1
|
de Li M, Yang J, Wu X, Chen SS. miR-21-5p Targets PIK3R1 to Regulate the NF- κB Signaling Pathway, Inhibiting the Invasion and Progression of Prolactinoma. Int J Endocrinol 2025; 2025:7741091. [PMID: 39949569 PMCID: PMC11824381 DOI: 10.1155/ije/7741091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 10/15/2024] [Accepted: 11/29/2024] [Indexed: 02/16/2025] Open
Abstract
Prolactinomas (PRLs) are benign tumors with malignant characteristics that can invade the surrounding tissue structures and are challenging to treat. It has been reported that miR-21-5p expression in pituitary adenomas is correlated with tumor invasion and size. However, the mechanism of action of miR-21-5p in PRL remains unclear. Dysregulation of the phosphoinositide-3-kinase (PI3K) regulatory Subunit 1 pathway occurs frequently in cancer and plays an important role in tumor progression as an important component of the PI3K pathway. However, the role of PIK3R1 in PRL and its regulatory mechanism are unknown. In this study, we first explored the effect of miR-21-5p in PRL and then confirmed that PIK3R1 is a direct target of miR-21-5p using bioinformatics and cellular experiments. Subsequent in vitro experiments demonstrated that overexpression of PIK3R1 significantly attenuated the biological effects of miR-21-5p in PRL cells, such as promoting proliferation and invasion. Finally, we explored the mechanism by which PIK3R1 affects PRL progression and found that the inhibition of IκBa degradation by PIK3R1 impacts PRL progression via the miR-21-5p/PIK3R1/MMP pathway.
Collapse
Affiliation(s)
- Min de Li
- Department of Rehabilitation Medicine, Affiliated Rehabilitation Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Juan Yang
- Department of Rehabilitation Medicine, Affiliated Rehabilitation Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xiao Wu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Shang Si Chen
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| |
Collapse
|
2
|
Alexander SN, Green AR, Debner EK, Ramos Freitas LE, Abdelhadi HMK, Szabo-Pardi TA, Burton MD. The influence of sex on neuroimmune communication, pain, and physiology. Biol Sex Differ 2024; 15:82. [PMID: 39439003 PMCID: PMC11494817 DOI: 10.1186/s13293-024-00660-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024] Open
Abstract
With the National Institutes of Health's mandate to consider sex as a biological variable (SABV), there has been a significant increase of studies utilizing both sexes. Historically, we have known that biological sex and hormones influence immunological processes and now studies focusing on interactions between the immune, endocrine, and nervous systems are revealing sex differences that influence pain behavior and various molecular and biochemical processes. Neuroendocrine-immune interactions represent a key integrative discipline that will reveal critical processes in each field as it pertains to novel mechanisms in sex differences and necessary therapeutics. Here we appraise preclinical and clinical literature to discuss these interactions and key pathways that drive cell- and sex-specific differences in immunity, pain, and physiology.
Collapse
Affiliation(s)
- Shevon N Alexander
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Audrey R Green
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Emily K Debner
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Lindsey E Ramos Freitas
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Hanna M K Abdelhadi
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Thomas A Szabo-Pardi
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Michael D Burton
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA.
| |
Collapse
|
3
|
Raz M, Milo T, Glass DS, Mayo A, Alon U. Endocrine gland size is proportional to its target tissue size. iScience 2024; 27:110625. [PMID: 39224518 PMCID: PMC11367476 DOI: 10.1016/j.isci.2024.110625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 06/26/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Endocrine glands secrete hormones into the circulation to target distant tissues and regulate their functions. The qualitative relationship between hormone-secreting organs and their target tissues is well established, but a quantitative approach is currently limited. Quantification is important, as it could allow us to study the endocrine system using engineering concepts of optimality and tradeoffs. In this study, we collected literature data on 24 human hormones secreted from dedicated endocrine cells. We find that the number of endocrine cells secreting a hormone is proportional to the number of its target cells. A single endocrine cell serves approximately 2,000 target cells, a relationship that spans 6 orders of magnitude of cell numbers. This suggests an economic principle of cells working near their maximal capacity, and glands that are no bigger than they need to be.
Collapse
Affiliation(s)
- Moriya Raz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tomer Milo
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - David S. Glass
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Avi Mayo
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Uri Alon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
4
|
Vázquez-Carrillo DI, Ocampo-Ruiz AL, Báez-Meza A, Ramírez- Hernández G, Adán-Castro E, García-Rodrigo JF, Dena-Beltrán JL, de los Ríos EA, Sánchez-Martínez MK, Ortiz MG, Martínez de la Escalera G, Clapp C, Macotela Y. Dopamine D2 receptor antagonist counteracts hyperglycemia and insulin resistance in diet-induced obese male mice. PLoS One 2024; 19:e0301496. [PMID: 38635745 PMCID: PMC11025782 DOI: 10.1371/journal.pone.0301496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/18/2024] [Indexed: 04/20/2024] Open
Abstract
Obesity leads to insulin resistance (IR) and type 2 diabetes. In humans, low levels of the hormone prolactin (PRL) correlate with IR, adipose tissue (AT) dysfunction, and increased prevalence of T2D. In obese rats, PRL treatment promotes insulin sensitivity and reduces visceral AT adipocyte hypertrophy. Here, we tested whether elevating PRL levels with the prokinetic and antipsychotic drug sulpiride, an antagonist of dopamine D2 receptors, improves metabolism in high fat diet (HFD)-induced obese male mice. Sulpiride treatment (30 days) reduced hyperglycemia, IR, and the serum and pancreatic levels of triglycerides in obese mice, reduced visceral and subcutaneous AT adipocyte hypertrophy, normalized markers of visceral AT function (PRL receptor, Glut4, insulin receptor and Hif-1α), and increased glycogen stores in skeletal muscle. However, the effects of sulpiride reducing hyperglycemia were also observed in obese prolactin receptor null mice. We conclude that sulpiride reduces obesity-induced hyperglycemia by mechanisms that are independent of prolactin/prolactin receptor activity. These findings support the therapeutic potential of sulpiride against metabolic dysfunction in obesity.
Collapse
Affiliation(s)
- Dina I. Vázquez-Carrillo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México
| | - Ana Luisa Ocampo-Ruiz
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México
| | - Arelí Báez-Meza
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México
| | - Gabriela Ramírez- Hernández
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México
| | - Elva Adán-Castro
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México
| | - José Fernando García-Rodrigo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México
| | - José Luis Dena-Beltrán
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México
| | - Ericka A. de los Ríos
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México
| | | | - María Georgina Ortiz
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México
| | | | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México
| | - Yazmín Macotela
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México
| |
Collapse
|
5
|
Zhou Z, Guan H, Xiu M, Wu F. Dance/movement therapy for improving metabolic parameters in long-term veterans with schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:23. [PMID: 38388554 PMCID: PMC10884034 DOI: 10.1038/s41537-024-00435-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/12/2024] [Indexed: 02/24/2024]
Abstract
Accumulating evidence has supported the implementation of dance/movement therapy (DMT) as a promising intervention for patients with schizophrenia (SCZ). However, its effect on body weight and metabolic profile in SCZ remains unclear. This study aimed to evaluate the outcome of a 12-week DMT session on weight and lipid profile in patients with SCZ using a randomized, single-blinded, controlled trial design. This study encompassed two groups of long-term hospitalized patients with SCZ, who were randomly assigned to the DMT intervention (n = 30) or the treatment as usual (TAU) group (n = 30). Metabolic markers, including weight, body mass index (BMI), fasting glucose, triglycerides, and total cholesterol were measured in both groups at two measurement points (at baseline and the end of the 12-week treatment). We found that DMT intervention significantly decreased body weight (F = 5.5, p = 0.02) and BMI (F = 5.7, p = 0.02) as compared to the TAU group. However, no significance was observed in other metabolic markers, including fasting glucose, triglycerides, and total cholesterol after treatment (all p > 0.05). Our study indicates that a 12-week, 24-session DMT program may be effective in decreasing body weight and BMI in long-term hospitalized patients with SCZ. DMT intervention may be a promising treatment strategy for long-term inpatients in the psychiatric department.
Collapse
Affiliation(s)
| | | | - Meihong Xiu
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China.
| | - Fengchun Wu
- Department of Psychiatry, the Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China.
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China.
- Department of Biomedical Engineering, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
6
|
Krysiak R, Kowalcze K, Okopień B. Cardiometabolic profile of young women with hypoprolactinemia. Endocrine 2022; 78:135-141. [PMID: 35906342 PMCID: PMC9474346 DOI: 10.1007/s12020-022-03145-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/12/2022] [Indexed: 12/12/2022]
Abstract
PURPOSE Unlike hyperprolactinemia, clinical significance of prolactin deficiency remains poorly understood. The aim of this study was to assess the cardiometabolic profile of patients with low prolactin levels. METHODS The study population consisted of three groups of young women. Two groups were chronically treated with cabergoline but differed in prolactin levels, which were either abnormally low (group A; n = 16) or within the reference range (group B, n = 23). Group C, serving as a control group, included 28 drug-naïve women with normal prolactin levels. The dose of cabergoline in group A was then tapered down. Glucose homeostasis markers, plasma lipids and circulating levels of hormones, uric acid, high-sensitivity C-reactive protein (hsCRP), fibrinogen and homocysteine, as well as the carotid intima-media thickness were assessed at baseline and 6 months later. RESULTS Compared with subjects with normal prolactin levels, women with hypoprolactinemia had higher levels of 2-h postchallenge glucose, glycated hemoglobin, triglycerides, uric acid, hsCRP and fibrinogen, lower values of HDL-cholesterol, total testosterone and free androgen index, as well as reduced insulin sensitivity. No differences in these variables were observed between groups B and C. Apart from prolactin normalization, cabergoline dose reduction reversed all laboratory disturbances reported in group A. CONCLUSION The obtained results suggest that hypoprolactinemia in women of reproductive age may increase cardiometabolic risk.
Collapse
Affiliation(s)
- Robert Krysiak
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Katowice, Poland.
| | - Karolina Kowalcze
- Department of Pediatrics in Bytom, School of Health Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Bogusław Okopień
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
7
|
Kavarthapu R, Dufau ML. Prolactin receptor gene transcriptional control, regulatory modalities relevant to breast cancer resistance and invasiveness. Front Endocrinol (Lausanne) 2022; 13:949396. [PMID: 36187116 PMCID: PMC9520000 DOI: 10.3389/fendo.2022.949396] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/19/2022] [Indexed: 12/04/2022] Open
Abstract
The prolactin receptor (PRLR) is a member of the lactogen/cytokine receptor family, which mediates multiple actions of prolactin (PRL). PRL is a major hormone in the proliferation/differentiation of breast epithelium that is essential for lactation. It is also involved in breast cancer development, tumor growth and chemoresistance. Human PRLR expression is controlled at the transcriptional level by multiple promoters. Each promoter directs transcription/expression of a specific non-coding exon 1, a common non-coding exon 2 and coding exons E3-11. The identification of exon 11 of PRLR led to finding of alternative spliced products and two novel short forms (SF) that can inhibit the long form (LF) of PRLR activity with relevance in physiological regulation and breast cancer. Homo and heterodimers of LF and SF are formed in the absence of PRL that acts as a conformational modifier. Heterodimerization of SF with LF is a major mechanism through which SF inhibits some signaling pathways originating at the LF. Biochemical/molecular modeling approaches demonstrated that the human PRLR conformation stabilized by extracellular intramolecular S-S bonds and several amino acids in the extracellular D1 domain of PRLR SF are required for its inhibitory actions on PRLR LF-mediated functions. Studies in breast cancer cells demonstrated that the transcription of PRLR was directed by the preferentially utilized PIII promoter, which lacks an estrogen responsive element. Complex formation of non-DNA bound ERα dimer with Sp1 and C/EBPβ dimers bound to their sites at the PRLR promoter is required for basal activity. Estradiol induces transcriptional activation/expression of the PRLR gene, and subsequent studies revealed the essential role of autocrine PRL released by breast cancer cells and CDK7 in estradiol-induced PRLR promoter activation and upregulation. Other studies revealed stimulation of the PRLR promoter activity and PRLR LF protein by PRL in the absence of estrogen via the STAT5/phospho-ERα activation loop. Additionally, EGF/ERBB1 can induce the transcription of PRLR independent of estrogen and prolactin. The various regulatory modalities contributing to the upregulation of PRLR provide options for the development of therapeutic approaches to mitigate its participation in breast cancer progression and resistance.
Collapse
Affiliation(s)
| | - Maria L. Dufau
- Section on Molecular Endocrinology, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
8
|
Jayashankar CA, Manohar A, Joshi A, Dwarakanathan V, Pinnelli VBK, Sarathi V, Gada LM. Association of Serum Prolactin With Type 2 Diabetes Mellitus: A Comparative Cross-Sectional Study From South India. Cureus 2022; 14:e23721. [PMID: 35509763 PMCID: PMC9060740 DOI: 10.7759/cureus.23721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2022] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The association of serum prolactin (PRL) with diabetes is still uncertain, with a paucity of data in the south Indian population. This study aims to compare the serum PRL levels between type 2 diabetes mellitus (T2DM) patients and normoglycaemic volunteers and correlate the serum PRL level with fasting plasma glucose (FPG), postprandial plasma glucose (PPG), glycated haemoglobin (HbA1c) levels, and the lipid profile in the study population. METHODS This was a comparative cross-sectional study among 112 T2DM participants and 112 healthy volunteers in a tertiary care centre in India. All participants were tested for FPG, PPG, HbA1c, fasting serum lipid profile, and serum PRL, which were compared between T2DM patients and healthy volunteers. RESULTS The serum PRL in T2DM patients was significantly lower compared to healthy volunteers (8.67 ± 4.37 vs. 13.76 ± 6.55 ng/ml, P < 0.001). FPG, PPG, and HbA1c correlated inversely with serum PRL in our study population. On multivariable logistic regression adjusted for age and sex, a higher serum PRL level within the physiological range was protective for T2DM (adjusted odds ratio: 0.83, 95% CI: 0.77-0.90, P < 0.001). Serum PRL levels were inversely correlated with serum total cholesterol, low-density lipoprotein cholesterol, and triglycerides, but not with high-density lipoprotein cholesterol. CONCLUSIONS A high serum PRL within the physiological range was inversely associated with the prevalence of T2DM in the south Indian population. Serum PRL also correlated inversely with glycaemic and blood lipid parameters. Larger longitudinal studies are required to further validate the association of serum PRL with various components of metabolic syndrome in the south Indian population.
Collapse
Affiliation(s)
- C A Jayashankar
- Internal Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| | - Akshatha Manohar
- Internal Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| | - Amey Joshi
- Internal Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| | | | | | - Vijaya Sarathi
- Endocrinology and Diabetes, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| | - Lakshmi Meghana Gada
- Internal Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| |
Collapse
|
9
|
Exogenous Lactogenic Signaling Stimulates Beta Cell Replication In Vivo and In Vitro. Biomolecules 2022; 12:biom12020215. [PMID: 35204716 PMCID: PMC8961548 DOI: 10.3390/biom12020215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/15/2022] [Accepted: 01/21/2022] [Indexed: 12/11/2022] Open
Abstract
As patients recently diagnosed with T1D and patients with T2D have residual beta cell mass, there is considerable effort in beta cell biology to understand the mechanisms that drive beta cell regeneration as a potential cellular therapy for expanding patients’ residual beta cell population. Both mouse and human studies have established that beta cell mass expansion occurs rapidly during pregnancy. To investigate the mechanisms of beta cell mass expansion during pregnancy, we developed a novel in vivo and in vitro models of pseudopregnancy. Our models demonstrate that pseudopregnancy promotes beta cell mass expansion in parous mice, and this expansion is driven by beta cell proliferation rather than hypertrophy. Importantly, estrogen, progesterone, and placental lactogen induce STAT5A signaling in the pseudopregnancy model, demonstrating that this model successfully recapitulates pregnancy-induced beta cell replication. We then created an in vitro model of pseudopregnancy and found that the combination of estrogen and placental lactogen induced beta cell replication in human islets and rat insulinoma cells. Therefore, beta cells both in vitro and in vivo increase proliferation when subjected to the pseudopregnancy cocktail compared to groups treated with estradiol or placental lactogen alone. The pseudopregnancy models described here may help inform novel methods of inducing beta cell replication in patients with diabetes.
Collapse
|
10
|
Abstract
Prolactin coordinates with the ovarian steroids to orchestrate mammary development and lactation, culminating in nourishment and an increasingly appreciated array of other benefits for neonates. Its central activities in mammary epithelial growth and differentiation suggest that it plays a role(s) in breast cancer, but it has been challenging to identify its contributions, essential for incorporation into prevention and treatment approaches. Large prospective epidemiologic studies have linked higher prolactin exposure to increased risk, particularly for ER+ breast cancer in postmenopausal women. However, it has been more difficult to determine its actions and clinical consequences in established tumors. Here we review experimental data implicating multiple mechanisms by which prolactin may increase the risk of breast cancer. We then consider the evidence for role(s) of prolactin and its downstream signaling cascades in disease progression and treatment responses, and discuss how new approaches are beginning to illuminate the biology behind the seemingly conflicting epidemiologic and experimental studies of prolactin actions across diverse breast cancers.
Collapse
|
11
|
Martínez-Alarcón O, García-López G, Guerra-Mora JR, Molina-Hernández A, Diaz-Martínez NE, Portillo W, Díaz NF. Prolactin from Pluripotency to Central Nervous System Development. Neuroendocrinology 2022; 112:201-214. [PMID: 33934093 DOI: 10.1159/000516939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/30/2021] [Indexed: 11/19/2022]
Abstract
Prolactin (PRL) is a versatile hormone that exerts more than 300 functions in vertebrates, mainly associated with physiological effects in adult animals. Although the process that regulates early development is poorly understood, evidence suggests a role of PRL in the early embryonic development regarding pluripotency and nervous system development. Thus, PRL could be a crucial regulator in oocyte preimplantation and maturation as well as during diapause, a reversible state of blastocyst development arrest that shares metabolic, transcriptomic, and proteomic similarities with pluripotent stem cells in the naïve state. Thus, we analyzed the role of the hormone during those processes, which involve the regulation of its receptor and several signaling cascades (Jak/Mapk, Jak/Stat, and PI3k/Akt), resulting in either a plethora of physiological actions or their dysregulation, a factor in developmental disorders. Finally, we propose models to improve the knowledge on PRL function during early development.
Collapse
Affiliation(s)
- Omar Martínez-Alarcón
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Ciudad de México, Mexico
| | - Guadalupe García-López
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Ciudad de México, Mexico
| | - José Raúl Guerra-Mora
- Departamento de Neurociencias, Instituto Nacional de Cancerología, Ciudad de México, Mexico
- Departamento de Cirugia Experimental, Instituto Nacional de Nutrición, Ciudad de México, Mexico
| | - Anayansi Molina-Hernández
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Ciudad de México, Mexico
| | - Néstor Emmanuel Diaz-Martínez
- Laboratorio de Reprogramación Celular y Bioingeniería de Tejidos, Biotecnología Médica y Farmacéutica CONACYT, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico
| | - Wendy Portillo
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, UNAM, Quéretaro, Mexico
| | - Néstor Fabián Díaz
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Ciudad de México, Mexico
| |
Collapse
|
12
|
A link between migraine and prolactin: the way forward. Future Sci OA 2021; 7:FSO748. [PMID: 34737888 PMCID: PMC8558870 DOI: 10.2144/fsoa-2021-0047] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/23/2021] [Indexed: 12/31/2022] Open
Abstract
Migraine is an incapacitating neurological disorder that predominantly affects women. Sex and other hormones (e.g., oxytocin, and prolactin) may play a role in sexual dimorphic features of migraine. Initially, prolactin was recognized for its modulatory action in milk production and secretion; later, its roles in the regulation of the endocrine, immune and nervous systems were discovered. Higher prolactin levels in individuals with migraine were found in earlier studies, with a female sex-dominant trend. Studies that are more recent have identified that the expression of prolactin receptor in response to neuronal excitability and stress depends on sex with a dominant role in females. These findings have opened up potentials for explanation of sex-related pathophysiology of migraine, but have left some unanswered questions. This focused review examines the past and present of the link between prolactin and migraine, and presents open questions and directions for future experimental and clinical efforts. Sex hormones (e.g., estrogen and progesterone) have been investigated to explain the sex-related manifestation of migraine, which is predominant in females. Prolactin is known for promoting lactation, but accumulating evidence supports that it can promote pain in females. An increasing number of studies have shown that the expression of a prolactin receptor in female nociceptors and their responses to external stimuli such as stress are different, which can help explain the female sex-dominant feature of migraine. In this focused review, the current knowledge is presented and the directions where prolactin research in migraine may evolve are proposed. The ultimate goal is to shape an overview toward considering sex-based treatments for migraine with highlighting the role of prolactin.
Collapse
|
13
|
Biagetti B, Simò R. Molecular Pathways in Prolactinomas: Translational and Therapeutic Implications. Int J Mol Sci 2021; 22:ijms222011247. [PMID: 34681905 PMCID: PMC8538771 DOI: 10.3390/ijms222011247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/11/2021] [Accepted: 10/16/2021] [Indexed: 11/17/2022] Open
Abstract
Prolactinoma has the highest incidence rate among patients with functional pituitary tumours. Although mostly benign, there is a subgroup that can be aggressive. Some clinical, radiological and pathology features have been associated with a poor prognostic. Therefore, it can be considered as a group of heterogeneous tumours. The aim of this paper is to give an overview of the molecular pathways involved in the behaviour of prolactinoma in order to improve our approach and gain deeper insight into the better understanding of tumour development and its management. This is essential for identifying patients harbouring aggressive prolactinoma and to establish personalised therapeutics options.
Collapse
|
14
|
Zulkifli S, Rahman AA, Kadir SHSA, Nor NSM. Bisphenol A and its effects on the systemic organs of children. Eur J Pediatr 2021; 180:3111-3127. [PMID: 33893858 DOI: 10.1007/s00431-021-04085-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/12/2021] [Accepted: 04/18/2021] [Indexed: 02/06/2023]
Abstract
For the past two decades, growing research has been pointing to multiple repercussions of bisphenol A (BPA) exposure to human health. BPA is a synthetic oestrogen which primarily targets the endocrine system; however, the compound also disturbs other systemic organ functions, in which the magnitude of impacts in those other systems is as comparable to those in the endocrine system. To date, the discoveries on the association between BPA and health outcomes mainly came from animal and in vitro studies, with limited human studies which emphasised on children's health. In this comprehensive review, we summarised studies on human, in vivo and in vitro models to understand the consequences of pre-, post- and perinatal BPA exposure on the perinatal, children and adult health, encompassing cardiovascular, neurodevelopmental, endocrine and reproductive effects.Conclusion: Evidence from in vitro and animal studies may provide further support and better understanding on the correlation between environmental BPA exposure and its detrimental effects in humans and child development, despite the difficulties to draw direct causal relations of BPA effects on the pathophysiology of the diseases/syndromes in children, due to differences in body system complexity between children and adults, as well as between animal and in vitro models and humans. What is known: • Very limited reviews are available on how BPA adversely affects children's health. • Previous papers mainly covered two systems in children. What is new: • Comprehensive review on the detrimental effects of BPA on children health outcomes, including expectations on adult health outcomes following perinatal BPA exposure, as well as covering a small part of BPA alternatives. • Essentially, BPA exposure during pregnancy has huge impacts on the foetus in which it may cause changes in foetal epigenetic programming, resulting in disease onsets during childhood as well as adulthood.
Collapse
Affiliation(s)
- Sarah Zulkifli
- Institute of Medical Molecular Biotechnology, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, 47000, Sungai Buloh, Malaysia
| | - Amirah Abdul Rahman
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, 47000, Sungai Buloh, Malaysia
| | - Siti Hamimah Sheikh Abdul Kadir
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, 47000, Sungai Buloh, Malaysia.,Institute for Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, 47000, Sungai Buloh, Malaysia
| | - Noor Shafina Mohd Nor
- Institute for Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, 47000, Sungai Buloh, Malaysia. .,Department of Paediatrics, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, 47000, Sungai Buloh, Malaysia.
| |
Collapse
|
15
|
Herawati Y, Kalsum U, Arsana Wiyasa IW, Yuniarti L, Wahju Sardjono T. Ethanol Extract of Carica papaya Leaf Can Increase Breast Milk in Lactating Rat. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.6529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Carica papaya leaves (Carica papaya L) have been used empirically and traditionally as a galactogogue, but their mechanism as galactogogue is still unknown.
AIM: This study aimed to analyze the effect of ethanol extract from papaya leaves on blood prolactin levels, prolactin receptor (prlr) gene expression, the number of breast alveoli and lobes of lactating rats.
METHODS: This in vivo true experimental study with a post-test control group design was conducted on 24 rats with the same lactating period. They were divided into four groups consisting of six rats each. The control group was given daily standard food, whereas the three treatment groups were, respectively, given additionally ethanol extract of 0.95 mg, 1.9 mg, and 3.8 mg/200 g BW/day from day 1 to day 14 of lactation. On day 14, all of the rats were sacrificed, blood prolactin levels were measured by ELISA, prlr gene expressions were measured using RT-PCR, and numbers of breast alveoli and lobes were microscopically observed through staining histological specimens. A statistical analysis was carried out using one-way ANOVA, Tukey's test, Games–Howell test, and path analysis at 95% confidence level.
RESULTS: Levels of blood prolactin levels, prlr gene expression, the number of breast alveoli, and lobes of all treatment rat groups were significantly above those of the control group (p < 0.05). The increases of all parameters were consistent; the most effective dose was 1.9 mg/200 g BW.
CONCLUSION: The Carica papaya leaf ethanol extract had a galactogogue effect on lactating rats by increasing blood prolactin levels, prlr gene expression, and numbers number of breast alveoli and lobes.
Collapse
|
16
|
Huang Z, Xiao Q, Yu F, Gan Y, Lu C, Peng W, Zhang Y, Luo X, Chen N, You W, Ke C. Comparative Transcriptome and DNA Methylation Analysis of Phenotypic Plasticity in the Pacific Abalone ( Haliotis discus hannai). Front Physiol 2021; 12:683499. [PMID: 34267674 PMCID: PMC8277243 DOI: 10.3389/fphys.2021.683499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/07/2021] [Indexed: 01/20/2023] Open
Abstract
Phenotypic plasticity is an adaptive mechanism used by organisms to cope with environmental fluctuations. Pacific abalone (Haliotis discus hannai) are large-scale farmed in the temperate area of northern China and in the warmer waters of southern China. RNA-seq and comparative transcriptomic analysis here were performed to determine if the northern and southern populations have evolved divergent plasticity and if functional differences are associated with protein synthesis and growth-related biological progress. The DNA methylation (5mC) landscape of H. discus hannai from the two populations using whole genomic bisulfite sequencing (WGBS), exhibited different epigenetic patterns. The southern population had significant genomic hypo-methylation that may have resulted from long-term acclimation to heat stress. Combining 790 differentially expressed genes (DEGs) and 7635 differentially methylated genes (DMGs), we found that methylation within the gene body might be important in predicting abalone gene expression. Genes related to growth, development, transduction, and apoptosis may be regulated by methylation and could explain the phenotypic divergence of H. discus hannai. Our findings not only emphasize the significant roles of adaptive plasticity in the acclimation of H. discus hannai to high temperatures but also provide a new understanding of the epigenetic mechanism underlying the phenotypic plasticity in adaptation to climate change for marine organisms.
Collapse
Affiliation(s)
- Zekun Huang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China.,College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen China
| | - Qizhen Xiao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China.,College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen China
| | - Feng Yu
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China.,College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen China
| | - Yang Gan
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China.,College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen China
| | - Chengkuan Lu
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China.,College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen China
| | - Wenzhu Peng
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China.,College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen China
| | - Yifang Zhang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China.,College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen China
| | - Xuan Luo
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen China
| | - Nan Chen
- College of Fisheries, Jimei University, Xiamen, China
| | - Weiwei You
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China.,College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen China
| | - Caihuan Ke
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China.,College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen China
| |
Collapse
|
17
|
Andereggen L, Frey J, Andres RH, Luedi MM, Gralla J, Schubert GA, Beck J, Mariani L, Christ E. Impact of primary medical or surgical therapy on prolactinoma patients' BMI and metabolic profile over the long-term. JOURNAL OF CLINICAL AND TRANSLATIONAL ENDOCRINOLOGY 2021; 24:100258. [PMID: 34195008 PMCID: PMC8237353 DOI: 10.1016/j.jcte.2021.100258] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/09/2021] [Indexed: 11/23/2022]
Abstract
High prolactin (PRL) levels are associated with weight gain and impaired metabolic profiles. Long-term control of hyperprolactinemia can be attained by first-line surgery and medical therapy. Normalization of PRL improves patients’ BMI and fasting glucose levels. Marginal changes in patients’ metabolic profiles are noted regardless of the primary therapy. Not dopamine agonists per se, but rather the control of hyperprolactinemia plays a role in metabolic profile alterations.
Objectives High prolactin levels have been associated with weight gain and impaired metabolic profiles. While treatment with dopamine agonists (DAs) has been shown to improve these parameters, there is a lack of surgical series on its comparative effect in prolactinoma patients. Methods In this retrospective, comparative study, consecutive patients with a prolactinoma were enrolled if treated with first-line transsphenoidal surgery (TSS) or with DAs. Patients with prolactinomas of Knosp grade >2 and those with a follow-up <24 months were excluded, as were patients with missing laboratory metabolic parameters at baseline and over the long-term. Effects of either treatment on BMI and the metabolic profile were analyzed, and independent risk factors for long-term obesity were calculated. Results Primary treatment was TSS for 12 patients (40%) and DAs for 18 patients (60%). At diagnosis, no significant differences between the two cohorts were observed with regard to adenoma size, Knosp grading, baseline prolactin (PRL) levels, prevalence of hypogonadism, or laboratory metabolic parameters. Mean follow-up was 51.9 months (range, 24–158). Over the long-term, both TSS and DAs led to the control of hyperprolactinemia (92% vs. 72%) and hypogonadism (78% vs. 83%) in the majority of patients. While a significant decrease in patients’ BMI and fasting glucose were observed, changes in the lipid profile were marginal and independent of the treatment modality. At baseline, increased BMI—but not the primary treatment strategy—was an independent predictor of long-term obesity. Conclusions Over the long-term, patients’ BMI and FG improve, but changes in the metabolic profile are marginal and independent of the primary treatment. It is presumable that not DAs per se, but rather the control of hyperprolactinemia plays a role in patients’ metabolic profile alterations.
Collapse
Affiliation(s)
- Lukas Andereggen
- Department of Neurosurgery, Kantonsspital Aarau, Aarau, Switzerland.,Faculty of Medicine, University of Bern, Bern, Switzerland
| | - Janine Frey
- Department of Gynecology and Obstetrics, Kantonsspital Lucerne, Lucerne, Switzerland
| | | | - Markus M Luedi
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Jan Gralla
- Department of Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | | | - Jürgen Beck
- Department of Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany
| | - Luigi Mariani
- Department of Neurosurgery, University Hospital of Basel, Basel, Switzerland
| | - Emanuel Christ
- Department of Endocrinology, Diabetes and Metabolism, University Hospital of Basel, Basel, Switzerland
| |
Collapse
|
18
|
Sedley L. Advances in Nutritional Epigenetics-A Fresh Perspective for an Old Idea. Lessons Learned, Limitations, and Future Directions. Epigenet Insights 2020; 13:2516865720981924. [PMID: 33415317 PMCID: PMC7750768 DOI: 10.1177/2516865720981924] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022] Open
Abstract
Nutritional epigenetics is a rapidly expanding field of research, and the natural modulation of the genome is a non-invasive, sustainable, and personalized alternative to gene-editing for chronic disease management. Genetic differences and epigenetic inflexibility resulting in abnormal gene expression, differential or aberrant methylation patterns account for the vast majority of diseases. The expanding understanding of biological evolution and the environmental influence on epigenetics and natural selection requires relearning of once thought to be well-understood concepts. This research explores the potential for natural modulation by the less understood epigenetic modifications such as ubiquitination, nitrosylation, glycosylation, phosphorylation, and serotonylation concluding that the under-appreciated acetylation and mitochondrial dependant downstream epigenetic post-translational modifications may be the pinnacle of the epigenomic hierarchy, essential for optimal health, including sustainable cellular energy production. With an emphasis on lessons learned, this conceptional exploration provides a fresh perspective on methylation, demonstrating how increases in environmental methane drive an evolutionary down regulation of endogenous methyl groups synthesis and demonstrates how epigenetic mechanisms are cell-specific, making supplementation with methyl cofactors throughout differentiation unpredictable. Interference with the epigenomic hierarchy may result in epigenetic inflexibility, symptom relief and disease concomitantly and may be responsible for the increased incidence of neurological disease such as autism spectrum disorder.
Collapse
Affiliation(s)
- Lynda Sedley
- Bachelor of Health Science (Nutritional Medicine),
GC Biomedical Science (Genomics), The Research and Educational Institute of
Environmental and Nutritional Epigenetics, Queensland, Australia
| |
Collapse
|
19
|
Song Y, Yang J, Jing W, Wang Q, Liu Y, Cheng X, Ye F, Tian J, Wei F, Ma S. Systemic elucidation on the potential bioactive compounds and hypoglycemic mechanism of Polygonum multiflorum based on network pharmacology. Chin Med 2020; 15:121. [PMID: 33292335 PMCID: PMC7672844 DOI: 10.1186/s13020-020-00401-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/06/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Diabetes is a complex metabolic disease characterized by hyperglycemia, plaguing the whole world. However, the action mode of multi-component and multi-target for traditional Chinese medicine (TCM) could be a promising treatment of diabetes mellitus. According to the previous research, the TCM of Polygonum multiflorum (PM) showed noteworthy hypoglycemic effect. Up to now, its hypoglycemic active ingredients and mechanism of action are not yet clear. In this study, network pharmacology was employed to elucidate the potential bioactive compounds and hypoglycemic mechanism of PM. METHODS First, the compounds with good pharmacokinetic properties were screened from the self-established library of PM, and the targets of these compounds were predicted and collected through database. Relevant targets of diabetes were summarized by searching database. The intersection targets of compound-targets and disease-targets were obtained soon. Secondly, the interaction net between the compounds and the filtered targets was established. These key targets were enriched and analyzed by protein-protein interactions (PPI) analysis, molecular docking verification. Thirdly, the key genes were used to find the biologic pathway and explain the therapeutic mechanism by genome ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) analysis. Lastly, the part of potential bioactive compounds were under enzyme activity inhibition tests. RESULTS In this study, 29 hypoglycemic components and 63 hypoglycemic targets of PM were filtrated based on online network database. Then the component-target interaction network was constructed and five key components resveratrol, apigenin, kaempferol, quercetin and luteolin were further obtained. Sequential studies turned out, AKT1, EGFR, ESR1, PTGS2, MMP9, MAPK14, and KDR were the common key targets. Docking studies indicated that the bioactive compounds could stably bind the pockets of target proteins. There were 38 metabolic pathways, including regulation of lipolysis in adipocytes, prolactin signaling pathway, TNF signaling pathway, VEGF signaling pathway, FoxO signaling pathway, estrogen signaling pathway, linoleic acid metabolism, Rap1 signaling pathway, arachidonic acid metabolism, and osteoclast differentiation closely connected with the hypoglycemic mechanism of PM. And the enzyme activity inhibition tests showed the bioactive ingredients have great hypoglycemic activity. CONCLUSION In summary, the study used systems pharmacology to elucidate the main hypoglycemic components and mechanism of PM. The work provided a scientific basis for the further hypoglycemic effect research of PM and its monomer components, but also provided a reference for the secondary development of PM.
Collapse
Affiliation(s)
- Yunfei Song
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Jianbo Yang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Wenguang Jing
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Qi Wang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Yue Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xianlong Cheng
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Fei Ye
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jinying Tian
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Feng Wei
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, 100050, China.
| | - Shuangcheng Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, 100050, China.
| |
Collapse
|
20
|
Krysiak R, Kowalcze K, Okopień B. Hyperprolactinaemia attenuates the inhibitory effect of vitamin D/selenomethionine combination therapy on thyroid autoimmunity in euthyroid women with Hashimoto’s thyroiditis: A pilot study. J Clin Pharm Ther 2020; 45:1334-1341. [DOI: 10.1111/jcpt.13214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/30/2020] [Accepted: 06/09/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Robert Krysiak
- Department of Internal Medicine and Clinical Pharmacology Medical University of Silesia Katowice Poland
| | - Karolina Kowalcze
- Department of Pediatrics in Bytom School of Health Sciences in KatowiceMedical University of Silesia Katowice Poland
| | - Bogusław Okopień
- Department of Internal Medicine and Clinical Pharmacology Medical University of Silesia Katowice Poland
| |
Collapse
|
21
|
Tufa DM, Shank T, Yingst AM, Trahan GD, Shim S, Lake J, Woods R, Jones K, Verneris MR. Prolactin Acts on Myeloid Progenitors to Modulate SMAD7 Expression and Enhance Hematopoietic Stem Cell Differentiation into the NK Cell Lineage. Sci Rep 2020; 10:6335. [PMID: 32286456 PMCID: PMC7156717 DOI: 10.1038/s41598-020-63346-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 03/18/2020] [Indexed: 12/22/2022] Open
Abstract
Numerous cell types modulate hematopoiesis through soluble and membrane bound molecules. Whether developing hematopoietic progenitors of a particular lineage modulate the differentiation of other hematopoietic lineages is largely unknown. Here we aimed to investigate the influence of myeloid progenitors on CD34+ cell differentiation into CD56+ innate lymphocytes. Sorted CD34+ cells cultured in the presence of stem cell factor (SCF) and FMS-like tyrosine kinase 3 ligand (FLT3L) give rise to numerous cell types, including progenitors that expressed the prolactin receptor (PRLR). These CD34+PRLR+ myeloid-lineage progenitors were derived from granulocyte monocyte precursors (GMPs) and could develop into granulocytes in the presence of granulocyte-macrophage colony-stimulating factor (GM-CSF) in vitro. Moreover, CD34+PRLR+ myeloid progenitors lacked lymphoid developmental potential, but when stimulated with prolactin (PRL) they increased the differentiation of other CD34+ cell populations into the NK lineage in a non-contact dependent manner. Both mRNA and protein analyses show that PRL increased mothers against decapentaplegic homolog 7 (SMAD7) in CD34+PRLR+ myeloid cells, which reduced the production of transforming growth factor beta 1 (TGF-β1), a cytokine known to inhibit CD56+ cell development. Thus, we uncover an axis whereby CD34+PRLR+ GMPs inhibit CD56+ lineage development through TGF-β1 production and PRL stimulation leads to SMAD7 activation, repression of TGF-β1, resulting in CD56+ cell development.
Collapse
Affiliation(s)
- Dejene M Tufa
- University of Colorado and Children's Hospital of Colorado, Department of Pediatrics, Center for Cancer and Blood Disorders. Research Complex 1, North Tower, 12800 E. 19th Ave., Mail Stop 8302, Room P18-4108, Aurora, CO, 80045, USA
| | - Tyler Shank
- University of Colorado and Children's Hospital of Colorado, Department of Pediatrics, Center for Cancer and Blood Disorders. Research Complex 1, North Tower, 12800 E. 19th Ave., Mail Stop 8302, Room P18-4108, Aurora, CO, 80045, USA
| | - Ashley M Yingst
- University of Colorado and Children's Hospital of Colorado, Department of Pediatrics, Center for Cancer and Blood Disorders. Research Complex 1, North Tower, 12800 E. 19th Ave., Mail Stop 8302, Room P18-4108, Aurora, CO, 80045, USA
| | - George Devon Trahan
- University of Colorado and Children's Hospital of Colorado, Department of Pediatrics, Center for Cancer and Blood Disorders. Research Complex 1, North Tower, 12800 E. 19th Ave., Mail Stop 8302, Room P18-4108, Aurora, CO, 80045, USA
| | - Seonhui Shim
- University of Colorado and Children's Hospital of Colorado, Department of Pediatrics, Center for Cancer and Blood Disorders. Research Complex 1, North Tower, 12800 E. 19th Ave., Mail Stop 8302, Room P18-4108, Aurora, CO, 80045, USA
| | - Jessica Lake
- University of Colorado and Children's Hospital of Colorado, Department of Pediatrics, Center for Cancer and Blood Disorders. Research Complex 1, North Tower, 12800 E. 19th Ave., Mail Stop 8302, Room P18-4108, Aurora, CO, 80045, USA
| | - Renee Woods
- University of Colorado and Children's Hospital of Colorado, Department of Pediatrics, Center for Cancer and Blood Disorders. Research Complex 1, North Tower, 12800 E. 19th Ave., Mail Stop 8302, Room P18-4108, Aurora, CO, 80045, USA
| | - Kenneth Jones
- University of Colorado and Children's Hospital of Colorado, Department of Pediatrics, Center for Cancer and Blood Disorders. Research Complex 1, North Tower, 12800 E. 19th Ave., Mail Stop 8302, Room P18-4108, Aurora, CO, 80045, USA
| | - Michael R Verneris
- University of Colorado and Children's Hospital of Colorado, Department of Pediatrics, Center for Cancer and Blood Disorders. Research Complex 1, North Tower, 12800 E. 19th Ave., Mail Stop 8302, Room P18-4108, Aurora, CO, 80045, USA.
| |
Collapse
|
22
|
Dandawate P, Kaushik G, Ghosh C, Standing D, Sayed AAA, Choudhury S, Subramaniam D, Manzardo A, Banerjee T, Santra S, Ramamoorthy P, Butler M, Padhye SB, Baranda J, Kasi A, Sun W, Tawfik O, Coppola D, Malafa M, Umar S, Soares MJ, Saha S, Weir SJ, Dhar A, Jensen RA, Thomas SM, Anant S. Diphenylbutylpiperidine Antipsychotic Drugs Inhibit Prolactin Receptor Signaling to Reduce Growth of Pancreatic Ductal Adenocarcinoma in Mice. Gastroenterology 2020; 158:1433-1449.e27. [PMID: 31786131 PMCID: PMC7103550 DOI: 10.1053/j.gastro.2019.11.279] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 11/04/2019] [Accepted: 11/19/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Prolactin (PRL) signaling is up-regulated in hormone-responsive cancers. The PRL receptor (PRLR) is a class I cytokine receptor that signals via the Janus kinase (JAK)-signal transducer and activator of transcription and mitogen-activated protein kinase pathways to regulate cell proliferation, migration, stem cell features, and apoptosis. Patients with pancreatic ductal adenocarcinoma (PDAC) have high plasma levels of PRL. We investigated whether PRLR signaling contributes to the growth of pancreatic tumors in mice. METHODS We used immunohistochemical analyses to compare levels of PRL and PRLR in multitumor tissue microarrays. We used structure-based virtual screening and fragment-based drug discovery to identify compounds likely to bind PRLR and interfere with its signaling. Human pancreatic cell lines (AsPC-1, BxPC-3, Panc-1, and MiaPaCa-2), with or without knockdown of PRLR (clustered regularly interspaced short palindromic repeats or small hairpin RNA), were incubated with PRL or penfluridol and analyzed in proliferation and spheroid formation. C57BL/6 mice were given injections of UNKC-6141 cells, with or without knockdown of PRLR, into pancreas, and tumor development was monitored for 4 weeks, with some mice receiving penfluridol treatment for 21 days. Human pancreatic tumor tissues were implanted into interscapular fat pads of NSG mice, and mice were given injections of penfluridol daily for 28 days. Nude mice were given injections of Panc-1 cells, xenograft tumors were grown for 2 weeks, and mice were then given intraperitoneal penfluridol for 35 days. Tumors were collected from mice and analyzed by histology, immunohistochemistry, and immunoblots. RESULTS Levels of PRLR were increased in PDAC compared with nontumor pancreatic tissues. Incubation of pancreatic cell lines with PRL activated signaling via JAK2-signal transducer and activator of transcription 3 and extracellular signal-regulated kinase, as well as formation of pancospheres and cell migration; these activities were not observed in cells with PRLR knockdown. Pancreatic cancer cells with PRLR knockdown formed significantly smaller tumors in mice. We identified several diphenylbutylpiperidine-class antipsychotic drugs as agents that decreased PRL-induced JAK2 signaling; incubation of pancreatic cancer cells with these compounds reduced their proliferation and formation of panco spheres. Injections of 1 of these compounds, penfluridol, slowed the growth of xenograft tumors in the different mouse models, reducing proliferation and inducing autophagy of the tumor cells. CONCLUSIONS Levels of PRLR are increased in PDAC, and exposure to PRL increases proliferation and migration of pancreatic cancer cells. Antipsychotic drugs, such as penfluridol, block PRL signaling in pancreatic cancer cells to reduce their proliferation, induce autophagy, and slow the growth of xenograft tumors in mice. These drugs might be tested in patients with PDAC.
Collapse
Affiliation(s)
- Prasad Dandawate
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Gaurav Kaushik
- Department of Surgery, University of Kansas Medical Center, Kansas City, KS 66160
| | - Chandrayee Ghosh
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160
| | - David Standing
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Afreen Asif Ali Sayed
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Sonali Choudhury
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160
| | | | - Ann Manzardo
- Department of Psychiatry and Behavioral Sciences, University of Kansas Medical Center, Kansas City, KS 66160
| | - Tuhina Banerjee
- Department of Chemistry, Pittsburg State University, Pittsburg, KS 66762, USA
| | - Santimukul Santra
- Department of Chemistry, Pittsburg State University, Pittsburg, KS 66762, USA
| | - Prabhu Ramamoorthy
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Merlin Butler
- Department of Psychiatry and Behavioral Sciences, University of Kansas Medical Center, Kansas City, KS 66160
| | - Subhash B. Padhye
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, Interdisciplinary Science and Technology Research Academy, Abeda Inamdar College, University of Pune, Pune 411001
| | - Joaquina Baranda
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Anup Kasi
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Weijing Sun
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Ossama Tawfik
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Domenico Coppola
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Mokenge Malafa
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Shahid Umar
- Department of Surgery, University of Kansas Medical Center, Kansas City, KS 66160
| | - Michael J. Soares
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160, Department of Pediatrics, University of Kansas Medical Center, Kansas City, KS 66160, Center for Perinatal Research, Children’s Research Institute, Children’s Mercy-Kansas City, MO 64108
| | - Subhrajit Saha
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Scott J. Weir
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160
| | - Animesh Dhar
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Roy A. Jensen
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Sufi Mary Thomas
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, Department of Otolaryngology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Shrikant Anant
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas; Department of Surgery, University of Kansas Medical Center, Kansas City, Kansas; Interdisciplinary Science and Technology Research Academy, Abeda Inamdar College, University of Pune, Pune.
| |
Collapse
|
23
|
Abstract
The thyroid hormones thyroxine and triiodothyronine as well as the anterior pituitary hormone prolactin each serve vital roles in humans. When challenged by stressful situations, all of these hormones respond in an attempt to maintain homeostasis. One powerful stressor to invoke the release of these hormones is physical activity, that is, exercise. The thyroids and prolactin each have independent roles allowing the body to accommodate to exercise. But they also share an interrelation in their responses. Hypothalamic thyrotropin-releasing hormone release invoked by stress stimulates the release of thyroid-stimulating hormone and thus the thyroids as well as the release of prolactin. Likewise, estrogen serves as an interconnective regulatory link by stimulating the release of both the thyroids and prolactin. The roles of these hormones in exercise are multifaceted, but one overlapping and common function is their combined aid and support of the tissue inflammatory responses after exercise. This is highly critical for facilitating elements of the adaptive-recovery procedures to exercise and exercise training.
Collapse
Affiliation(s)
- Anthony C Hackney
- Department of Exercise & Sport Science, and, Department of Nutrition, School of Public Health University of North Carolina, Chapel Hill, NC, USA
| | - Ayoub Saeidi
- Department of Biological Sciences in Sport, Faculty of Sports Sciences and Health Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
24
|
Abramicheva PA, Smirnova OV. Prolactin Receptor Isoforms as the Basis of Tissue-Specific Action of Prolactin in the Norm and Pathology. BIOCHEMISTRY (MOSCOW) 2019; 84:329-345. [PMID: 31228925 DOI: 10.1134/s0006297919040011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The review describes functional and structural features of different isoforms of prolactin receptor, mechanisms of signaling pathway activation, and molecular messengers involved in the transmission and termination of signal from the prolactin receptor isoforms. Changes in the ratio between prolactin receptor isoforms, key mediators of prolactin signal transduction and termination in various organs and tissues, are analyzed. Special attention is given to the role of molecular mediators and the ratio between the isoforms in normal physiological functions and pathologies. Approaches for therapeutic correction of prolactin signaling impairments are discussed.
Collapse
Affiliation(s)
- P A Abramicheva
- Lomonosov Moscow State University, Biological Faculty, Moscow, 119991, Russia.
| | - O V Smirnova
- Lomonosov Moscow State University, Biological Faculty, Moscow, 119991, Russia
| |
Collapse
|
25
|
Gorvin CM, Newey PJ, Rogers A, Stokes V, Neville MJ, Lines KE, Ntali G, Lees P, Morrison PJ, Singhellakis PN, Malandrinou FC, Karavitaki N, Grossman AB, Karpe F, Thakker RV. Association of prolactin receptor (PRLR) variants with prolactinomas. Hum Mol Genet 2019; 28:1023-1037. [PMID: 30445560 PMCID: PMC6400049 DOI: 10.1093/hmg/ddy396] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/31/2018] [Accepted: 11/11/2018] [Indexed: 02/07/2023] Open
Abstract
Prolactinomas are the most frequent type of pituitary tumors, which represent 10-20% of all intracranial neoplasms in humans. Prolactinomas develop in mice lacking the prolactin receptor (PRLR), which is a member of the cytokine receptor superfamily that signals via Janus kinase-2-signal transducer and activator of transcription-5 (JAK2-STAT5) or phosphoinositide 3-kinase-Akt (PI3K-Akt) pathways to mediate changes in transcription, differentiation and proliferation. To elucidate the role of the PRLR gene in human prolactinomas, we determined the PRLR sequence in 50 DNA samples (35 leucocytes, 15 tumors) from 46 prolactinoma patients (59% males, 41% females). This identified six germline PRLR variants, which comprised four rare variants (Gly57Ser, Glu376Gln, Arg453Trp and Asn492Ile) and two low-frequency variants (Ile76Val, Ile146Leu), but no somatic variants. The rare variants, Glu376Gln and Asn492Ile, which were in complete linkage disequilibrium, and are located in the PRLR intracellular domain, occurred with significantly higher frequencies (P < 0.0001) in prolactinoma patients than in 60 706 individuals of the Exome Aggregation Consortium cohort and 7045 individuals of the Oxford Biobank. In vitro analysis of the PRLR variants demonstrated that the Asn492Ile variant, but not Glu376Gln, when compared to wild-type (WT) PRLR, increased prolactin-induced pAkt signaling (>1.3-fold, P < 0.02) and proliferation (1.4-fold, P < 0.02), but did not affect pSTAT5 signaling. Treatment of cells with an Akt1/2 inhibitor or everolimus, which acts on the Akt pathway, reduced Asn492Ile signaling and proliferation to WT levels. Thus, our results identify an association between a gain-of-function PRLR variant and prolactinomas and reveal a new etiology and potential therapeutic approach for these neoplasms.
Collapse
Affiliation(s)
- Caroline M Gorvin
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK
| | - Paul J Newey
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Angela Rogers
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Victoria Stokes
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Matt J Neville
- Oxford NIHR Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK
- Metabolic Research Group, Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Kate E Lines
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK
| | - Georgia Ntali
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Peter Lees
- Department of Neurosurgery, Southampton General Hospital, Southampton, Hampshire
| | - Patrick J Morrison
- Northern Ireland Regional Genetics Centre, Belfast City Hospital, Lisburn Road, Belfast, UK
| | - Panagiotis N Singhellakis
- Department of Endocrinology, Metabolism and Diabetes Mellitus, St Savvas Cancer Hospital, Athens, Greece
| | - Fotini Ch Malandrinou
- Department of Endocrinology, Metabolism and Diabetes Mellitus, St Savvas Cancer Hospital, Athens, Greece
| | - Niki Karavitaki
- Department of Endocrinology, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, UK
| | - Ashley B Grossman
- Department of Endocrinology, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, UK
| | - Fredrik Karpe
- Oxford NIHR Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK
- Metabolic Research Group, Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Rajesh V Thakker
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK
| |
Collapse
|
26
|
Recalde G, Moreno-Sosa T, Yúdica F, Quintero CA, Sánchez MB, Jahn GA, Kalergis AM, Mackern-Oberti JP. Contribution of sex steroids and prolactin to the modulation of T and B cells during autoimmunity. Autoimmun Rev 2018. [DOI: 10.1016/j.autrev.2018.03.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|