1
|
Hu Y, Jia Y, Li Z, Wang Z, Wei T, Bi F, Wang Y, Qin Y, Khan A, Liu Y, Cheng G. Impact of Different Proportions of Purple Rice and Chanterelles Powder on Physicochemical, Sensory, and Starch Digestibility Properties in Wheat Bread. Foods 2025; 14:1343. [PMID: 40282745 PMCID: PMC12027112 DOI: 10.3390/foods14081343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
The breads were produced using the following formulations: (1) purple rice (Oryza sativa L.) powder alone at 5% and 10% (w/w), (2) chanterelle mushrooms (Cantharellus yunnanensis Chiu) powder alone at 1% and 2% (w/w), and (3) four blended combinations of both purple rice powder (5%, 10%) and chanterelle powder (1%, 2%) at varying ratios. Physicochemical, starch digestibility, antioxidant capacity, odor characteristics, and sensory properties were investigated, which are helpful to search for both rich-nutritious and highly acceptable daily food options. Compared to the control bread, the resistant starch content, phenolic content, flavonoid content, and antioxidant capacity were significantly increased, and the hydrolysis index and glycemic index were significantly decreased in experimental breads. Significant differences were found in color, specific volume, texture characteristics, and aroma components in experimental breads. All the experimental breads showed high overall acceptability, and the results indicated that purple rice and chanterelle mushroom powder could be used as high-value ingredients to improve the nutritional profile and reduce the glycemic index of bread. The purple rice and chanterelle mushrooms are natural food ingredients and show new potential to improve the functional properties of breads.
Collapse
Affiliation(s)
- Yingrui Hu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (Y.H.); (Y.J.); (Z.L.); (Z.W.); (T.W.); (F.B.); (Y.W.); (Y.Q.)
| | - Yiqing Jia
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (Y.H.); (Y.J.); (Z.L.); (Z.W.); (T.W.); (F.B.); (Y.W.); (Y.Q.)
| | - Zhilin Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (Y.H.); (Y.J.); (Z.L.); (Z.W.); (T.W.); (F.B.); (Y.W.); (Y.Q.)
| | - Zhishuang Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (Y.H.); (Y.J.); (Z.L.); (Z.W.); (T.W.); (F.B.); (Y.W.); (Y.Q.)
| | - Ting Wei
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (Y.H.); (Y.J.); (Z.L.); (Z.W.); (T.W.); (F.B.); (Y.W.); (Y.Q.)
| | - Feifei Bi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (Y.H.); (Y.J.); (Z.L.); (Z.W.); (T.W.); (F.B.); (Y.W.); (Y.Q.)
| | - Yurou Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (Y.H.); (Y.J.); (Z.L.); (Z.W.); (T.W.); (F.B.); (Y.W.); (Y.Q.)
| | - Yuyue Qin
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (Y.H.); (Y.J.); (Z.L.); (Z.W.); (T.W.); (F.B.); (Y.W.); (Y.Q.)
| | - Afsar Khan
- Department of Chemistry, Abbottabad Campus, COMSATS University Islamabad, Abbottabad 22060, Pakistan;
| | - Yaping Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (Y.H.); (Y.J.); (Z.L.); (Z.W.); (T.W.); (F.B.); (Y.W.); (Y.Q.)
| | - Guiguang Cheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (Y.H.); (Y.J.); (Z.L.); (Z.W.); (T.W.); (F.B.); (Y.W.); (Y.Q.)
| |
Collapse
|
2
|
Xu R, Ye H, Zeng D, Zhang H, Xu X, Wu F. Oat flour and β-glucan regulate the quality of cereal flour and cereal products: Unveiling novel physicochemical insights with future perspectives. Int J Biol Macromol 2025; 307:142362. [PMID: 40120888 DOI: 10.1016/j.ijbiomac.2025.142362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/13/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025]
Abstract
In the dynamically evolving cereal food industry, the demand for enhanced health properties has surged. The specific dietary requirements of certain patient groups have further intensified this pursuit, thereby driving the expansion of the gluten-free product market. However, refined and gluten-free cereal products often suffer from nutrient loss. Oats, celebrated for their outstanding nutritional profile, have garnered global attention within the realm of cereal products. Despite this, the impacts of adding oats, such as oat (bran) flour and oat β-glucan, on the physicochemical characteristics of cereal flours and the quality of associated products have not been reviewed. This review focuses on these aspects, including the influence on viscosity, thermal stability, viscoelasticity, dough/batter network structure, water distribution, and starch retrogradation, which can be used as mechanisms to explain the effects of oats on the quality of cereal products to some extent. Notably, the concentration, molecular weight, and structure of β-glucan play crucial roles. The effects of oats vary distinctly across diverse cereal products. We have comprehensively summarized these effects and propose strategies to mitigate negative impacts. Whole oats products show potential as gluten-free alternatives, but their associated safety issues must be considered. Meanwhile, large-scale production of oat β- glucan-enriched cereal products in the food industry faces numerous challenges. Looking forward, future research should explore advanced technologies such as genetic modification, spectral imaging, machine learning algorithms, and molecular dynamics simulation. These endeavors are aimed at surmounting the safety and nutritional challenges associated with oats in applications, optimizing the formulations of different cereal products, and fully exploiting the potential of oats in cereal product development.
Collapse
Affiliation(s)
- Ruoyuan Xu
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Honggao Ye
- Shanghai Tramy Green Food (Group) Co., Ltd., Shanghai 200120, China
| | - Dexiong Zeng
- Shanghai Tramy Green Food (Group) Co., Ltd., Shanghai 200120, China
| | - Honghong Zhang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Xueming Xu
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Anqing Yixiu Green Food Innovation Research Institute, Anqing 246000, China
| | - Fengfeng Wu
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Anqing Yixiu Green Food Innovation Research Institute, Anqing 246000, China.
| |
Collapse
|
3
|
Wang CW, Shen HS, Yang CW, Syu PC, Lin SD. Physicochemical, Antioxidant, Starch Digestibility, and Sensory Properties of Wheat Bread Fortified with Taiwanese Cocoa Bean Shells. Foods 2024; 13:2854. [PMID: 39272619 PMCID: PMC11394988 DOI: 10.3390/foods13172854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/29/2024] [Accepted: 09/07/2024] [Indexed: 09/15/2024] Open
Abstract
The effects of replacing 5-25% of wheat flour (WF) with Taiwanese cocoa bean shells (CBSs) on the physicochemical, antioxidant, starch digestion, and sensory properties of the bread were studied. The lead (0.18) and cadmium (0.77) contents (mg/kg) of the CBSs were below the Codex Alimentarius specifications for cocoa powder. Ochratoxin A and aflatoxins (B1, B2, G1, and G2) were not detected in the CBSs. The CBSs were rich in dietary fiber (42.9%) and bioactive components and showed good antioxidant capacity. The ash, fat, protein, dietary fiber, crumb a* and c*, hardness, chewiness, total phenols, and antioxidant activities of the bread increased with an increasing CBSs level. The starch hydrolysis rate (45.1-36.49%) of the CBS breads at 180 min was lower than that of the control (49.6%). The predicted glycemic index of the bread (CBS20 and CBS25) with 20-25% of the WF replaced with CBSs was classified as a medium-GI food using white bread as a reference. In the nine-point hedonic test, the overall preference scores were highest for control (6.8) and CBS breads, where CBSs replaced 5-10% of WF, with scores of 7.2 and 6.7. CBS20 supplemented with an additional 20-30% water improved its volume, specific volume, and staling rate, but the overall liking score (6.5-7.2) was not significantly different from the control (p > 0.05). Overall, partially replacing wheat flour with CBSs in the production of baked bread can result in a new medium-GI value food containing more dietary fiber, bioactive compounds, and enhanced antioxidant capacity.
Collapse
Affiliation(s)
- Chun-Wei Wang
- Department of Food Science and Technology, Hungkuang University, Taichung 433304, Taiwan
| | - Hui-Shan Shen
- Department of Food Science and Technology, Hungkuang University, Taichung 433304, Taiwan
| | - Chih-Wei Yang
- Department of Food Science and Technology, Hungkuang University, Taichung 433304, Taiwan
| | - Pei-Ci Syu
- Department of Food Science and Technology, Hungkuang University, Taichung 433304, Taiwan
| | - Sheng-Dun Lin
- Department of Food Science and Technology, Hungkuang University, Taichung 433304, Taiwan
| |
Collapse
|
4
|
Gao M, Hu Z, Yang Y, Jin Z, Jiao A. Effect of different molecular weight β-glucan hydrated with highland barley protein on the quality and in vitro starch digestibility of whole wheat bread. Int J Biol Macromol 2024; 268:131681. [PMID: 38643913 DOI: 10.1016/j.ijbiomac.2024.131681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/05/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
Whole wheat bread has high nutritional value, but it has inferior baking quality and high glycemic index, which needs to be improved by methods such as adding protein and β-glucan. This study investigated the effects of β-glucan and highland barley protein of different molecular weights (2 × 104, 1 × 105, and 3 × 105 Da) and different hydrate methods (pre-hydrate and not pre-hydrate) on the characteristics of whole wheat dough and bread. The mixing properties and rheological properties demonstrated that β-glucan pre-hydrated with highland barley protein were able to reduce the dough tan δ, reduce the dough viscoelasticity, while enhance the gluten network structure and dough deformation resistance. Compared to the control sample, the medium molecular weight pre-hydrate bread had a better specific volume of 3.21 mL/g, lower hardness of 527.28 g. In vitro starch digestion characteristics and ATR-FTIR showed that low and high molecular weight pre-hydrate increased the short-range ordered structure of starch and reduced the starch digestibility, while not pre-hydrated medium molecular weight hydrate had the lowest level of starch digestibility.
Collapse
Affiliation(s)
- Mengfei Gao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Zhongbo Hu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Yueyue Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Aiquan Jiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
5
|
Jurkaninová L, Dvořáček V, Gregusová V, Havrlentová M. Cereal β-d-Glucans in Food Processing Applications and Nanotechnology Research. Foods 2024; 13:500. [PMID: 38338635 PMCID: PMC10855322 DOI: 10.3390/foods13030500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/21/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Cereal (1,3)(1,4)-β-d-glucans, known as β-d-glucans, are cell wall polysaccharides observed in selected plants of grasses, and oats and barley are their good natural sources. Thanks to their physicochemical properties β-d-glucans have therapeutic and nutritional potential and a specific place for their functional characteristics in diverse food formulations. They can function as thickeners, stabilizers, emulsifiers, and textural and gelation agents in beverages, bakery, meat, and extruded products. The objective of this review is to describe the primary procedures for the production of β-d-glucans from cereal grains, to define the processing factors influencing their properties, and to summarize their current use in the production of novel cereal-based foods. Additionally, the study delves into the utilization of β-d-glucans in the rapidly evolving field of nanotechnology, exploring potential applications within this technological realm.
Collapse
Affiliation(s)
- Lucie Jurkaninová
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Kamýcká 129, 165 00 Praha, Czech Republic;
| | - Václav Dvořáček
- Crop Research Institute, Drnovská 507, 161 06 Prague, Czech Republic;
| | - Veronika Gregusová
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Námestie J. Herdu 2, 917 01 Trnava, Slovakia;
| | - Michaela Havrlentová
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Námestie J. Herdu 2, 917 01 Trnava, Slovakia;
- National Agricultural and Food Center—Research Institute of Plant Production, Bratislavská Cesta 122, 921 68 Piešťany, Slovakia
| |
Collapse
|
6
|
Cheng J, Zheng L, Zhao J, Yu M, Cao R, Wang D, Li J, Zhou L. Study on the Effect of Microwaved Brewer's Spent Grains on the Quality and Flavor Characteristics of Bread. Foods 2024; 13:461. [PMID: 38338596 PMCID: PMC10855328 DOI: 10.3390/foods13030461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
To enable a wider utilization of co-products from beer processing and minimize the negative effect of added grain on bread quality, flavor, and other attributes, brewer's spent grains (BSG) are processed through microwave pretreatment, and then the microwave-treated BSG (MW-BSG) is added to bread. So far, there has been no investigation on the effect of microwave-pretreated BSG on bread quality and flavor. In this study, we examined the effects of diverse microwave treatment variables on the physicochemical structure of BSG and explored the consequences of MW-BSG on the quality and flavor of bread. The results showed that soluble dietary fiber and water-soluble protein levels in MW-BSG increased significantly (144.88% and 23.35%) at a 540 W microwave power, 3 min processing time, and 1:5 material-liquid ratio of BSG to water. The proper addition of MW-BSG positively affected the bread texture properties and color, but excessive amounts led to an irregular size and distribution of the bread crumbs. The result of electronic nose and HS-SPME-GC-MS analyses showed that the addition of MW-BSG modified the odor profile of the bread. A sensory evaluation showed mean scores ranging from 6.81 to 4.41 for bread containing 0-10% MW-BSG. Consumers found a maximum level of 6% MW-BSG acceptable. This study endeavors to decrease environmental contamination caused by brewing waste by broadening the methods by which beer co-products can be utilized through an innovative approach.
Collapse
Affiliation(s)
- Jieyi Cheng
- College of Food Science, Beijing Technology and Business University, Beijing 100048, China; (J.C.); (J.Z.); (M.Y.); (R.C.); (D.W.); (J.L.)
| | - Li Zheng
- College of Food Science, Northeast Agricultural University, Harbin 150030, China;
| | - Jinling Zhao
- College of Food Science, Beijing Technology and Business University, Beijing 100048, China; (J.C.); (J.Z.); (M.Y.); (R.C.); (D.W.); (J.L.)
| | - Meihong Yu
- College of Food Science, Beijing Technology and Business University, Beijing 100048, China; (J.C.); (J.Z.); (M.Y.); (R.C.); (D.W.); (J.L.)
| | - Rui Cao
- College of Food Science, Beijing Technology and Business University, Beijing 100048, China; (J.C.); (J.Z.); (M.Y.); (R.C.); (D.W.); (J.L.)
| | - Dan Wang
- College of Food Science, Beijing Technology and Business University, Beijing 100048, China; (J.C.); (J.Z.); (M.Y.); (R.C.); (D.W.); (J.L.)
| | - Jian Li
- College of Food Science, Beijing Technology and Business University, Beijing 100048, China; (J.C.); (J.Z.); (M.Y.); (R.C.); (D.W.); (J.L.)
| | - Linyi Zhou
- College of Food Science, Beijing Technology and Business University, Beijing 100048, China; (J.C.); (J.Z.); (M.Y.); (R.C.); (D.W.); (J.L.)
| |
Collapse
|
7
|
Cao H, Li R, Shi M, Song H, Li S, Guan X. Promising effects of β-glucans on gelation in protein-based products: A review. Int J Biol Macromol 2024; 256:127574. [PMID: 37952797 DOI: 10.1016/j.ijbiomac.2023.127574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 11/14/2023]
Abstract
Gel property is one of the most important abilities to endow protein-based food products with a unique texture and higher overall acceptability. Cereal β-glucan (BG) is widely applied in protein-based products to improve the stability of the protein gel by increasing water holding capacity, storage modulus (G'), loss modulus (G") and linking with protein through more exposed sites, making it easier to form a stronger three-dimensional gel network. In addition, BG may be cross-linked with proteins, or physically embedded and covered in protein network structures, interacting with proteins mainly through non-covalent bonds including hydrogen bonding and electrostatic interaction. Furthermore, the transition of the α-helix to the β-form in the protein secondary structure also contributes to the stability of the protein gel. The practical applications of BG from different cereals in protein-based products are summarized, and the rheological properties, microstructure of protein as well as the underlying interaction mechanisms between BG and protein are discussed. In conclusion, cereal BG is a promising polysaccharide in developing nutritional protein-based products with better sensory properties.
Collapse
Affiliation(s)
- Hongwei Cao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, PR China
| | - Ranqing Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Mengmeng Shi
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Hongdong Song
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, PR China
| | - Sen Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, PR China
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, PR China.
| |
Collapse
|
8
|
Baskaya‐Sezer D. The characteristics of microwave-treated insoluble and soluble dietary fibers from grape and their effects on bread quality. Food Sci Nutr 2023; 11:7877-7886. [PMID: 38107134 PMCID: PMC10724596 DOI: 10.1002/fsn3.3705] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/29/2023] [Accepted: 09/08/2023] [Indexed: 12/19/2023] Open
Abstract
This study investigated the morphological and hydration properties of untreated and microwave (MW)-treated isolate forms of soluble (SDF) and insoluble dietary fibers (IDF) obtained from grapes. Then, the rheological, textural, and other physical effects of the fibers (5% flour basis) were evaluated on bread quality. For this purpose, grape pomace was valorized as the juice extraction waste. MW significantly improved hydration properties of SDF and IDF by modifying their microstructures (p < .05). SDF had a clean-cut morphology whereas IDF had an indented microstructure with a wrinkled surface. After MW treatment, deep grooves and holes were observed. These variations in the IDF structure were more extensive. DF additions influenced water absorption, mixing tolerance index, dough development time, dough stability, resistance to extension, extensibility, energy of the dough and hardness, cohesiveness, springiness, chewiness, weight loss, specific volume, crust color difference of the bread in comparison with the properties of control samples significantly (p < .05). IDF had especially pronounced effects on the dough and bread characteristics. SDF enrichment provided more comparable results with the control bread than IDF. The originality of this work is to characterize isolated (100% purity) SDFs and IDFs, then discuss their effects on semi (dough) and final (bread) product quality.
Collapse
|
9
|
Guan Y, Yang X, Pan C, Kong J, Wu R, Liu X, Wang Y, Chen M, Li M, Wang Q, He G, Yang G, Chang J, Li Y, Wang Y. Comprehensive Analyses of Breads Supplemented with Tannic Acids. Foods 2023; 12:3756. [PMID: 37893648 PMCID: PMC10606112 DOI: 10.3390/foods12203756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/21/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Tannic acid (TA) has been recently considered as a new dough additive for improving the bread-making quality of wheat. However, the effects of TA supplementation on the sensory quality parameters (color, crumb grain structure, and sensory properties) of bread have not been studied. Further, the potential of TA supplementation in bread-making quality improvement has not been evaluated by using commercial flour. In the present study, three commercial wheat flours (namely, XL, QZG, and QZZ) with different gluten qualities were used to evaluate the effects of TA supplementation (in concentrations of 0.1% and 0.3%, respectively). TA supplementation did not change the proximate composition of the breads but increased the volumes and specific volumes of XL and QZG breads. TA supplementation enhanced antioxidant activities, with 0.3% TA significantly increasing the antioxidant capacities of bread made from all three flour samples by approximately four-fold (FRAP method)/three-fold (ABTS method). Positive effects of TA on the reduction in crumb hardness, gumminess, and chewiness were observed in the XL bread, as determined by the texture profile analysis. For the analyses on visual and sensory attributes, our results suggest that TA did not affect the crust color, but only slightly reduced the L* (lightness) and b* (yellowness) values of the crumb and increased the a* (redness) value. TA supplementation also increased the porosity, total cell area, and mean cell area. Satisfactorily, the sensory evaluation results demonstrate that TA-supplemented breads did not exhibit negative sensory attributes when compared to the non-TA-added breads; rather, the attributes were even increased. In summary, TA-supplemented breads generally had not only better baking quality attributes and enhanced antioxidant activities, but, more importantly, presented high consumer acceptance in multiple commercial flour samples. Our results support the commercial potential of TA to be used as a dough improver.
Collapse
Affiliation(s)
- Yanbin Guan
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China; (Y.G.); (X.Y.); (C.P.); (J.K.); (R.W.); (Y.W.); (M.C.); (G.H.); (G.Y.)
| | - Xun Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China; (Y.G.); (X.Y.); (C.P.); (J.K.); (R.W.); (Y.W.); (M.C.); (G.H.); (G.Y.)
| | - Chuang Pan
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China; (Y.G.); (X.Y.); (C.P.); (J.K.); (R.W.); (Y.W.); (M.C.); (G.H.); (G.Y.)
| | - Jie Kong
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China; (Y.G.); (X.Y.); (C.P.); (J.K.); (R.W.); (Y.W.); (M.C.); (G.H.); (G.Y.)
| | - Ruizhe Wu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China; (Y.G.); (X.Y.); (C.P.); (J.K.); (R.W.); (Y.W.); (M.C.); (G.H.); (G.Y.)
| | - Xueli Liu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China; (Y.G.); (X.Y.); (C.P.); (J.K.); (R.W.); (Y.W.); (M.C.); (G.H.); (G.Y.)
| | - Yuesheng Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China; (Y.G.); (X.Y.); (C.P.); (J.K.); (R.W.); (Y.W.); (M.C.); (G.H.); (G.Y.)
| | - Mingjie Chen
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China; (Y.G.); (X.Y.); (C.P.); (J.K.); (R.W.); (Y.W.); (M.C.); (G.H.); (G.Y.)
| | - Miao Li
- Grain Storage and Security Engineering Research Center of Education Ministry, School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450052, China;
| | - Qiong Wang
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Guangyuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China; (Y.G.); (X.Y.); (C.P.); (J.K.); (R.W.); (Y.W.); (M.C.); (G.H.); (G.Y.)
| | - Guangxiao Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China; (Y.G.); (X.Y.); (C.P.); (J.K.); (R.W.); (Y.W.); (M.C.); (G.H.); (G.Y.)
| | - Junli Chang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China; (Y.G.); (X.Y.); (C.P.); (J.K.); (R.W.); (Y.W.); (M.C.); (G.H.); (G.Y.)
| | - Yin Li
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China; (Y.G.); (X.Y.); (C.P.); (J.K.); (R.W.); (Y.W.); (M.C.); (G.H.); (G.Y.)
| | - Yaqiong Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China; (Y.G.); (X.Y.); (C.P.); (J.K.); (R.W.); (Y.W.); (M.C.); (G.H.); (G.Y.)
| |
Collapse
|
10
|
Sztupecki W, Rhazi L, Depeint F, Aussenac T. Functional and Nutritional Characteristics of Natural or Modified Wheat Bran Non-Starch Polysaccharides: A Literature Review. Foods 2023; 12:2693. [PMID: 37509785 PMCID: PMC10379113 DOI: 10.3390/foods12142693] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/27/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Wheat bran (WB) consists mainly of different histological cell layers (pericarp, testa, hyaline layer and aleurone). WB contains large quantities of non-starch polysaccharides (NSP), including arabinoxylans (AX) and β-glucans. These dietary fibres have long been studied for their health effects on management and prevention of cardiovascular diseases, cholesterol, obesity, type-2 diabetes, and cancer. NSP benefits depend on their dose and molecular characteristics, including concentration, viscosity, molecular weight, and linked-polyphenols bioavailability. Given the positive health effects of WB, its incorporation in different food products is steadily increasing. However, the rheological, organoleptic and other problems associated with WB integration are numerous. Biological, physical, chemical and combined methods have been developed to optimise and modify NSP molecular characteristics. Most of these techniques aimed to potentially improve food processing, nutritional and health benefits. In this review, the physicochemical, molecular and functional properties of modified and unmodified WB are highlighted and explored. Up-to-date research findings from the clinical trials on mechanisms that WB have and their effects on health markers are critically reviewed. The review points out the lack of research using WB or purified WB fibre components in randomized, controlled clinical trials.
Collapse
Affiliation(s)
| | | | | | - Thierry Aussenac
- Institut Polytechnique Unilasalle, Université d’Artois, ULR 7519, 60026 Beauvais, France; (W.S.); (L.R.); (F.D.)
| |
Collapse
|
11
|
Różyło R, Schönlechner R, Pichler EC, Dziki D, Matwijczuk A, Biernacka B, Świeca M. Innovative high-fiber wheat bread fortified with micronized oat and Plantago ovata husks: Spectroscopic and physicochemical characteristics. Food Chem 2023; 428:136782. [PMID: 37418878 DOI: 10.1016/j.foodchem.2023.136782] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/09/2023]
Abstract
Micronized oat husk and Plantago ovata husk were used as dietary fiber sources in wheat bread. The addition of 20% micronized oat husk improved dough yield but resulted in a darker bread crumb, decreased loaf volume, and deteriorated texture. In contrast, 5% P. ovata husk enhanced the springiness and cohesiveness of the crumb, as confirmed by rapid visco-analysis of pasting properties and Fourier-transform infrared spectra. The improvement was ascribed to increased interaction via hydrogen or glycosidic bonds. Bread enriched with 10% micronized oat husk and 5% P. ovata husk contained 9.2 g/100 g FW of fiber (a 5-fold increase), 7.1 g/100 g FW of protein (a decrease of 21%), 40.1 g/100 g FW of carbohydrates (a decrease of 21.6%), and had a calorific value of 212 kcal/100 g FW (a decrease of 22%). In vitro, analysis showed higher starch digestibility for the bread. Furthermore, both P. ovata husk and micronized oat husk improved the antioxidant properties of potentially bioaccessible fractions, particularly the ability to quench hydroxyl radicals, which was 2.7-fold higher in the bread with the highest contribution of micronized oat husk.
Collapse
Affiliation(s)
- Renata Różyło
- Department of Food Engineering and Machines, University of Life Sciences in Lublin, 28 Głęboka St., 20-612 Lublin, Poland.
| | - Regine Schönlechner
- Department of Food Science and Technology, Institute of Food Technology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria.
| | - Eleonora Charlotte Pichler
- Department of Food Science and Technology, Institute of Food Technology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria.
| | - Dariusz Dziki
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, 31 Głęboka St., 20-612 Lublin, Poland.
| | - Arkadiusz Matwijczuk
- Department of Biophysics, Institute of Molecular Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland.
| | - Beata Biernacka
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, 31 Głęboka St., 20-612 Lublin, Poland.
| | - Michał Świeca
- University of Life Sciences in Lublin, Department of Biochemistry and Food Chemistry, Skromna Street 8, Lublin 20-704, Poland.
| |
Collapse
|
12
|
He X, Lv Y, Li X, Yi S, Zhao H, Xu Y, Li J. Effect of oat β-glucan on gel properties and protein conformation of silver carp surimi. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3367-3375. [PMID: 36840432 DOI: 10.1002/jsfa.12525] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/25/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Polysaccharides are the most widely used additives to enhance the quality of surimi gels. Oat β-glucan (OG), a functional polysaccharide, is known to affect the gelation characteristics of surimi. However, it has been rarely reported. Therefore, the effect of OG at different levels on gelling properties, protein conformation, and microstructures of silver carp surimi gels were investigated. RESULTS An increase in the OG content from 0 to 1.0% significantly improved the hardness, springiness, chewiness, puncture properties, storage modulus, and loss modulus of surimi gels. Moreover, the incorporation of OG (0-1.0%) facilitated the unfolding of proteins, resulting in the conformational transformation from α-helix to β-sheet and β-turn. Consequently, surimi-OG gels displayed a denser network structure with smaller and more uniform voids. Furthermore, partial free water in the gel network was converted into immobile water, increasing the water-holding capacity. However, a further increase in the OG concentration (1.0-2.0%) resulted in a looser and more uneven network structure with large and numerous cavities. In addition, the whiteness of composite gels decreased with increasing content of OG. CONCLUSION The addition of 1.0% OG dramatically improved the gelation performance of silver carp surimi, providing a theoretical foundation for the exploitation and manufacture of functional surimi products. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xueli He
- College of Food Science and Engineering, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, P. R. China
| | - Yanan Lv
- College of Food Science and Engineering, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, P. R. China
| | - Xuepeng Li
- College of Food Science and Engineering, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, P. R. China
| | - Shumin Yi
- College of Food Science and Engineering, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, P. R. China
| | - Honglei Zhao
- College of Food Science and Engineering, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, P. R. China
| | - Yongxia Xu
- College of Food Science and Engineering, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, P. R. China
| | - Jianrong Li
- College of Food Science and Engineering, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, P. R. China
| |
Collapse
|
13
|
Influence of partial substitution of wheat flour with sprouted oat flours on physicochemical and textural characteristics of wheat bread. J Cereal Sci 2023. [DOI: 10.1016/j.jcs.2023.103649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
14
|
Mollakhalili‐meybodi N, Ehrampoush MH, Hajimohammadi B, Mosaddegh MH. Formulation optimization of functional wheat bread with low glycemic index from technological and nutritional perspective. Food Sci Nutr 2023; 11:284-294. [PMID: 36655070 PMCID: PMC9834865 DOI: 10.1002/fsn3.3060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 01/21/2023] Open
Abstract
Inclusion of prebiotic compounds as indigestible dietary fiber in wheat bread has grown rapidly considering the increased public awareness about their impact on health. However, through their incorporation, the technological characteristics may adversely be influenced by gluten dilution impacts. This study was done to evaluate the impacts of long chain, native and short chain inulin (L-, N-, and S-type inulin, respectively) at 8%, 10%, 12%, 14%, and 16% w/w as Inulin Reconstituted Wheat Flour (IRWF) with similar gluten: carbohydrate ratio of wheat flour (at 10%, 12.5%, 15%, 17.5%, 20% w/w) on technological and nutritional value of wheat bread. Results indicated that despite no gluten dilution induced by IRWF supplementation, technological characteristics were adversely influenced especially at higher substitution level of L-type-containing formulations which is attributed to their higher water absorption index (WAI). Reversely, the nutritional value was positively influenced in which the lowest hydrolysis index (26.64%); predicted Glycemic Index (51.93%) and fructan loss content (25.42%) were found at L-type inulin-containing IRWF at the highest substitution level (20% w/w). As the nutritional value of wheat bread as staple foodstuff is important, optimizing the bread-making process to decrease all reverse impacts induced by L-inulin-type inclusion seems to be required.
Collapse
Affiliation(s)
- Neda Mollakhalili‐meybodi
- Department of Food Science and TechnologySchool of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
- Research Center for Food Hygiene and SafetyShahid Sadoughi University of Medical SciencesYazdIran
| | - Mohammad Hassan Ehrampoush
- Environmental Science and Technology Research CenterDepartment of Environmental Health EngineeringSchool of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
| | - Bahador Hajimohammadi
- Research Center for Food Hygiene and SafetyShahid Sadoughi University of Medical SciencesYazdIran
- Department of Food Hygiene and SafetySchool of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
| | | |
Collapse
|
15
|
High β-Glucans Oats for Healthy Wheat Breads: Physicochemical Properties of Dough and Breads. Foods 2022; 12:foods12010170. [PMID: 36613386 PMCID: PMC9818581 DOI: 10.3390/foods12010170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/14/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Bread is a highly consumed food whose nutritional value can be improved by adding an oat flour (Avena sativa L.-variety Bonaerense INTA Calen-Argentina) to a high-industrial quality wheat flour (Triticum aestivum L.). This cultivar of oat contains high amounts of β-glucans, which act as a prebiotic fiber. Wheat flour was complemented with different amounts of oat flour (5, 15, and 25%). A contribution of hydrophilic components from oat flour was evident in the oat-wheat mixtures. At the same time, the high content of total dietary fiber led to changes in the rheological properties of the dough. Mixtures with a higher proportion of oats showed an increase in alveographic tenacity (stiffer dough), higher stability, and a lower softening degree in farinographic assays. The dough showed significant increases in hardness and gumminess, without significant changes in cohesiveness, i.e., no disruption to the gluten network was observed. Relaxation tests showed that the blends with a higher oat content yielded 10 times higher stress values compared to wheat dough. Analysis of the oat-wheat breads showed improvements in nutritional parameters, with slight decreases in the volume and crust color. The crumb showed significant increases in firmness and chewing strength as the amount of oats added increased. Nutritional parameters showed that lipids, dietary fiber, and β-glucans were significantly increased by the addition of oats. Sensory analysis achieved high response rates with good-to-very good ratings on the hedonic scale set. Thus, the addition of oats did not generate rejection by the consumer and could be accepted by them. Breads with wheat and oats showed nutritional improvements with respect to wheat bread, since they have higher dietary fiber content, especially in β-glucans, so they could be considered functional breads.
Collapse
|
16
|
Wang Y, Jian C. Sustainable plant-based ingredients as wheat flour substitutes in bread making. NPJ Sci Food 2022; 6:49. [PMID: 36307422 PMCID: PMC9614748 DOI: 10.1038/s41538-022-00163-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 09/29/2022] [Indexed: 11/09/2022] Open
Abstract
Bread as a staple food has been predominantly prepared from refined wheat flour. The world's demand for food is rising with increased bread consumption in developing countries where climate conditions are unsuitable for wheat cultivation. This reliance on wheat increases the vulnerability to wheat supply shocks caused by force majeure or man-made events, in addition to negative environmental and health consequences. In this review, we discuss the contribution to the sustainability of food systems by partially replacing wheat flour with various types of plant ingredients in bread making, also known as composite bread. The sustainable sources of non-wheat flours, their example use in bread making and potential health and nutritional benefits are summarized. Non-wheat flours pose techno-functional challenges due to significantly different properties of their proteins compared to wheat gluten, and they often contain off-favor compounds that altogether limit the consumer acceptability of final bread products. Therefore, we detail recent advances in processing strategies to improve the sensory and nutritional profiles of composite bread. A special focus is laid on fermentation, for its accessibility and versatility to apply to different ingredients and scenarios. Finally, we outline research needs that require the synergism between sustainability science, human nutrition, microbiomics and food science.
Collapse
Affiliation(s)
- Yaqin Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Ching Jian
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland.
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
17
|
Cao H, Wang C, Li R, Guan X, Huang K, Zhang Y. Influence of sprouted oat flour substitution on the texture and in vitro starch digestibility of wheat bread. Food Chem X 2022; 15:100428. [PMID: 36211788 PMCID: PMC9532797 DOI: 10.1016/j.fochx.2022.100428] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 11/30/2022] Open
Abstract
β-glucan reduced 45 % and polyphenols increased 79 % after sprouting for 120 h. Bread’s cell density and specific volume were the highest after sprouting for 72 h. The starch digestibility was the lowest with oat flour sprouting for 72 h. Two digestible fractions with different digestion rates was presented in the bread. Sprouting for 72 h postponed t2start and reduced digestion rate by 7 % in the bread.
The aim of this study was to investigate the effect of sprouted oats substitutions on the in vitro digestibility of starch in the wheat bread. The physical and nutritional quality of wheat bread enriched with 20 % sprouted oat flour was compared. The polyphenols and γ-aminobutyric acid increased, while the content of starch and β-glucan in the mixed bread was gradually decreased. The specific volume of mixed bread reached the maximum with a 19.79 % reduction of area fraction and a 31.36 % increase cell density when sprouting for 72 h. Two digestible starch fractions with different digestion rates were observed from the LOS-CPS fitted starch digestograms. The microstructure revealed that large type A wheat starch was gelatinized after baking, whereas small type B wheat starch and oat starch were wrapped in protein-β-glucan complexes. This study suggests that properly sprouting has the potential to obtain nutritional bread with low starch digestibility.
Collapse
Affiliation(s)
- Hongwei Cao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, PR China
| | - Chong Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Ranqing Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, PR China
- Corresponding author at: School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China.
| | - Kai Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, PR China
| | - Yu Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, PR China
| |
Collapse
|
18
|
Liu Y, Zhang H, Yu H, Li J, Brennan MA, Brennan CS, Qin Y. Wheat Bread Fortified with
Dictyophora Indusiata
Powder
: Evaluation of Quality Attributes, Antioxidant Characteristics and Bread Staling. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yudi Liu
- Faculty of Food Science and EngineeringKunming University of Science and TechnologyKunming650550China
| | - Heng Zhang
- Faculty of Food Science and EngineeringKunming University of Science and TechnologyKunming650550China
| | - Hongda Yu
- Faculty of Food Science and EngineeringKunming University of Science and TechnologyKunming650550China
| | - Jiang Li
- Faculty of Food Science and EngineeringKunming University of Science and TechnologyKunming650550China
| | - Margaret A Brennan
- School of ScienceRoyal Melbourne Institute of Technology UniversityMelbourne3000Australia
| | - Charles S Brennan
- School of ScienceRoyal Melbourne Institute of Technology UniversityMelbourne3000Australia
| | - Yuyue Qin
- Faculty of Food Science and EngineeringKunming University of Science and TechnologyKunming650550China
| |
Collapse
|
19
|
Relevance of β-Glucan Molecular Properties on Its Suitability as Health Promoting Bread Ingredient. Nutrients 2022; 14:nu14081570. [PMID: 35458132 PMCID: PMC9032243 DOI: 10.3390/nu14081570] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 03/31/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023] Open
Abstract
The fate of β-glucan (BG) health promoting properties during food production is crucial, but not predictable yet. Therefore, high molar mass BG (hBG) and control BG (cBG) were extracted from two barley varieties, characterized and added to wheat breads at levels of 3% and 6%. Bread quality criteria, carbohydrate contents and BG content and structural properties were determined. Additionally, breads were subjected to an in vitro digestion. The BG content in the chyme, molar mass, molar ratio, viscosity and bile acid retention were determined. The hBG and the cBG decreased loaf volume and increased crumb hardness with increasing BG content. The reduction in BG content during bread making was similar for hBG and cBG, but the molar mass of cBG decreased to a greater extent. As a result, only 10% of cBG entering in vitro digestion were found in the chyme afterwards, while 40% of the ingested hBG were detected. Molar mass reduction was much more severe for cBG compared to hBG. The use of hBG showed higher viscosity and better bile acid retention, indicating cholesterol lowering properties, compared to similar or higher amounts of cBG. These results provide valuable knowledge on the criteria to select BG-rich raw materials for ideal health promoting properties.
Collapse
|
20
|
Rainero G, Bianchi F, Rizzi C, Cervini M, Giuberti G, Simonato B. Breadstick fortification with red grape pomace: effect on nutritional, technological and sensory properties. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2545-2552. [PMID: 34676540 PMCID: PMC9298127 DOI: 10.1002/jsfa.11596] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 05/10/2023]
Abstract
BACKGROUND Grape pomace (GP), a wine-making by-product rich in dietary fiber (DF) and total phenolic compounds (TPC), is a potential functional ingredient in the fortification of baked goods. RESULTS In the present study, fortified breadsticks samples were obtained by replacing wheat flour with 0, 5 and 10 g 100 g-1 of powdered GP (GPP). The GPP inclusion affected the rheological properties of the doughs by increasing the water absorption and tenacity (P) at the same time as reducing the extensibility (L), with a significant increase in the P/L value and a decrease in the swelling index (G) value and deformation energy (W). Textural characteristics of breadsticks were influenced by the GPP addition, showing a reduction in hardness and fracturability as the amount of GPP increased in the recipe. The GPP fortified breadsticks exhibited decreased pH, volume and specific volume values compared to the control. The TPC and the antioxidant capacity increased in GPP fortified breadsticks, whereas the increased amount of DF allowed the products to benefit from the claim 'high fiber content' at the highest level of GPP inclusion. The sensory evaluation revealed that GPP addition increased wine odor, acidity, bitterness, astringency and hardness, and decreased the regularity of alveolation and friability. Finally, the GPP fortified products achieved good sensorial acceptability. CONCLUSION GPP improved the nutritional values of fortified breadsticks and changed the rheology of dough and breadsticks' technological properties without affecting sensory acceptability. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Giada Rainero
- Department of BiotechnologyUniversity of VeronaVeronaItaly
| | | | - Corrado Rizzi
- Department of BiotechnologyUniversity of VeronaVeronaItaly
| | - Mariasole Cervini
- Department for Sustainable Food ProcessUniversità Cattolica del Sacro CuorePiacenzaItaly
| | - Gianluca Giuberti
- Department for Sustainable Food ProcessUniversità Cattolica del Sacro CuorePiacenzaItaly
| | | |
Collapse
|
21
|
Fang F, Diatta A, Simsek S, Torres‐Aguilar P, Watanabe H, Higashiyama T, Campanella OH, Hamaker BR. Effect of isomaltodextrin on dough rheology and bread quality. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fang Fang
- Whistler Center for Carbohydrate Research Purdue University 745 Agriculture Mall Drive West Lafayette IN 47906 USA
- Department of Food Science Purdue University 745 Agriculture Mall Drive West Lafayette IN 47906 USA
| | - Aminata Diatta
- Whistler Center for Carbohydrate Research Purdue University 745 Agriculture Mall Drive West Lafayette IN 47906 USA
- Department of Food Science Purdue University 745 Agriculture Mall Drive West Lafayette IN 47906 USA
| | - Senay Simsek
- Department of Plant Sciences North Dakota State University Fargo ND 58108 USA
| | - Pablo Torres‐Aguilar
- Whistler Center for Carbohydrate Research Purdue University 745 Agriculture Mall Drive West Lafayette IN 47906 USA
- Department of Food Science Purdue University 745 Agriculture Mall Drive West Lafayette IN 47906 USA
| | - Hikaru Watanabe
- Hayashibara Co., Ltd. 675‐1 Fujisaki, Naka‐ku Okayama 702‐8006 Japan
| | | | - Osvaldo H. Campanella
- Whistler Center for Carbohydrate Research Purdue University 745 Agriculture Mall Drive West Lafayette IN 47906 USA
- Department of Food Science and Technology The Ohio State University 2015 Fyffe Road Columbus OH 43210 USA
| | - Bruce R. Hamaker
- Whistler Center for Carbohydrate Research Purdue University 745 Agriculture Mall Drive West Lafayette IN 47906 USA
- Department of Food Science Purdue University 745 Agriculture Mall Drive West Lafayette IN 47906 USA
| |
Collapse
|
22
|
Ho LH, Tan TC, Chong LC. Designer foods as an effective approach to enhance disease preventative properties of food through its health functionalities. FUTURE FOODS 2022. [DOI: 10.1016/b978-0-323-91001-9.00031-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
23
|
Hosseini Shekarabi SP, Shahbazi M. Partial Substitution of Wheat Flour with Fish Protein Powder Influences Physicochemical, Rheological, and Sensory Properties of the Flour, Dough, and Bread. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2021. [DOI: 10.1080/10498850.2021.2008078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Mahsa Shahbazi
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
24
|
Doan NTT, Lai QD, Vo HV, Nguyen HD. Influence of adding rice bran on physio-chemical and sensory properties of bread. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01111-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Kurek MA, Moczkowska-Wyrwisz M, Wyrwisz J, Karp S. Development of Gluten-Free Muffins with β-Glucan and Pomegranate Powder Using Response Surface Methodology. Foods 2021; 10:foods10112551. [PMID: 34828832 PMCID: PMC8619912 DOI: 10.3390/foods10112551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 11/30/2022] Open
Abstract
More consumers are being diagnosed with celiac disease or diseases in which wheat products should be avoided. For this reason, it is important to increase the range of gluten-free products available. In this study, it was decided to optimize the technology for the creation of a muffin with β-glucan (BG) and pomegranate (PG), while establishing water share (WT), using the response surface methodology. It was shown that β-glucan and water had the most significant influence on specific volume and moisture (p ≤ 0.001). However, the increase of hardness, color, and total phenolic content (TPC) was mainly influenced by the increase of pomegranate content (p ≤ 0.01 for harness and color and p ≤ 0.001 for TPC). Consumers accepted products high in β-glucan more than high in pomegranate. Optimization ended with a composition that included 1.89% BG, 9.51% PG, and 77.87% WT. There were no significant differences between the model and the experimental sample, apart from higher consumer acceptability.
Collapse
|
26
|
A Systematic Comparison of the Intrinsic Properties of Wheat and Oat Bran Fractions and Their Effects on Dough and Bread Properties: Elucidation of Chemical Mechanisms, Water Binding, and Steric Hindrance. Foods 2021; 10:foods10102311. [PMID: 34681360 PMCID: PMC8534771 DOI: 10.3390/foods10102311] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 11/17/2022] Open
Abstract
This study aimed at elucidating the contribution of chemical interactions, water binding, and steric hindrance on the effect of wheat and oat brans and of their fractions, i.e., soluble and insoluble, on dough and bread properties. For such purpose, an inert filler, i.e., glass beads of comparable particle size and with no water binding capacity and moisture sorption properties, was also studied. The glass beads provided breads most similar to the control, indicating the limited role of steric hindrance. Brans and bran fractions showed distinct compositional and physical properties. The soluble fraction from oat bran, rich in β-glucan, was less hygroscopic than the wheat counterpart and could bind more water, resulting in larger detrimental effects on bread quality. The β-glucan content showed a prevalent role in affecting gluten development, the thermo-setting behaviour of the dough, and crumb texture, i.e., cohesiveness and resilience. Overall, the comparison between the two brans and their fractions indicated that the interplay between water binding, mainly provided by the insoluble fraction, and the plasticizing properties of the soluble bran fraction controlled the effects on bread volume and texture. From a compositional standpoint, β-glucan content was a determining factor that discriminated the effects of wheat and oat brans.
Collapse
|
27
|
Soybean by-products and modified cassava starch for improving alveolar structure and quality characteristics of gluten-free bread. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03725-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
28
|
Monteiro JS, Farage P, Zandonadi RP, Botelho RBA, de Oliveira LDL, Raposo A, Shakeel F, Alshehri S, Mahdi WA, Araújo WMC. A Systematic Review on Gluten-Free Bread Formulations Using Specific Volume as a Quality Indicator. Foods 2021; 10:614. [PMID: 33805719 PMCID: PMC7999268 DOI: 10.3390/foods10030614] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 12/13/2022] Open
Abstract
This study aimed to perform a systematic review on gluten-free bread formulations using specific volumes as a quality indicator. In this systematic review, we identified 259 studies that met inclusion criteria. From these studies, 43 met the requirements of having gluten-free bread with a specific volume greater than or equal to 3.5 cm3/g. Other parameters such as the texture profile, color (crumb and crust), and sensory analysis examined in these studies were presented. The formulations that best compensated the lack of the gluten-network were based on the combination of rice flour, rice flour with low amylose content, maize flour, rice starch, corn starch, potato starch, starch with proteins and added with transglutaminase (TGase), and hydrocolloids like hydroxypropylmethylcellulose (HPMC). Of the 43 studies, three did not present risk of bias, and the only parameter evaluated in common in the studies was the specific volume. However, it is necessary to jointly analyze other parameters that contribute to the quality, such as texture profile, external and internal characteristics, acceptability, and useful life of the bread, especially since it is a product obtained through raw materials and unconventional ingredients.
Collapse
Affiliation(s)
- Jordanna S. Monteiro
- Department of Nutrition, Faculty of Health Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (J.S.M.); (R.P.Z.); (R.B.A.B.); (L.d.L.d.O.)
| | - Priscila Farage
- Faculty of Nutrition, Federal University of Goias, Goiânia 74690-900, Brazil;
| | - Renata Puppin Zandonadi
- Department of Nutrition, Faculty of Health Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (J.S.M.); (R.P.Z.); (R.B.A.B.); (L.d.L.d.O.)
| | - Raquel B. A. Botelho
- Department of Nutrition, Faculty of Health Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (J.S.M.); (R.P.Z.); (R.B.A.B.); (L.d.L.d.O.)
| | - Livia de L. de Oliveira
- Department of Nutrition, Faculty of Health Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (J.S.M.); (R.P.Z.); (R.B.A.B.); (L.d.L.d.O.)
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (F.S.); (S.A.); (W.A.M.)
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (F.S.); (S.A.); (W.A.M.)
- Department of Pharmaceutical Science, College of Pharmacy, Almaarefa University, Riyadh 11597, Saudi Arabia
| | - Wael A. Mahdi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (F.S.); (S.A.); (W.A.M.)
| | - Wilma M. C. Araújo
- Department of Nutrition, Faculty of Health Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (J.S.M.); (R.P.Z.); (R.B.A.B.); (L.d.L.d.O.)
| |
Collapse
|