1
|
Zhang XY, Ge C, Zhang AJ, Wu SX, Yang M, Huang L, Li JL. Specialized Metabolites from the Husks of Rice Oryza Sativa L. and their Biological Activities. Chem Biodivers 2024; 21:e202401640. [PMID: 39087501 DOI: 10.1002/cbdv.202401640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/02/2024]
Abstract
Rice (Oryza sativa L.) husk harbors a substantial proportion of biological metabolites, as one of the most plentiful agriculture by-products in rice milling process, rice husk remains poorly utilized. As a continuing search for potential bioactive molecules from the husk of rice, a totally of twelve components (1-12), including six sterol ferulates (1-6), one flavonoid (7), one dipeptide (8), and four phenylpropanoid derivatives (9-12) were obtained. All the chemical structures were elucidated based on comprehensive spectroscopic data. Wherein, compounds 1 and 2 were yield as previous undescribed metabolites, and the comprehensive NMR data for compounds 3 and 4 were first presented in its entirety. Motivated by the similarity of the structural motifs of components 1-6 to that of reported sterol ferulates, the antioxidant and anti-inflammatory effects for compounds 1-6 were evaluated in vitro. Among them, compounds 5/6 had a significant antioxidant activity compare to that of vitamin E in both DPPH and reducing power assay up to the concentration 40 μg/ml; while compounds 1 and 2 exhibited weak suppressive effect on the production of nitric oxide, with the IC50 values of 53.27±1.37 μM.
Collapse
Affiliation(s)
- Xue-Ying Zhang
- College of Pharmacy, Nantong University, Nantong, 226001, P. R. China
| | - Cheng Ge
- College of Pharmacy, Nantong University, Nantong, 226001, P. R. China
- The First People's Hospital of Kunshan, Jiangsu, 215300, P. R. China
| | - Ai-Ju Zhang
- College of Pharmacy, Nantong University, Nantong, 226001, P. R. China
| | - Si-Xuan Wu
- College of Pharmacy, Nantong University, Nantong, 226001, P. R. China
| | - Min Yang
- College of Pharmacy, Nantong University, Nantong, 226001, P. R. China
| | - Lei Huang
- Department of Pharmacy, First People's Hospital of Yancheng, Yancheng, 224006, P. R. China
| | - Jian Lin Li
- College of Pharmacy, Nantong University, Nantong, 226001, P. R. China
| |
Collapse
|
2
|
Khallouki F, Zennouhi W, Hajji L, Bourhia M, Benbacer L, El Bouhali B, Rezig L, Poirot M, Lizard G. Current advances in phytosterol free forms and esters: Classification, biosynthesis, chemistry, and detection. Steroids 2024; 212:109520. [PMID: 39378976 DOI: 10.1016/j.steroids.2024.109520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/04/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
Phytosterols are plant sterols that are important secondary plant metabolites with significant pharmacological properties. Their presence in the plant kingdom concerns many unrelated botanical families such as oleageneous plants and cereals. The structures of phytosterols evoke those of cholesterol. These molecules are composed of a sterane ring, also known as perhydrocyclopentanophenanthrene, along with a methyl or ethyl group at C-24 in their side chains, a hydroxyl group at C-3 on ring A, and one or two double bonds in the B ring. Phytosterols display different oxidation degrees at the sterane ring and at the side chain as well as varying numbers of carbons with complex stereochemistries. Fats and water solubilities of phytosterols have been achieved by physical, chemical and enzymatic esterifications to favor their bioavailability and to improve the sensory quality of food, and the efficiency of pharmaceutic and cosmetic products. This review aims to provide comprehensive information starting from the definition and structural classification of phytosterols, and exposes an update of their biogenic relationships. Next, the synthesis of phytosterol esters and their applications as well as their effective roles as hormone precursors are discussed. Finally, a concise exploration of the latest advancements in phytosterol / oxyphytosterols analysis techniques is provided, with a particular focus on modern hyphenated techniques.
Collapse
Affiliation(s)
- Farid Khallouki
- Team of Ethnopharmacology and Pharmacognosy, Department of Biology, FSTE, Moulay Ismail University of Meknes, BP 609, 52000 Errachidia, Morocco.
| | - Wafa Zennouhi
- Team of Ethnopharmacology and Pharmacognosy, Department of Biology, FSTE, Moulay Ismail University of Meknes, BP 609, 52000 Errachidia, Morocco
| | - Lhoussain Hajji
- Department of Biology, FSM, Moulay Ismail University of Meknes, Meknes, Morocco
| | - Mohamed Bourhia
- Faculty of Medicine and Pharmacy, Ibn Zohr University, 70000 Laayoune, Morocco
| | - Laila Benbacer
- Unité de Biologie et Recherches Moléculaires Département Sciences du Vivant, Centre National de l'Energie, des Sciences et Techniques Nucléaires (CNESTEN), Rabat, Morocco
| | - Bachir El Bouhali
- Department of Biology, FSM, Moulay Ismail University of Meknes, Meknes, Morocco
| | - Leila Rezig
- University of Carthage, National Institute of Applied Sciences and Technology, LR11ES24, LIP-MB 'Laboratory of Protein Engineering and Bioactive Molecules', Tunis, Tunisia; High Institute of Food Industries, University of Carthage, Tunis, Tunisia
| | - Marc Poirot
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse III, Team INOV: "Cholesterol Metabolism and Therapeutic Innovations", Toulouse, France
| | - Gérard Lizard
- Laboratoiry Bio-PeroxIL / EA7270, Université de Bourgogne / Inserm, 21000 Dijon, France; PHYNOHA Consulting, 21121 Fontaine-lès-Dijon, France.
| |
Collapse
|
3
|
Li Q, Liu K, Cai G, Yang X, Ngo JCK. Developing Lipase Inhibitor as a Novel Approach to Address the Rice Bran Rancidity Issue─A Critical Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3277-3290. [PMID: 38329044 DOI: 10.1021/acs.jafc.3c07492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Rice bran is a valuable byproduct from the food processing industry, which contains abundant protein, essential unsaturated fatty acids, and numerous bioactive compounds. However, its susceptibility to rancidity greatly restricts its wide utilization. Many strategies have been proposed to delay the rancidity of rice bran, but most of them have their respective limitations. Here, we proposed that developing rice ban lipase peptide inhibitors represents an alternative and promising prescription for impeding the rancidity of rice bran, in contrast to the conventional stabilization approaches for rice bran. For this reason, the rancidity mechanisms of rice bran and the research progress of rice bran lipases were discussed. In addition, the feasibility of utilizing in silico screening and phage display, two state-of-the-art technologies, in the design of the related peptide inhibitors was also highlighted. This knowledge is expected to provide a theoretical basis for opening a new avenue for stabilizing rice bran.
Collapse
Affiliation(s)
- Qingyun Li
- College of Food Science and Engineering and School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| | - Kunlun Liu
- College of Food Science and Engineering and School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| | - Gongli Cai
- School of Life Sciences and Hong Kong Branch of National Engineering Research Center of Genetic Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, SAR 999077, China
| | - Xi Yang
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan
| | - Jacky Chi Ki Ngo
- School of Life Sciences and Hong Kong Branch of National Engineering Research Center of Genetic Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, SAR 999077, China
| |
Collapse
|
4
|
Beaulieu JC, Boue SM, Goufo P. Health-promoting germinated rice and value-added foods: a comprehensive and systematic review of germination effects on brown rice. Crit Rev Food Sci Nutr 2023; 63:11570-11603. [PMID: 35816149 DOI: 10.1080/10408398.2022.2094887] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Over the last 30 years, thousands of articles have appeared examining the effects of soaking and germinating brown rice (BR). Variable germination conditions and methods have been employed to measure different health-beneficial parameters in a diverse germplasm of BR. Research results may therefore appear inconsistent with occasional anomalies, and it may be difficult to reach consensus concerning expected trends. Herein, we amassed a comprehensive review on germinated brown rice (GBR), attempting to codify 133 peer-reviewed articles regarding the effects on 164 chemical parameters related to health and nutrition in BR and in value-added food products. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA-2020) approach was used to direct the flow of the literature search. A pair-wise comparison t-test was performed to deliver an overall approach indicating when a given compound has been found to significantly increase or decrease through germination, which was grouped into GABA and polyamines, γ-Oryzanol and phytosterols, phenolic compounds, vitamins, proteins and amino acids, starchy carbohydrates, free sugars, lipids, minerals and phytic acid. This resource will stimulate interest in germinating rice and optimistically help increase both production and consumption of highly nutritious, health-beneficial rice with pigmented bran.
Collapse
Affiliation(s)
- John C Beaulieu
- Food Processing & Sensory Quality Research Unit, United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, Louisiana, USA
| | - Stephen M Boue
- Food Processing & Sensory Quality Research Unit, United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, Louisiana, USA
| | - Piebiep Goufo
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| |
Collapse
|
5
|
Zeng H, Zhu A, He S, Wu M, Mazhar M, Wen A, Liu N, Qin L, Miao S. Anti-lipid-oxidation effects and edible safety evaluation of the oil extracted by a supercritical CO2 process from coix seed fermented by Monascus purpureus. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.10.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Ma Z, Zhai X, Zhang N, Tan B. Effects of Germination, Fermentation and Extrusion on the Nutritional, Cooking and Sensory Properties of Brown Rice Products: A Comparative Study. Foods 2023; 12:foods12071542. [PMID: 37048363 PMCID: PMC10094731 DOI: 10.3390/foods12071542] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
In this study, cooked brown rice (BR), germinated brown rice (GBR), fermented brown rice (FBR) and white rice (WR) were prepared by traditional cooking techniques, and extruded brown rice (EBR) was obtained by extrusion processing technology. The nutritional, cooking and sensory properties of different BR products were investigated. The results indicated that the soluble dietary fiber (SDF) content, free total phenolic content (TPC), total flavonoid content (TFC) and antioxidant capacity (DPPH, ABTS, T-AOC) in processed BR products were significantly higher than those in cooked BR and WR. The values of SDF, free TPC, TFC and T-AOC in EBR increased by 38.78%, 232.36%, 102.01% and 153.92%, respectively, compared with cooked BR. Cooked FBR and EBR had more nutrients, required less cooking time, had a softer texture and were whiter than cooked GBR and BR, especially EBR. In addition, the water absorption rate of EBR was 14.29% and 25.41% higher than that of cooked FBR and GBR. The hardness of EBR was significantly lower than that of cooked FBR and BR, even lower than that of cooked WR. However, there was no significant difference between the hardness of cooked GBR and that of cooked BR. The flavor compounds in EBR were similar to that of cooked WR, while those in cooked GBR and FBR did not differ greatly compared to cooked BR. Collectively, cooked FBR and EBR had better nutritional value, cooking and sensory properties than cooked BR, and the comprehensive value of EBR was higher.
Collapse
Affiliation(s)
- Zhanqian Ma
- School of Food Engineering, Harbin University of Commerce, Harbin 150076, China
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Xiaotong Zhai
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Na Zhang
- School of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Bin Tan
- School of Food Engineering, Harbin University of Commerce, Harbin 150076, China
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| |
Collapse
|
7
|
Wu H, Nakamura T, Guo Y, Matsumoto R, Munemasa S, Murata Y, Nakamura Y. Cycloartenyl Ferulate Is the Predominant Compound in Brown Rice Conferring Cytoprotective Potential against Oxidative Stress-Induced Cytotoxicity. Int J Mol Sci 2023; 24:ijms24010822. [PMID: 36614263 PMCID: PMC9821627 DOI: 10.3390/ijms24010822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/09/2023] Open
Abstract
Since brown rice extract is a rich source of biologically active compounds, the present study is aimed to quantify the major compounds in brown rice and to compare their cytoprotective potential against oxidative stress. The content of the main hydrophobic compounds in brown rice followed the order of cycloartenyl ferulate (CAF) (89.00 ± 8.07 nmol/g) >> α-tocopherol (αT) (19.73 ± 2.28 nmol/g) > γ-tocotrienol (γT3) (18.24 ± 1.41 nmol/g) > α-tocotrienol (αT3) (16.02 ± 1.29 nmol/g) > γ-tocopherol (γT) (3.81 ± 0.40 nmol/g). However, the percent contribution of CAF to the radical scavenging activity of one gram of whole brown rice was similar to those of αT, αT3, and γT3 because of its weaker antioxidant activity. The CAF pretreatment displayed a significant cytoprotective effect on the hydrogen peroxide-induced cytotoxicity from 10 µM, which is lower than the minimal concentrations of αT and γT required for a significant protection. CAF also enhanced the nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation coincided with the enhancement of the heme oxygenase-1 (HO-1) mRNA level. An HO-1 inhibitor, tin protoporphyrin IX (SnPP), significantly impaired the cytoprotection of CAF. The cytoprotective potential of CAF is attributable to its cycloartenyl moiety besides the ferulyl moiety. These results suggested that CAF is the predominant cytoprotector in brown rice against hydrogen peroxide-induced cytotoxicity.
Collapse
Affiliation(s)
- Hongyan Wu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Toshiyuki Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Yingnan Guo
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Riho Matsumoto
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Shintaro Munemasa
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Yoshiyuki Murata
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Yoshimasa Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
- Correspondence:
| |
Collapse
|
8
|
Bergman C, Pandhi M. Organic Rice Production Practices: Effects on Grain End-Use Quality, Healthfulness, and Safety. Foods 2022; 12:73. [PMID: 36613289 PMCID: PMC9818784 DOI: 10.3390/foods12010073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Demand for rice labeled as organic is growing globally. Consumers state that foods labeled as organic are nutritionally superior and safer than their conventionally produced equivalent. The research question for this systematic review is as follows: is there a difference between the effects of sustainable agriculture and conventional farming methods on rice grain end-use quality, healthfulness, and safety? The studies (n = 23) examined for this review suggest that organic production practices don't influence most end-use quality (e.g., chalk, milling yield, pasting properties) and healthfulness (e.g., gamma-oryzanol fraction and tocols) traits studied, or if it does, it will be to a small degree. If differences in end-use quality traits are found, they will be associated with grain protein content, which varies along with the dose of nitrogen applied during rice growth. We conclude that the studies evaluated in this review found that organically produced rice grain was less likely to contain residues of the pesticides (e.g., organochlorine) examined in the study than the rice is grown using conventional methods. There was some evidence that organically grown rice is more likely to be contaminated with mycotoxin-producing fungi and some mycotoxins. Common shortcomings of the studies were that they were poorly designed, with limited to no details of the cultural management practices used to grow the rice studied, the length of time fields was under organic management not stated, cultivars were not named, and the data wasn't analyzed statistically.
Collapse
Affiliation(s)
- Christine Bergman
- Food & Beverage and Event Management, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | | |
Collapse
|
9
|
Villar MAL, Vidallon MLP, Rodriguez EB. Nanostructured lipid carrier for bioactive rice bran gamma-oryzanol. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
10
|
Sun W, Shi J, Hong J, Zhao G, Wang W, Zhang D, Zhang W, Shi J. Natural variation and underlying genetic loci of γ-oryzanol in Asian cultivated rice seeds. THE PLANT GENOME 2022; 15:e20201. [PMID: 35762101 DOI: 10.1002/tpg2.20201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/18/2022] [Indexed: 06/15/2023]
Abstract
γ-oryzanol is the most studied component in rice (Oryza sativa L.) bran oil. It is not only associated with physiological processes of rice growth and development but also grain quality that is related to human health. Previous studies focused mainly on γ-oryzanol composition and content in various rice cultivars, while its biosynthetic and regulatory pathways remain unknown. Here we present the quantitative identification of γ-oryzanol in rice seeds across 179 Asian cultivated accessions using ultra-performance liquid chromatography-time-of-flight mass spectrometry (UPLC-TOF/MS), which revealed a significant natural variation in γ-oryzanol content among these tested rice accessions. In addition, we present, for the first time, the genome-wide association study (GWAS) on rice seed γ-oryzanol, which identified 187 GWAS signal hot spots and 13 candidate genes that are associated with variable γ-oryzanol content and provided the top 10 rice haplotypes with high γ-oryzanol content for breeding. Collectively, our study provides valuable germplasms for breeding rice cultivars rich in γ-oryzanol and genetic resources for elucidating genetic and biochemical bases of variable γ-oryzanol in rice.
Collapse
Affiliation(s)
- Wenli Sun
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong Univ., Shanghai, 200240, China
| | - Jin Shi
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong Univ., Shanghai, 200240, China
| | - Jun Hong
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong Univ., Shanghai, 200240, China
| | - Guochao Zhao
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal Univ., Shanghai, 200234, China
| | - Wensheng Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong Univ., Shanghai, 200240, China
| | - Wei Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong Univ., Shanghai, 200240, China
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong Univ., Shanghai, 200240, China
| |
Collapse
|
11
|
Ha NC, Thao DLP, Ngoc NTL. Ergothioneine extract from
Aspergillus oryzae
prevents lipid oxidation and increases bioactive compounds during the processing of germinated brown rice. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Nguyen Cong Ha
- Food Technology Department College of Agriculture, Campus II, Can Tho University Can Tho City Vietnam
| | - Doan Le Phuong Thao
- Food Technology Department College of Agriculture, Campus II, Can Tho University Can Tho City Vietnam
| | - Nguyen Thi Le Ngoc
- Food Technology Department College of Agriculture, Campus II, Can Tho University Can Tho City Vietnam
| |
Collapse
|
12
|
Tangpromphan P, Duangsrisai S, Jaree A. Development of separation method for Alpha-Tocopherol and Gamma-Oryzanol extracted from rice bran oil using Three-Zone simulated moving bed process. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118930] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Liu C, Xi X, Liu Y, Lu Y, Che F, Gu Y, Yu Y, Li H, Liu J, Wei Y. Isolation of Four Major Compounds of γ-Oryzanol from Rice Bran Oil by Ionic Liquids Modified High-Speed Countercurrent Chromatography and Antimicrobial Activity and Neuroprotective Effect of Cycloartenyl Ferulate In Vitro. Chromatographia 2021. [DOI: 10.1007/s10337-021-04044-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Zeng H, Qin L, Liu X, Miao S. Increases of Lipophilic Antioxidants and Anticancer Activity of Coix Seed Fermented by Monascus purpureus. Foods 2021; 10:foods10030566. [PMID: 33803207 PMCID: PMC8001309 DOI: 10.3390/foods10030566] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 02/28/2021] [Accepted: 03/05/2021] [Indexed: 01/01/2023] Open
Abstract
Lipophilic tocols, γ-oryzanol, and coixenolide in coix seed before and after fermentation by Monascus purpureus were determined. Antioxidant and anticancer activities of raw and fermented coix seed were evaluated using free-radical-scavenging assays and polyunsaturated fatty acid oxidation model, and human laryngeal carcinoma cell HEp2, respectively. Compared to the raw seed, the tocols, γ-oryzanol, and coixenolide contents increased approximately 4, 25, and 2 times, respectively, in the fermented coix seed. Especially, γ-tocotrienol and γ-oryzanol reached 72.5 and 655.0 μg/g in the fermented coix seed. The lipophilic extract from fermented coix seed exhibited higher antioxidant activity in scavenging free radicals and inhibiting lipid oxidation. The inhibitory concentrations for 50% cell survival (IC50) of lipophilic extract from fermented coix seed in inhibiting HEp2 cells decreased by 42%. This study showed that coix seed fermented by M. purpureus increased free and readily bioavailable lipophilic antioxidants and anticancer activity. Therefore, fermentation could enhance the efficacy of the health promoting function of coix seeds.
Collapse
Affiliation(s)
- Haiying Zeng
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China;
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Likang Qin
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China;
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Correspondence: (L.Q.); (S.M.)
| | - Xiaoyan Liu
- Zhongkai University of Agriculture and Engineering, Guangzhou 510000, China;
| | - Song Miao
- Teagasc Food Research Centre, Moorepark, Co. Cork, D15 DY05 Fermoy, Ireland
- Correspondence: (L.Q.); (S.M.)
| |
Collapse
|
15
|
Nguyen NTL, Nguyen BDT, Dai TTX, Co SH, Do TT, Tong Thi AN, Oladapo IJ, Nguyen Cong H. Influence of germinated brown rice-based flour modified by MAse on type 2 diabetic mice and HepG2 cell cytotoxic capacity. Food Sci Nutr 2021; 9:781-793. [PMID: 33598163 PMCID: PMC7866618 DOI: 10.1002/fsn3.2043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/14/2020] [Accepted: 11/18/2020] [Indexed: 12/28/2022] Open
Abstract
This study aimed to discover whether using maltogenic amylase (MAse) to modify starch in germinated brown rice flour may enhance slow digestion starch and release more bioactive compounds (BCs) content. To achieve this aim, the starch was modified with four levels of MAse (0 U, 133 U, 266 U and 399 U MAse/g flour) for 1 hr at pH 5 and then spray-dried to make modified flour. The biochemical impacts of the products were then accessed in normal and type 2 diabetic mice for 4 weeks. The result showed that when the starch was modified by MAse 266 U/g, a significant reduction of rapidly digested starch to 22.35% from 61.56%, an increase in slowly digested starch to 33.09% while resistant starch as 2.92% corresponding to the increase of γ-amino butyric acid to 528.1 ± 44.1 mg/L and 120.6 ± 10.9 mg/L of ferulic acid. The extract from modified flour showed very strong cytotoxic activity against HepG2 cell (>80% inhibition). The result in vivo showed that the type-2 diabetic mice fed with this modified product could better improve the stability of the glycemic index. Also, atherosclerotic plaque assessment further supports these findings. The results indicated that BCs released considerably couple with the changes in starch properties caused by MAse enhanced the effectiveness of this product to diabetes as well as positive effect on cytotoxic activity against HepG2 cell.
Collapse
Affiliation(s)
| | | | | | - Son Hong Co
- National Agro – Forestry – Fishery Quality Assurance DepartmentCan Tho CityVietnam
| | - Thao Thi Do
- Institute of BiotechnologyVietnam Academy of Science and Technology (VAST)HanoiVietnam
| | | | | | - Ha Nguyen Cong
- Food Technology DepartmentCollege of AgricultureCan Tho CityVietnam
| |
Collapse
|
16
|
Characterization and determination of free phytosterols and phytosterol conjugates: The potential phytochemicals to classify different rice bran oil and rice bran. Food Chem 2020; 344:128624. [PMID: 33248841 DOI: 10.1016/j.foodchem.2020.128624] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 10/12/2020] [Accepted: 11/08/2020] [Indexed: 11/22/2022]
Abstract
Phytosterols are important beneficial compounds found in rice bran (RB) and rice bran oil (RBO). Although relationships have been confirmed between the forms of phytosterols and their bioactivities, the analysis of different forms of phytosterols in RB and RBO has been lacking. In this study, high temperature gas chromatography-mass spectrometry (HTGC-MS) was combined with the single standard to determine multi-components (SSDMC) method to determine free sterols (FSs) and steryl glycosides (SGs) in RB and RBO. High-performance liquid chromatography (HPLC) was used to determine steryl ferulates (SFs). There was clear variation in the composition of FS, SF and SG, indicating that different forms of phytosterols can discriminate between different RB and RBO. The developed method may be also useful for the detection of other compounds of interest in oils, oil seeds or cereals.
Collapse
|
17
|
Baipong S, Apichartsrangkoon A, Worametrachanon S, Tiampakdee A, Sriwattana S, Phimolsiripol Y, Kreungngern D, Sintuya P. Effects of germinated and nongerminated rice grains on storage stability of pressurized purple rice beverages with
Lactobacillus casei
01 supplement. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sasitorn Baipong
- Faculty of Agro‐Industry Chiang Mai University Chiang Mai Thailand
| | | | | | | | | | | | - Danchai Kreungngern
- Division of Food Science and Technology Faculty of Science and Technology Kamphaeng Phet Rajabhat University Kamphaeng Phet Thailand
| | - Panlop Sintuya
- Institute of Product Quality and Standardization Maejo University Chiang Mai Thailand
| |
Collapse
|
18
|
Waraksa E, Kowalski K, Kłodzińska E, Rola R, Ciekot J, Filipiak W, Bieńkowski T, Namieśnik J. A rapid and eco-friendly method for determination of the main components of gamma-oryzanol in equestrian dietary and nutritional supplements by liquid chromatography-Tandem mass spectrometry. J Pharm Biomed Anal 2019; 172:339-348. [PMID: 31085396 DOI: 10.1016/j.jpba.2019.04.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 04/08/2019] [Accepted: 04/14/2019] [Indexed: 01/29/2023]
Abstract
Gamma-oryzanol (GO) has gained special attention in the equine sports industry in recent years due to its touted properties, including the fact that it may cause anabolic effects on muscle growth and reduce fatigue. Many manufactures offer supplements containing GO as a naturally occurring anabolic substance; however, some producers do not declare its presence in product compositions. Taking into consideration the touted properties of GO, its ambiguous effectiveness and the open character of the Prohibited Substances List established by the Fédération Equestre Internationale, there is an urgent need to elaborate procedures for the estimation of horse exposure to GO during supplementation, as well as during routine analysis of supplements. This work describes the development and validation of the method for determination of the four main GO components, i.e., cycloartenyl ferulate, 24-methylenecycloartanyl ferulate, campesteryl ferulate and β-sitosteryl ferulate, in equestrian supplements based on LC-MS/MS after a simple ultrasound-assisted extraction (Eco-Scale score value of 76). The analytical performance achieved satisfactory results in terms of linearity (R2 > 0.9910), sensitivity (LODs ranged from 0.4 to 1.9 ng/mL), intra- and interday accuracy (from 90.4-115.8%), precision (CV < 9.6%) and recovery (from 87.6-108.6%) for all of the investigated compounds. The method was successfully applied to the analysis of thirty equestrian supplements.
Collapse
Affiliation(s)
- Emilia Waraksa
- Gdańsk University of Technology, Faculty of Chemistry, Department of Analytical Chemistry, G. Narutowicza 11/12 Street, 80-233, Gdańsk, Poland; Institute of Sport - National Research Institute, Department of Analytical Chemistry and Instrumental Analysis, Trylogii 2/16 Street, 01-982, Warsaw, Poland.
| | | | - Ewa Kłodzińska
- Institute of Sport - National Research Institute, Department of Analytical Chemistry and Instrumental Analysis, Trylogii 2/16 Street, 01-982, Warsaw, Poland
| | - Rafał Rola
- Masdiag, Żeromskiego 33 Street, 01-832, Warsaw, Poland
| | - Jarosław Ciekot
- L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Science, Weigla 12 Street, 53-114, Wrocław, Poland
| | - Wojciech Filipiak
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Jurasza 2 Street, 85-089, Bydgoszcz, Poland
| | | | - Jacek Namieśnik
- Gdańsk University of Technology, Faculty of Chemistry, Department of Analytical Chemistry, G. Narutowicza 11/12 Street, 80-233, Gdańsk, Poland
| |
Collapse
|
19
|
Yasuda S, Sowa Y, Hashimoto H, Nakagami T, Tsuno T, Sakai T. Cycloartenyl Ferulate and β-Sitosteryl Ferulate - Steryl Ferulates of γ-Oryzanol - Suppress Intracellular Reactive Oxygen Species in Cell-based System. J Oleo Sci 2019; 68:765-768. [PMID: 31292340 DOI: 10.5650/jos.ess19054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
γ-Oryzanol is a naturally occurring component of rice bran and consists of various steryl ferulates. The antioxidant activities of γ-oryzanol have mostly been demonstrated in cell-free systems. Therefore, we determined whether steryl ferulate of γ-oryzanol suppress spontaneous intracellular reactive oxygen species (ROS) in cell-based systems. We found that cycloartenyl ferulate and β-sitosteryl ferulate suppressed spontaneous intracellular ROS in a similar way to N-acetylcysteine and α-tocopherol.
Collapse
Affiliation(s)
- Shusuke Yasuda
- Department of Molecular-Targeting Cancer Prevention, Kyoto Prefectural University of Medicine
| | - Yoshihiro Sowa
- Department of Molecular-Targeting Cancer Prevention, Kyoto Prefectural University of Medicine
| | | | | | | | - Toshiyuki Sakai
- Department of Molecular-Targeting Cancer Prevention, Kyoto Prefectural University of Medicine
| |
Collapse
|
20
|
Cho YH, Lim SY, Rehman A, Farooq M, Lee DJ. Characterization and quantification of γ-oryzanol in Korean rice landraces. J Cereal Sci 2019. [DOI: 10.1016/j.jcs.2019.05.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Saleh ASM, Wang P, Wang N, Yang L, Xiao Z. Brown Rice Versus White Rice: Nutritional Quality, Potential Health Benefits, Development of Food Products, and Preservation Technologies. Compr Rev Food Sci Food Saf 2019; 18:1070-1096. [DOI: 10.1111/1541-4337.12449] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/05/2019] [Accepted: 03/22/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Ahmed S. M. Saleh
- College of Grain Science and TechnologyShenyang Normal Univ. Shenyang 110034 Liaoning China
- Dept. of Food Science and Technology, Faculty of AgricultureAssiut Univ. Assiut 71526 Egypt
| | - Peng Wang
- College of Grain Science and TechnologyShenyang Normal Univ. Shenyang 110034 Liaoning China
| | - Na Wang
- College of Grain Science and TechnologyShenyang Normal Univ. Shenyang 110034 Liaoning China
| | - Liu Yang
- College of Grain Science and TechnologyShenyang Normal Univ. Shenyang 110034 Liaoning China
| | - Zhigang Xiao
- College of Grain Science and TechnologyShenyang Normal Univ. Shenyang 110034 Liaoning China
| |
Collapse
|
22
|
Tsuzuki W, Komba S, Kotake-Nara E. Diversity in γ-oryzanol profiles of Japanese black-purple rice varieties. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2019; 56:2778-2786. [PMID: 31168160 PMCID: PMC6525689 DOI: 10.1007/s13197-019-03767-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/27/2019] [Accepted: 04/02/2019] [Indexed: 11/28/2022]
Abstract
The γ-oryzanol contents and the composition of steryl ferulates distributed in Japanese pigmented rice varieties were investigated using the high-performance liquid chromatography-ultraviolet detection method for the purpose of expanding their utilisation. The average γ-oryzanol content in nine black-purple, four red, four green and three brown rice varieties was 54.2, 47.3, 44.3 and 43.3 mg γ-oryzanol equivalent/100 g dried weight, respectively. Among the nine varieties of black-purple rice, five varieties showed steryl ferulate composition similar to that of brown, red and green varieties. In contrast, the composition of steryl ferulates in other four black-purple rice varieties was partially specific and was characterised by a low amount of campesteryl ferulate and high of campestanyl ferulate and stigmastanyl ferulate. The latter two steryl ferulates have been recognised as minor components of γ-oryzanol in rice and as major components in wheat and corn. These results indicate that the compositions of steryl ferulates vary among Japanese black-purple rice varieties.
Collapse
Affiliation(s)
- Wakako Tsuzuki
- National Agriculture and Food Research Organization, Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642 Japan
| | - Shiro Komba
- National Agriculture and Food Research Organization, Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642 Japan
| | - Eiichi Kotake-Nara
- National Agriculture and Food Research Organization, Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642 Japan
| |
Collapse
|
23
|
Rawal T, Mishra N, Jha A, Bhatt A, Tyagi RK, Panchal S, Butani S. Chitosan Nanoparticles of Gamma-Oryzanol: Formulation, Optimization, and In vivo Evaluation of Anti-hyperlipidemic Activity. AAPS PharmSciTech 2018; 19:1894-1907. [PMID: 29663289 DOI: 10.1208/s12249-018-1001-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 03/19/2018] [Indexed: 02/07/2023] Open
Abstract
The elevated blood levels of cholesterol and low-density lipoproteins result in hyperlipidemia. The available expensive prophylactic treatments are kindred with severe side effects. Therefore, we fabricated the polymeric nanoparticles of gamma-oryzanol to achieving the improved efficacy of drug. The nanoparticles were prepared by ionic gelation method and optimized using 23 full factorial design taking drug/polymer ratio (X1), polymer/cross linking agent ratio (X2), and stirring speed (X3) as independent variables. The average particle size, percentage entrapment efficiency, and in vitro drug release at 2, 12, and 24 h were selected as response parameters. The factorial batches were statistically analyzed and optimized. The optimized nanoparticles were characterized with respect to particle size (141 nm) and zeta potential (+ 6.45 mV). Results obtained with the prepared and characterized formulation showed 83% mucoadhesion towards the intestinal mucosa. The in vitro findings were complemented well by in vivo anti-hyperlipidemic activity of developed formulation carried out in Swiss albino mouse model. The in vivo studies showed improved atherogenic index, malondialdehyde, and superoxide dismutase levels in poloxamer-407-induced hyperlipidemic animals when treated with oryzanol and gamma-oryzanol nanoformulation. Based on our findings, we believe that chitosan-mediated delivery of gamma-oryzanol nanoparticles might prove better in terms of anti-hyperlipidemic therapeutics.
Collapse
Affiliation(s)
- Tejal Rawal
- Department of Pharmaceutical Technology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| | - Neha Mishra
- Department of Pharmaceutical Technology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| | - Abhishek Jha
- Department of Pharmaceutical Technology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| | - Apurva Bhatt
- Department of Pharmaceutical Technology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| | - Rajeev K Tyagi
- Institute of Science, Nirma University, Ahmedabad, Guajrat, 382481, India
- Department of Periodontics, College of Dental Medicine, Georgia Regents University, Augusta, Georgia, 30912, USA
| | - Shital Panchal
- Department of Pharmaceutical Technology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| | - Shital Butani
- Department of Pharmaceutical Technology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India.
| |
Collapse
|
24
|
Phytosterols and their derivatives: Structural diversity, distribution, metabolism, analysis, and health-promoting uses. Prog Lipid Res 2018; 70:35-61. [DOI: 10.1016/j.plipres.2018.04.001] [Citation(s) in RCA: 233] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/03/2018] [Accepted: 04/03/2018] [Indexed: 01/08/2023]
|
25
|
Peanparkdee M, Yamauchi R, Iwamoto S. Characterization of Antioxidants Extracted from Thai Riceberry Bran Using Ultrasonic-Assisted and Conventional Solvent Extraction Methods. FOOD BIOPROCESS TECH 2017. [DOI: 10.1007/s11947-017-2047-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
26
|
Truong HT, Luu PD, Imamura K, Matsubara T, Takahashi H, Takenaka N, Boi LV, Maeda Y. Binary Solvent Extraction of Tocols, γ-Oryzanol, and Ferulic Acid from Rice Bran Using Alkaline Treatment Combined with Ultrasonication. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:4897-4904. [PMID: 28541677 DOI: 10.1021/acs.jafc.7b00055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Alkaline treatment (Alk) combined with ultrasound-assisted extraction (UAE) (Alk+UAE) was examined as a means of extracting tocols and γ-oryzanol from rice bran into an organic phase while simultaneously recovering ferulic acid into an aqueous phase. The tocols and γ-oryzanol/ferulic acid yields were determined using high-performance liquid chromatography with fluorescence and UV detection. The effects of extraction conditions were evaluated by varying the Alk treatment temperature and extraction duration. The maximum yields of tocols and γ-oryzanol were obtained at 25 °C over a time span of 30 min. When the temperature was increased to 80 °C, the yield of ferulic acid increased dramatically, whereas the recovery of γ-oryzanol slightly decreased. Employing the Alk+UAE procedure, the recovered concentrations of tocols, γ-oryzanol, and ferulic acid were in the ranges of 146-518, 1591-3629, and 352-970 μg/g, respectively. These results are in good agreement with those reported for rice bran samples from Thailand.
Collapse
Affiliation(s)
- Hoa Thi Truong
- Research Organization for University-Community Collaborations, Osaka Prefecture University , 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Phuong Duc Luu
- Faculty of Chemistry, Hanoi University of Science, VNU , 19 Le Thanh Tong Street, Hoan Kiem District, Hanoi, Vietnam
| | - Kiyoshi Imamura
- Research Organization for University-Community Collaborations, Osaka Prefecture University , 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Takeo Matsubara
- Yanmar Company Ltd. , 1-9 Tsurunocho, Kita-ku, Osaka 530-8311, Japan
| | - Hideki Takahashi
- Yanmar Company Ltd. , 1-9 Tsurunocho, Kita-ku, Osaka 530-8311, Japan
| | - Norimichi Takenaka
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University , 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Luu Van Boi
- Faculty of Chemistry, Hanoi University of Science, VNU , 19 Le Thanh Tong Street, Hoan Kiem District, Hanoi, Vietnam
| | - Yasuaki Maeda
- Research Organization for University-Community Collaborations, Osaka Prefecture University , 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
27
|
Abstract
Epidemiological and clinical studies suggest that the additive/synergistic effects of several bioactive compounds are responsible for the health benefits of rice. Among the leading contenders are phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocotrienols, tocopherols, λ-oryzanol, and phytic acid, which all possess strong antioxidant activities in vitro. In this review, data related to health effects of rice antioxidants using cultured cells, rodents and humans models are first summarized. The evidence is strong that consumption of rice tocotrienols translates into improved health outcomes. Current research, however, does not strongly support the health-promoting effects of rice tocopherols and phenolic acids. The crucial limitations in studies using rice flavonoids, anthocyanins, proanthocyanidins, λ-oryzanol and phytic acid appear to be the appropriateness of the substance tested (i.e., purity), and the scarcity of animal and human interventions. In a second part, rice antioxidants are reviewed with an emphasis on their composition and contents. Taking into account the bioavailability of these compounds, it is evident that a number of factors affect the antioxidant composition of rice, making it difficult to estimate dietary intake. Before harvest, factors including soil type, atmospheric CO2, chemical inputs, temperature, and degree of ripening are important. After harvest, rice is subjected to processing methods that include drying, parboiling, storage, irradiation, milling, stabilization, soaking, germination, fermentation, boiling, steaming, roasting, baking, and extrusion. Quantitative knowledge about the effects of these processes is summarized in this review. Surprisingly, a high level of agreement was found among study results, which could be useful in manipulating the growing and processing techniques of rice grains to facilitate efficient and safe consumption of antioxidant compounds.
Collapse
Affiliation(s)
- Piebiep Goufo
- a Universidade de Trás os Montes e Alto Douro (UTAD) , Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB) , Vila Real , Portugal
| | - Henrique Trindade
- a Universidade de Trás os Montes e Alto Douro (UTAD) , Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB) , Vila Real , Portugal
| |
Collapse
|
28
|
Cáceres PJ, Peñas E, Martinez-Villaluenga C, Amigo L, Frias J. Enhancement of biologically active compounds in germinated brown rice and the effect of sun-drying. J Cereal Sci 2017. [DOI: 10.1016/j.jcs.2016.11.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
29
|
Bagchi TB, Ghosh A, Kumar U, Chattopadhyay K, Sanghamitra P, Ray S, Adak T, Sharma S. Comparison of Nutritional and Physicochemical Quality of Rice Under Organic and Standard Production Systems. Cereal Chem 2016. [DOI: 10.1094/cchem-01-16-0001-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Torit Baran Bagchi
- ICAR–National Rice Research Institute, P.O. Box 753006, Cuttack, Odisha, India
| | - Amal Ghosh
- ICAR–National Rice Research Institute, P.O. Box 753006, Cuttack, Odisha, India
| | - Upendra Kumar
- ICAR–National Rice Research Institute, P.O. Box 753006, Cuttack, Odisha, India
| | | | | | - Soham Ray
- ICAR–National Rice Research Institute, P.O. Box 753006, Cuttack, Odisha, India
| | - Totan Adak
- ICAR–National Rice Research Institute, P.O. Box 753006, Cuttack, Odisha, India
| | - Srigopal Sharma
- ICAR–National Rice Research Institute, P.O. Box 753006, Cuttack, Odisha, India
| |
Collapse
|
30
|
Srichamnong W, Thiyajai P, Charoenkiatkul S. Conventional steaming retains tocols and γ-oryzanol better than boiling and frying in the jasmine rice variety Khao dok mali 105. Food Chem 2016; 191:113-9. [PMID: 26258709 DOI: 10.1016/j.foodchem.2015.05.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 04/30/2015] [Accepted: 05/05/2015] [Indexed: 11/24/2022]
Abstract
The aim of this study was to determine the effect of various cooking methods on the white rice (WR), brown rice (BR) and parboiled geminated brown rice (PGBR) of the same variety, focusing on γ-oryzanol and tocols. The methods used for analysis of γ-oryzanol and tocols included solvent extraction and HPLC. The results indicated that PGBR had a higher content of γ-oryzanol and tocols compared to BR and WR, when different cooking methods (raw, steamed, boiled and fried) were used. Steaming method retained the higher γ-oryzanol content (53.6-62.2mg/100g) in both PGBR and BR, in comparison with boiling (53.0-60.6mg/100g) and frying (23.4-31.5mg/100g) methods. Frying reduced the γ-oryzanol content significantly regardless of the rice type. Regarding tocols, a similar trend was noticed in all the methods studied. Tocotrienol was the most abundant tocol found in PGBR and BR. Therefore, steaming is the best cooking method to preserved most of the bioactive compounds; however, a slight increase in total tocols was observed after frying.
Collapse
Affiliation(s)
- Warangkana Srichamnong
- Institute of Nutrition, Mahidol University, Salaya Campus, Phuttamonton, Nakhon Pathom 73170, Thailand.
| | - Parunya Thiyajai
- Institute of Nutrition, Mahidol University, Salaya Campus, Phuttamonton, Nakhon Pathom 73170, Thailand
| | - Somsri Charoenkiatkul
- Institute of Nutrition, Mahidol University, Salaya Campus, Phuttamonton, Nakhon Pathom 73170, Thailand.
| |
Collapse
|
31
|
Geng P, Harnly JM, Chen P. Differentiation of Whole Grain from Refined Wheat (T. aestivum) Flour Using Lipid Profile of Wheat Bran, Germ, and Endosperm with UHPLC-HRAM Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:6189-6211. [PMID: 26083013 DOI: 10.1021/acs.jafc.5b01599] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A comprehensive analysis of wheat lipids from milling fractions of bran, germ, and endosperm was performed using ultrahigh-performance liquid chromatography-high-resolution accurate-mass multistage mass spectrometry (UHPLC-HRAM-MS(n)) with electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) in both positive and negative modes. About 155 lipid compounds, including free fatty acids (FA), oxylipins, alk(en)ylresorcinols (ARs), γ-oryzanol, sphingolipids, triglycerides (TGs), diglycerides (DGs), phospholipids, and galactolipids were characterized from the three milling fractions. Galactolipids and phospholipids were proposed to be potential discriminatory compounds for refined flour, whereas γ-oryzanols, ARs, TGs, and DGs could distinguish whole wheat flour from a refined one based on principal component analysis (PCA).
Collapse
Affiliation(s)
- Ping Geng
- Food Composition and Methods Development Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland 20705, United States
| | - James M Harnly
- Food Composition and Methods Development Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland 20705, United States
| | - Pei Chen
- Food Composition and Methods Development Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland 20705, United States
| |
Collapse
|
32
|
Zhu D, Nyström L. Differentiation of rice varieties using small bioactive lipids as markers. EUR J LIPID SCI TECH 2015. [DOI: 10.1002/ejlt.201500089] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Dan Zhu
- Department of Health Sciences and Technology; Institute of Food, Nutrition and Health, ETH Zurich; Zurich Switzerland
| | - Laura Nyström
- Department of Health Sciences and Technology; Institute of Food, Nutrition and Health, ETH Zurich; Zurich Switzerland
| |
Collapse
|
33
|
Pintha K, Yodkeeree S, Pitchakarn P, Limtrakul P. Anti-invasive activity against cancer cells of phytochemicals in red jasmine rice (Oryza sativa L.). Asian Pac J Cancer Prev 2015; 15:4601-7. [PMID: 24969892 DOI: 10.7314/apjcp.2014.15.11.4601] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Red rice contains pharmacological substances including phenolics, oryzanol, tocotrienol and tocopherol. Recently, red rice extract has been employed as a source of antioxidants for inhibition of tumor growth. This study was carried out to evaluate the anti-invasion effects of red rice extract fractions on cancer cells. It was found that at 100 μg/ml of crude ethanolic extract (CEE), hexane fraction (Hex) and dichloromethane fraction (DCM) could reduce HT1080 and MDA-MB-231 cancer cell invasion. Hex and DCM revealed higher potency levels than CEE, whereas an ethyl acetate fraction (EtOAc) had no effect. Gelatin zymography revealed that Hex decreased the secretion and activity of matrix metalloproteinase-2 and -9 (MMP-2 and-9). In contrast, the DCM fraction exhibited slightly effect on MMPs secretion and had no effect on MMPs activity. Collagenase activity was significantly inhibited by the Hex and DCM fractions. High amounts of γ-oryzanol and γ-tocotrienol were found in the Hex and DCM fractions and demonstrated an anti-invasion property. On the other hand, proanthocyanidin was detected only in the CEE fraction and reduced MDA-MB-231 cells invasion property. These observations suggest that proanthocyanidin, γ-oryzanol and γ-tocotrienol in the red rice fractions might be responsible for the anti invasion activity. The red rice extract may have a potential to serve as a food-derived chemotherapeutic agent for cancer patients.
Collapse
Affiliation(s)
- Komsak Pintha
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand E-mail :
| | | | | | | |
Collapse
|
34
|
Wang W, Guo J, Zhang J, Peng J, Liu T, Xin Z. Isolation, identification and antioxidant activity of bound phenolic compounds present in rice bran. Food Chem 2015; 171:40-9. [DOI: 10.1016/j.foodchem.2014.08.095] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 08/18/2014] [Accepted: 08/21/2014] [Indexed: 12/12/2022]
|
35
|
Improvement of physicochemical properties of cereal based ready-to-eat Sunsik using fermentation with Bionuruk and Bifidobacterium longum. Food Sci Biotechnol 2014. [DOI: 10.1007/s10068-014-0270-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
36
|
Kim HW, Kim JB, Cho SM, Cho IK, Li QX, Jang HH, Lee SH, Lee YM, Hwang KA. Characterization and quantification of γ-oryzanol in grains of 16 Korean rice varieties. Int J Food Sci Nutr 2014; 66:166-74. [DOI: 10.3109/09637486.2014.971226] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Heon Woong Kim
- Department of Agro-Food Resources, National Academy of Agricultural Science, Rural Development Administration, Suwon, Republic of Korea and
| | - Jung Bong Kim
- Department of Agro-Food Resources, National Academy of Agricultural Science, Rural Development Administration, Suwon, Republic of Korea and
| | - Soo-Muk Cho
- Department of Agro-Food Resources, National Academy of Agricultural Science, Rural Development Administration, Suwon, Republic of Korea and
| | - Il Kyu Cho
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Qing X. Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Hwan-Hee Jang
- Department of Agro-Food Resources, National Academy of Agricultural Science, Rural Development Administration, Suwon, Republic of Korea and
| | - Sung-Hyeon Lee
- Department of Agro-Food Resources, National Academy of Agricultural Science, Rural Development Administration, Suwon, Republic of Korea and
| | - Young-Min Lee
- Department of Agro-Food Resources, National Academy of Agricultural Science, Rural Development Administration, Suwon, Republic of Korea and
| | - Kyung-A. Hwang
- Department of Agro-Food Resources, National Academy of Agricultural Science, Rural Development Administration, Suwon, Republic of Korea and
| |
Collapse
|
37
|
Lin TC, Huang SH, Ng LT. Effects of cooking conditions on the concentrations of extractable tocopherols, tocotrienols and γ-oryzanol in brown rice: Longer cooking time increases the levels of extractable bioactive components. EUR J LIPID SCI TECH 2014. [DOI: 10.1002/ejlt.201400148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Tsu-Chi Lin
- Department of Agricultural Chemistry; National Taiwan University; Taipei Taiwan
| | - Shao-Hua Huang
- Department of Agricultural Chemistry; National Taiwan University; Taipei Taiwan
| | - Lean-Teik Ng
- Department of Agricultural Chemistry; National Taiwan University; Taipei Taiwan
| |
Collapse
|
38
|
Sakunpak A, Suksaeree J, Monton C, Pathompak P, Kraisintu K. Quantitative analysis of γ-oryzanol content in cold pressed rice bran oil by TLC-image analysis method. Asian Pac J Trop Biomed 2014; 4:119-23. [PMID: 25182282 DOI: 10.1016/s2221-1691(14)60219-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 01/18/2014] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE To develop and validate an image analysis method for quantitative analysis of γ-oryzanol in cold pressed rice bran oil. METHODS TLC-densitometric and TLC-image analysis methods were developed, validated, and used for quantitative analysis of γ-oryzanol in cold pressed rice bran oil. The results obtained by these two different quantification methods were compared by paired t-test. RESULTS Both assays provided good linearity, accuracy, reproducibility and selectivity for determination of γ-oryzanol. CONCLUSIONS The TLC-densitometric and TLC-image analysis methods provided a similar reproducibility, accuracy and selectivity for the quantitative determination of γ-oryzanol in cold pressed rice bran oil. A statistical comparison of the quantitative determinations of γ-oryzanol in samples did not show any statistically significant difference between TLC-densitometric and TLC-image analysis methods. As both methods were found to be equal, they therefore can be used for the determination of γ-oryzanol in cold pressed rice bran oil.
Collapse
Affiliation(s)
- Apirak Sakunpak
- Faculty of Pharmacy, Rangsit University, Pathum Thani, 12000, Thailand ; Sino-Thai Traditional Medicine Research Center, Herbal Medicinal Products Research and Development Center (Cooperation between Rangsit University and Harbin Institute of Technology and Heilongjiang University of Chinese Medicine), Rangsit University, Pathum Thani, 12000, Thailand
| | - Jirapornchai Suksaeree
- Faculty of Pharmacy, Rangsit University, Pathum Thani, 12000, Thailand ; Sino-Thai Traditional Medicine Research Center, Herbal Medicinal Products Research and Development Center (Cooperation between Rangsit University and Harbin Institute of Technology and Heilongjiang University of Chinese Medicine), Rangsit University, Pathum Thani, 12000, Thailand
| | - Chaowalit Monton
- Faculty of Pharmacy, Rangsit University, Pathum Thani, 12000, Thailand ; Sino-Thai Traditional Medicine Research Center, Herbal Medicinal Products Research and Development Center (Cooperation between Rangsit University and Harbin Institute of Technology and Heilongjiang University of Chinese Medicine), Rangsit University, Pathum Thani, 12000, Thailand
| | - Pathamaporn Pathompak
- Faculty of Pharmacy, Rangsit University, Pathum Thani, 12000, Thailand ; Sino-Thai Traditional Medicine Research Center, Herbal Medicinal Products Research and Development Center (Cooperation between Rangsit University and Harbin Institute of Technology and Heilongjiang University of Chinese Medicine), Rangsit University, Pathum Thani, 12000, Thailand
| | - Krisana Kraisintu
- Sino-Thai Traditional Medicine Research Center, Herbal Medicinal Products Research and Development Center (Cooperation between Rangsit University and Harbin Institute of Technology and Heilongjiang University of Chinese Medicine), Rangsit University, Pathum Thani, 12000, Thailand ; Faculty of Oriental Medicine, Rangsit University, Pathum Thani, 12000, Thailand
| |
Collapse
|
39
|
Johansson E, Hussain A, Kuktaite R, Andersson SC, Olsson ME. Contribution of organically grown crops to human health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:3870-93. [PMID: 24717360 PMCID: PMC4025038 DOI: 10.3390/ijerph110403870] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 03/27/2014] [Accepted: 03/28/2014] [Indexed: 12/14/2022]
Abstract
An increasing interest in organic agriculture for food production is seen throughout the world and one key reason for this interest is the assumption that organic food consumption is beneficial to public health. The present paper focuses on the background of organic agriculture, important public health related compounds from crop food and variations in the amount of health related compounds in crops. In addition, influence of organic farming on health related compounds, on pesticide residues and heavy metals in crops, and relations between organic food and health biomarkers as well as in vitro studies are also the focus of the present paper. Nutritionally beneficial compounds of highest relevance for public health were micronutrients, especially Fe and Zn, and bioactive compounds such as carotenoids (including pro-vitamin A compounds), tocopherols (including vitamin E) and phenolic compounds. Extremely large variations in the contents of these compounds were seen, depending on genotype, climate, environment, farming conditions, harvest time, and part of the crop. Highest amounts seen were related to the choice of genotype and were also increased by genetic modification of the crop. Organic cultivation did not influence the content of most of the nutritional beneficial compounds, except the phenolic compounds that were increased with the amounts of pathogens. However, higher amounts of pesticide residues and in many cases also of heavy metals were seen in the conventionally produced crops compared to the organic ones. Animal studies as well as in vitro studies showed a clear indication of a beneficial effect of organic food/extracts as compared to conventional ones. Thus, consumption of organic food seems to be positive from a public health point of view, although the reasons are unclear, and synergistic effects between various constituents within the food are likely.
Collapse
Affiliation(s)
- Eva Johansson
- Department of Plant Breeding, The Swedish University of Agricultural Sciences, P.O. Box 101, Alnarp, SE 23053, Sweden.
| | - Abrar Hussain
- Department of Biosciences, COMSATS Institute of InformationTechnology, Sahiwal Campus, Comsats Road, Sahiwal 57000, Pakistan.
| | - Ramune Kuktaite
- Department of Plant Breeding, The Swedish University of Agricultural Sciences, P.O. Box 101, Alnarp, SE 23053, Sweden.
| | - Staffan C Andersson
- Department of Plant Breeding, The Swedish University of Agricultural Sciences, P.O. Box 101, Alnarp, SE 23053, Sweden.
| | - Marie E Olsson
- Department of Plant Breeding, The Swedish University of Agricultural Sciences, P.O. Box 101, Alnarp, SE 23053, Sweden.
| |
Collapse
|
40
|
Effect of encapsulated Lactobacillus casei 01 along with pressurized-purple-rice drinks on colonizing the colon in the digestive model. Appl Microbiol Biotechnol 2014; 98:5241-50. [DOI: 10.1007/s00253-014-5624-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 02/12/2014] [Accepted: 02/14/2014] [Indexed: 01/04/2023]
|
41
|
Hu Y, Xiong L, Huang W, Cai H, Luo Y, Zhang Y, Lu B. Anti-inflammatory effect and prostate gene expression profiling of steryl ferulate on experimental rats with non-bacterial prostatitis. Food Funct 2014; 5:1150-9. [DOI: 10.1039/c4fo00052h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Steryl ferulate (SF) is a bioactive mixture extracted from rice bran and shows higher inhibitory activity against inflammation than the corresponding free sterols.
Collapse
Affiliation(s)
- Yinzhou Hu
- College of Biosystems Engineering and Food Science
- Fuli Institute of Food Science
- Zhejiang Key Laboratory for Agro-Food Processing
- Zhejiang R & D Center for Food Technology and Equipment
- Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation of Ministry of Agriculture
| | - Lina Xiong
- College of Biosystems Engineering and Food Science
- Fuli Institute of Food Science
- Zhejiang Key Laboratory for Agro-Food Processing
- Zhejiang R & D Center for Food Technology and Equipment
- Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation of Ministry of Agriculture
| | - Weisu Huang
- Department of Applied Technology
- Zhejiang Economic & Trade Polytechnic
- Hangzhou 310018, China
| | - Huafang Cai
- Institute of Materia Medica
- Zhejiang Academy of Medical Sciences
- Hangzhou 310013, China
| | - Yanxi Luo
- Institute of Materia Medica
- Zhejiang Academy of Medical Sciences
- Hangzhou 310013, China
| | - Ying Zhang
- College of Biosystems Engineering and Food Science
- Fuli Institute of Food Science
- Zhejiang Key Laboratory for Agro-Food Processing
- Zhejiang R & D Center for Food Technology and Equipment
- Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation of Ministry of Agriculture
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science
- Fuli Institute of Food Science
- Zhejiang Key Laboratory for Agro-Food Processing
- Zhejiang R & D Center for Food Technology and Equipment
- Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation of Ministry of Agriculture
| |
Collapse
|
42
|
Goufo P, Pereira J, Figueiredo N, Oliveira MP, Carranca C, Rosa EA, Trindade H. Effect of elevated carbon dioxide (CO2) on phenolic acids, flavonoids, tocopherols, tocotrienols, γ-oryzanol and antioxidant capacities of rice (Oryza sativa L.). J Cereal Sci 2014. [DOI: 10.1016/j.jcs.2013.10.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
43
|
Esche R, Scholz B, Engel KH. Online LC-GC analysis of free sterols/stanols and intact steryl/stanyl esters in cereals. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:10932-10939. [PMID: 24117337 DOI: 10.1021/jf403046z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The suitability of online liquid chromatography-gas chromatography for the analysis of free sterols/stanols, steryl/stanyl fatty acid esters, and trans-steryl/stanyl ferulic acid esters in cereals is demonstrated. The silylated lipid extracts were fractionated via liquid chromatography on a normal phase, and the fractions containing the sterol classes were transferred online to the gas chromatograph for the analysis of their individual compositions. The study provides for the first time data on free sterols/stanols and intact steryl/stanyl esters in sweet corn, popcorn, and proso millet. Sweet corn revealed the highest contents of free sterols/stanols and steryl/stanyl fatty acid esters, and popcorn, in turn, the highest amounts of trans-steryl/stanyl ferulic acid esters. The distribution patterns of the proso millet samples revealed pronounced differences from those of sweet corn and popcorn as they particularly exhibited high proportions of free cholesterol and cholesteryl fatty acid esters. Furthermore, no trans-steryl/stanyl ferulic acid esters could be detected.
Collapse
Affiliation(s)
- Rebecca Esche
- Lehrstuhl für Allgemeine Lebensmitteltechnologie, Technische Universität München , Maximus-von-Imhof-Forum 2, D-85350 Freising, Germany
| | | | | |
Collapse
|
44
|
Lu W, Niu Y, Yang H, Sheng Y, Shi H, Yu LL. Simultaneous HPLC quantification of five major triterpene alcohol and sterol ferulates in rice bran oil using a single reference standard. Food Chem 2013; 148:329-34. [PMID: 24262565 DOI: 10.1016/j.foodchem.2013.10.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 09/07/2013] [Accepted: 10/06/2013] [Indexed: 11/18/2022]
Abstract
A high performance liquid chromatography (HPLC) method was developed for simultaneous quantification of five major triterpene alcohol and sterol ferulates in rice bran oils (RBO) with a single internal standard, cycloartenyl ferulate. The five compounds are cycloartenyl ferulate (1), 24-methylene cycloartanyl ferulate (2), campesteryl ferulate (3), sitosteryl ferulate (4) and stigmastanyl ferulate (5). All five compounds had good linear concentration-measurement relationships (r(2) ≥ 0.9995) and possessed similar relative response factors. The relative deviation of this method was less than 2.5% for intra- and inter-day assays, and the average recovery varied from 95.1% to 99.4%. The new method was validated by comparing the amount of 24-methylene cycloartanyl ferulate (2) in 17 RBO samples obtained with this method and that with an external standard method. This method was also successfully applied to determine five major triterpene alcohol and sterol ferulates in 17 batches of RBO samples. The results demonstrated that the present method could be utilised for quality control of RBO since some of the reference standards are not commercially available.
Collapse
Affiliation(s)
- Weiying Lu
- Institute of Food and Nutraceutical Science, SJTU-Rich Research Institute of Nutrition and Skin Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | | | | | | | | |
Collapse
|
45
|
Aladedunye F, Przybylski R, Rudzinska M, Klensporf-Pawlik D. γ-Oryzanols of North American Wild Rice ( Zizania palustris). J AM OIL CHEM SOC 2013; 90:1101-1109. [PMID: 23913975 PMCID: PMC3723977 DOI: 10.1007/s11746-013-2252-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 04/02/2013] [Accepted: 04/05/2013] [Indexed: 10/30/2022]
Abstract
γ-Oryzanol, a natural mixture of ferulic acid esters of triterpene alcohols and sterols, are an important bioactive components present in rice bran oil. In light of the recent increase in the popularity of wild rice among consumers, and the possibility of a direct relationship between γ-oryzanol composition and its bioactivity, the oryzanol profile of major wild rice (Zizania palustris) grown in North America was studied and compared to regular brown rice (Oryza sativa L.). A total of twenty-three γ-oryzanol components were separated, identified and quantified by HPLC coupled to an Orbitrap MS. The distribution of individual γ-oryzanols was similar for all the wild rice but significantly different from those of the regular brown rice. Unlike in the regular brown rice, a significant amount of steryl caffeate and cinnamate were found in the wild rice samples. Generally, the amounts of γ-oryzanol in the wild rice were higher compared to the regular brown rice, 1,352 vs. 688 μg/g. The results from this study showed that wild rice had a more diverse γ-oryzanol composition and the higher amounts compared to the regular brown rice.
Collapse
Affiliation(s)
- Felix Aladedunye
- Max Rubner-Institut, Federal Research Institute for Nutrition and Food, Detmold, Germany
| | - Roman Przybylski
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Canada
| | - Magdalena Rudzinska
- Faculty of Food Science and Nutrition, Poznan University of Life Sciences, Poznan, Poland
| | | |
Collapse
|
46
|
Phytochemical profile of a Japanese black-purple rice. Food Chem 2013; 141:2821-7. [PMID: 23871029 DOI: 10.1016/j.foodchem.2013.05.100] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 05/21/2013] [Accepted: 05/23/2013] [Indexed: 11/23/2022]
Abstract
Black-purple rice is becoming popular with health conscious food consumers. In the present study, the secondary metabolites in dehulled black-purple rice cv. Asamurasaki were analysed using HPLC-PDA-MS(2). The seeds contained a high concentration of seven anthocyanins (1400 μg/g fresh weight) with cyanidin-3-O-glucoside and peonidin-3-O-glucoside predominating. Five flavonol glycosides, principally quercetin-3-O-glucoside and quercetin-3-O-rutinoside, and flavones were detected at a total concentration of 189 μg/g. The seeds also contained 3.9 μg/g of carotenoids consisting of lutein, zeaxanthin, lycopene and β-carotene. γ-Oryzanol (279 μg/g) was also present as a mixture of 24-methylenecycloartenol ferulate, campesterol ferulate, cycloartenol ferulate and β-sitosterol ferulate. No procyanidins were detected in this variety of black-purple rice. The results demonstrate that the black-purple rice in the dehulled form in which it is consumed by humans contains a rich heterogeneous mixture of phytochemicals which may provide a basis for the potential health benefits, and highlights the possible use of the rice as functional food.
Collapse
|
47
|
Mandak E, Zhu D, Godany TA, Nyström L. Fourier transform infrared spectroscopy and Raman spectroscopy as tools for identification of steryl ferulates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:2446-2452. [PMID: 23414293 DOI: 10.1021/jf305417d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Steryl ferulates are a mixture of minor bioactive compounds, possessing well-established health benefits. However, individual steryl ferulate species show structural differences, which seem to substantially influence their health-promoting potential. In this study, we tested Fourier transform infrared (FTIR) spectroscopy and Raman spectroscopy, as potential tools in the identification of steryl ferulates. On the basis of our spectral data obtained from various individual steryl ferulates and steryl ferulate mixtures extracted from rice (γ-oryzanol), corn bran, and wheat bran, we provide comprehensive peak assignment tables for both FTIR and Raman. With the help of FTIR spectroscopy, structural differences between individual steryl ferulates were possible to identify, such as the presence of the cyclopropane ring and additional differences in the side chain of the sterane skeleton. Data obtained with Raman spectroscopy provided us with a control for FTIR peak assignment and also with some additional information on the samples. However, detecting structural differences between steryl ferulates was not possible with this method. We consider that FTIR spectroscopy alone or combined with Raman provides detailed data on the structures of steryl ferulates. Moreover, thorough peak assignment tables presented in this study could prove to be helpful tools when identifying steryl ferulates, especially as a group, in future studies.
Collapse
Affiliation(s)
- Eszter Mandak
- Institute of Food, Nutrition and Health, ETH Zurich , Schmelzbergstrasse 9, CH-8092 Zürich, Switzerland
| | | | | | | |
Collapse
|