1
|
Johansson E, Lan Y, Olalekan O, Kuktaite R, Chawade A, Rahmatov M. Alien introgression to wheat for food security: functional and nutritional quality for novel products under climate change. Front Nutr 2024; 11:1393357. [PMID: 38933881 PMCID: PMC11199737 DOI: 10.3389/fnut.2024.1393357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Crop yield and quality has increased globally during recent decades due to plant breeding, resulting in improved food security. However, climate change and shifts in human dietary habits and preferences display novel pressure on crop production to deliver enough quantity and quality to secure food for future generations. This review paper describes the current state-of-the-art and presents innovative approaches related to alien introgressions into wheat, focusing on aspects related to quality, functional characteristics, nutritional attributes, and development of novel food products. The benefits and opportunities that the novel and traditional plant breeding methods contribute to using alien germplasm in plant breeding are also discussed. In principle, gene introgressions from rye have been the most widely utilized alien gene source for wheat. Furthermore, the incorporation of novel resistance genes toward diseases and pests have been the most transferred type of genes into the wheat genome. The incorporation of novel resistance genes toward diseases and pests into the wheat genome is important in breeding for increased food security. Alien introgressions to wheat from e.g. rye and Aegilops spp. have also contributed to improved nutritional and functional quality. Recent studies have shown that introgressions to wheat of genes from chromosome 3 in rye have an impact on both yield, nutritional and functional quality, and quality stability during drought treatment, another character of high importance for food security under climate change scenarios. Additionally, the introgression of alien genes into wheat has the potential to improve the nutritional profiles of future food products, by contributing higher minerals levels or lower levels of anti-nutritional compounds into e.g., plant-based products substituting animal-based food alternatives. To conclude, the present review paper highlights great opportunities and shows a few examples of how food security and functional-nutritional quality in traditional and novel wheat products can be improved by the use of genes from alien sources, such as rye and other relatives to wheat. Novel and upcoming plant breeding methods such as genome-wide association studies, gene editing, genomic selection and speed breeding, have the potential to complement traditional technologies to keep pace with climate change and consumer eating habits.
Collapse
Affiliation(s)
- Eva Johansson
- Department of Plant Breeding, The Swedish University of Agricultural Sciences, Lomma, Sweden
| | | | | | | | | | | |
Collapse
|
2
|
Esposito S, Vitale P, Taranto F, Saia S, Pecorella I, D'Agostino N, Rodriguez M, Natoli V, De Vita P. Simultaneous improvement of grain yield and grain protein concentration in durum wheat by using association tests and weighted GBLUP. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:242. [PMID: 37947927 DOI: 10.1007/s00122-023-04487-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 10/16/2023] [Indexed: 11/12/2023]
Abstract
KEY MESSAGE Simultaneous improvement for GY and GPC by using GWAS and GBLUP suggested a significant application in durum wheat breeding. Despite the importance of grain protein concentration (GPC) in determining wheat quality, its negative correlation with grain yield (GY) is still one of the major challenges for breeders. Here, a durum wheat panel of 200 genotypes was evaluated for GY, GPC, and their derived indices (GPD and GYD), under eight different agronomic conditions. The plant material was genotyped with the Illumina 25 k iSelect array, and a genome-wide association study was performed. Two statistical models revealed dozens of marker-trait associations (MTAs), each explaining up to 30%. phenotypic variance. Two markers on chromosomes 2A and 6B were consistently identified by both models and were found to be significantly associated with GY and GPC. MTAs identified for phenological traits co-mapped to well-known genes (i.e., Ppd-1, Vrn-1). The significance values (p-values) that measure the strength of the association of each single nucleotide polymorphism marker with the target traits were used to perform genomic prediction by using a weighted genomic best linear unbiased prediction model. The trained models were ultimately used to predict the agronomic performances of an independent durum wheat panel, confirming the utility of genomic prediction, although environmental conditions and genetic backgrounds may still be a challenge to overcome. The results generated through our study confirmed the utility of GPD and GYD to mitigate the inverse GY and GPC relationship in wheat, provided novel markers for marker-assisted selection and opened new ways to develop cultivars through genomic prediction approaches.
Collapse
Affiliation(s)
- Salvatore Esposito
- Research Centre for Cereal and Industrial Crops (CREA-CI), CREA - Council for Agricultural Research and Economics, SS 673 Meters 25200, 71122, Foggia, Italy
| | - Paolo Vitale
- Research Centre for Cereal and Industrial Crops (CREA-CI), CREA - Council for Agricultural Research and Economics, SS 673 Meters 25200, 71122, Foggia, Italy
- Department of Agriculture, Food, Natural Science, Engineering, University of Foggia, Via Napoli 25, 71122, Foggia, Italy
| | - Francesca Taranto
- Institute of Biosciences and Bioresources (CNR-IBBR), Via Amendola 165/A, 70126, Bari, Italy
| | - Sergio Saia
- Department of Veterinary Sciences, University of Pisa, 56129, Pisa, Italy
| | - Ivano Pecorella
- Research Centre for Cereal and Industrial Crops (CREA-CI), CREA - Council for Agricultural Research and Economics, SS 673 Meters 25200, 71122, Foggia, Italy
| | - Nunzio D'Agostino
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Monica Rodriguez
- Department of Agriculture, University of Sassari, Viale Italia, 39, 07100, Sassari, Italy
| | - Vincenzo Natoli
- Genetic Services SRL, Contrada Catenaccio, snc, 71026, Deliceto, FG, Italy
| | - Pasquale De Vita
- Research Centre for Cereal and Industrial Crops (CREA-CI), CREA - Council for Agricultural Research and Economics, SS 673 Meters 25200, 71122, Foggia, Italy.
| |
Collapse
|
3
|
Shoormij F, Mirlohi A, Chan-Rodriguez D, Bolibok-Brągoszewska H, Saeidi G. Characterization of 14 Triticum species for the NAM-B1 gene and its associated traits. PLoS One 2023; 18:e0287798. [PMID: 37607184 PMCID: PMC10443865 DOI: 10.1371/journal.pone.0287798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/13/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND Wheat grain protein, zinc (Zn), and iron (Fe) content are important wheat qualities crucial for human nutrition and health worldwide. Increasing these three components simultaneously in wheat grains by a single gene came into the picture through NAM-B1 cloning. NAM-B1 gene and its association with the mentioned grain quality traits have been primarily studied in common and durum wheat and their progenitors T. dicoccum and T. dicoccoides. METHOD In the present study, for the first time, 38 wheat accessions comprising ten hexaploids from five species and 28 tetraploids from nine species were evaluated in the field for two consecutive years. Additionally, the 582 first nucleotides of the NAM-B1 gene were examined. RESULT The NAM-B1 gene was present in 21 tetraploids and five hexaploid accessions. Seven tetraploid accessions contained the wild-type allele (five T. dicoccum, one T. dicoccoides, and one T. ispahanicum) and fourteen the mutated allele with a 'T' insertion at position 11 in the open reading frame, causing a frameshift. In hexaploid wheat comprising the gene, only one accession of T. spelta contained the wild-type allele, and the rest resembled the insertion mutated type. In the two-year field experiment, eight accessions with the wild-type NAM-B1 allele had significantly higher protein, Zn and Fe grain content when compared to indel-type accessions. Additionally, these accessions exhibited a lower mean for seed-filling duration than all other accessions containing indel-type alleles. In terms of grain yield, 1,000-kernel weight, kernel diameter, and kernel length, T. dicoccum accessions having wild-type alleles were similar to the indel-type accessions over two years of evaluation. CONCLUSION These findings further support the possibility of simultaneous improvement of wheat grain protein, Zn, and Fe content by a single gene crucial for human nutrition and health worldwide.
Collapse
Affiliation(s)
- Fatemeh Shoormij
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Aghafakhr Mirlohi
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - David Chan-Rodriguez
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Hanna Bolibok-Brągoszewska
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Ghodratollah Saeidi
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
4
|
Orlovskaya OA, Vakula SI, Yatsevich KK, Khotyleva LV, Kilchevsky AV. Effect of NAM-1 genes on the protein content in grain and productivity indices in common wheat lines with foreign genetic material introgressions in the conditions of Belarus. Vavilovskii Zhurnal Genet Selektsii 2023; 27:197-206. [PMID: 37293448 PMCID: PMC10244585 DOI: 10.18699/vjgb-23-26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 06/10/2023] Open
Abstract
Modern varieties of common wheat (Triticum aestivum L.) bred mainly for high productivity are often of low grain quality. The identification of NAM-1 alleles associated with high grain protein content in wheat relatives has enhanced the significance of distant hybridization for the nutritional value of T. aestivum L. grain. In this work we aimed to study the allelic polymorphism of the NAM-A1 and NAM-B1 genes in wheat introgression lines and their parental forms and evaluate the effects of various NAM-1 variants on the grain protein content and productivity traits in the field conditions of Belarus. We studied parental varieties of spring common wheat, the accessions of tetraploid and hexaploid species of the genus Triticum and 22 introgression lines obtained using them (2017-2021 vegetation periods). Full-length NAM-A1 nucleotide sequences of T. dicoccoides k-5199, T. dicoccum k-45926, T. kiharae, and T. spelta k-1731 accessions were established and registered with the international molecular database GenBank. Six combinations of NAM-A1/B1 alleles were identified in the accessions studied and their frequency of occurrence varied from 40 to 3 %. The cumulative contribution of NAM-A1 and NAM-B1 genes to the variability of economically important wheat traits ranged from 8-10 % (grain weight per plant and thousand kernel weight) to up to 72 % (grain protein content). For most of the traits studied, the proportion of variability determined by weather conditions was small (1.57-18.48 %). It was shown that, regardless of weather conditions, the presence of a functional NAM-B1 allele ensures a high level of grain protein content; at the same time, it does not significantly decrease thousand kernel weight. The genotypes combining the NAM- A1d haplotype and a functional NAM-B1 allele demonstrated high levels of productivity and grain protein content. The results obtained demonstrate the effective introgression of a functional NAM-В1 allele of related species increasing the nutritional value of common wheat.
Collapse
Affiliation(s)
- O A Orlovskaya
- Institute of Genetics and Cytology of the National Academy of Sciences of Belarus, Minsk, Belarus
| | - S I Vakula
- Institute of Genetics and Cytology of the National Academy of Sciences of Belarus, Minsk, Belarus
| | - K K Yatsevich
- Institute of Genetics and Cytology of the National Academy of Sciences of Belarus, Minsk, Belarus
| | - L V Khotyleva
- Institute of Genetics and Cytology of the National Academy of Sciences of Belarus, Minsk, Belarus
| | - A V Kilchevsky
- Institute of Genetics and Cytology of the National Academy of Sciences of Belarus, Minsk, Belarus
| |
Collapse
|
5
|
Rybalka OI, Morhun VV, Morgun BV, Polyshchuk SS, Chervonis MV, Sokolov VM. New Genetic Variation Related to Wheat (Triticum Aestivum L.) Breeding for Quality. CYTOL GENET+ 2023. [DOI: 10.3103/s0095452723010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
6
|
Subedi M, Ghimire B, Bagwell JW, Buck JW, Mergoum M. Wheat end-use quality: State of art, genetics, genomics-assisted improvement, future challenges, and opportunities. Front Genet 2023; 13:1032601. [PMID: 36685944 PMCID: PMC9849398 DOI: 10.3389/fgene.2022.1032601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/20/2022] [Indexed: 01/06/2023] Open
Abstract
Wheat is the most important source of food, feed, and nutrition for humans and livestock around the world. The expanding population has increasing demands for various wheat products with different quality attributes requiring the development of wheat cultivars that fulfills specific demands of end-users including millers and bakers in the international market. Therefore, wheat breeding programs continually strive to meet these quality standards by screening their improved breeding lines every year. However, the direct measurement of various end-use quality traits such as milling and baking qualities requires a large quantity of grain, traits-specific expensive instruments, time, and an expert workforce which limits the screening process. With the advancement of sequencing technologies, the study of the entire plant genome is possible, and genetic mapping techniques such as quantitative trait locus mapping and genome-wide association studies have enabled researchers to identify loci/genes associated with various end-use quality traits in wheat. Modern breeding techniques such as marker-assisted selection and genomic selection allow the utilization of these genomic resources for the prediction of quality attributes with high accuracy and efficiency which speeds up crop improvement and cultivar development endeavors. In addition, the candidate gene approach through functional as well as comparative genomics has facilitated the translation of the genomic information from several crop species including wild relatives to wheat. This review discusses the various end-use quality traits of wheat, their genetic control mechanisms, the use of genetics and genomics approaches for their improvement, and future challenges and opportunities for wheat breeding.
Collapse
Affiliation(s)
- Madhav Subedi
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Griffin Campus, Griffin, GA, United States
| | - Bikash Ghimire
- Department of Plant Pathology, University of Georgia, Griffin Campus, Griffin, GA, United States
| | - John White Bagwell
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Griffin Campus, Griffin, GA, United States
| | - James W. Buck
- Department of Plant Pathology, University of Georgia, Griffin Campus, Griffin, GA, United States
| | - Mohamed Mergoum
- Department of Crop and Soil Sciences, University of Georgia, Griffin Campus, Griffin, GA, United States
| |
Collapse
|
7
|
Iqbal A, Bocian J, Hameed A, Orczyk W, Nadolska-Orczyk A. Cis-Regulation by NACs: A Promising Frontier in Wheat Crop Improvement. Int J Mol Sci 2022; 23:15431. [PMID: 36499751 PMCID: PMC9736367 DOI: 10.3390/ijms232315431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Crop traits are controlled by multiple genes; however, the complex spatio-temporal transcriptional behavior of genes cannot be fully understood without comprehending the role of transcription factors (TFs) and the underlying mechanisms of the binding interactions of their cis-regulatory elements. NAC belongs to one of the largest families of plant-specific TFs and has been associated with the regulation of many traits. This review provides insight into the cis-regulation of genes by wheat NACs (TaNACs) for the improvement in yield-related traits, including phytohormonal homeostasis, leaf senescence, seed traits improvement, root modulation, and biotic and abiotic stresses in wheat and other cereals. We also discussed the current potential, knowledge gaps, and prospects of TaNACs.
Collapse
Affiliation(s)
| | | | | | | | - Anna Nadolska-Orczyk
- Plant Breeding and Acclimatization Institute—National Research Institute, Radzikow, 05-870 Blonie, Poland
| |
Collapse
|
8
|
Chen Y, Wang K, Chen H, Yang H, Zheng T, Huang X, Fan G. Simultaneously genetic selection of wheat yield and grain protein quality in rice-wheat and soybean-wheat cropping systems through critical nitrogen efficiency-related traits. FRONTIERS IN PLANT SCIENCE 2022; 13:899387. [PMID: 36247613 PMCID: PMC9558111 DOI: 10.3389/fpls.2022.899387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Analyzing the contribution of nitrogen (N) uptake and its utilization in grain yield and protein quality-related traits in rice-wheat (RW) and soybean-wheat (SW) cropping systems is essential for simultaneous improvements in the two target traits. A field experiment with nine wheat genotypes was conducted in 2018-19 and 2019-20 cropping years to investigate N uptake and utilization-related traits associated with high wheat yield and good protein quality. Results showed that N uptake efficiency (NUpE) in the RW cropping system and N utilization efficiency (NUtE) in the SW cropping system explained 77.6 and 65.2% of yield variation, respectively, due to the contribution of fertile spikes and grain number per spike to grain yield varied depending on soil water and N availability in the two rotation systems. Lower grain protein content in the RW cropping system in comparison to the SW cropping system was mainly related to lower individual N accumulation at maturity, resulting from higher fertile spikes, rather than N harvest index (NHI). However, NHI in the SW cropping system accounted for greater variation in grain protein content. Both gluten index and post-anthesis N uptake were mainly affected by genotype, and low gluten index caused by high post-anthesis N uptake may be related to the simultaneous increase in kernel weight. N remobilization process associated with gluten quality was driven by increased sink N demand resulting from high grain number per unit area in the RW cropping system; confinement of low sink N demand and source capability resulted in low grain number per spike and water deficit limiting photosynthesis of flag leaf in the SW cropping system. CY-25 obtained high yield and wet gluten content at the expense of gluten index in the two wheat cropping systems, due to low plant height and high post-anthesis N uptake and kernel weight. From these results, we concluded that plant height, kernel weight, and post-anthesis N uptake were the critically agronomic and NUE-related traits for simultaneous selection of grain yield and protein quality. Our research results provided useful guidelines for improving both grain yield and protein quality by identifying desirable N-efficient genotypes in the two rotation systems.
Collapse
Affiliation(s)
- Yufeng Chen
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Kun Wang
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Haolan Chen
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Hongkun Yang
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Ministry of Science and Technology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Eco-Physiology and Farming System in Southwest China, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, China
| | - Ting Zheng
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Ministry of Science and Technology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Eco-Physiology and Farming System in Southwest China, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, China
| | - Xiulan Huang
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Ministry of Science and Technology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Eco-Physiology and Farming System in Southwest China, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, China
| | - Gaoqiong Fan
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Ministry of Science and Technology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Eco-Physiology and Farming System in Southwest China, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
9
|
Gupta PK, Balyan HS, Chhuneja P, Jaiswal JP, Tamhankar S, Mishra VK, Bains NS, Chand R, Joshi AK, Kaur S, Kaur H, Mavi GS, Oak M, Sharma A, Srivastava P, Sohu VS, Prasad P, Agarwal P, Akhtar M, Badoni S, Chaudhary R, Gahlaut V, Gangwar RP, Gautam T, Jaiswal V, Kumar RS, Kumar S, Shamshad M, Singh A, Taygi S, Vasistha NK, Vishwakarma MK. Pyramiding of genes for grain protein content, grain quality, and rust resistance in eleven Indian bread wheat cultivars: a multi-institutional effort. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:21. [PMID: 37309458 PMCID: PMC10248633 DOI: 10.1007/s11032-022-01277-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Improvement of grain protein content (GPC), loaf volume, and resistance to rusts was achieved in 11 Indian wheat cultivars that are widely grown in four different agro-climatic zones of India. This involved use of marker-assisted backcross breeding (MABB) for introgression and pyramiding of the following genes: (i) the high GPC gene Gpc-B1; (ii) HMW glutenin subunits 5 + 10 at Glu-D1 loci, and (iii) rust resistance genes, Yr36, Yr15, Lr24, and Sr24. GPC increased by 0.8 to 3.3%, although high GPC was generally associated with yield penalty. Further selection among high GPC lines allowed identification of progenies with higher GPC associated with improvement in 1000-grain weight and grain yield in the backgrounds of the following four cultivars: NI5439, UP2338, UP2382, and HUW468. The high GPC progenies (derived from NI5439) were also improved for grain quality using HMW glutenin subunits 5 + 10 at Glu-D1 loci. Similarly, progenies combining high GPC and rust resistance were obtained in the backgrounds of following five cultivars: Lok1, HD2967, PBW550, PBW621, and DBW1. The improved pre-bred lines developed following multi-institutional effort should prove a valuable source for the development of cultivars with improved nutritional quality and rust resistance in the ongoing wheat breeding programmes. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01277-w.
Collapse
Affiliation(s)
- Pushpendra K. Gupta
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, 250004 U.P. India
| | - Harindra S. Balyan
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, 250004 U.P. India
| | - Parveen Chhuneja
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, 141004 Punjab India
| | - Jai P. Jaiswal
- Department of Genetics & Plant Breeding, G.B. Pant University of Agriculture & Technology, U.S. Nagar (Uttarakhand), Pantnagar, 263145 India
| | - Shubhada Tamhankar
- Agharkar Research Institute, Gopal Ganesh, Agarkar Rd, Shivajinagar, Pune, 411004 Maharashtra India
| | - Vinod K. Mishra
- Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, BHU, Varanasi, 221005 U.P India
| | - Navtej S. Bains
- Department of Plant Breeding & Genetics, Punjab Agricultural University, Ludhiana, 141004 Punjab India
| | - Ramesh Chand
- Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, BHU, Varanasi, 221005 U.P India
| | - Arun K. Joshi
- Borlaug Institute for South Asia, National Agricultural Science Centre (NASC) Complex, G2, B Block, Dev Prakash Shastri Marg, New Delhi, 110012 India
- CIMMYT, National Agricultural Science Centre (NASC) Complex, Dev Prakash Shastri Marg, New Delhi, 110012 India
| | - Satinder Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, 141004 Punjab India
| | - Harinderjeet Kaur
- Department of Plant Breeding & Genetics, Punjab Agricultural University, Ludhiana, 141004 Punjab India
| | - Gurvinder S. Mavi
- Department of Plant Breeding & Genetics, Punjab Agricultural University, Ludhiana, 141004 Punjab India
| | - Manoj Oak
- Agharkar Research Institute, Gopal Ganesh, Agarkar Rd, Shivajinagar, Pune, 411004 Maharashtra India
| | - Achla Sharma
- Department of Plant Breeding & Genetics, Punjab Agricultural University, Ludhiana, 141004 Punjab India
| | - Puja Srivastava
- Department of Plant Breeding & Genetics, Punjab Agricultural University, Ludhiana, 141004 Punjab India
| | - Virinder S. Sohu
- Department of Plant Breeding & Genetics, Punjab Agricultural University, Ludhiana, 141004 Punjab India
| | - Pramod Prasad
- Regional Station, ICAR-Indian Institute of Wheat and Barley Research, Flowerdale, Shimla, 171002 India
| | - Priyanka Agarwal
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, 250004 U.P. India
| | - Moin Akhtar
- Department of Genetics & Plant Breeding, G.B. Pant University of Agriculture & Technology, U.S. Nagar (Uttarakhand), Pantnagar, 263145 India
| | - Saurabh Badoni
- Department of Genetics & Plant Breeding, G.B. Pant University of Agriculture & Technology, U.S. Nagar (Uttarakhand), Pantnagar, 263145 India
| | - Reeku Chaudhary
- Department of Genetics & Plant Breeding, G.B. Pant University of Agriculture & Technology, U.S. Nagar (Uttarakhand), Pantnagar, 263145 India
| | - Vijay Gahlaut
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, 250004 U.P. India
| | - Rishi Pal Gangwar
- Department of Genetics & Plant Breeding, G.B. Pant University of Agriculture & Technology, U.S. Nagar (Uttarakhand), Pantnagar, 263145 India
| | - Tinku Gautam
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, 250004 U.P. India
| | - Vandana Jaiswal
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, 250004 U.P. India
| | - Ravi Shekhar Kumar
- Department of Genetics & Plant Breeding, G.B. Pant University of Agriculture & Technology, U.S. Nagar (Uttarakhand), Pantnagar, 263145 India
| | - Sachin Kumar
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, 250004 U.P. India
| | - M. Shamshad
- Department of Plant Breeding & Genetics, Punjab Agricultural University, Ludhiana, 141004 Punjab India
| | - Anupama Singh
- Department of Genetics & Plant Breeding, G.B. Pant University of Agriculture & Technology, U.S. Nagar (Uttarakhand), Pantnagar, 263145 India
| | - Sandhya Taygi
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, 250004 U.P. India
| | - Neeraj Kumar Vasistha
- Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, BHU, Varanasi, 221005 U.P India
| | - Manish Kumar Vishwakarma
- Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, BHU, Varanasi, 221005 U.P India
| |
Collapse
|
10
|
Hagenblad J, Vanhala T, Madhavan S, Leino MW. Protein content and HvNAM alleles in Nordic barley (Hordeum vulgare) during a century of breeding. Hereditas 2022; 159:12. [PMID: 35094697 PMCID: PMC8802435 DOI: 10.1186/s41065-022-00227-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 01/13/2022] [Indexed: 11/18/2022] Open
Abstract
Background Barley has been bred for more than a century in the Nordic countries, with dramatic improvements of yield traits. In this study we investigate if this has come at the cost of lower grain protein and micronutrient (iron, zinc) content, by analysing 80 accessions representing four different improvement stages. We further re-sequenced the two grain protein content associated genes HvNAM-1 and HvNAM-2 in full and performed expression analyses of the same genes to search for genetic associations with nutrient content. Results We found higher thousand grain weight in barley landraces and in accessions from the late improvement group compared to accessions from the mid of the twentieth century. Straw length was much reduced in late stage accessions. No significant temporal decrease in grain protein, iron or zinc content during twentieth century Nordic crop improvement could be detected. Out of the 80 accessions only two deviant HvNAM-1 sequences were found, represented by one accession each. These do not appear to be correlated to grain protein content. The sequence of HvNAM-2 was invariable in all accessions and no correlations between expression levels of HvNAM-1 and HvNAM-2 and with grain protein content was found. Conclusions In contrast to studies in wheat, where a strong negative correlation between straw length and grain protein and micronutrient content has been found, we do not see this relationship in Nordic barley. The last 60 years of breeding has reduced straw length but, contrary to expectations, not protein and micronutrient content. Variation in grain protein and micronutrient content was found among the Nordic barley accessions, but it is not explained by variation of HvNAM genes. This means that HvNAM is an unexploited source of genetic variation for nutrient content in Nordic barley. Supplementary Information The online version contains supplementary material available at 10.1186/s41065-022-00227-y.
Collapse
|
11
|
Kiszonas AM, Ibba MI, Boehm JD, Morris CF. Effects of the functional
Gpc‐B1
allele on soft durum wheat grain, milling, flour, dough, and breadmaking quality. Cereal Chem 2021. [DOI: 10.1002/cche.10477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Alecia M. Kiszonas
- USDA‐ARS Western Wheat Quality LaboratoryWashington State University Pullman WA USA
| | - Maria Itria Ibba
- Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT) Texcoco Mexico
| | - Jeffrey D. Boehm
- USDA‐ARS Wheat, Sorghum and Forage Research Unit251 Filley Hall, University of Nebraska‐Lincoln East Campus Lincoln NE USA
| | - Craig F. Morris
- USDA‐ARS Western Wheat Quality LaboratoryWashington State University Pullman WA USA
| |
Collapse
|
12
|
Brar GS, Pozniak CJ, Briggs C, Hucl PJ. Combined selection of Gpc-B1 and Glu-B1 locus encoding the Bx7OE subunit for improving end-use quality of hard white wheat. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Comparative analysis of developing grain transcriptome reveals candidate genes and pathways improving GPC in wheat lines derived from wild emmer. J Appl Genet 2020; 62:17-25. [PMID: 33063291 DOI: 10.1007/s13353-020-00588-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/18/2020] [Accepted: 09/30/2020] [Indexed: 10/23/2022]
Abstract
The grain protein content (GPC) in modern wheat is inherently low. Wild emmer wheat (Triticum turgidum ssp. dicoccoides, 2n = 4x = 28, AABB) gene pool harbors wide genotypic variations in GPC. However, the characterization of candidate genes associated with high GPC is a challenge due to the complex characteristic of this trait. In the current study, we performed RNA-seq analysis on developing grains of wild emmer genotype D1, common wheat CN16, and their hexaploid wide hybrid BAd107-4 with contrasting GPC. We have found a total of 39,795 expressed genes on chromosomes A and B, of which 24,152 were shared between D1, CN16, and BAd107-4. From 1744 differentially expressed genes (DEGs), 1203 were downregulated and 541 were upregulated in the high GPC (D1+BAd107-4) compared with low GPC (CN16) groups. The majority of DEGs were associated with protein processing in endoplasmic reticulum, starch and sucrose metabolism, galactose metabolism, and protein export pathways. Expression levels of nine randomly selected genes were verified by qRT-PCR, which was consistent with the transcriptome data. The present database will help us to understand the potential regulation networks underlying wheat grain protein accumulation and provide the foundation for simultaneous improvement of grain protein content and yield in wheat breeding programs.
Collapse
|
14
|
QTL mapping for quality traits using a high-density genetic map of wheat. PLoS One 2020; 15:e0230601. [PMID: 32208463 PMCID: PMC7092975 DOI: 10.1371/journal.pone.0230601] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/03/2020] [Indexed: 01/27/2023] Open
Abstract
Protein- and starch-related quality traits, which are quantitatively inherited and significantly influenced by the environment, are critical determinants of the end-use quality of wheat. We constructed a high-density genetic map containing 10,739 loci (5,399 unique loci) using a set of 184 recombinant inbred lines (RILs) derived from a cross of 'Tainong 18 × Linmai 6' (TL-RILs). In this study, a quantitative trait loci (QTLs) analysis was used to examine the genetic control of grain protein content, sedimentation value, farinograph parameters, falling number and the performance of the starch pasting properties using TL-RILs grown in a field for three years. A total of 106 QTLs for 13 quality traits were detected, distributed on the 21 chromosomes. Of these, 38 and 68 QTLs for protein- and starch-related traits, respectively, were detected in three environments and their average values (AV). Twenty-six relatively high-frequency QTLs (RHF-QTLs) that were detected in more than two environments. Twelve stable QTL clusters containing at least one RHF-QTL were detected and classified into three types: detected only for protein-related traits (type I), detected only for starch-related traits (type II), and detected for both protein- and starch-related traits (type III). A total of 339 markers flanked with 11 QTL clusters (all except C6), were found to be highly homologous with 282 high confidence (HC) and 57 low confidence (LC) candidate genes based on IWGSC RefSeq v 1.0. These stable QTLs and RHF-QTLs, especially those grouped into clusters, are credible and should be given priority for QTL fine-mapping and identification of candidate genes with which to explain the molecular mechanisms of quality development and inform marker-assisted breeding in the future.
Collapse
|
15
|
Johnson M, Kumar A, Oladzad-Abbasabadi A, Salsman E, Aoun M, Manthey FA, Elias EM. Association Mapping for 24 Traits Related to Protein Content, Gluten Strength, Color, Cooking, and Milling Quality Using Balanced and Unbalanced Data in Durum Wheat [ Triticum turgidum L. var. durum (Desf).]. Front Genet 2019; 10:717. [PMID: 31475032 PMCID: PMC6706462 DOI: 10.3389/fgene.2019.00717] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 07/08/2019] [Indexed: 12/15/2022] Open
Abstract
Durum wheat [Triticum durum (Desf).] is mostly used to produce pasta, couscous, and bulgur. The quality of the grain and end-use products determine its market value. However, quality tests are highly resource intensive and almost impossible to conduct in the early generations in the breeding program. Modern genomics-based tools provide an excellent opportunity to genetically dissect complex quality traits to expedite cultivar development using molecular breeding approaches. This study used a panel of 243 cultivars and advanced breeding lines developed during the last 20 years to identify SNPs associated with 24 traits related to nutritional value and quality. Genome-wide association study (GWAS) identified a total of 179 marker-trait associations (MTAs), located in 95 genomic regions belonging to all 14 durum wheat chromosomes. Major and stable QTLs were identified for gluten strength on chromosomes 1A and 1B, and for PPO activity on chromosomes 1A, 2B, 3A, and 3B. As a large amount of unbalance phenotypic data are generated every year on advanced lines in all the breeding programs, the applicability of such a dataset for identification of MTAs remains unclear. We observed that ∼84% of the MTAs identified using a historic unbalanced dataset (belonging to a total of 80 environments collected over a period of 16 years) were also identified in a balanced dataset. This suggests the suitability of historic unbalanced phenotypic data to identify beneficial MTAs to facilitate local-knowledge-based breeding. In addition to providing extensive knowledge about the genetics of quality traits, association mapping identified several candidate markers to assist durum wheat quality improvement through molecular breeding. The molecular markers associated with important traits could be extremely useful in the development of improved quality durum wheat cultivars using marker-assisted selection (MAS).
Collapse
Affiliation(s)
| | | | | | | | | | | | - Elias M. Elias
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| |
Collapse
|
16
|
Lundström M, Leino MW, Hagenblad J. Evolutionary history of the NAM-B1 gene in wild and domesticated tetraploid wheat. BMC Genet 2017; 18:118. [PMID: 29262777 PMCID: PMC5738170 DOI: 10.1186/s12863-017-0566-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 11/09/2017] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The NAM-B1 gene in wheat has for almost three decades been extensively studied and utilized in breeding programs because of its significant impact on grain protein and mineral content and pleiotropic effects on senescence rate and grain size. First detected in wild emmer wheat, the wild-type allele of the gene has been introgressed into durum and bread wheat. Later studies have, however, also found the presence of the wild-type allele in some domesticated subspecies. In this study we trace the evolutionary history of the NAM-B1 in tetraploid wheat species and evaluate it as a putative domestication gene. RESULTS Genotyping of wild and landrace tetraploid accessions showed presence of only null alleles in durum. Domesticated emmer wheats contained both null alleles and the wild-type allele while wild emmers, with one exception, only carried the wild-type allele. One of the null alleles consists of a deletion that covers several 100 kb. The other null-allele, a one-basepair frame-shift insertion, likely arose among wild emmer. This allele was the target of a selective sweep, extending over several 100 kb. CONCLUSIONS The NAM-B1 gene fulfils some criteria for being a domestication gene by encoding a trait of domestication relevance (seed size) and is here shown to have been under positive selection. The presence of both wild-type and null alleles in domesticated emmer does, however, suggest the gene to be a diversification gene in this species. Further studies of genotype-environment interactions are needed to find out under what conditions selection on different NAM-B1 alleles have been beneficial.
Collapse
Affiliation(s)
- Maria Lundström
- Linköping University, IFM Biology, SE-581 83, Linköping, Sweden
| | - Matti W Leino
- Linköping University, IFM Biology, SE-581 83, Linköping, Sweden.,Nordiska museet, Swedish Museum of Cultural History, Box 27820, SE-115 93, Stockholm, Sweden.,The Archaeological Research Laboratory, Department of Archaeology and Classical Studies, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Jenny Hagenblad
- Linköping University, IFM Biology, SE-581 83, Linköping, Sweden.
| |
Collapse
|
17
|
Lee S, Jeong H, Lee S, Lee J, Kim SJ, Park JW, Woo HR, Lim PO, An G, Nam HG, Hwang D. Molecular bases for differential aging programs between flag and second leaves during grain-filling in rice. Sci Rep 2017; 7:8792. [PMID: 28821707 PMCID: PMC5562787 DOI: 10.1038/s41598-017-07035-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 06/21/2017] [Indexed: 01/31/2023] Open
Abstract
Flag leaves (FL) and second leaves (SL) in rice show differential aging patterns during monocarpic senescence. Coordination of aging programs between FL and SL is important for grain yield and quality. However, the molecular bases for differential aging programs between FL and SL have not been systematically explored in rice. Here, we performed mRNA-sequencing of FL and SL at six time points during grain-filling and identified four molecular bases for differential aging programs between FL and SL: phenylpropanoid biosynthesis, photosynthesis, amino acid (AA) transport, and hormone response. Of them, photosynthesis (carbon assimilation) and AA transport (nitrogen remobilization) predominantly occurred in FL and SL, respectively, during grain-filling. Unlike other molecular bases, AA transport showed consistent differential expression patterns between FL and SL in independent samples. Moreover, long-distance AA transporters showed invariant differential expression patterns between FL and SL after panicle removal, which was consistent to invariant differential nitrogen contents between FL and SL after panicle removal. Therefore, our results suggest that the supplies of carbon and nitrogen to seeds is functionally segregated between FL and SL and that long-distance AA transport is an invariant core program for high nitrogen remobilization in SL.
Collapse
Affiliation(s)
- Shinyoung Lee
- Center for Plant Ageing Research, IBS, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, Republic of Korea
| | - Hyobin Jeong
- Center for Plant Ageing Research, IBS, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, Republic of Korea
| | - Sichul Lee
- Center for Plant Ageing Research, IBS, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, Republic of Korea
| | - Jinwon Lee
- Center for Plant Ageing Research, IBS, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, Republic of Korea
| | - Sun-Ji Kim
- Center for Plant Ageing Research, IBS, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, Republic of Korea
| | - Ji-Won Park
- Center for Plant Ageing Research, IBS, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, Republic of Korea
| | - Hye Ryun Woo
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, Republic of Korea
| | - Pyung Ok Lim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, Republic of Korea
| | - Gynheung An
- Department of Plant Molecular Systems Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 446-701, Republic of Korea
| | - Hong Gil Nam
- Center for Plant Ageing Research, IBS, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, Republic of Korea. .,Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, Republic of Korea.
| | - Daehee Hwang
- Center for Plant Ageing Research, IBS, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, Republic of Korea. .,Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, Republic of Korea.
| |
Collapse
|
18
|
Nedelkou IP, Maurer A, Schubert A, Léon J, Pillen K. Exotic QTL improve grain quality in the tri-parental wheat population SW84. PLoS One 2017; 12:e0179851. [PMID: 28686676 PMCID: PMC5501409 DOI: 10.1371/journal.pone.0179851] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 06/05/2017] [Indexed: 01/01/2023] Open
Abstract
Developing the tri-parental exotic wheat population SW84 Genetic diversity of cultivated wheat was markedly reduced, first, during domestication and, second, since the onset of modern elite breeding. There is an increasing demand for utilizing genetic resources to increase genetic diversity and, simultaneously, to improve agronomic performance of cultivated wheat. To locate favorable effects of exotic wheat alleles, we developed the tri-parental wheat population SW84. The population was derived from crossing the hexaploid spring wheat cultivars Triso and Devon with one synthetic exotic donor accession, Syn084L, followed by two rounds of backcrossing and three rounds of selfing. SW84 consists of 359 BC2F4 lines, split into two families, D84 (Devon*Syn084L) and T84 (Triso*Syn084L). Studying the genetic control of grain quality in SW84 As a case study, grain quality of SW84 was studied in replicated field trials. Transgressive segregation was observed for all studied grain quality traits by evaluating SW84 for two years at two locations under low and high nitrogen supply. Subsequently, a genome-wide association study (GWAS) was carried out based on genomic data derived from a 90k Infinium iSELECT single nucleotide polymorphism (SNP) array. In total, GWAS yielded 37 marker-trait associations, summarized to 16 quantitative trait loci (QTL). These SNPs indicate genetic regulators of grain protein content, grain hardness, sedimentation value and sedimentation ratio. The majority of exotic QTL alleles (75%) exerted favorable effects, increasing grain protein content and sedimentation value in ten and two cases, respectively. For instance, two exotic QTL alleles were associated with a substantial increase of grain protein content and sedimentation value by 1.09% and 7.31 ml, respectively. This finding confirms the potential of exotic germplasm to improve grain quality in cultivated wheat. So far, the molecular nature of most of the detected QTL is unknown. However, two QTL correspond to known genes controlling grain quality: The major QTL on chromosome 6B, increasing grain protein content by 0.70%, on average, co-localizes with the NAM-B1 gene, known to control grain protein content as well as iron and zinc content. Likewise, the major QTL on chromosome 5D, reducing grain hardness by 8.98%, on average, co-localizes with the gene for puroindoline b (Pinb-D1) at the Ha locus. In total, 13 QTL were detected across families, whereas one and three QTL were exclusively detected in families D84 and T84, respectively. Likewise, ten QTL were detected across nitrogen treatments, whereas one and five QTL were exclusively detected under low and high N treatments, respectively. Our data indicate that most effects in SW84 act across families and N levels. Merging of data from two families or two N treatments may, thus, be considered in association studies to increase sample size and, as a result, QTL detection power. Utilizing favorable exotic QTL alleles in wheat breeding Our study serves as a model how favorable exotic QTL alleles can be located in exotic germplasm of wheat. In future, the localized favorable exotic QTL alleles will be utilized in wheat breeding programs to simultaneously improve grain quality and selectively expand genetic diversity of the elite wheat gene pool.
Collapse
Affiliation(s)
- Ioanna-Pavlina Nedelkou
- Martin-Luther-University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Halle, Germany
| | - Andreas Maurer
- Martin-Luther-University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Halle, Germany
| | - Anne Schubert
- University of Bonn, Institute of Crop Science and Resource Conservation, Crop Genetics and Biotechnology Unit, Katzenburgweg 5, Bonn, Germany
| | - Jens Léon
- University of Bonn, Institute of Crop Science and Resource Conservation, Crop Genetics and Biotechnology Unit, Katzenburgweg 5, Bonn, Germany
| | - Klaus Pillen
- Martin-Luther-University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Halle, Germany
- * E-mail:
| |
Collapse
|
19
|
Mitrofanova OP, Khakimova AG. New genetic resources in wheat breeding for increased grain protein content. ACTA ACUST UNITED AC 2017. [DOI: 10.1134/s2079059717040062] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Breeding for increased grain protein and micronutrient content in wheat: Ten years of the GPC-B1 gene. J Cereal Sci 2017. [DOI: 10.1016/j.jcs.2017.01.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Maphosa L, Collins NC, Taylor J, Mather DE. Post-anthesis heat and a Gpc-B1 introgression have similar but non-additive effects in bread wheat. FUNCTIONAL PLANT BIOLOGY : FPB 2014; 41:1002-1008. [PMID: 32481052 DOI: 10.1071/fp14060] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 05/08/2014] [Indexed: 06/11/2023]
Abstract
High temperatures during grain filling can reduce the yield of wheat and affect its grain protein concentration. The Gpc-B1 locus of wheat also affects grain protein concentration, but it is not known whether its effects interact with those of heat. The aim of this study was to investigate the effects of high temperature in lines with and without functional (high-protein) alleles at Gpc-B1. A highly replicated experiment was conducted in a glasshouse under control conditions (24/18°C, 14/10h day/night), with half of the plants of each line or cultivar put into a heat chamber (37/27°C, 14/10h day/night) at 15 days after anthesis for 3 days. Backcross derivatives with the Gpc-B1 introgression segment differed from their recurrent parents more than those without that segment. In some respects, the effects of the Gpc-B1 introgression were similar to those of the heat treatment: both could accelerate peduncle senescence, increase grain protein content and increase the percentage of unextractable polymeric protein. Unlike the heat treatment, Gpc-B1 did not reduce grain weight, indicating that factors that hasten senescence do not necessarily limit grain size. The presence of the Gpc-B1 segment did not exacerbate the effects of heat stress on any trait.
Collapse
Affiliation(s)
- Lancelot Maphosa
- Australian Centre for Plant Functional Genomics, Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
| | - Nicholas C Collins
- Australian Centre for Plant Functional Genomics, Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
| | - Julian Taylor
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
| | - Diane E Mather
- Australian Centre for Plant Functional Genomics, Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
| |
Collapse
|
22
|
Abstract
Stay-green (sometimes staygreen) refers to the heritable delayed foliar senescence character in model and crop plant species. In a cosmetic stay-green, a lesion interferes with an early step in chlorophyll catabolism. The possible contribution of synthesis to chlorophyll turnover in cosmetic stay-greens is considered. In functional stay-greens, the transition from the carbon capture period to the nitrogen mobilization (senescence) phase of canopy development is delayed, and/or the senescence syndrome proceeds slowly. Yield and composition in high-carbon (C) crops such as cereals, and in high-nitrogen (N) species such as legumes, reflect the source-sink relationship with canopy C capture and N remobilization. Quantitative trait loci studies show that functional stay-green is a valuable trait for improving crop stress tolerance, and is associated with the domestication syndrome in cereals. Stay-green variants reveal how autumnal senescence and dormancy are coordinated in trees. The stay-green phenotype can be the result of alterations in hormone metabolism and signalling, particularly affecting networks involving cytokinins and ethylene. Members of the WRKY and NAC families, and an ever-expanding cast of additional senescence-associated transcription factors, are identifiable by mutations that result in stay-green. Empirical selection for functional stay-green has contributed to increasing crop yields, particularly where it is part of a strategy that also targets other traits such as sink capacity and environmental sensitivity and is associated with appropriate crop management methodology. The onset and progress of senescence are phenological metrics that show climate change sensitivity, indicating that understanding stay-green can contribute to the design of appropriate crop types for future environments.
Collapse
Affiliation(s)
- Howard Thomas
- IBERS, Edward Llwyd Building, Aberystwyth University, Ceredigion SY23 3FG, UK
| | - Helen Ougham
- IBERS, Edward Llwyd Building, Aberystwyth University, Ceredigion SY23 3FG, UK
| |
Collapse
|
23
|
Avni R, Zhao R, Pearce S, Jun Y, Uauy C, Tabbita F, Fahima T, Slade A, Dubcovsky J, Distelfeld A. Functional characterization of GPC-1 genes in hexaploid wheat. PLANTA 2014; 239:313-324. [PMID: 24170335 PMCID: PMC4869889 DOI: 10.1007/s00425-013-1977-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 10/11/2013] [Indexed: 05/20/2023]
Abstract
In wheat, monocarpic senescence is a tightly regulated process during which nitrogen (N) and micronutrients stored pre-anthesis are remobilized from vegetative tissues to the developing grains. Recently, a close connection between senescence and remobilization was shown through the map-based cloning of the GPC (grain protein content) gene in wheat. GPC-B1 encodes a NAC transcription factor associated with earlier senescence and increased grain protein, iron and zinc content, and is deleted or non-functional in most commercial wheat varieties. In the current research, we identified 'loss of function' ethyl methanesulfonate mutants for the two GPC-B1 homoeologous genes; GPC-A1 and GPC-D1, in a hexaploid wheat mutant population. The single gpc-a1 and gpc-d1 mutants, the double gpc-1 mutant and control lines were grown under field conditions at four locations and were characterized for senescence, GPC, micronutrients and yield parameters. Our results show a significant delay in senescence in both the gpc-a1 and gpc-d1 single mutants and an even stronger effect in the gpc-1 double mutant in all the environments tested in this study. The accumulation of total N in the developing grains showed a similar increase in the control and gpc-1 plants until 25 days after anthesis (DAA) but at 41 and 60 DAA the control plants had higher grain N content than the gpc-1 mutants. At maturity, GPC in all mutants was significantly lower than in control plants while grain weight was unaffected. These results demonstrate that the GPC-A1 and GPC-D1 genes have a redundant function and play a major role in the regulation of monocarpic senescence and nutrient remobilization in wheat.
Collapse
Affiliation(s)
- Raz Avni
- Faculty of Life Sciences, Dept. of Molecular Biology and Ecology of Plants, Tel Aviv University, 69978, Israel
| | - Rongrong Zhao
- Department of Plant Nutrition, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, P.R. China
- Dept. of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Stephen Pearce
- Dept. of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Yan Jun
- Dept. of Evolutionary and Environmental Biology, University of Haifa, Mt. Carmel, Haifa, 31905, Israel
| | - Cristobal Uauy
- Dept. of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Facundo Tabbita
- Dept. of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Tzion Fahima
- Dept. of Evolutionary and Environmental Biology, University of Haifa, Mt. Carmel, Haifa, 31905, Israel
| | - Ann Slade
- Arcadia Biosciences Inc., Seattle, WA 98119, USA
| | - Jorge Dubcovsky
- Dept. of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Assaf Distelfeld
- Faculty of Life Sciences, Dept. of Molecular Biology and Ecology of Plants, Tel Aviv University, 69978, Israel
| |
Collapse
|
24
|
Gregersen PL, Culetic A, Boschian L, Krupinska K. Plant senescence and crop productivity. PLANT MOLECULAR BIOLOGY 2013; 82:603-22. [PMID: 23354836 DOI: 10.1007/s11103-013-0013-8] [Citation(s) in RCA: 269] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 01/15/2013] [Indexed: 05/18/2023]
Abstract
Senescence is a developmental process which in annual crop plants overlaps with the reproductive phase. Senescence might reduce crop yield when it is induced prematurely under adverse environmental conditions. This review covers the role of senescence for the productivity of crop plants. With the aim to enhance productivity, a number of functional stay-green cultivars have been selected by conventional breeding, in particular of sorghum and maize. In many cases, a positive correlation between leaf area duration and yield has been observed, although in a number of other cases, stay-green cultivars do not display significant effects with regards to productivity. In several crops, the stay-green phenotype is observed to be associated with a higher drought resistance and a better performance under low nitrogen conditions. Among the approaches used to achieve stay-green phenotypes in transgenic plants, the expression of the IPT gene under control of senescence-associated promoters has been the most successful. The promoters employed for senescence-regulated expression contain cis-elements for binding of WRKY transcription factors and factors controlled by abscisic acid. In most crops transformed with such constructs the stay-green character has led to increased biomass, but only in few cases to increased seed yield. A coincidence of drought stress resistance and stay-green trait is observed in many transgenic plants.
Collapse
Affiliation(s)
- Per L Gregersen
- Department of Molecular Biology and Genetics, Aarhus University, Forsoegsvej 1, 4200 Slagelse, Denmark
| | | | | | | |
Collapse
|
25
|
Jones H, Gosman N, Horsnell R, Rose GA, Everest LA, Bentley AR, Tha S, Uauy C, Kowalski A, Novoselovic D, Simek R, Kobiljski B, Kondic-Spika A, Brbaklic L, Mitrofanova O, Chesnokov Y, Bonnett D, Greenland A. Strategy for exploiting exotic germplasm using genetic, morphological, and environmental diversity: the Aegilops tauschii Coss. example. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:1793-808. [PMID: 23558983 DOI: 10.1007/s00122-013-2093-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 03/21/2013] [Indexed: 05/09/2023]
Abstract
Hexaploid bread wheat evolved from a rare hybridisation, which resulted in a loss of genetic diversity in the wheat D-genome with respect to the ancestral donor, Aegilops tauschii. Novel genetic variation can be introduced into modern wheat by recreating the above hybridisation; however, the information associated with the Ae. tauschii accessions in germplasm collections is limited, making rational selection of accessions into a re-synthesis programme difficult. We describe methodologies to identify novel diversity from Ae. tauschii accessions that combines Bayesian analysis of genotypic data, sub-species diversity and geographic information that summarises variation in climate and habitat at the collection point for each accession. Comparisons were made between diversity discovered amongst a panel of Ae. tauschii accessions, bread wheat varieties and lines from the CIMMYT synthetic hexaploid wheat programme. The selection of Ae. tauschii accessions based on differing approaches had significant effect on diversity within each set. Our results suggest that a strategy that combines several criteria will be most effective in maximising the sampled variation across multiple parameters. The analysis of multiple layers of variation in ex situ Ae. tauschii collections allows for an informed and rational approach to the inclusion of wild relatives into crop breeding programmes.
Collapse
Affiliation(s)
- H Jones
- NIAB, Huntingdon Road, Cambridge, CB1 0LE, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Asplund L, Bergkvist G, Leino MW, Westerbergh A, Weih M. Swedish spring wheat varieties with the rare high grain protein allele of NAM-B1 differ in leaf senescence and grain mineral content. PLoS One 2013; 8:e59704. [PMID: 23555754 PMCID: PMC3605437 DOI: 10.1371/journal.pone.0059704] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 02/17/2013] [Indexed: 12/05/2022] Open
Abstract
Some Swedish spring wheat varieties have recently been shown to carry a rare wildtype (wt) allele of the gene NAM-B1, known to affect leaf senescence and nutrient retranslocation to the grain. The wt allele is believed to increase grain protein concentration and has attracted interest from breeders since it could contribute to higher grain quality and more nitrogen-efficient varieties. This study investigated whether Swedish varieties with the wt allele differ from varieties with one of the more common, non-functional alleles in order to examine the effect of the gene in a wide genetic background, and possibly explain why the allele has been retained in Swedish varieties. Forty varieties of spring wheat differing in NAM-B1 allele type were cultivated under controlled conditions. Senescence was monitored and grains were harvested and analyzed for mineral nutrient concentration. Varieties with the wt allele reached anthesis earlier and completed senescence faster than varieties with the non-functional allele. The wt varieties also had more ears, lighter grains and higher yields of P and K. Contrary to previous information on effects of the wt allele, our wt varieties did not have increased grain N concentration or grain N yield. In addition, temporal studies showed that straw length has decreased but grain N yield has remained unaffected over a century of Swedish spring wheat breeding. The faster development of wt varieties supports the hypothesis of NAM-B1 being preserved in Fennoscandia, with its short growing season, because of accelerated development conferred by the NAM-B1 wt allele. Although the possible effects of other gene actions were impossible to distinguish, the genetic resource of Fennoscandian spring wheats with the wt NAM-B1 allele is interesting to investigate further for breeding purposes.
Collapse
Affiliation(s)
- Linnéa Asplund
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
27
|
Hu XG, Wu BH, Liu DC, Wei YM, Gao SB, Zheng YL. Variation and their relationship of NAM-G1 gene and grain protein content in Triticum timopheevii Zhuk. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:330-7. [PMID: 23218544 DOI: 10.1016/j.jplph.2012.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 10/06/2012] [Accepted: 10/08/2012] [Indexed: 05/02/2023]
Abstract
NAM is an important domestication gene and valuable to enhance grain protein contents (GPCs) of modern wheat cultivars. In the present study, 12 NAM-G1 genes in Triticum timopheevii Zhuk. (AAGG, 2n=4x=28) were cloned. These genes had the same length of 1546 bp including two introns and three exons, and encoded a polypeptide of 407 amino acid residues which contained a N-terminal NAC domain with five sub-domains, and a C-terminal transcriptional activation region (TAR). They were highly similar to the previously published functional NAM-B1 gene DQ871219 from T. turgidum ssp. dicoccoides Körn. (AABB, 2n=4x=28) in both the nucleotide and protein sequences, with a very high identity of 99.5%. The differences among the 12 NAM-G1 genes resulted from 17 SNPs including 14 transitions and 3 transversions. They had outstandingly different expression levels in qRT-PCR. And, their relative expression quantities were significantly positively correlated with GPC of the accessions. In addition, the difference in amino acid sequences of the NAM-G1 genes may also affect the GPC variation.
Collapse
Affiliation(s)
- Xi-Gui Hu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, PR China
| | | | | | | | | | | |
Collapse
|
28
|
Wu XY, Kuai BK, Jia JZ, Jing HC. Regulation of leaf senescence and crop genetic improvement. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2012; 54:936-52. [PMID: 23131150 DOI: 10.1111/jipb.12005] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Leaf senescence can impact crop production by either changing photosynthesis duration, or by modifying the nutrient remobilization efficiency and harvest index. The doubling of the grain yield in major cereals in the last 50 years was primarily achieved through the extension of photosynthesis duration and the increase in crop biomass partitioning, two things that are intrinsically coupled with leaf senescence. In this review, we consider the functionality of a leaf as a function of leaf age, and divide a leaf's life into three phases: the functionality increasing phase at the early growth stage, the full functionality phase, and the senescence and functionality decreasing phase. A genetic framework is proposed to describe gene actions at various checkpoints to regulate leaf development and senescence. Four categories of genes contribute to crop production: those which regulate (I) the speed and transition of early leaf growth, (II) photosynthesis rate, (III) the onset and (IV) the progression of leaf senescence. Current advances in isolating and characterizing senescence regulatory genes are discussed in the leaf aging and crop production context. We argue that the breeding of crops with leaf senescence ideotypes should be an essential part of further crop genetic improvement.
Collapse
Affiliation(s)
- Xiao-Yuan Wu
- The Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | |
Collapse
|
29
|
Hagenblad J, Asplund L, Balfourier F, Ravel C, Leino MW. Strong presence of the high grain protein content allele of NAM-B1 in Fennoscandian wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 125:1677-86. [PMID: 22850788 DOI: 10.1007/s00122-012-1943-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 07/15/2012] [Indexed: 05/04/2023]
Abstract
Grain protein content in wheat has been shown to be affected by the NAM-B1 gene where the wildtype allele confers high levels of protein and micronutrients but can reduce yield. Two known non-functional alleles instead increase yield but lead to lower levels of protein and micronutrients. The wildtype allele in hexaploid bread wheat is so far mainly known from historical specimens and a few lines with an emmer wheat introgression. Here we report a screening for the wildtype allele in wheats of different origin. First, a worldwide core collection of 367 bread wheats with worldwide origin was screened and five accessions carrying the wildtype NAM-B1 allele were found. Several of these could be traced to a Fennoscandian origin and the wildtype allele was more frequent in spring wheat. These findings, together with the late maturation of spring wheat, suggested that the faster maturation caused by the wildtype allele might have preserved it in areas with a short growing season. Thus a second set consisting of 138 spring wheats of a northern origin was screened and as many as 33 % of the accessions had the wildtype allele, all of a Fennoscandian origin. The presence of the wildtype allele in landraces and cultivars is in agreement with the use of landraces in Fennoscandian wheat breeding. Last, 22 spelt wheats, a wheat type previously suggested to carry the wildtype allele, were screened and five wildtype accessions found. The wildtype NAM-B1 accessions found could be a suitable material for plant breeding efforts directed towards increasing the nutrient content of bread wheat.
Collapse
Affiliation(s)
- Jenny Hagenblad
- Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway.
| | | | | | | | | |
Collapse
|
30
|
|
31
|
Bogard M, Jourdan M, Allard V, Martre P, Perretant MR, Ravel C, Heumez E, Orford S, Snape J, Griffiths S, Gaju O, Foulkes J, Le Gouis J. Anthesis date mainly explained correlations between post-anthesis leaf senescence, grain yield, and grain protein concentration in a winter wheat population segregating for flowering time QTLs. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:3621-36. [PMID: 21414962 DOI: 10.1093/jxb/err061] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The genetic variability of the duration of leaf senescence during grain filling has been shown to affect both carbon and nitrogen acquisition. In particular, maintaining green leaves during grain filling possibly leads to increased grain yield, but its associated effect on grain protein concentration has not been studied. The aim of this study was to dissect the genetic factors contributing to correlations observed at the phenotypic level between leaf senescence during grain filling, grain protein concentration, and grain yield in winter wheat. With this aim in view, an analysis of quantitative trait locus (QTL) co-locations for these traits was carried out on a doubled haploid mapping population grown in a large multienvironment trial network. Pleiotropic QTLs affecting leaf senescence and grain yield and/or grain protein concentration were identified on chromosomes 2D, 2A, and 7D. These were associated with QTLs for anthesis date, showing that the phenotypic correlations with leaf senescence were mainly explained by flowering time in this wheat population. Study of the allelic effects of these pleiotropic QTLs showed that delaying leaf senescence was associated with increased grain yield or grain protein concentration depending on the environments considered. It is proposed that this differential effect of delaying leaf senescence on grain yield and grain protein concentration might be related to the nitrogen availability during the post-anthesis period. It is concluded that the benefit of using leaf senescence as a selection criterion to improve grain protein concentration in wheat cultivars may be limited and would largely depend on the targeted environments, particularly on their nitrogen availability during the post-anthesis period.
Collapse
Affiliation(s)
- Matthieu Bogard
- INRA, UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, 234 Avenue du Brézet, F-63100 Clermont-Ferrand, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|