was noted in serum TNF-α, IL-1β and IL-10 concentrations of the infected cats (p = 0.996, p = 0.160 and p = 0.930, respectively). Serum TGF-β concentration in the viral infection group was reduced compared to the healthy control (p = 0.001). In contrast, WBC count and IL-6 and CRP concentrations were increased in the cats with bronchopneumonia, gastrointestinal tract infections and urinary tract infections compared to the healthy control and viral infection groups (p = 0.001, p = 0.001 and p = 0.001, respectively). CONCLUSION This study revealed significant differences between bacterial and viral infections regarding the fashion of inflammatory responses in cats, and the relevant data will undoubtedly contribute to the management and control of feline infectious diseases, rendering the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Songul Erhan
- Graduate Education InstituteIstanbul University‐CerrahpasaIstanbulTurkey
| | - Bengu Bilgic
- Department of Internal DiseaseFaculty of Veterinary MedicineIstanbul University‐CerrahpasaIstanbulTurkey
| | - Ezgi Ergen
- Department of PhysiologyFaculty of Veterinary MedicineIstanbul University‐CerrahpasaIstanbulTurkey
| | - Mert Erek
- Department of PhysiologyFaculty of Veterinary MedicineVan Yuzuncu Yıl UniversityVanTurkey
| | - Elif Ergul Ekiz
- Department of PhysiologyFaculty of Veterinary MedicineIstanbul University‐CerrahpasaIstanbulTurkey
| | - Mukaddes Ozcan
- Department of PhysiologyFaculty of Veterinary MedicineIstanbul University‐CerrahpasaIstanbulTurkey
| | - Mehmet Erman Or
- Department of Internal DiseaseFaculty of Veterinary MedicineIstanbul University‐CerrahpasaIstanbulTurkey
| | - Banu Dokuzeylul
- Department of Internal DiseaseFaculty of Veterinary MedicineIstanbul University‐CerrahpasaIstanbulTurkey
| | - Erdal Matur
- Department of PhysiologyFaculty of Veterinary MedicineIstanbul University‐CerrahpasaIstanbulTurkey
| |
Collapse
|
6
|
Saxena J, Das S, Kumar A, Sharma A, Sharma L, Kaushik S, Kumar Srivastava V, Jamal Siddiqui A, Jyoti A. Biomarkers in sepsis. Clin Chim Acta 2024; 562:119891. [PMID: 39067500 DOI: 10.1016/j.cca.2024.119891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Sepsis is a life-threatening condition characterized by dysregulated host response to infection leading to organ dysfunction. Despite advances in understanding its pathology, sepsis remains a global health concern and remains a major contributor to mortality. Timely identification is crucial for improving clinical outcomes, as delayed treatment significantly impacts survival. Accordingly, biomarkers play a pivotal role in diagnosis, risk stratification, and management. This review comprehensively discusses various biomarkers in sepsis and their potential application in antimicrobial stewardship and risk assessment. Biomarkers such as white blood cell count, neutrophil to lymphocyte ratio, erythrocyte sedimentation rate, C-reactive protein, interleukin-6, presepsin, and procalcitonin have been extensively studied for their diagnostic and prognostic value as well as in guiding antimicrobial therapy. Furthermore, this review explores the role of biomarkers in risk stratification, emphasizing the importance of identifying high-risk patients who may benefit from specific therapeutic interventions. Moreover, the review discusses the emerging field of transcriptional diagnostics and metagenomic sequencing. Advances in sequencing have enabled the identification of host response signatures and microbial genomes, offering insight into disease pathology and aiding species identification. In conclusion, this review provides a comprehensive overview of the current understanding and future directions of biomarker-based approaches in sepsis diagnosis, management, and personalized therapy.
Collapse
Affiliation(s)
- Juhi Saxena
- Department of Biotechnology, Parul Institute of Technology, Parul University, Vadodara, Gujarat, India
| | - Sarvjeet Das
- Department of Life Science, Parul Institute of Applied Science, Parul University, Vadodara, Gujarat, India
| | - Anshu Kumar
- Department of Life Science, Parul Institute of Applied Science, Parul University, Vadodara, Gujarat, India
| | - Aditi Sharma
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University of Biotechnology,and Management Sciences, Solan 173229, Himachal Pradesh, India
| | - Lalit Sharma
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University of Biotechnology,and Management Sciences, Solan 173229, Himachal Pradesh, India
| | - Sanket Kaushik
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | | | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Ha'il, Saudi Arabia
| | - Anupam Jyoti
- Department of Life Science, Parul Institute of Applied Science, Parul University, Vadodara, Gujarat, India.
| |
Collapse
|
7
|
Tang J, Shang C, Chang Y, Jiang W, Xu J, Zhang L, Lu L, Chen L, Liu X, Zeng Q, Cao W, Li T. Peripheral PD-1 +NK cells could predict the 28-day mortality in sepsis patients. Front Immunol 2024; 15:1426064. [PMID: 38953031 PMCID: PMC11215063 DOI: 10.3389/fimmu.2024.1426064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 05/31/2024] [Indexed: 07/03/2024] Open
Abstract
Background Unbalanced inflammatory response is a critical feature of sepsis, a life-threatening condition with significant global health burdens. Immune dysfunction, particularly that involving different immune cells in peripheral blood, plays a crucial pathophysiological role and shows early warning signs in sepsis. The objective is to explore the relationship between sepsis and immune subpopulations in peripheral blood, and to identify patients with a higher risk of 28-day mortality based on immunological subtypes with machine-learning (ML) model. Methods Patients were enrolled according to the sepsis-3 criteria in this retrospective observational study, along with age- and sex-matched healthy controls (HCs). Data on clinical characteristics, laboratory tests, and lymphocyte immunophenotyping were collected. XGBoost and k-means clustering as ML approaches, were employed to analyze the immune profiles and stratify septic patients based on their immunological subtypes. Cox regression survival analysis was used to identify potential biomarkers and to assess their association with 28-day mortality. The accuracy of biomarkers for mortality was determined by the area under the receiver operating characteristic (ROC) curve (AUC) analysis. Results The study enrolled 100 septic patients and 89 HCs, revealing distinct lymphocyte profiles between the two groups. The XGBoost model discriminated sepsis from HCs with an area under the receiver operating characteristic curve of 1.0 and 0.99 in the training and testing set, respectively. Within the model, the top three highest important contributions were the percentage of CD38+CD8+T cells, PD-1+NK cells, HLA-DR+CD8+T cells. Two clusters of peripheral immunophenotyping of septic patients by k-means clustering were conducted. Cluster 1 featured higher proportions of PD1+ NK cells, while cluster 2 featured higher proportions of naïve CD4+T cells. Furthermore, the level of PD-1+NK cells was significantly higher in the non-survivors than the survivors (15.1% vs 8.6%, P<0.01). Moreover, the levels of PD1+ NK cells combined with SOFA score showed good performance in predicting the 28-day mortality in sepsis (AUC=0.91,95%CI 0.82-0.99), which is superior to PD1+ NK cells only(AUC=0.69, sensitivity 0.74, specificity 0.64, cut-off value of 11.25%). In the multivariate Cox regression, high expression of PD1+ NK cells proportion was related to 28-day mortality (aHR=1.34, 95%CI 1.19 to 1.50; P<0.001). Conclusion The study provides novel insights into the association between PD1+NK cell profiles and prognosis of sepsis. Peripheral immunophenotyping could potentially stratify the septic patients and identify those with a high risk of 28-day mortality.
Collapse
Affiliation(s)
- Jia Tang
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chenming Shang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Yue Chang
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wei Jiang
- Department of Medical ICU, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jun Xu
- Department of Emergency Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Leidan Zhang
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lianfeng Lu
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ling Chen
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaosheng Liu
- School of Medicine, Tsinghua University, Beijing, China
| | - Qingjia Zeng
- Institute of Medical Information, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wei Cao
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Taisheng Li
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| |
Collapse
|
8
|
Kim S, Ramalho TR, Haynes CM. Regulation of proteostasis and innate immunity via mitochondria-nuclear communication. J Cell Biol 2024; 223:e202310005. [PMID: 38335010 PMCID: PMC10857905 DOI: 10.1083/jcb.202310005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024] Open
Abstract
Mitochondria are perhaps best known as the "powerhouse of the cell" for their role in ATP production required for numerous cellular activities. Mitochondria have emerged as an important signaling organelle. Here, we first focus on signaling pathways mediated by mitochondria-nuclear communication that promote protein homeostasis (proteostasis). We examine the mitochondrial unfolded protein response (UPRmt) in C. elegans, which is regulated by a transcription factor harboring both a mitochondrial- and nuclear-targeting sequence, the integrated stress response in mammals, as well as the regulation of chromatin by mitochondrial metabolites. In the second section, we explore the role of mitochondria-to-nuclear communication in the regulation of innate immunity and inflammation. Perhaps related to their prokaryotic origin, mitochondria harbor molecules also found in viruses and bacteria. If these molecules accumulate in the cytosol, they elicit the same innate immune responses as viral or bacterial infection.
Collapse
Affiliation(s)
- Sookyung Kim
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Theresa R. Ramalho
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Cole M. Haynes
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| |
Collapse
|
9
|
Goncharov NV, Avdonin PP, Voitenko NG, Voronina PA, Popova PI, Novozhilov AV, Blinova MS, Popkova VS, Belinskaia DA, Avdonin PV. Searching for New Biomarkers to Assess COVID-19 Patients: A Pilot Study. Metabolites 2023; 13:1194. [PMID: 38132876 PMCID: PMC10745512 DOI: 10.3390/metabo13121194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
During the initial diagnosis of urgent medical conditions, which include acute infectious diseases, it is important to assess the severity of the patient's clinical state as quickly as possible. Unlike individual biochemical or physiological indicators, derived indices make it possible to better characterize a complex syndrome as a set of symptoms, and therefore quickly take a set of adequate measures. Recently, we reported on novel diagnostic indices containing butyrylcholinesterase (BChE) activity, which is decreased in COVID-19 patients. Also, in these patients, the secretion of von Willebrand factor (vWF) increases, which leads to thrombosis in the microvascular bed. The objective of this study was the determination of the concentration and activity of vWF in patients with COVID-19, and the search for new diagnostic indices. One of the main objectives was to compare the prognostic values of some individual and newly derived indices. Patients with COVID-19 were retrospectively divided into two groups: survivors (n = 77) and deceased (n = 24). According to clinical symptoms and computed tomography (CT) results, the course of disease was predominantly moderate in severity. The first blood sample (first point) was taken upon admission to the hospital, the second sample (second point)-within 4-6 days after admission. Along with the standard spectrum of biochemical indicators, BChE activity (BChEa or BChEb for acetylthiocholin or butyrylthiocholin, respectively), malondialdehyde (MDA), and vWF analysis (its antigen level, AGFW, and its activity, ActWF) were determined and new diagnostic indices were derived. The pooled sensitivity, specificity, and area under the receiver operating curve (AUC), as well as Likelihood ratio (LR) and Odds ratio (OR) were calculated. The level of vWF antigen in the deceased group was 1.5-fold higher than the level in the group of survivors. Indices that include vWF antigen levels are superior to indices using vWF activity. It was found that the index [Urea] × [AGWF] × 1000/(BChEb × [ALB]) had the best discriminatory power to predict COVID-19 mortality (AUC = 0.91 [0.83, 1.00], p < 0.0001; OR = 72.0 [7.5, 689], p = 0.0002). In addition, [Urea] × 1000/(BChEb × [ALB]) was a good predictor of mortality (AUC = 0.95 [0.89, 1.00], p < 0.0001; OR = 31.5 [3.4, 293], p = 0.0024). The index [Urea] × [AGWF] × 1000/(BChEb × [ALB]) was the best predictor of mortality associated with COVID-19 infection, followed by [Urea] × 1000/(BChEb × [ALB]). After validation in a subsequent cohort, these two indices could be recommended for diagnostic laboratories.
Collapse
Affiliation(s)
- Nikolay V. Goncharov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg 194223, Russia; (N.G.V.); (P.A.V.); (A.V.N.); (D.A.B.)
| | - Piotr P. Avdonin
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia; (P.P.A.); (M.S.B.); (V.S.P.); (P.V.A.)
| | - Natalia G. Voitenko
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg 194223, Russia; (N.G.V.); (P.A.V.); (A.V.N.); (D.A.B.)
| | - Polina A. Voronina
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg 194223, Russia; (N.G.V.); (P.A.V.); (A.V.N.); (D.A.B.)
| | | | - Artemy V. Novozhilov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg 194223, Russia; (N.G.V.); (P.A.V.); (A.V.N.); (D.A.B.)
| | - Maria S. Blinova
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia; (P.P.A.); (M.S.B.); (V.S.P.); (P.V.A.)
| | - Victoria S. Popkova
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia; (P.P.A.); (M.S.B.); (V.S.P.); (P.V.A.)
| | - Daria A. Belinskaia
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg 194223, Russia; (N.G.V.); (P.A.V.); (A.V.N.); (D.A.B.)
| | - Pavel V. Avdonin
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia; (P.P.A.); (M.S.B.); (V.S.P.); (P.V.A.)
| |
Collapse
|
10
|
Bode C, Weis S, Sauer A, Wendel-Garcia P, David S. Targeting the host response in sepsis: current approaches and future evidence. Crit Care 2023; 27:478. [PMID: 38057824 PMCID: PMC10698949 DOI: 10.1186/s13054-023-04762-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023] Open
Abstract
Sepsis, a dysregulated host response to infection characterized by organ failure, is one of the leading causes of death worldwide. Disbalances of the immune response play an important role in its pathophysiology. Patients may develop simultaneously or concomitantly states of systemic or local hyperinflammation and immunosuppression. Although a variety of effective immunomodulatory treatments are generally available, attempts to inhibit or stimulate the immune system in sepsis have failed so far to improve patients' outcome. The underlying reason is likely multifaceted including failure to identify responders to a specific immune intervention and the complex pathophysiology of organ dysfunction that is not exclusively caused by immunopathology but also includes dysfunction of the coagulation system, parenchymal organs, and the endothelium. Increasing evidence suggests that stratification of the heterogeneous population of septic patients with consideration of their host response might led to treatments that are more effective. The purpose of this review is to provide an overview of current studies aimed at optimizing the many facets of host response and to discuss future perspectives for precision medicine approaches in sepsis.
Collapse
Affiliation(s)
- Christian Bode
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| | - Sebastian Weis
- Institute for Infectious Disease and Infection Control, University Hospital Jena, Friedrich-Schiller University Jena, Jena, Germany
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Jena, Friedrich-Schiller University Jena, Jena, Germany
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll Institute-HKI, Jena, Germany
| | - Andrea Sauer
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Pedro Wendel-Garcia
- Institute of Intensive Care Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Sascha David
- Institute of Intensive Care Medicine, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
11
|
Songjang W, Paiyabhroma N, Jumroon N, Jiraviriyakul A, Nernpermpisooth N, Seenak P, Kumphune S, Thaisakun S, Phaonakrop N, Roytrakul S, Pankhong P. Proteomic Profiling of Early Secreted Proteins in Response to Lipopolysaccharide-Induced Vascular Endothelial Cell EA.hy926 Injury. Biomedicines 2023; 11:3065. [PMID: 38002065 PMCID: PMC10669054 DOI: 10.3390/biomedicines11113065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Sepsis is a crucial public health problem with a high mortality rate caused by a dysregulated host immune response to infection. Vascular endothelial cell injury is an important hallmark of sepsis, which leads to multiple organ failure and death. Early biomarkers to diagnose sepsis may provide early intervention and reduce risk of death. Damage-associated molecular patterns (DAMPs) are host nuclear or cytoplasmic molecules released from cells following tissue damage. We postulated that DAMPs could potentially be a novel sepsis biomarker. We used an in vitro model to determine suitable protein-DAMPs biomarkers for early sepsis diagnosis. Low and high lipopolysaccharide (LPS) doses were used to stimulate the human umbilical vein endothelial cell line EA.hy926 for 24, 48, and 72 h. Results showed that cell viability was reduced in both dose-dependent and time-dependent manners. Cell injury was corroborated by a significant increase in lactate dehydrogenase (LDH) activity within 24 h in cell-conditioned medium. Secreted protein-DAMPs in the supernatant, collected at different time points within 24 h, were characterized using shotgun proteomics LC-MS/MS analysis. Results showed that there were 2233 proteins. Among these, 181 proteins from the LPS-stimulated EA.hy926 at 1, 12, and 24 h were significantly different from those of the control. Twelve proteins were up-regulated at all three time points. Furthermore, a potential interaction analysis of predominant DAMPs-related proteins using STITCH 5.0 revealed the following associations with pathways: response to stress; bacterium; and LPS (GO:0080134; 0009617; 0032496). Markedly, alpha-2-HS-glycoprotein (AHSG or fetuin-A) and lactotransferrin (LTF) potentially presented since the first hour of LPS stimulation, and were highly up-regulated at 24 h. Taken together, we reported proteomic profiling of vascular endothelial cell-specific DAMPs in response to early an in vitro LPS stimulation, suggesting that these early damage-response protein candidates could be novel early biomarkers associated with sepsis.
Collapse
Affiliation(s)
- Worawat Songjang
- Integrative Biomedical Research Unit (IBRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand; (W.S.)
- Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Nitchawat Paiyabhroma
- Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Noppadon Jumroon
- Integrative Biomedical Research Unit (IBRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand; (W.S.)
- Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Arunya Jiraviriyakul
- Integrative Biomedical Research Unit (IBRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand; (W.S.)
- Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Nitirut Nernpermpisooth
- Integrative Biomedical Research Unit (IBRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand; (W.S.)
- Department of Cardio-Thoracic Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Porrnthanate Seenak
- Integrative Biomedical Research Unit (IBRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand; (W.S.)
- Department of Cardio-Thoracic Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Sarawut Kumphune
- Integrative Biomedical Research Unit (IBRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand; (W.S.)
- Biomedical Engineering and Innovation Research Center, Chiang Mai University, Mueang Chiang Mai District, Chiang Mai 50200, Thailand
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriwan Thaisakun
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Narumon Phaonakrop
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Panyupa Pankhong
- Integrative Biomedical Research Unit (IBRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand; (W.S.)
- Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
12
|
Garvik OS, Póvoa P, Vinholt PJ, Nielsen SL, Jensen TG, Frederiksen H, Chen M, Dessau RB, Coia JE, Møller JK, Gradel KO. Detection of infections by computerized capture of peaks in longitudinally measured C-reactive protein levels. Biomark Med 2023; 17:635-642. [PMID: 37962480 DOI: 10.2217/bmm-2023-0419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023] Open
Abstract
We developed four algorithms for the automatic capture of C-reactive protein (CRP) peaks in 296 adult patients with acute myeloid leukemia who had bloodstream infection (BSI) episodes, negative blood cultures (BCs) or possible infections where no BCs were performed. The algorithms detected CRP peaks for 418-446 of the 586 documented BSI episodes (71.3-76.1%) and 2714-3118 of the 4382 negative BCs (61.9-71.2%). The four algorithms captured 382-789 CRP peaks in which there were neither BSI episodes nor negative BCs. We conclude that automatic capture of CRP peaks is a tool for the monitoring of BSI episodes and possibly other infections in patients with acute myeloid leukemia.
Collapse
Affiliation(s)
- Olav Sivertsen Garvik
- Research Unit of Clinical Epidemiology, Institute of Clinical Research, University of Southern Denmark and Center for Clinical Epidemiology, Odense University Hospital, Kløvervænget 30, Entrance 216, Ground Floor, Odense C, 5000, Denmark
| | - Pedro Póvoa
- Research Unit of Clinical Epidemiology, Institute of Clinical Research, University of Southern Denmark and Center for Clinical Epidemiology, Odense University Hospital, Kløvervænget 30, Entrance 216, Ground Floor, Odense C, 5000, Denmark
- NOVA Medical School, Comprehensive Health Research Center, New University of Lisbon, Campo Mártires da Pátria 130, Lisbon, 1169-056, Portugal
- Department of Intensive Care, São Francisco Xavier Hospital, Centro Hospitalar de Lisboa Ocidental, Estrada do Forte do Alto do Duque, Lisbon, 1449-005, Portugal
| | - Pernille Just Vinholt
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Sdr. Boulevard 29, Entrance 40, Odense C, 5000, Denmark
| | - Stig Lønberg Nielsen
- Department of Infectious Diseases, Odense University Hospital and Research Unit of Infectious Diseases, Department of Clinical Research, University of Southern Denmark, Kløvervænget 4, Odense C, 5000, Denmark
| | - Thøger Gorm Jensen
- Department of Clinical Microbiology, Odense University Hospital and Research Unit of Clinical Microbiology, University of Southern Denmark, JB Winsløws Vej 21, Second Floor, Odense C, 5000, Denmark
| | - Henrik Frederiksen
- Department of Hematology, Odense University Hospital and Research Unit of Hematology, Department of Clinical Research, University of Southern Denmark, Kløvervænget 10, Entrance 112, 12th Floor, Odense C, 5000, Denmark
| | - Ming Chen
- Department of Clinical Microbiology, Hospital of Southern Jutland, Kresten Philipsens Vej 15, Aabenraa, 6200, Denmark
| | - Ram Benny Dessau
- Department of Clinical Microbiology, Zealand University Hospital, Ingemannsvej 46, Slagelse, 4200, Denmark
- Department of Regional Health Research, University of Southern Denmark
| | - John Eugenio Coia
- Department of Clinical Microbiology, Hospital South West Jutland and Department of Regional Health Research, University of Southern Denmark, Finsensgade 35, Esbjerg, 6700, Denmark
| | - Jens Kjølseth Møller
- Department of Clinical Microbiology, Hospital Lillebaelt, Beriderbakken 4, Vejle, 7100, Denmark
- Department of Regional Health Research, University of Southern Denmark
| | - Kim Oren Gradel
- Research Unit of Clinical Epidemiology, Institute of Clinical Research, University of Southern Denmark and Center for Clinical Epidemiology, Odense University Hospital, Kløvervænget 30, Entrance 216, Ground Floor, Odense C, 5000, Denmark
| |
Collapse
|