1
|
Tang C, Zhang Y. Potential alternatives to αβ-T cells to prevent graft-versus-host disease (GvHD) in allogeneic chimeric antigen receptor (CAR)-based cancer immunotherapy: A comprehensive review. Pathol Res Pract 2024; 262:155518. [PMID: 39146830 DOI: 10.1016/j.prp.2024.155518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/28/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
Currently, CAR-T cell therapy relies on an individualized manufacturing process in which patient's own T cells are infused back into patients after being engineered and expanded ex vivo. Despite the astonishing outcomes of autologous CAR-T cell therapy, this approach is endowed with several limitations and drawbacks, such as high cost and time-consuming manufacturing process. Switching the armature of CAR-T cell therapy from autologous settings to allogeneic can overcome several bottlenecks of the current approach. Nevertheless, the use of allogeneic CAR-T cells is limited by the risk of life-threatening GvHD. Thus, in recent years, developing a method to move CAR-T cell therapy to allogeneic settings without the risk of GvHD has become a hot research topic in this field. Since the alloreactivity of αβ T-cell receptor (TCR) accounts for developing GvHD, several efforts have been made to disrupt endogenous TCR of allogeneic CAR-T cells using gene editing tools to prevent GvHD. Nonetheless, the off-target activity of gene editing tools and their associated genotoxicities, as well as the negative consequences of endogenous TCR disruption, are the main concerns of using this approach. As an alternative, CAR αβ-T cells can be replaced with other types of CAR-engineered cells that are capable of recognizing and killing malignant cells through CAR while avoiding the induction of GvHD. These alternatives include T cell subsets with restricted TCR repertoire (γδ-T, iNKT, virus-specific T, double negative T cells, and MAIT cells), killer cells (NK and CIK cells), non-lymphocytic cells (neutrophils and macrophages), stem/progenitor cells, and cell-free extracellular vesicles. In this review, we discuss how these alternatives can move CAR-based immunotherapy to allogeneic settings to overcome the bottlenecks of autologous manner without the risk of GvHD. We comprehensively discuss the pros and cons of these alternatives over the traditional CAR αβ-T cells in light of their preclinical studies and clinical trials.
Collapse
MESH Headings
- Humans
- Graft vs Host Disease/immunology
- Graft vs Host Disease/prevention & control
- Graft vs Host Disease/therapy
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Immunotherapy, Adoptive/methods
- Neoplasms/therapy
- Neoplasms/immunology
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- T-Lymphocytes/immunology
- Animals
- Gene Editing/methods
- Transplantation, Homologous/methods
Collapse
Affiliation(s)
- Chaozhi Tang
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China; Department of Neurology, Xinxiang First Peoples Hospital, Xinxiang 453100, China
| | - Yuling Zhang
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China.
| |
Collapse
|
2
|
Winidmanokul P, Panya A, Okada S. Tri-specific killer engager: unleashing multi-synergic power against cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:432-448. [PMID: 38745768 PMCID: PMC11090690 DOI: 10.37349/etat.2024.00227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/13/2023] [Indexed: 05/16/2024] Open
Abstract
Cancer continues to be a global health concern, necessitating innovative solutions for treatment. Tri-specific killer engagers (TriKEs) have emerged as a promising class of immunotherapeutic agents, offering a multifaceted approach to cancer treatment. TriKEs simultaneously engage and activate natural killer (NK) cells while specifically targeting cancer cells, representing an outstanding advancement in immunotherapy. This review explores the generation and mechanisms of TriKEs, highlighting their advantages over other immunotherapies and discussing their potential impact on clinical trials and cancer treatment. TriKEs are composed of three distinct domains, primarily antibody-derived building blocks, linked together by short amino acid sequences. They incorporate critical elements, anti-cluster of differentiation 16 (CD16) and interleukin-15 (IL-15), which activate and enhance NK cell function, together with specific antibody to target each cancer. TriKEs exhibit remarkable potential in preclinical and early clinical studies across various cancer types, making them a versatile tool in cancer immunotherapy. Comparative analyses with other immunotherapies, such as chimeric antigen receptor-T (CAR-T) cell therapy, immune checkpoint inhibitors (ICIs), cytokine therapies, and monoclonal antibodies (mAbs), reveal the unique advantages of TriKEs. They offer a safer pathway for immunotherapy by targeting cancer cells without hyperactivating T cells, reducing off-target effects and complications. The future of TriKEs involves addressing challenges related to dosing, tumor-associated antigen (TAA) expression, and NK cell suppression. Researchers are exploring innovative dosing strategies, enhancing specificity through tumor-specific antigens (TSAs), and combining TriKEs with other therapies for increased efficacy.
Collapse
Affiliation(s)
- Peeranut Winidmanokul
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
| | - Aussara Panya
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Cell Engineering for Cancer Therapy Research Group, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
| |
Collapse
|
3
|
Singh N, Kumari V, Agrawal K, Kulshreshtha M. Molecular Pathway, Epidemiological Data and Treatment Strategies of Fungal Infection (Mycoses): A Comprehensive Review. Cent Nerv Syst Agents Med Chem 2024; 24:68-81. [PMID: 38305394 DOI: 10.2174/0118715249274215231205062701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/06/2023] [Accepted: 10/31/2023] [Indexed: 02/03/2024]
Abstract
The recent increase in fungal infections is a health crisis. This surge is directly tied to the increase in immunocompromised people caused by changes in medical practice, such as the use of harsh chemotherapy and immunosuppressive medicines. Immunosuppressive disorders such as HIV have exacerbated the situation dramatically. Subcutaneous or superficial fungal infections can harm the skin, keratinous tissues, and mucous membranes. This category includes some of the most common skin disorders that impact millions of people worldwide. Despite the fact that they are seldom fatal, they can have a catastrophic impact on a person's quality of life and, in rare situations, spread to other people or become obtrusive. The majority of fungal infections under the skin and on the surface are simply and quickly cured. An opportunistic organism that preys on a weak host or a natural intruder can both result in systemic fungal infections. Furthermore, it might be exceedingly lethal and dangerous to one's life. Dimorphic fungi may pose a hazard to healthy populations that are not exposed to endemic fungi. Increased surveillance, the availability of quick, noninvasive diagnostic tests, monitoring the emergence of antifungal medication resistance, and research on the pathophysiology, prevention, and management of fungal infections are just a few potential solutions to these new health problems. The goal of this review is to summarize the data available for fungal infections and the different therapies which are involved in their treatment. Additionally, it also summarizes the molecular and scientific data of the plants which contain anti-fungal activity. Data are acquired using Google, PubMed, Scholar, and other online sources.
Collapse
Affiliation(s)
| | - Vibha Kumari
- Rajiv Academy for Pharmacy, Mathura (U.P.), India
| | | | | |
Collapse
|
4
|
Mazinani M, Rahbarizadeh F. New cell sources for CAR-based immunotherapy. Biomark Res 2023; 11:49. [PMID: 37147740 PMCID: PMC10163725 DOI: 10.1186/s40364-023-00482-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/04/2023] [Indexed: 05/07/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy, in which a patient's own T lymphocytes are engineered to recognize and kill cancer cells, has achieved striking success in some hematological malignancies in preclinical and clinical trials, resulting in six FDA-approved CAR-T products currently available in the market. Despite impressive clinical outcomes, concerns about treatment failure associated with low efficacy or high cytotoxicity of CAR-T cells remain. While the main focus has been on improving CAR-T cells, exploring alternative cellular sources for CAR generation has garnered growing interest. In the current review, we comprehensively evaluated other cell sources rather than conventional T cells for CAR generation.
Collapse
Affiliation(s)
- Marzieh Mazinani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14115-111, Tehran, Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14115-111, Tehran, Iran.
- Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
5
|
Varela VA, da Silva Heinen LB, Marti LC, Caraciolo VB, Datoguia TS, Amano MT, Pereira WO. In vitro differentiation of myeloid suppressor cells (MDSC-like) from an immature myelomonocytic precursor THP-1. J Immunol Methods 2023; 515:113441. [PMID: 36848984 DOI: 10.1016/j.jim.2023.113441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/27/2023]
Abstract
BACKGROUND Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population with a potent suppressor profile that regulates immune responses. These cells are one of the main components of the microenvironment of several diseases, including solid and hematologic tumors, autoimmunities, and chronic inflammation. However, their wide use in studies is limited due to they comprehend a rare population, which is difficult to isolate, expand, differentiate, and maintain in culture. Additionally, this population has a complex phenotypic and functional characterization. OBJECTIVE To develop a protocol for the in vitro production of MDSC-like population from the differentiation of the immature myeloid cell line THP-1. METHODS We stimulated THP-1 with G-CSF (100 ng/mL) and IL-4 (20 ng/mL) for seven days to differentiate into the MDSC-like profile. At the end of the protocol, we characterized these cells phenotypically and functionally by immunophenotyping, gene expression analysis, cytokine release dosage, lymphocyte proliferation, and NK-mediated killing essays. RESULTS We differentiate THP-1 cells in an MDSC-like population, named THP1-MDSC-like, which presented immunophenotyping and gene expression profiles compatible with that described in the literature. Furthermore, we verified that this phenotypic and functional differentiation did not deviate to a macrophage profile of M1 or M2. These THP1-MDSC-like cells secreted several immunoregulatory cytokines into the microenvironment, consistent with the suppressor profile related to MDSC. In addition, the supernatant of these cells decreased the proliferation of activated lymphocytes and impaired the apoptosis of leukemic cells induced by NK cells. CONCLUSIONS We developed an effective protocol for MDSC in vitro production from the differentiation of the immature myeloid cell line THP-1 induced by G-CSF and IL-4. Furthermore, we demonstrated that THP1-MDSC-like suppressor cells contribute to the immune escape of AML cells. Potentially, these THP1-MDSC-like cells can be applied on a large-scale platform, thus being able to impact the course of several studies and models such as cancer, immunodeficiencies, autoimmunity, and chronic inflammation.
Collapse
Affiliation(s)
- Vanessa Araújo Varela
- Faculdade Israelita de Ciências da Saúde Albert Einstein (FICSAE), Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | | | - Luciana Cavalheiro Marti
- Faculdade Israelita de Ciências da Saúde Albert Einstein (FICSAE), Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Victória Bulcão Caraciolo
- Faculdade Israelita de Ciências da Saúde Albert Einstein (FICSAE), Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Tarcila Santos Datoguia
- Faculdade Israelita de Ciências da Saúde Albert Einstein (FICSAE), Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Mariane Tami Amano
- Hospital Sírio Libanês, São Paulo, SP, Brazil; Department of Clinical and Experimental Oncology, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Welbert Oliveira Pereira
- Faculdade Israelita de Ciências da Saúde Albert Einstein (FICSAE), Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| |
Collapse
|
6
|
Yang X, Weng D, Pan Q, Xiang T, Yang C, Wu Z, Li M, Xie S, Tang Y, Xia J, Zhao J. Adjuvant alternative cytokine-induced killer cell combined with natural killer cell immunotherapy improves the prognosis of post-mastectomy breast cancer. Front Immunol 2022; 13:974487. [DOI: 10.3389/fimmu.2022.974487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/18/2022] [Indexed: 11/11/2022] Open
Abstract
Breast cancer is one of the most common cancers in women. Triple-negative breast cancer (TNBC) has a significantly worse prognosis due to the lack of endocrine receptors including estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2). In this study, we investigated adjuvant cellular immunotherapy (CIT) in patients with post-mastectomy breast cancer. We enrolled 214 post-mastectomy breast cancer patients, including 107 patients in the control group (who received chemotherapy/radiotherapy/endocrine therapy) and the other 107 patients in the CIT group (who received chemotherapy/radiotherapy/endocrine therapy and subsequent immune cell infusion). Of these 214 patients, 54 had TNBC, including 26 patients in the control group and 28 patients in the CIT group. Survival analysis showed that the overall survival rate of patients treated with cellular immunotherapy was higher than that of patients who were not treated with CIT. Compared to those who received cytokine-induced killer (CIK) cells alone, the patients who received CIK combined with natural killer (NK) cell immunotherapy showed the best overall survival rate. In subgroup analyses, adjuvant CIT significantly improved the overall survival of patients in the TNBC subgroup and the patients who were aged over 50 years. Our study indicates that adjuvant CIK cell combined with NK cell treatment is an effective therapeutic strategy to prolong the survival of post-mastectomy patients, particularly for TNBC patients and those who are aged over 50 years.
Collapse
|
7
|
Nikoo M, Rudiansyah M, Bokov DO, Jainakbaev N, Suksatan W, Ansari MJ, Thangavelu L, Chupradit S, Zamani A, Adili A, Shomali N, Akbari M. Potential of chimeric antigen receptor (CAR)-redirected immune cells in breast cancer therapies: Recent advances. J Cell Mol Med 2022; 26:4137-4156. [PMID: 35762299 PMCID: PMC9344815 DOI: 10.1111/jcmm.17465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/16/2022] [Accepted: 05/28/2022] [Indexed: 11/29/2022] Open
Abstract
Despite substantial developments in conventional treatments such as surgery, chemotherapy, radiotherapy, endocrine therapy, and molecular-targeted therapy, breast cancer remains the leading cause of cancer mortality in women. Currently, chimeric antigen receptor (CAR)-redirected immune cell therapy has emerged as an innovative immunotherapeutic approach to ameliorate survival rates of breast cancer patients by eliciting cytotoxic activity against cognate tumour-associated antigens expressing tumour cells. As a crucial component of adaptive immunity, T cells and NK cells, as the central innate immune cells, are two types of pivotal candidates for CAR engineering in treating solid malignancies. However, the biological distinctions between NK cells- and T cells lead to differences in cancer immunotherapy outcomes. Likewise, optimal breast cancer removal via CAR-redirected immune cells requires detecting safe target antigens, improving CAR structure for ideal immune cell functions, promoting CAR-redirected immune cells filtration to the tumour microenvironment (TME), and increasing the ability of these engineered cells to persist and retain within the immunosuppressive TME. This review provides a concise overview of breast cancer pathogenesis and its hostile TME. We focus on the CAR-T and CAR-NK cells and discuss their significant differences. Finally, we deliver a summary based on recent advancements in the therapeutic capability of CAR-T and CAR-NK cells in treating breast cancer.
Collapse
Affiliation(s)
- Marzieh Nikoo
- Department of Immunology, School of MedicineKermanshah University of Medical SciencesKermanshahIran
| | - Mohammad Rudiansyah
- Division of Nephrology & Hypertension, Department of Internal Medicine, Faculty of MedicineUniversitas Lambung Mangkurat / Ulin HospitalBanjarmasinIndonesia
| | - Dmitry Olegovich Bokov
- Institute of PharmacySechenov First Moscow State Medical UniversityMoscowRussian Federation
- Laboratory of Food ChemistryFederal Research Center of Nutrition, Biotechnology and Food SafetyMoscowRussian Federation
| | | | - Wanich Suksatan
- Faculty of Nursing, HRH Princess Chulabhorn College of Medical ScienceChulabhorn Royal AcademyBangkokThailand
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of PharmacyPrince Sattam Bin Abdulaziz UniversityAl‐kharjSaudi Arabia
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical ScienceSaveetha UniversityChennaiIndia
| | - Supat Chupradit
- Department of Occupational Therapy, Faculty of Associated Medical SciencesChiang Mai UniversityChiang MaiThailand
| | - Amir Zamani
- Shiraz Transplant Center, Abu Ali Sina HospitalShiraz University of Medical SciencesShirazIran
| | - Ali Adili
- Department of OncologyTabriz University of Medical SciencesTabrizIran
- Senior Adult Oncology Department, Moffitt Cancer Center, University of South FloridaTampaFloridaUSA
| | - Navid Shomali
- Department of ImmunologyTabriz University of Medical SciencesTabrizIran
| | - Morteza Akbari
- Department of ImmunologyTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
8
|
Cell-based drug delivery systems and their in vivo fate. Adv Drug Deliv Rev 2022; 187:114394. [PMID: 35718252 DOI: 10.1016/j.addr.2022.114394] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/17/2022] [Accepted: 06/07/2022] [Indexed: 11/22/2022]
Abstract
Cell-based drug delivery systems (DDSs) have received attention recently because of their unique biological properties and self-powered functions, such as excellent biocompatibility, low immunogenicity, long circulation time, tissue-homingcharacteristics, and ability to cross biological barriers. A variety of cells, including erythrocytes, stem cells, and lymphocytes, have been explored as functional vectors for the loading and delivery of various therapeutic payloads (e.g., small-molecule and nucleic acid drugs) for subsequent disease treatment. These cell-based DDSs have their own unique in vivo fates, which are attributed to various factors, including their biological properties and functions, the loaded drugs and loading process, physiological and pathological circumstances, and the body's response to these carrier cells, which result in differences in drug delivery efficiency and therapeutic effect. In this review, we summarize the main cell-based DDSs and their biological properties and functions, applications in drug delivery and disease treatment, and in vivo fate and influencing factors. We envision that the unique biological properties, combined with continuing research, will enable development of cell-based DDSs as friendly drug vectors for the safe, effective, and even personalized treatment of diseases.
Collapse
|
9
|
Zheng A, Du Y, Wang Y, Zheng Y, Ning Z, Wu M, Zhang C, Zhang D, Liu J, Liu X. CD16/PD-L1 bi-specific aptamer for cancer immunotherapy through recruiting NK cells and acting as immunocheckpoint blockade. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:998-1009. [PMID: 35228895 PMCID: PMC8844804 DOI: 10.1016/j.omtn.2022.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 01/17/2022] [Indexed: 11/24/2022]
Abstract
It is well established that natural killer (NK) cells can be used as an alternative candidate of T cells for adoptive cell therapy (ACT) due to its high killing capacity, off-the-shelf utility, and low toxicity. Though NK cells provide rapid and potent immune effects, they still suffer from insufficient infiltration and tumor immunosuppression environment, which result in unsatisfactory therapeutic efficiency. Herein, a highly stable CD16/PD-L1 bi-specific aptamer (defined as CP-bi-apt) with high affinity and selectivity was introduced to overcome these obstacles. This CP-bi-apt can mediate a significant antitumor immunity by recruiting CD16-positive NK cells to directly contact with PD-L1 high-expressed tumor cells. In addition, the induced up-regulation of PD-L1 on tumor cells can inevitably occur as an adaptive response to most of the immunotherapeutic strategies. The prepared CP-bi-apt can be further used as an immune checkpoint inhibitor to specifically bind to PD-L1, thus reducing the negative impact of PD-L1 over-expression on the therapeutic efficacy. Furthermore, this CP-bi-apt-based immunotherapy is simple, highly efficient, and has low side effects, showing a promising potential for clinical translation.
Collapse
Affiliation(s)
- Aixian Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P.R. China
| | - Yanlin Du
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P.R. China
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P.R. China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, P.R. China
| | - Yiru Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P.R. China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, P.R. China
| | - Youshi Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P.R. China
| | - Zhaoyu Ning
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P.R. China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, P.R. China
| | - Ming Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P.R. China
| | - Cuilin Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P.R. China
| | - Da Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P.R. China
| | - Jingfeng Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P.R. China
- The Hepatobiliary Medical Center of Fujian Province, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou 350014, P.R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P.R. China
- The Hepatobiliary Medical Center of Fujian Province, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou 350014, P.R. China
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P.R. China
| |
Collapse
|
10
|
Biber G, Sabag B, Raiff A, Ben‐Shmuel A, Puthenveetil A, Benichou JIC, Jubany T, Levy M, Killner S, Barda‐Saad M. Modulation of intrinsic inhibitory checkpoints using nano-carriers to unleash NK cell activity. EMBO Mol Med 2022; 14:e14073. [PMID: 34725941 PMCID: PMC8749471 DOI: 10.15252/emmm.202114073] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 09/22/2021] [Accepted: 09/30/2021] [Indexed: 01/22/2023] Open
Abstract
Natural killer (NK) cells provide a powerful weapon mediating immune defense against viral infections, tumor growth, and metastatic spread. NK cells demonstrate great potential for cancer immunotherapy; they can rapidly and directly kill cancer cells in the absence of MHC-dependent antigen presentation and can initiate a robust immune response in the tumor microenvironment (TME). Nevertheless, current NK cell-based immunotherapies have several drawbacks, such as the requirement for ex vivo expansion of modified NK cells, and low transduction efficiency. Furthermore, to date, no clinical trial has demonstrated a significant benefit for NK-based therapies in patients with advanced solid tumors, mainly due to the suppressive TME. To overcome current obstacles in NK cell-based immunotherapies, we describe here a non-viral lipid nanoparticle-based delivery system that encapsulates small interfering RNAs (siRNAs) to gene silence the key intrinsic inhibitory NK cell molecules, SHP-1, Cbl-b, and c-Cbl. The nanoparticles (NPs) target NK cells in vivo, silence inhibitory checkpoint signaling molecules, and unleash NK cell activity to eliminate tumors. Thus, the novel NP-based system developed here may serve as a powerful tool for future NK cell-based therapeutic approaches.
Collapse
Affiliation(s)
- Guy Biber
- The Mina and Everard Goodman Faculty of Life SciencesBar‐Ilan UniversityRamat‐GanIsrael
| | - Batel Sabag
- The Mina and Everard Goodman Faculty of Life SciencesBar‐Ilan UniversityRamat‐GanIsrael
| | - Anat Raiff
- The Mina and Everard Goodman Faculty of Life SciencesBar‐Ilan UniversityRamat‐GanIsrael
| | - Aviad Ben‐Shmuel
- The Mina and Everard Goodman Faculty of Life SciencesBar‐Ilan UniversityRamat‐GanIsrael
| | - Abhishek Puthenveetil
- The Mina and Everard Goodman Faculty of Life SciencesBar‐Ilan UniversityRamat‐GanIsrael
| | - Jennifer I C Benichou
- The Mina and Everard Goodman Faculty of Life SciencesBar‐Ilan UniversityRamat‐GanIsrael
| | - Tammir Jubany
- The Mina and Everard Goodman Faculty of Life SciencesBar‐Ilan UniversityRamat‐GanIsrael
| | - Moria Levy
- The Mina and Everard Goodman Faculty of Life SciencesBar‐Ilan UniversityRamat‐GanIsrael
| | - Shiran Killner
- The Mina and Everard Goodman Faculty of Life SciencesBar‐Ilan UniversityRamat‐GanIsrael
| | - Mira Barda‐Saad
- The Mina and Everard Goodman Faculty of Life SciencesBar‐Ilan UniversityRamat‐GanIsrael
| |
Collapse
|
11
|
Specific Blood Cells Derived from Pluripotent Stem Cells: An Emerging Field with Great Potential in Clinical Cell Therapy. Stem Cells Int 2021; 2021:9919422. [PMID: 34434242 PMCID: PMC8380505 DOI: 10.1155/2021/9919422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/06/2021] [Accepted: 08/02/2021] [Indexed: 11/18/2022] Open
Abstract
Widely known for self-renewal and multilineage differentiation, stem cells can be differentiated into all specialized tissues and cells in the body. In the past few years, a number of researchers have focused on deriving hematopoietic stem cells (HSCs) from pluripotent stem cells (PSCs) as alternative sources for clinic. Existing findings demonstrated that it is feasible to obtain HSCs and certain mature blood lineages from PSCs, except for several issues to be addressed. This short review outlines the technologies used for hematopoietic differentiation in recent years. In addition, the therapeutic value of PSCs as a potential source of various blood cells is also discussed as well as its challenges and directions in future clinical applications.
Collapse
|
12
|
Marofi F, Saleh MM, Rahman HS, Suksatan W, Al-Gazally ME, Abdelbasset WK, Thangavelu L, Yumashev AV, Hassanzadeh A, Yazdanifar M, Motavalli R, Pathak Y, Naimi A, Baradaran B, Nikoo M, Khiavi FM. CAR-engineered NK cells; a promising therapeutic option for treatment of hematological malignancies. Stem Cell Res Ther 2021; 12:374. [PMID: 34215336 PMCID: PMC8252313 DOI: 10.1186/s13287-021-02462-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 06/14/2021] [Indexed: 12/11/2022] Open
Abstract
Adoptive cell therapy has received a great deal of interest in the treatment of advanced cancers that are resistant to traditional therapy. The tremendous success of chimeric antigen receptor (CAR)-engineered T (CAR-T) cells in the treatment of cancer, especially hematological cancers, has exposed CAR's potential. However, the toxicity and significant limitations of CAR-T cell immunotherapy prompted research into other immune cells as potential candidates for CAR engineering. NK cells are a major component of the innate immune system, especially for tumor immunosurveillance. They have a higher propensity for immunotherapy in hematologic malignancies because they can detect and eliminate cancerous cells more effectively. In comparison to CAR-T cells, CAR-NK cells can be prepared from allogeneic donors and are safer with a lower chance of cytokine release syndrome and graft-versus-host disease, as well as being a more efficient antitumor activity with high efficiency for off-the-shelf production. Moreover, CAR-NK cells may be modified to target various antigens while also increasing their expansion and survival in vivo. Extensive preclinical research has shown that NK cells can be effectively engineered to express CARs with substantial cytotoxic activity against both hematological and solid tumors, establishing evidence for potential clinical trials of CAR-NK cells. In this review, we discuss recent advances in CAR-NK cell engineering in a variety of hematological malignancies, as well as the main challenges that influence the outcomes of CAR-NK cell-based tumor immunotherapies.
Collapse
Affiliation(s)
- Faroogh Marofi
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marwan Mahmood Saleh
- Department of Biophysics, College of Applied Science, University of Anbar, Ramadi, Iraq
| | - Heshu Sulaiman Rahman
- College of Medicine, University of Sulaimani, Sulaymaniyah, Iraq
- Department of Medical Laboratory Sciences, Komar University of Science and Technology, Chaq-Chaq Qularaise, Sulaimaniyah, Iraq
| | - Wanich Suksatan
- Faculty of Nursing, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, 10210 Thailand
| | | | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia
- Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | | | - Ali Hassanzadeh
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahboubeh Yazdanifar
- Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA USA
| | - Roza Motavalli
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yashwant Pathak
- Professor and Associate Dean for Faculty Affairs, Taneja College of Pharmacy, University of South Florida, Tampa, FL USA
- Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia
| | - Adel Naimi
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Behzad Baradaran
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marzieh Nikoo
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | |
Collapse
|
13
|
Tsimberidou AM, Van Morris K, Vo HH, Eck S, Lin YF, Rivas JM, Andersson BS. T-cell receptor-based therapy: an innovative therapeutic approach for solid tumors. J Hematol Oncol 2021; 14:102. [PMID: 34193217 PMCID: PMC8243554 DOI: 10.1186/s13045-021-01115-0] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
T-cell receptor (TCR)-based adoptive therapy employs genetically modified lymphocytes that are directed against specific tumor markers. This therapeutic modality requires a structured and integrated process that involves patient screening (e.g., for HLA-A*02:01 and specific tumor targets), leukapheresis, generation of transduced TCR product, lymphodepletion, and infusion of the TCR-based adoptive therapy. In this review, we summarize the current technology and early clinical development of TCR-based therapy in patients with solid tumors. The challenges of TCR-based therapy include those associated with TCR product manufacturing, patient selection, and preparation with lymphodepletion. Overcoming these challenges, and those posed by the immunosuppressive microenvironment, as well as developing next-generation strategies is essential to improving the efficacy and safety of TCR-based therapies. Optimization of technology to generate TCR product, treatment administration, and patient monitoring for adverse events is needed. The implementation of novel TCR strategies will require expansion of the TCR approach to patients with HLA haplotypes beyond HLA-A*02:01 and the discovery of novel tumor markers that are expressed in more patients and tumor types. Ongoing clinical trials will determine the ultimate role of TCR-based therapy in patients with solid tumors.
Collapse
Affiliation(s)
- Apostolia-Maria Tsimberidou
- Department of Investigational Cancer Therapeutics, Unit 455, Phase I Clinical Trials Program, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| | - Karlyle Van Morris
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Henry Hiep Vo
- Department of Investigational Cancer Therapeutics, Unit 455, Phase I Clinical Trials Program, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Stephen Eck
- MacroGenics, Inc., 9704 Medical Center Drive, Rockville, MD, 20850, USA
| | - Yu-Feng Lin
- Immatics US, Inc., 2201 Holcombe Blvd., Suite 205, Houston, TX, 77030, USA
| | | | - Borje S Andersson
- Department of Stem Cell Transplantation, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| |
Collapse
|
14
|
Oroojalian F, Beygi M, Baradaran B, Mokhtarzadeh A, Shahbazi MA. Immune Cell Membrane-Coated Biomimetic Nanoparticles for Targeted Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006484. [PMID: 33577127 DOI: 10.1002/smll.202006484] [Citation(s) in RCA: 260] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/20/2020] [Indexed: 06/12/2023]
Abstract
Nanotechnology has provided great opportunities for managing neoplastic conditions at various levels, from preventive and diagnostic to therapeutic fields. However, when it comes to clinical application, nanoparticles (NPs) have some limitations in terms of biological stability, poor targeting, and rapid clearance from the body. Therefore, biomimetic approaches, utilizing immune cell membranes, are proposed to solve these issues. For example, macrophage or neutrophil cell membrane coated NPs are developed with the ability to interact with tumor tissue to suppress cancer progression and metastasis. The functionality of these particles largely depends on the surface proteins of the immune cells and their preserved function during membrane extraction and coating process on the NPs. Proteins on the outer surface of immune cells can render a wide range of activities to the NPs, including prolonged blood circulation, remarkable competency in recognizing antigens for enhanced targeting, better cellular interactions, gradual drug release, and reduced toxicity in vivo. In this review, nano-based systems coated with immune cells-derived membranous layers, their detailed production process, and the applicability of these biomimetic systems in cancer treatment are discussed. In addition, future perspectives and challenges for their clinical translation are also presented.
Collapse
Affiliation(s)
- Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, 94531-55166, Iran
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, 94531-55166, Iran
| | - Mohammad Beygi
- Department of Agricultural Engineering, Isfahan University of Technology (IUT), Isfahan, 84156-83111, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 51666-14731, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 51666-14731, Iran
| | - Mohammad-Ali Shahbazi
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, Zanjan, 45139-56184, Iran
| |
Collapse
|
15
|
Ouyang R, Li Z, Peng P, Zhang J, Liu J, Qin M, Huang J. Exploration of the relationship between tumor mutation burden and immune infiltrates in colon adenocarcinoma. Int J Med Sci 2021; 18:685-694. [PMID: 33437203 PMCID: PMC7797534 DOI: 10.7150/ijms.51918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023] Open
Abstract
Background: Tumor mutation burden (TMB) was correlated with the immunotherapeutic response in various malignancies. We aimed to evaluate the TMB immune signature in colon adenocarcinoma (COAD). Methods: Gene expression profile, mutation and clinical data of COAD patients were obtained from The Cancer Genome Atlas (TCGA) database. The samples were divided into high and low TMB level groups to identify differentially expressed genes (DEGs). Functional enrichments analyzes were performed to identify the biological functions of the DEGs. Then, immune cell infiltration signatures were calculated by the CIBERSORT algorithm. Finally, Cox proportional hazard model was constructed to estimate the prognostic value of the identified immune-related genes. Results: Gene set enrichment analysis in the high-TMB level group showed that DEGS were enriched in immune-related pathways, such as antigen processing and presentation, Toll-like receptor signaling and natural killer cell-mediated cytotoxicity. A higher infiltration level of CD8+ T cells, CD4+ T cells, activated NK cells , M1 Macrophages and T follicular helper cells was observed in the high-TMB level group. Furthermore, a Cox regression model combined with survival analysis based on the expression level of four identified prognostic genes was constructed, validated anf revealed that higher risk-score levels conferred poor survival outcomes in COAD patients. Conclusions: Our data demonstrate that the high TMB levels are associated with an immune signature in COAD and deepen the molecular understanding of TMB function in tumor immunotherapy.
Collapse
Affiliation(s)
- Rong Ouyang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Gastroenterology, Liuzhou Worker's Hospital, Liuzhou, China
| | - Zhongzhuan Li
- Department of Gastroenterology, Liuzhou Worker's Hospital, Liuzhou, China
| | - Peng Peng
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinxiu Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jun Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Gastroenterology, Liuzhou Worker's Hospital, Liuzhou, China
| | - Mengbin Qin
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jiean Huang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
16
|
Roussel X, Daguindau E, Berceanu A, Desbrosses Y, Warda W, Neto da Rocha M, Trad R, Deconinck E, Deschamps M, Ferrand C. Acute Myeloid Leukemia: From Biology to Clinical Practices Through Development and Pre-Clinical Therapeutics. Front Oncol 2020; 10:599933. [PMID: 33363031 PMCID: PMC7757414 DOI: 10.3389/fonc.2020.599933] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/02/2020] [Indexed: 12/19/2022] Open
Abstract
Recent studies have provided several insights into acute myeloid leukemia. Studies based on molecular biology have identified eight functional mutations involved in leukemogenesis, including driver and passenger mutations. Insight into Leukemia stem cells (LSCs) and assessment of cell surface markers have enabled characterization of LSCs from hematopoietic stem and progenitor cells. Clonal evolution has been described as having an effect similar to that of microenvironment alterations. Such biological findings have enabled the development of new targeted drugs, including drug inhibitors and monoclonal antibodies with blockage functions. Some recently approved targeted drugs have resulted in new therapeutic strategies that enhance standard intensive chemotherapy regimens as well as supportive care regimens. Besides the progress made in adoptive immunotherapy, since allogenic hematopoietic stem cell transplantation enabled the development of new T-cell transfer therapies, such as chimeric antigen receptor T-cell and transgenic TCR T-cell engineering, new promising strategies that are investigated.
Collapse
Affiliation(s)
- Xavier Roussel
- Inserm EFS BFC, UMR1098 RIGHT, University Bourgogne Franche-Comté, Besançon, France
- Department of Hematology, University Hospital of Besançon, Besançon, France
| | - Etienne Daguindau
- Inserm EFS BFC, UMR1098 RIGHT, University Bourgogne Franche-Comté, Besançon, France
- Department of Hematology, University Hospital of Besançon, Besançon, France
| | - Ana Berceanu
- Department of Hematology, University Hospital of Besançon, Besançon, France
| | - Yohan Desbrosses
- Department of Hematology, University Hospital of Besançon, Besançon, France
| | - Walid Warda
- Inserm EFS BFC, UMR1098 RIGHT, University Bourgogne Franche-Comté, Besançon, France
| | | | - Rim Trad
- Inserm EFS BFC, UMR1098 RIGHT, University Bourgogne Franche-Comté, Besançon, France
| | - Eric Deconinck
- Inserm EFS BFC, UMR1098 RIGHT, University Bourgogne Franche-Comté, Besançon, France
- Department of Hematology, University Hospital of Besançon, Besançon, France
| | - Marina Deschamps
- Inserm EFS BFC, UMR1098 RIGHT, University Bourgogne Franche-Comté, Besançon, France
| | - Christophe Ferrand
- Inserm EFS BFC, UMR1098 RIGHT, University Bourgogne Franche-Comté, Besançon, France
| |
Collapse
|
17
|
Ademe M. Immunomodulation for the Treatment of Fungal Infections: Opportunities and Challenges. Front Cell Infect Microbiol 2020; 10:469. [PMID: 33042859 PMCID: PMC7522196 DOI: 10.3389/fcimb.2020.00469] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/30/2020] [Indexed: 01/03/2023] Open
Abstract
Opportunistic fungal infections are major causes of morbidity and mortality in patients with single or multiple defects in their immunity. Antifungal agents targeting the pathogen remain the treatment of choice for fungal infections. However, antifungal agents are toxic to the host mainly due to the close evolutionary similarity of fungi and humans. Moreover, antifungal therapy is ineffective in patients with immunosuppression. For this reason, there is an increased demand to develop novel strategies to enhance immune function and augment the existing antifungal drugs. In recent times, targeting the immune system to improve impaired host immune responses becomes a reasonable approach to improve the effectiveness of antifungal drugs. In this regard, immunomodulating therapeutic agents that turn up the immune response in the fight against fungal infections hold promise for enhancing the efficacy and safety of conventional antifungal therapy. In general, immunomodulating therapies are safe with decreased risk of resistance and broad spectrum of activity. In this review, therefore, clinical evidences supporting the opportunities and challenges of immunomodulation therapies in the treatment of invasive fungal infections are included.
Collapse
Affiliation(s)
- Muluneh Ademe
- Department of Microbiology, Immunology and Parasitology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
18
|
UV Light-inactivated HSV-1 Stimulates Natural Killer Cell-induced Killing of Prostate Cancer Cells. J Immunother 2020; 42:162-174. [PMID: 30933043 DOI: 10.1097/cji.0000000000000261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Herein we demonstrate that ultraviolet light-inactivated Herpes Simplex Virus-1 (UV-HSV-1) stimulates peripheral blood mononuclear cells (PBMCs) to lyse both androgen-sensitive and androgen-independent prostate cancer (PrCA) cell lines, but not the benign prostatic hyperplastic epithelial cell line, BPH-1, and is 1000-10,000-fold more potent at stimulating this killing than ultraviolet light-inactivated Vesicular Stomatitis Virus, adenovirus, reovirus or cytomegalovirus. Among PBMCs, natural killer (NK) cells appear to be a major cell type involved in this killing and UV-HSV-1 appears to directly and potently stimulate NK cell expression of CD69, degranulation, cytokine production, and migration to IL-8 in PC3 conditioned medium. We also found that UV-HSV-1 stimulates glycolysis in PBMCs and NK cells, and that 2-deoxyglucose and the protein kinase C inhibitor, Go6976, and the NFκB inhibitor, Bay 11-7082, all abrogate UV-HSV-1 activated killing of PC3 cells by PBMCs and NK cells. Using neutralizing anti-Toll-like receptor 2 (TLR2) we found that UV-HSV-1, like HSV-1, activates NK cells via TLR2. Taken together, these results are consistent with Toll-like receptor 2 ligands on UV-HSV-1 stimulating TLR2 on NK cells to activate protein kinase C, leading to enhanced glycolysis and NFκB activation, both of which play a critical role in this anti-PrCA innate immune response. Importantly, UV-HSV-1 synergizes with IL-15 to increase the cytolytic activity of PBMCs against PC3 cells and there was considerable donor-to-donor variation in killing ability. These results support the preclinical development of UV-HSV-1 as an adjuvant, in combination with IL-15, for cell infusions of healthy, preselected NK cells to treat PrCA.
Collapse
|
19
|
CAR-NK for tumor immunotherapy: Clinical transformation and future prospects. Cancer Lett 2019; 472:175-180. [PMID: 31790761 DOI: 10.1016/j.canlet.2019.11.033] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/20/2019] [Accepted: 11/26/2019] [Indexed: 02/08/2023]
Abstract
Recently, the use of chimeric antigen receptor-modified T (CAR-T)-cells in the treatment of hematological tumors has been successful and has become a clinical hotspot in tumor immunotherapy. However, their wide application is limited by inherent risks such as graft-versus-host disease (GvHD) and the amount of time it takes to produce CAR-T cells. Natural killer (NK) cells can be xenografted and have the potential to become off-the-shelf products, making CAR-NK cell therapies universal products. These products may be safer than CAR-T cell therapy. Considering that the fundamental researche is still in its infancy, this review focuses on clinical achievements and new strategies for improving the safety and efficacy of CAR-NK cell therapy, as well as the corresponding challenges.
Collapse
|
20
|
Barrett AJ. Acute myeloid leukaemia and the immune system: implications for immunotherapy. Br J Haematol 2019; 188:147-158. [DOI: 10.1111/bjh.16310] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- A. John Barrett
- GW Cancer Center George Washington University Hospital Washington DC USA
| |
Collapse
|
21
|
Hong G, Chen X, Sun X, Zhou M, Liu B, Li Z, Yu Z, Gao W, Liu T. Effect of autologous NK cell immunotherapy on advanced lung adenocarcinoma with EGFR mutations. PRECISION CLINICAL MEDICINE 2019; 2:235-245. [PMID: 35693880 PMCID: PMC8985770 DOI: 10.1093/pcmedi/pbz023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 11/25/2022] Open
Abstract
This study investigated the efficiency of natural killer (NK) cell immunotherapy on non-small cell lung cancer with and without EGFR mutations in order to evaluate the response rate (RR) and progression-free survival (PFS). Among the 48 patients recruited, 24 were clinically confirmed to be EGFR mutation positive. The study group was treated with autologous NK cell immunotherapy. Comparisons of the lymphocyte number, serum tumour-related biomarkers, circulating tumour cells (CTC), Karnofsky Performance Status (KPS) and survival curves were carried out before and after NK cell immunotherapy. The safety and short-term effects were evaluated, followed by median PFS and RR assessments. The serum CEA and CA125 values were found lower in the NK cell therapy group than that of the non-NK treatment group (p < 0.05). The χ2 test showed a 75% RR of the study group A, significantly higher than that of the control group B (16.7%; p < 0.01). The RR of groups C (58.3%) and D (41.7%) were not statistically significant. The p values of the 4 groups were 0.012, 0.012, 0.166 and 1 from group A to group D, respectively. The median PFS was 9 months in EGFR mutation positive group undergoing NK cell infusion interference. By evaluating the changes in immune function, tumour biomarkers, CTC, KPS and PFS, we demonstrated that NK cell therapy had better clinical therapeutic effects on EGFR mutation-positive lung adenocarcinoma.
Collapse
Affiliation(s)
- Guodai Hong
- Department of Biotherapy and Oncology, Shenzhen Luohu People’s Hospital, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen 518001, China
| | - Xuemei Chen
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Xizhuo Sun
- Department of Biotherapy and Oncology, Shenzhen Luohu People’s Hospital, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen 518001, China
| | - Meiling Zhou
- Department of Biotherapy and Oncology, Shenzhen Luohu People’s Hospital, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen 518001, China
- Public Service Platform for Cell Quality Testing and Evaluation of Shenzhen, Shenzhen 518001, China
| | - Bing Liu
- Department of Biotherapy and Oncology, Shenzhen Luohu People’s Hospital, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen 518001, China
- Public Service Platform for Cell Quality Testing and Evaluation of Shenzhen, Shenzhen 518001, China
| | - Zhu Li
- Department of Biotherapy and Oncology, Shenzhen Luohu People’s Hospital, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen 518001, China
- Public Service Platform for Cell Quality Testing and Evaluation of Shenzhen, Shenzhen 518001, China
| | - Zhendong Yu
- Central Laboratory, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Wenbin Gao
- Department of Biotherapy and Oncology, Shenzhen Luohu People’s Hospital, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen 518001, China
| | - Tao Liu
- Department of Biotherapy and Oncology, Shenzhen Luohu People’s Hospital, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen 518001, China
- Public Service Platform for Cell Quality Testing and Evaluation of Shenzhen, Shenzhen 518001, China
| |
Collapse
|
22
|
CAR-NK cell therapeutics for hematologic malignancies: hope is on the horizon. BLOOD SCIENCE 2019; 1:156-160. [PMID: 35402810 PMCID: PMC8974902 DOI: 10.1097/bs9.0000000000000028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 07/29/2019] [Indexed: 11/26/2022] Open
Abstract
Chimeric antigen receptor (CAR)-T-cell therapy has achieved significant success in the treatment of hematologic malignancies. However, treatment-related toxicity and side effects remain the major drawbacks. As an important effector cell in innate immunity, natural killer (NK) cells exert strong antitumor functions and have better application prospects in the immunotherapy of hematologic malignancies. Compared with T cells, NK cells exhibit several advantages such as MHC-independent recognition. CAR-modified NK (CAR-NK) cells may exhibit a better ability of killing tumor cells. Herein, we review mainly preclinical data related to the development of CAR-NK cells in treating blood cancers.
Collapse
|
23
|
Sahin U, Beksac M. Natural Killer Cell-Mediated Cellular Therapy of Hematological Malignancies. Clin Hematol Int 2019; 1:134-141. [PMID: 34595423 PMCID: PMC8432367 DOI: 10.2991/chi.d.190623.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 06/20/2019] [Indexed: 11/09/2022] Open
Abstract
Our understanding on the mechanisms of graft versus tumor/leukemia (GvT/GvL) and graft versus host (GvH) effects has tremendously evolved within the past decades. During the search for a mechanism that augments GvT/GvL without increasing GvH effects, natural killer (NK) cells have clearly attracted attention. Current approaches of NK cell immunotherapy for hematological malignancies involve using methods for in vivo potentiation of NK cell proliferation and activity; adoptive transfer of NK cells from autologous and allogeneic sources [cord blood mononuclear cells, peripheral blood mononuclear cells, CD34+ stem cells] and NK cell lines; and genetic modification of NK cells. Several cytokines, including interleukin-2 and interleukin-15 take part in the development of NK cells and have been shown to boost NK cell effects both in vivo and ex vivo. Monoclonal antibodies directed towards certain targets, including stimulating CD16, blockade of NK cell receptors, and redirection of cytotoxicity to tumor cells via bi- or tri-specific engagers may promote NK cell function. Despite the relative disappointment with autologous NK cell infusions, the future holds promise in adoptive transfer of allogeneic NK cells and the development of novel cellular therapeutic strategies, such as chimeric antigen receptor-modified NK cell immunotherapy. In this review, we summarize the current status of NK cell-related mechanisms in the therapy of hematologic malignancies, and discuss the future perspectives on adoptive NK cell transfer and other novel cellular immunotherapeutic strategies.
Collapse
Affiliation(s)
- Ugur Sahin
- Hematology Unit, Yenimahalle Education and Research Hospital, Yildirim Beyazit University, Ankara, Turkey
| | - Meral Beksac
- Department of Hematology, Faculty of Medicine, Ankara University, Cebeci Hospital, 06220, Ankara, Turkey
| |
Collapse
|
24
|
Yang S, Wen J, Li H, Xu L, Liu Y, Zhao N, Zeng Z, Qi J, Jiang W, Han W, Zu Y. Aptamer-Engineered Natural Killer Cells for Cell-Specific Adaptive Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900903. [PMID: 31026116 PMCID: PMC6541510 DOI: 10.1002/smll.201900903] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/04/2019] [Indexed: 05/28/2023]
Abstract
Natural killer (NK) cells are a key component of the innate immune system as they can attack cancer cells without prior sensitization. However, due to lack of cell-specific receptors, NK cells are not innately able to perform targeted cancer immunotherapy. Aptamers are short single-stranded oligonucleotides that specifically recognize their targets with high affinity in a similar manner to antibodies. To render NK cells with target-specificity, synthetic CD30-specific aptamers are anchored on cell surfaces to produce aptamer-engineered NK cells (ApEn-NK) without genetic alteration or cell damage. Under surface-anchored aptamer guidance, ApEn-NK specifically bind to CD30-expressing lymphoma cells but do not react to off-target cells. The resulting specific cell binding of ApEn-NK triggers higher apoptosis/death rates of lymphoma cells compared to parental NK cells. Additionally, experiments with primary human NK cells demonstrate the potential of ApEn-NK to specifically target and kill lymphoma cells, thus presenting a potential new approach for targeted immunotherapy by NK cells.
Collapse
Affiliation(s)
- Shuanghui Yang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Jianguo Wen
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Huan Li
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Ling Xu
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou 510632, Guangdong, China
| | - Yanting Liu
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Nianxi Zhao
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Zihua Zeng
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Jianjun Qi
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Wenqi Jiang
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Wei Han
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
- Department of Hematology, First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Youli Zu
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
25
|
Mehta RS, Rezvani K. Chimeric Antigen Receptor Expressing Natural Killer Cells for the Immunotherapy of Cancer. Front Immunol 2018; 9:283. [PMID: 29497427 PMCID: PMC5818392 DOI: 10.3389/fimmu.2018.00283] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/31/2018] [Indexed: 12/12/2022] Open
Abstract
Adoptive cell therapy has emerged as a powerful treatment for advanced cancers resistant to conventional agents. Most notable are the remarkable responses seen in patients receiving autologous CD19-redirected chimeric antigen receptor (CAR) T cells for the treatment of B lymphoid malignancies; however, the generation of autologous products for each patient is logistically cumbersome and has restricted widespread clinical use. A banked allogeneic product has the potential to overcome these limitations, yet allogeneic T-cells (even if human leukocyte antigen-matched) carry a major risk of graft-versus-host disease (GVHD). Natural killer (NK) cells are bone marrow-derived innate lymphocytes that can eliminate tumors directly, with their activity governed by the integration of signals from activating and inhibitory receptors and from cytokines including IL-15, IL-12, and IL-18. NK cells do not cause GVHD or other alloimmune or autoimmune toxicities and thus, can provide a potential source of allogeneic “off-the-shelf” cellular therapy, mediating major anti-tumor effects without inducing potentially lethal alloreactivity such as GVHD. Given the multiple unique advantages of NK cells, researchers are now exploring the use of CAR-engineered NK cells for the treatment of various hematological and non-hematological malignancies. Herein, we review preclinical data on the development of CAR-NK cells, advantages, disadvantages, and current obstacles to their clinical use.
Collapse
|
26
|
Zhu H, Lai YS, Li Y, Blum R, Kaufman D. Concise Review: Human Pluripotent Stem Cells to Produce Cell-Based Cancer Immunotherapy. Stem Cells 2018; 36:134-145. [PMID: 29235195 PMCID: PMC5914526 DOI: 10.1002/stem.2754] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 11/09/2017] [Accepted: 11/25/2017] [Indexed: 02/06/2023]
Abstract
Human pluripotent stem cells (PSCs) provide a promising resource to produce immune cells for adoptive cellular immunotherapy to better treat and potentially cure otherwise lethal cancers. Cytotoxic T cells and natural killer (NK) cells can now be routinely produced from human PSCs. These PSC-derived lymphocytes have phenotype and function similar to primary lymphocytes isolated from peripheral blood. PSC-derived T and NK cells have advantages compared with primary immune cells, as they can be precisely engineered to introduce improved anti-tumor activity and produced in essentially unlimited numbers. Stem Cells 2018;36:134-145.
Collapse
Affiliation(s)
- Huang Zhu
- Department of Medicine, Division of Regenerative Medicine, University of California San Diego, San Diego, California, USA
| | - Yi-Shin Lai
- Department of Medicine, Division of Regenerative Medicine, University of California San Diego, San Diego, California, USA
| | - Ye Li
- Department of Medicine, Division of Regenerative Medicine, University of California San Diego, San Diego, California, USA
| | - Robert Blum
- Department of Medicine, Division of Regenerative Medicine, University of California San Diego, San Diego, California, USA
| | - Dan Kaufman
- Department of Medicine, Division of Regenerative Medicine, University of California San Diego, San Diego, California, USA
| |
Collapse
|
27
|
Wang W, Xia X, Wu S, Guo M, Lie P, He J. Cancer immunotherapy: A need for peripheral immunodynamic monitoring. Am J Reprod Immunol 2017; 79:e12793. [PMID: 29288509 DOI: 10.1111/aji.12793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 11/07/2017] [Indexed: 01/08/2023] Open
Abstract
Immunotherapy has become an important approach for treating different tumours which has shown significant efficacy in numerous clinical trials, especially those using new checkpoint inhibitors and adoptive cell therapy, which have rapidly become widespread after being approved. However, analysis of peripheral immune biomarkers before and after immunotherapy and their relationship to clinical responses and disease prognosis have rarely been performed in clinical trials. In this review, we examine dynamic changes in the immune system before and after therapy by analyzing recent clinical trials of immunotherapy in patients with cancer that focused on checkpoint inhibitors and adoptive cell therapy. Our aim was to identify circulating biomarkers which can specifically predict clinical response and prognosis, as well as toxicities of immunotherapy. Through this approach, we hope to advance our understanding of the mechanisms of immunotherapy with the goal of developing individualized treatment for cancer patients.
Collapse
Affiliation(s)
- Wenjun Wang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaojun Xia
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Sipei Wu
- Academy of Medical Sciences of Guangdong Province, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Minzhang Guo
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Puyi Lie
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jianxing He
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
28
|
Cirillo M, Tan P, Sturm M, Cole C. Cellular Immunotherapy for Hematologic Malignancies: Beyond Bone Marrow Transplantation. Biol Blood Marrow Transplant 2017; 24:433-442. [PMID: 29102721 DOI: 10.1016/j.bbmt.2017.10.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 10/25/2017] [Indexed: 02/06/2023]
Abstract
Immunotherapy has changed treatment practices for many hematologic malignancies. Even in the current era of targeted therapy, chemotherapy remains the backbone of treatment for many hematologic malignancies, especially in acute leukemias, where relapse remains the major cause of mortality. Application of novel immunotherapies in hematology attempts to harness the killing power of the immune system against leukemia and lymphoma. Cellular immunotherapy is evolving rapidly for high-risk hematologic disorders. Recent advances include chimeric antigen-receptor T cells, mesenchymal stromal/stem cells, dendritic cell tumor vaccines, cytokine-induced killer cells, and virus-specific T cells. The advantages of nontransplantation cellular immunotherapy include suitability for patients for whom transplantation has failed or is contraindicated, and a potentially less-toxic treatment alternative to transplantation for relapsed/refractory patients. This review examines those emerging cellular immunotherapies that are changing treatment paradigms for patients with hematologic malignancies.
Collapse
Affiliation(s)
- Melita Cirillo
- Department of Haematology Cell and Tissue Therapies, Royal Perth Hospital, Perth, Western Australia, Australia.
| | - Peter Tan
- Department of Haematology Cell and Tissue Therapies, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Marian Sturm
- Department of Haematology Cell and Tissue Therapies, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Catherine Cole
- Department of Haematology Cell and Tissue Therapies, Royal Perth Hospital, Perth, Western Australia, Australia
| |
Collapse
|
29
|
Engineering Natural Killer Cells for Cancer Immunotherapy. Mol Ther 2017; 25:1769-1781. [PMID: 28668320 PMCID: PMC5542803 DOI: 10.1016/j.ymthe.2017.06.012] [Citation(s) in RCA: 316] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/09/2017] [Accepted: 06/10/2017] [Indexed: 01/21/2023] Open
Abstract
The past several years have seen tremendous advances in the engineering of immune effector cells as therapy for cancer. While chimeric antigen receptors (CARs) have been used extensively to redirect the specificity of autologous T cells against hematological malignancies with striking clinical results, studies of CAR-modified natural killer (NK) cells have been largely preclinical. In this review, we focus on recent advances in NK cell engineering, particularly on preclinical evidence suggesting that NK cells may be as effective as T cells in recognizing and killing targets after genetic modification. We will discuss strategies to introduce CARs into both primary NK cells and NK cell lines in an effort to provide antigen specificity, the challenges of manufacturing engineered NK cells, and evidence supporting the effectiveness of this approach from preclinical and early-phase clinical studies using CAR-engineered NK cells. CAR-NK cells hold great promise as a novel cellular immunotherapy against refractory malignancies. Notably, NK cells can provide an "off-the-shelf" product, eliminating the need for a personalized and patient-specific product that plagues current CAR-T cell therapies. The ability to more potently direct NK cell-mediated cytotoxicity against refractory tumors through the expression of CAR is likely to contribute to the recent paradigm shift in cancer treatment.
Collapse
|
30
|
Fang F, Xiao W, Tian Z. NK cell-based immunotherapy for cancer. Semin Immunol 2017; 31:37-54. [DOI: 10.1016/j.smim.2017.07.009] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 07/24/2017] [Indexed: 12/19/2022]
|
31
|
Hughes A, Yong ASM. Immune Effector Recovery in Chronic Myeloid Leukemia and Treatment-Free Remission. Front Immunol 2017; 8:469. [PMID: 28484463 PMCID: PMC5402174 DOI: 10.3389/fimmu.2017.00469] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/05/2017] [Indexed: 01/22/2023] Open
Abstract
Chronic myeloid leukemia (CML) is a hematological cancer, characterized by a reciprocal chromosomal translocation between chromosomes 9 and 22 [t(9;22)], producing the Bcr-Abl oncogene. Tyrosine kinase inhibitors (TKIs) represent the standard of care for CML patients and exert a dual mode of action: direct oncokinase inhibition and restoration of effector-mediated immune surveillance, which is rendered dysfunctional in CML patients at diagnosis, prior to TKI therapy. TKIs such as imatinib, and more potent second-generation nilotinib and dasatinib induce a high rate of deep molecular response (DMR, BCR-ABL1 ≤ 0.01%) in CML patients. As a result, the more recent goal of therapy in CML treatment is to induce a durable DMR as a prelude to successful treatment-free remission (TFR), which occurs in approximately half of all CML patients who cease TKI therapy. The lack of overt relapse in such patients has been attributed to immunological control of CML. In this review, we discuss an immunological timeline to successful TFR, focusing on the immunology of CML during TKI treatment; an initial period of immune suppression, limiting antitumor immune effector responses in newly diagnosed CML patients, linked to an expansion of immature myeloid-derived suppressor cells and regulatory T cells and aberrant expression of immune checkpoint signaling pathways, including programmed death-1/programmed death ligand-1. Commencement of TKI treatment is associated with immune system re-activation and restoration of effector-mediated [natural killer (NK) cell and T cell] immune surveillance in CML patients, albeit with differing frequencies in concert with differing levels of molecular response achieved on TKI. DMR is associated with maximal restoration of immune recovery in CML patients on TKI. Current data suggest a net balance between both the effector and suppressor arms of the immune system, at a minimum involving mature, cytotoxic CD56dim NK cells may be important in mediating TFR success. However, a major goal remains in CML to identify the most effective pathways to target to maximize an advantageous immune response and promote TFR success.
Collapse
Affiliation(s)
- Amy Hughes
- Department of Haematology, SA Pathology, Adelaide, SA, Australia.,Cancer Theme, South Australia Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia.,School of Medicine, The University of Adelaide, Adelaide, SA, Australia
| | - Agnes S M Yong
- Department of Haematology, SA Pathology, Adelaide, SA, Australia.,Cancer Theme, South Australia Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia.,School of Medicine, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
32
|
Dietary flavonoids and modulation of natural killer cells: implications in malignant and viral diseases. J Nutr Biochem 2017; 46:1-12. [PMID: 28182964 DOI: 10.1016/j.jnutbio.2017.01.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 12/30/2016] [Accepted: 01/14/2017] [Indexed: 01/08/2023]
Abstract
Flavonoids are a large group of secondary plant metabolites present in the diet with numerous potentially health-beneficial biological activities. In addition to antioxidant, anti-inflammatory, cholesterol-lowering, and many other biological functions reported in the literature, flavonoids appear to inhibit cancer cell proliferation and stimulate immune function. Although the immunomodulatory potential of flavonoids has been intensively investigated, only little is known about their impact on natural killer (NK) cells. Enhancing NK cell activity, however, would have strong implications for a possible clinical use of flavonoids, especially in the treatment and prevention of diseases like cancer and viral infections. Therefore, the purpose of this review is to summarize the currently available information on NK cell modulation by flavonoids. Many of the structurally diverse flavonoids stimulate NK cell activity and have thus great potential as diet-derived immune-modulatory chemopreventive agents and may even serve as therapeutic compounds or lead structures for the development of novel drugs for the treatment of both malignant and viral diseases.
Collapse
|
33
|
Kannan GS, Aquino-Lopez A, Lee DA. Natural killer cells in malignant hematology: A primer for the non-immunologist. Blood Rev 2016; 31:1-10. [PMID: 27665023 DOI: 10.1016/j.blre.2016.08.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 08/03/2016] [Accepted: 08/29/2016] [Indexed: 12/19/2022]
Abstract
Natural killer cells were first described over 40years ago, but the last 15years has shown tremendous progress in our understanding of their biology and our ability to manipulate them for clinical therapeutic effect. Despite the increased understanding by clinicians and scientists investigating these cells, their biology remains a confusing subject for many because of the wide array of receptors, complex interactions, multiple models of predicting function, and contradictory data in the literature. While they are microscopically indistinguishable from T cells and share many of the same effector functions, their mechanisms of target recognition are completely distinct from yet complimentary to T cells. In this review we provide a basic understanding of NK cell biology and HLA recognition as compared and contrasted to T cells using a metaphor of border patrol and passports. We conclude with a summary of the evidence for NK cell effects in hematologic malignancies and describe new advances in NK cell immunotherapy aimed at improving these effects.
Collapse
Affiliation(s)
- Geoffrey S Kannan
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, 450 Brooklyn Ave, Boston, MA 02215, USA.
| | - Arianexys Aquino-Lopez
- Clinical and Translational Sciences Program, University of Texas Graduate School of Biomedical Sciences, 6767 Bertner Avenue, Houston, TX 77030, USA; Division of Pediatrics, MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 853, Houston, TX 77030, USA.
| | - Dean A Lee
- Division of Hematology, Oncology, and BMT, Nationwide Children's Hospital, 700 Children's Drive, WA4023, Columbus, OH 43205, USA.
| |
Collapse
|
34
|
Samudio I, Rezvani K, Shaim H, Hofs E, Ngom M, Bu L, Liu G, Lee JTC, Imren S, Lam V, Poon GFT, Ghaedi M, Takei F, Humphries K, Jia W, Krystal G. UV-inactivated HSV-1 potently activates NK cell killing of leukemic cells. Blood 2016; 127:2575-86. [PMID: 26941401 PMCID: PMC4892253 DOI: 10.1182/blood-2015-04-639088] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 02/26/2016] [Indexed: 11/20/2022] Open
Abstract
Herein we demonstrate that oncolytic herpes simplex virus-1 (HSV-1) potently activates human peripheral blood mononuclear cells (PBMCs) to lyse leukemic cell lines and primary acute myeloid leukemia samples, but not healthy allogeneic lymphocytes. Intriguingly, we found that UV light-inactivated HSV-1 (UV-HSV-1) is equally effective in promoting PBMC cytolysis of leukemic cells and is 1000- to 10 000-fold more potent at stimulating innate antileukemic responses than UV-inactivated cytomegalovirus, vesicular stomatitis virus, reovirus, or adenovirus. Mechanistically, UV-HSV-1 stimulates PBMC cytolysis of leukemic cells, partly via Toll-like receptor-2/protein kinase C/nuclear factor-κB signaling, and potently stimulates expression of CD69, degranulation, migration, and cytokine production in natural killer (NK) cells, suggesting that surface components of UV-HSV-1 directly activate NK cells. Importantly, UV-HSV-1 synergizes with interleukin-15 (IL-15) and IL-2 in inducing activation and cytolytic activity of NK cells. Additionally, UV-HSV-1 stimulates glycolysis and fatty acid oxidation-dependent oxygen consumption in NK cells, but only glycolysis is required for their enhanced antileukemic activity. Last, we demonstrate that T cell-depleted human PBMCs exposed to UV-HSV-1 provide a survival benefit in a murine xenograft model of human acute myeloid leukemia (AML). Taken together, our results support the preclinical development of UV-HSV-1 as an adjuvant, alone or in combination with IL-15, for allogeneic donor mononuclear cell infusions to treat AML.
Collapse
Affiliation(s)
- Ismael Samudio
- Programa de Investigacion e Innovacion en Leucemia Aguda y Cronica, Bogotá, Colombia; Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, Canada
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX; and
| | - Hila Shaim
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX; and
| | - Elyse Hofs
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, Canada
| | - Mor Ngom
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, Canada
| | - Luke Bu
- Brain Research Centre, University of British Columbia, Vancouver, Canada
| | - Guoyu Liu
- Brain Research Centre, University of British Columbia, Vancouver, Canada
| | - Jason T C Lee
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, Canada
| | - Suzan Imren
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, Canada
| | - Vivian Lam
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, Canada
| | - Grace F T Poon
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, Canada
| | - Maryam Ghaedi
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, Canada
| | - Fumio Takei
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, Canada
| | - Keith Humphries
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, Canada
| | - William Jia
- Brain Research Centre, University of British Columbia, Vancouver, Canada
| | - Gerald Krystal
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, Canada
| |
Collapse
|
35
|
He X, Simoneau CR, Granoff ME, Lunemann S, Dugast AS, Shao Y, Altfeld M, Körner C. Assessment of the antiviral capacity of primary natural killer cells by optimized in vitro quantification of HIV-1 replication. J Immunol Methods 2016; 434:53-60. [PMID: 27094484 DOI: 10.1016/j.jim.2016.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 04/13/2016] [Accepted: 04/14/2016] [Indexed: 10/21/2022]
Abstract
Despite a growing number of studies investigating the impact of natural killer (NK) cells on HIV-1 pathogenesis, the exact mechanism by which NK cells recognize HIV-1-infected cells and exert immunological pressure on HIV-1 remains unknown. Previously several groups including ours have introduced autologous HIV-1-infected CD4(+) T cells as suitable target cells to study NK-cell function in response to HIV-1 infection in vitro. Here, we re-evaluated and optimized a standardized in vitro assay that allows assessing the antiviral capacity of NK cells. This includes the implementation of HIV-1 RNA copy numbers as readout for NK-cell-mediated inhibition of HIV-1 replication and the investigation of inter-assay variation in comparison to previous methods, such as HIV-1 p24 Gag production and frequency of p24(+) CD4(+) T cells. Furthermore, we investigated the possibility to hasten the duration of the assay and provide concepts for downstream applications. Autologous CD4(+) T cells and NK cells were obtained from peripheral blood of HIV-negative healthy individuals and were separately enriched through negative selection. CD4(+) T cells were infected with the HIV-1 strain JR-CSF at an MOI of 0.01. Infected CD4(+) T cells were then co-cultured with primary NK cells at various effector:target ratios for up to 14days. Supernatants obtained from media exchanged at days 4, 7, 11 and 14 were used for quantification of HIV-1 p24 Gag and HIV-1 RNA copy numbers. In addition, frequency of infected CD4(+) T cells was determined by flow cytometric detection of intracellular p24 Gag. The assay displayed minimal inter-assay variation when utilizing viral RNA quantification or p24 Gag concentration for the assessment of viral replication. Viral RNA quantification was more rigorous to display magnitude and kinetics of NK-cell-mediated inhibition of HIV-1 replication, longitudinally and between tested individuals. The results of this study demonstrate that NK-cell-mediated inhibition of HIV-1 replication can be reliably quantified in vitro, and that viral RNA quantification is comparable to p24 Gag quantification via ELISA, providing a robust measurement for NK-cell-mediated inhibition of viral replication. Overall, the described assay provides an optimized tool to study the antiviral capacity of NK cells against HIV-1 and an additional experimental tool to investigate the molecular determinants of NK-cell recognition of virus-infected cells.
Collapse
Affiliation(s)
- Xuan He
- Ragon Institute of MGH, MIT and Harvard, 400 Technology Square, Cambridge, MA 02139, USA; State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, People's Republic of China.
| | - Camille R Simoneau
- Ragon Institute of MGH, MIT and Harvard, 400 Technology Square, Cambridge, MA 02139, USA.
| | - Mitchell E Granoff
- Ragon Institute of MGH, MIT and Harvard, 400 Technology Square, Cambridge, MA 02139, USA.
| | - Sebastian Lunemann
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistraße 52, 20251 Hamburg, Germany.
| | - Anne-Sophie Dugast
- Ragon Institute of MGH, MIT and Harvard, 400 Technology Square, Cambridge, MA 02139, USA.
| | - Yiming Shao
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, People's Republic of China.
| | - Marcus Altfeld
- Ragon Institute of MGH, MIT and Harvard, 400 Technology Square, Cambridge, MA 02139, USA; Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistraße 52, 20251 Hamburg, Germany.
| | - Christian Körner
- Ragon Institute of MGH, MIT and Harvard, 400 Technology Square, Cambridge, MA 02139, USA; Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistraße 52, 20251 Hamburg, Germany.
| |
Collapse
|
36
|
Qin Y, Hutson C, Wu X, Xu J, Carroll D. Potential Cancer Prevention and Treatment by Silencing the Killer Cell Immunoglobulin-like Receptor Gene in Natural Killer Cells Derived from Induced Pluripotent Stem Cells. ENLIVEN. JOURNAL OF STEM CELL RESEARCH & REGENERATIVE MEDICINE 2016; 3:002. [PMID: 28845462 PMCID: PMC5568640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cancer immunosurveillance is an important host protection process, monitoring the presence of irregular cells that could potentially transform into tumor cells, effectively clearing the body of transformed tumor cells at their earliest stages, and thus maintaining regular cellular homeostasis. Natural killer (NK) cells are effector lymphocytes of the innate immune system, playing a critical role in surveillance for tumor cells, while also eliminating virally infected cells. The significance of the anti-tumor role of NK cells was recently further verified by findings that immunosuppression in most cancer patients is not perceptible until late stages. NK cells express the low-affinity Fc-activating receptor, CD16, and the inhibitory receptor, killer cell immunoglobulin-like receptor (KIR). Consequently, activation of NK cells is determined by the balance of inhibitory and activating receptor stimulation. Here, we propose establishing an induced pluripotent stem cell (iPSC)-derived NK cell line with KIR gene knockout or knockdown as a possible regimen to treat and prevent cancer. We further postulate that an optimal mixture of NK iPSCs with and without KIR gene knockout, would reach a maximum antitumor activity, with minimal side effects. We also discuss the possible advantages of KIR-knockout NK iPSCs for adoptive immunotherapy in patients with cancer.
Collapse
Affiliation(s)
- Yunlong Qin
- Poxvirus & Rabies Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging & Zoonotic Infectious Diseases, U.S. Centers for Disease Control & Prevention, 1600 Clifton Rd. NE Mailstop G-06, Atlanta GA, 30333
| | - Christina Hutson
- Poxvirus & Rabies Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging & Zoonotic Infectious Diseases, U.S. Centers for Disease Control & Prevention, 1600 Clifton Rd. NE Mailstop G-06, Atlanta GA, 30333
| | - Xianfu Wu
- Poxvirus & Rabies Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging & Zoonotic Infectious Diseases, U.S. Centers for Disease Control & Prevention, 1600 Clifton Rd. NE Mailstop G-06, Atlanta GA, 30333
| | - Jingyao Xu
- Cancer Biology Program, Georgia Cancer Center for Excellence, Department of Obstetrics and gynecology, Morehouse School of Medicine, 80 Jesse Hill Jr. Dr., Atlanta, GA 30303
| | - Darin Carroll
- Poxvirus & Rabies Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging & Zoonotic Infectious Diseases, U.S. Centers for Disease Control & Prevention, 1600 Clifton Rd. NE Mailstop G-06, Atlanta GA, 30333
| |
Collapse
|
37
|
Ishii K, Barrett AJ. Novel immunotherapeutic approaches for the treatment of acute leukemia (myeloid and lymphoblastic). Ther Adv Hematol 2016; 7:17-39. [PMID: 26834952 PMCID: PMC4713888 DOI: 10.1177/2040620715616544] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
There have been major advances in our understanding of the multiple interactions between malignant cells and the innate and adaptive immune system. While the attention of immunologists has hitherto focused on solid tumors, the specific immunobiology of acute leukemias is now becoming defined. These discoveries have pointed the way to immune interventions building on the established graft-versus-leukemia (GVL) effect from hematopoietic stem-cell transplant (HSCT) and extending immunotherapy beyond HSCT to individuals with acute leukemia with a diversity of immune manipulations early in the course of the leukemia. At present, clinical results are in their infancy. In the coming years larger studies will better define the place of immunotherapy in the management of acute leukemias and lead to treatment approaches that combine conventional chemotherapy, immunotherapy and HSCT to achieve durable cures.
Collapse
Affiliation(s)
- Kazusa Ishii
- Hematology Branch, National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, MD, USA
| | - Austin J. Barrett
- Stem Cell Allotransplantation Section, Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
38
|
Lowe E, Truscott LC, De Oliveira SN. In Vitro Generation of Human NK Cells Expressing Chimeric Antigen Receptor Through Differentiation of Gene-Modified Hematopoietic Stem Cells. Methods Mol Biol 2016; 1441:241-51. [PMID: 27177671 DOI: 10.1007/978-1-4939-3684-7_20] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
NK cells represent a very promising source for adoptive cellular approaches for cancer immunotherapy, and extensive research has been conducted, including clinical trials. Gene modification of NK cells can direct their specificity and enhance their function, but the efficiency of gene transfer techniques is very limited. Here we describe two protocols designed to generate mature human NK cells from gene-modified hematopoietic stem cells. These protocols use chimeric antigen receptor as the transgene, but could potentially be modified for the expression any particular transgene in human NK cells.
Collapse
Affiliation(s)
- Emily Lowe
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Laurel C Truscott
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Division of Hematology/Oncology, Mattel Children's Hospital-UCLA Medical Center, Los Angeles, CA, USA
| | - Satiro N De Oliveira
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
- Division of Hematology/Oncology, Mattel Children's Hospital-UCLA Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
39
|
Wagner AK, Wickström SL, Tallerico R, Salam S, Lakshmikanth T, Brauner H, Höglund P, Carbone E, Johansson MH, Kärre K. Retuning of Mouse NK Cells after Interference with MHC Class I Sensing Adjusts Self-Tolerance but Preserves Anticancer Response. Cancer Immunol Res 2015; 4:113-23. [PMID: 26589766 DOI: 10.1158/2326-6066.cir-15-0001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 09/18/2015] [Indexed: 11/16/2022]
Abstract
Natural killer (NK) cells are most efficient if their targets do not express self MHC class I, because NK cells carry inhibitory receptors that interfere with activating their cytotoxic pathway. Clinicians have taken advantage of this by adoptively transferring haploidentical NK cells into patients to mediate an effective graft-versus-leukemia response. With a similar rationale, antibody blockade of MHC class I-specific inhibitory NK cell receptors is currently being tested in clinical trials. Both approaches are challenged by the emerging concept that NK cells may constantly adapt or "tune" their responsiveness according to the amount of self MHC class I that they sense on surrounding cells. Hence, these therapeutic attempts would initially result in increased killing of tumor cells, but a parallel adaptation process might ultimately lead to impaired antitumor efficacy. We have investigated this question in two mouse models: inhibitory receptor blockade in vivo and adoptive transfer to MHC class I-disparate hosts. We show that changed self-perception via inhibitory receptors in mature NK cells reprograms the reactivity such that tolerance to healthy cells is always preserved. However, reactivity against cancer cells lacking critical MHC class I molecules (missing self-reactivity) still remains or may even be increased. This dissociation between activity against healthy cells and tumor cells may provide an answer as to why NK cells mediate graft-versus-leukemia effects without causing graft-versus-host disease and may also be utilized to improve immunotherapy.
Collapse
Affiliation(s)
- Arnika Kathleen Wagner
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Stina Linnea Wickström
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Rossana Tallerico
- Department of Experimental and Clinical Medicine, University of "Magna Graecia," Catanzaro, Italy
| | - Sadia Salam
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Tadepally Lakshmikanth
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Hanna Brauner
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Petter Höglund
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Ennio Carbone
- Department of Experimental and Clinical Medicine, University of "Magna Graecia," Catanzaro, Italy
| | - Maria Helena Johansson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Klas Kärre
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
40
|
Rezvani K, Rouce RH. The Application of Natural Killer Cell Immunotherapy for the Treatment of Cancer. Front Immunol 2015; 6:578. [PMID: 26635792 PMCID: PMC4648067 DOI: 10.3389/fimmu.2015.00578] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 10/29/2015] [Indexed: 12/17/2022] Open
Abstract
Natural killer (NK) cells are essential components of the innate immune system and play a critical role in host immunity against cancer. Recent progress in our understanding of NK cell immunobiology has paved the way for novel NK cell-based therapeutic strategies for the treatment of cancer. In this review, we will focus on recent advances in the field of NK cell immunotherapy, including augmentation of antibody-dependent cellular cytotoxicity, manipulation of receptor-mediated activation, and adoptive immunotherapy with ex vivo-expanded, chimeric antigen receptor (CAR)-engineered, or engager-modified NK cells. In contrast to T lymphocytes, donor NK cells do not attack non-hematopoietic tissues, suggesting that an NK-mediated antitumor effect can be achieved in the absence of graft-vs.-host disease. Despite reports of clinical efficacy, a number of factors limit the application of NK cell immunotherapy for the treatment of cancer, such as the failure of infused NK cells to expand and persist in vivo. Therefore, efforts to enhance the therapeutic benefit of NK cell-based immunotherapy by developing strategies to manipulate the NK cell product, host factors, and tumor targets are the subject of intense research. In the preclinical setting, genetic engineering of NK cells to express CARs to redirect their antitumor specificity has shown significant promise. Given the short lifespan and potent cytolytic function of mature NK cells, they are attractive candidate effector cells to express CARs for adoptive immunotherapies. Another innovative approach to redirect NK cytotoxicity towards tumor cells is to create either bispecific or trispecific antibodies, thus augmenting cytotoxicity against tumor-associated antigens. These are exciting times for the study of NK cells; with recent advances in the field of NK cell biology and translational research, it is likely that NK cell immunotherapy will move to the forefront of cancer immunotherapy over the next few years.
Collapse
Affiliation(s)
- Katayoun Rezvani
- Department of Stem Cell Transplantation, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center , Houston, TX , USA
| | - Rayne H Rouce
- Department of Pediatrics, Texas Children's Cancer and Hematology Centers, Baylor College of Medicine , Houston, TX , USA ; Center for Cell and Gene Therapy, Baylor College of Medicine Houston Methodist Hospital and Texas Children's Hospital , Houston, TX , USA
| |
Collapse
|
41
|
Targeted Therapies in Adult B-Cell Malignancies. BIOMED RESEARCH INTERNATIONAL 2015; 2015:217593. [PMID: 26425544 PMCID: PMC4575712 DOI: 10.1155/2015/217593] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/03/2015] [Accepted: 05/05/2015] [Indexed: 12/17/2022]
Abstract
B-lymphocytes are programmed for the production of immunoglobulin (Ig) after antigen presentation, in the context of T-lymphocyte control within lymphoid organs. During this differentiation/activation process, B-lymphocytes exhibit different restricted or common surface markers, activation of cellular pathways that regulate cell cycle, metabolism, proteasome activity, and protein synthesis. All molecules involved in these different cellular mechanisms are potent therapeutic targets. Nowadays, due to the progress of the biology, more and more targeted drugs are identified, a situation that is correlated with an extended field of the targeted therapy. The full knowledge of the cellular machinery and cell-cell communication allows making the best choice to treat patients, in the context of personalized medicine. Also, focus should not be restricted to the immediate effects observed as clinical endpoints, that is, response rate, survival markers with conventional statistical methods, but it should consider the prediction of different clinical consequences due to other collateral drug targets, based on new methodologies. This means that new reflection and new bioclinical follow-up have to be monitored, particularly with the new drugs used with success in B-cell malignancies. This review discussed the principal aspects of such evident bioclinical progress.
Collapse
|
42
|
|
43
|
LI XIAOMEI, HE CHENHUI, LIU CHANGZHEN, MA JUAN, MA PAN, CUI HONGLIAN, TAO HUA, GAO BIN. Expansion of NK cells from PBMCs using immobilized 4-1BBL and interleukin-21. Int J Oncol 2015; 47:335-42. [DOI: 10.3892/ijo.2015.3005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 04/02/2015] [Indexed: 11/05/2022] Open
|
44
|
Giannattasio A, Weil S, Kloess S, Ansari N, Stelzer EHK, Cerwenka A, Steinle A, Koehl U, Koch J. Cytotoxicity and infiltration of human NK cells in in vivo-like tumor spheroids. BMC Cancer 2015; 15:351. [PMID: 25933805 PMCID: PMC4422268 DOI: 10.1186/s12885-015-1321-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 04/17/2015] [Indexed: 02/12/2023] Open
Abstract
Background The complex cellular networks within tumors, the cytokine milieu, and tumor immune escape mechanisms affecting infiltration and anti-tumor activity of immune cells are of great interest to understand tumor formation and to decipher novel access points for cancer therapy. However, cellular in vitro assays, which rely on monolayer cultures of mammalian cell lines, neglect the three-dimensional architecture of a tumor, thus limiting their validity for the in vivo situation. Methods Three-dimensional in vivo-like tumor spheroid were established from human cervical carcinoma cell lines as proof of concept to investigate infiltration and cytotoxicity of NK cells in a 96-well plate format, which is applicable for high-throughput screening. Tumor spheroids were monitored for NK cell infiltration and cytotoxicity by flow cytometry. Infiltrated NK cells, could be recovered by magnetic cell separation. Results The tumor spheroids were stable over several days with minor alterations in phenotypic appearance. The tumor spheroids expressed high levels of cellular ligands for the natural killer (NK) group 2D receptor (NKG2D), mediating spheroid destruction by primary human NK cells. Interestingly, destruction of a three-dimensional tumor spheroid took much longer when compared to the parental monolayer cultures. Moreover, destruction of tumor spheroids was accompanied by infiltration of a fraction of NK cells, which could be recovered at high purity. Conclusion Tumor spheroids represent a versatile in vivo-like model system to study cytotoxicity and infiltration of immune cells in high-throughput screening. This system might proof useful for the investigation of the modulatory potential of soluble factors and cells of the tumor microenvironment on immune cell activity as well as profiling of patient-/donor-derived immune cells to personalize cellular immunotherapy. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1321-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ariane Giannattasio
- NK Cell Biology, Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany.
| | - Sandra Weil
- NK Cell Biology, Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany.
| | - Stephan Kloess
- Institute for Cellular therapeutics, IFB-Tx, Hannover Medical School, Hannover, Germany.
| | - Nariman Ansari
- Physical Biology Group, Buchmann Institute for Molecular Life Sciences, Goethe Universität, Frankfurt, Germany.
| | - Ernst H K Stelzer
- Physical Biology Group, Buchmann Institute for Molecular Life Sciences, Goethe Universität, Frankfurt, Germany.
| | - Adelheid Cerwenka
- Innate Immunity, German Cancer Research Center, Heidelberg, Germany.
| | - Alexander Steinle
- Institute for Molecular Medicine, Johann Wolfgang Goethe-University, Frankfurt, Germany.
| | - Ulrike Koehl
- Institute for Cellular therapeutics, IFB-Tx, Hannover Medical School, Hannover, Germany.
| | - Joachim Koch
- NK Cell Biology, Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany.
| |
Collapse
|
45
|
Bodduluru LN, Kasala ER, Madhana RMR, Sriram CS. Natural killer cells: the journey from puzzles in biology to treatment of cancer. Cancer Lett 2014; 357:454-67. [PMID: 25511743 DOI: 10.1016/j.canlet.2014.12.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 12/07/2014] [Accepted: 12/09/2014] [Indexed: 01/11/2023]
Abstract
Natural Killer (NK) cells are innate immune effectors that are primarily involved in immunosurveillance to spontaneously eliminate malignantly transformed and virally infected cells without prior sensitization. NK cells trigger targeted attack through release of cytotoxic granules, and secrete various cytokines and chemokines to promote subsequent adaptive immune responses. NK cells selectively attack target cells with diminished major histocompatibility complex (MHC) class I expression. This "Missing-self" recognition by NK cells at first puzzled researchers in the early 1990s, and the mystery was solved with the discovery of germ line encoded killer immunoglobulin receptors that recognize MHC-I molecules. This review summarizes the biology of NK cells detailing the phenotypes, receptors and functions; interactions of NK cells with dendritic cells (DCs), macrophages and T cells. Further we discuss the various strategies to modulate NK cell activity and the practice of NK cells in cancer immunotherapy employing NK cell lines, autologous, allogeneic and genetically engineered cell populations.
Collapse
Affiliation(s)
- Lakshmi Narendra Bodduluru
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781032, India.
| | - Eshvendar Reddy Kasala
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781032, India
| | - Rajaram Mohan Rao Madhana
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781032, India
| | - Chandra Shaker Sriram
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781032, India
| |
Collapse
|