1
|
Xie L, Huang L, Fang X, Zha J, Su Y. Assessing Liver Function in Rat Models of Acute Liver Failure Using Single-Photon Emission Computed Tomography and Cytokine Levels. PLoS One 2025; 20:e0323531. [PMID: 40333907 PMCID: PMC12057927 DOI: 10.1371/journal.pone.0323531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 04/10/2025] [Indexed: 05/09/2025] Open
Abstract
OBJECTIVE To evaluate liver function using dynamic hepatobiliary single-photon emission computed tomography (SPECT) in different rat models of acute liver failure. METHODS Twenty-four 6-8-week-old male Sprague-Dawley rats (weight 190-200 g) were evenly divided into four groups. Acute liver failure was induced by intraperitoneal injection of D-galactosamine (D-GalN, 600 mg/kg) and lipopolysaccharide (LPS, 10 µg/kg), common bile duct ligation surgery, and removing 70% of the liver mass. The fourth group served as the control without intervention. The time-activity curves for the liver and heart were generated from dynamic SPECT scans with 99mTc-ethylene hepatobiliary iminodiacetic acid (EHIDA). Image-derived functional parameters (5-minute heart/liver index [HLI5] and 15-minute receptor index [LHL15]) were calculated. Furthermore, correlations of image-derived parameters with serum interleukin-6 (IL-6) levels, liver aspartate aminotransferase (AST) and alanine transaminase (ALT) levels, and liver mRNA expression levels of tumor necrosis factor-α (TNF-α) and chemokine ligand-10 (CXCL-10) were analyzed. RESULTS All animals in the experimental groups exhibited varying degrees of liver damage. The SPECT images and indexes (HLI5 and LHL15) of the experimental groups significantly differed from those of the control group (P < 0.05). In the experimental groups, serum IL-6 levels and liver mRNA levels of TNF-α and CXCL-10 were significantly higher, while liver AST and ALT levels were significantly lower than those in the control group (P < 0.05). CONCLUSION Using SPECT with 99mTc-EHIDA, along with the calculated indexes and levels of various cytokines, presents a dependable method for assessing liver function.
Collapse
Affiliation(s)
- Long Xie
- Department of Nuclear Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Liqun Huang
- Department of Nuclear Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Xueting Fang
- Department of Pathology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Jinshun Zha
- Department of Nuclear Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Yingrui Su
- Department of Nuclear Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| |
Collapse
|
2
|
Rastegari H, Kazemnejad S, Hayati Roodbari N, Ansaripour S. Role of Menstrual Blood Stem Cell-Derived Secretome, Follicular Fluid, and Melatonin in Oocyte Maturation and Embryo Development in Polycystic Ovary Syndrome. Curr Stem Cell Res Ther 2025; 20:291-301. [PMID: 38899597 DOI: 10.2174/011574888x298902240523103352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/17/2024] [Accepted: 04/26/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND In vitro maturation has been considered an approach to mature oocytes derived from women with polycystic ovary syndrome (PCOS). It is suggested that the IVM of oocytes may benefit from mesenchymal stem cells derived conditioned medium (CM-MSC). OBJECTIVE The purpose of this study was to determine the efficacy of a cocktail of menstrual blood stem cell (MenSCs)-derived secretome, along with follicular fluid and melatonin, in oocyte maturation and embryo development in PCOS. METHODS Four hundred left germinal vesicle oocytes were collected from 100 PCOS patients and randomly divided into four treatment groups: 1) control, 2) secretome, 3) follicular fluid, and 4) melatonin. Oocyte maturation, fertilization rate, and embryo development were monitored, as well as the expression levels of oocyte-secreted factors (GDF9- BMP15), oocyte maturation (MPK3), and apoptosis (BAX- Bcl2). RESULTS The rate of oocyte maturation increased in all test groups, but only the results for the SEC group were significant (P= 0.032). There were no significant differences in oocyte fertilization and embryo yield among groups. However, the quality of embryos significantly increased in the melatonin group compared to the control. Cytoplasmic maturation was confirmed by the expression of oocyte maturation-related genes using Real-time PCR. Additionally, the expression level of BCL-2 was significantly higher in the SEC-FF-MEL group than in the control group (p ≤ 0.01). CONCLUSION Enrichment of IVM media using MenSCs-secretome, particularly along with melatonin, could be an effective strategy to improve oocyte maturation and embryo development in PCOS.
Collapse
Affiliation(s)
- Hilda Rastegari
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Somaieh Kazemnejad
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Nasim Hayati Roodbari
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Soheila Ansaripour
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| |
Collapse
|
3
|
Yu L, Wu H, Zeng S, Hu X, Wu Y, Zhou J, Yuan L, Zhang Q, Xiang C, Feng Z. Menstrual blood-derived mesenchymal stem cells combined with collagen I gel as a regenerative therapeutic strategy for degenerated disc after discectomy in rats. Stem Cell Res Ther 2024; 15:75. [PMID: 38475906 DOI: 10.1186/s13287-024-03680-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Annulus fibrosis (AF) defects have been identified as the primary cause of disc herniation relapse and subsequent disc degeneration following discectomy. Stem cell-based tissue engineering offers a promising approach for structural repair. Menstrual blood-derived mesenchymal stem cells (MenSCs), a type of adult stem cell, have gained attention as an appealing source for clinical applications due to their potential for structure regeneration, with ease of acquisition and regardless of ethical issues. METHODS The differential potential of MenSCs cocultured with AF cells was examined by the expression of collagen I, SCX, and CD146 using immunofluorescence. Western blot and ELISA were used to examine the expression of TGF-β and IGF-I in coculture system. An AF defect animal model was established in tail disc of Sprague-Dawley rats (males, 8 weeks old). An injectable gel containing MenSCs (about 1*106/ml) was fabricated and transplanted into the AF defects immediately after the animal model establishment, to evaluate its repairment properties. Disc degeneration was assessed via magnetic resonance (MR) imaging and histological staining. Immunohistochemical analysis was performed to assess the expression of aggrecan, MMP13, TGF-β and IGF-I in discs with different treatments. Apoptosis in the discs was evaluated using TUNEL, caspase3, and caspase 8 immunofluorescence staining. RESULTS Coculturing MenSCs with AF cells demonstrated ability to express collagen I and biomarkers of AF cells. Moreover, the coculture system presented upregulation of the growth factors TGF-β and IGF-I. After 12 weeks, discs treated with MenSCs gel exhibited significantly lower Pffirrmann scores (2.29 ± 0.18), compared to discs treated with MenSCs (3.43 ± 0.37, p < 0.05) or gel (3.71 ± 0.29, p < 0.01) alone. There is significant higher MR index in disc treated with MenSCs gel than that treated with MenSCs (0.51 ± 0.05 vs. 0.24 ± 0.04, p < 0.01) or gel (0.51 ± 0.05 vs. 0.26 ± 0.06, p < 0.01) alone. Additionally, MenSCs gel demonstrated preservation of the structure of degenerated discs, as indicated by histological scoring (5.43 ± 0.43 vs. 9.71 ± 1.04 in MenSCs group and 10.86 ± 0.63 in gel group, both p < 0.01), increased aggrecan expression, and decreased MMP13 expression in vivo. Furthermore, the percentage of TUNEL and caspase 3-positive cells in the disc treated with MenSCs Gel was significantly lower than those treated with gel alone and MenSCs alone. The expression of TGF-β and IGF-I was higher in discs treated with MenSCs gel or MenSCs alone than in those treated with gel alone. CONCLUSION MenSCs embedded in collagen I gel has the potential to preserve the disc structure and prevent disc degeneration after discectomy, which was probably attributed to the paracrine of growth factors of MenSCs.
Collapse
Affiliation(s)
- Li Yu
- Department of Operating room, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Honghao Wu
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Shumei Zeng
- Department of gynaecology, Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojian Hu
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yuxu Wu
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jinhong Zhou
- Department of gynaecology, Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Yuan
- Innovative Precision Medicine (IPM) Group, Hangzhou, Zhejiang, China
| | - Qingqing Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Charlie Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, Hangzhou, Zhejiang, China.
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| | - Zhiyun Feng
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
- , Building 8-2, 58#, Chengzhan Road, Hangzhou, 310003, China.
| |
Collapse
|
4
|
Zafardoust S, Kazemnejad S, Fathi-Kazerooni M, Darzi M, Sadeghi MR, Sadeghi Tabar A, Sehat Z. The effects of intraovarian injection of autologous menstrual blood-derived mesenchymal stromal cells on pregnancy outcomes in women with poor ovarian response. Stem Cell Res Ther 2023; 14:332. [PMID: 37968668 PMCID: PMC10647057 DOI: 10.1186/s13287-023-03568-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 11/09/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND Assisted reproduction faces a significant obstacle in the form of poor ovarian response (POR) to controlled ovarian stimulation. To address this challenge, mesenchymal stem cell therapy has been proposed as a potential treatment for female infertility and/or restoration of ovarian function in POR women. Our previous research has demonstrated that menstrual blood-derived-mesenchymal stromal cells (MenSCs) injected into the ovaries of women with POR can increase pregnancy rates. The objective of this study was to examine whether MenSC therapy could enhance ovarian reserve parameters and pregnancy outcomes in a larger population of individuals with POR. METHOD This study consisted of 180 infertile individuals with POR who declined oocyte donation. Participants were divided into two groups: those who received bilateral MenSCs intraovarian injection and those who received no intervention. Our primary aim was to compare the rates of spontaneous pregnancy between the two groups, followed by an investigation of any alterations in the ovarian reserve parameters, such as serum FSH, AMH, and AFC levels, as well as the ICSI/IVF outcomes, in both groups of participants. RESULTS The MenSC therapy exhibited a favourable tolerability profile and did not raise any safety concerns. Following the 2-month follow-up period, women who received MenSC treatment demonstrated a significantly higher rate of spontaneous pregnancy (P < 0.005) and an improvement in anti-Müllerian hormone (AMH) levels (P = 0.0007) and antral follicle count (AFC) (P < 0.001), whereas the control group demonstrated a considerable decline in these parameters (Both P < 0.001). The MenSC therapy led to a greater number of mature oocytes and embryos among women who underwent ICSI/IVF. Our age subgroup analysis demonstrated a significant difference in the number of spontaneous pregnancies and ICSI/IVF outcomes between the treatment and control groups only among individuals below 40 years of age. CONCLUSION The results of our study indicate that MenSCs treatment may be a viable option for treating women experiencing POR. However, in order to be widely implemented in clinical practice, the clinical effectiveness of MenSCs therapy will need to be established through rigorous prospective randomized clinical trials. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT05703308. Registered 01/26/2023, retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT05703308 . IRCT, IRCT20180619040147N4. Registered 08/01/2020.
Collapse
Affiliation(s)
- Simin Zafardoust
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| | - Somaieh Kazemnejad
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | | | - Maryam Darzi
- Avicenna Fertility Clinic, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mohammad Reza Sadeghi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Ali Sadeghi Tabar
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Zahra Sehat
- Avicenna Fertility Clinic, Avicenna Research Institute, ACECR, Tehran, Iran
| |
Collapse
|
5
|
Kandula UR, Wake AD. Effectiveness of RCTs Pooling Evidence on Mesenchymal Stem Cell (MSC) Therapeutic Applications During COVID-19 Epidemic: A Systematic Review. Biologics 2023; 17:85-112. [PMID: 37223116 PMCID: PMC10202141 DOI: 10.2147/btt.s404421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/09/2023] [Indexed: 05/25/2023]
Abstract
Background Global pandemic identified as coronavirus disease 2019 (COVID-19) has resulted in a variety of clinical symptoms, from asymptomatic carriers to those with severe acute respiratory distress syndrome (SARS) and moderate upper respiratory tract symptoms (URTS). This systematic review aimed to determine effectiveness of stem cell (SC) applications among COVID-19 patients. Methods Multiple databases of PubMed, EMBASE, Science Direct, Google Scholar, Scopus, Web of Science, and Cochrane Library were used. Studies were screened, chosen, and included in this systematic review using Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 flowchart diagram and PRISMA checklist. Included studies' quality was assessed employing Critical Appraisal Skills Programme (CASP) quality evaluation criteria for 14 randomized controlled trials (RCTs). Results Fourteen RCTs were performed between the years of 2020 to 2022, respectively, with a sample size n = 574 (treatment group (n = 318); control group (n = 256)) in multiple countries of Indonesia, Iran, Brazil, Turkey, China, Florida, UK, and France. The greatest sample size reported from China among 100 COVID-19 patients, while the lowest sample of 9 COVID-19 patients from Jakarta, Indonesia, and the patient's age ranges from 18 to 69 years. Studies applied to the type of SC were "Umbilical cord MSCs, MSCs secretome, MSCs, Placenta-derived MSCs, Human immature dental pulp SC, DW-MSC infusion, Wharton Jelly-derived MSCs". The injected therapeutic dose was 1 × 106 cells/kg, 1 × 107 cells/kg, 1 × 105 cells/kg, and 1 million cells/kg as per the evidence from the different studies. Studies focused on demographic variables, clinical symptoms, laboratory tests, Comorbidities, respiratory measures, concomitant therapies, Sequential Organ Failure Assessment score, mechanical ventilation, body mass index, adverse events, inflammatory markers, and PaO2/FiO2 ratio were all recorded as study characteristics. Conclusion Clinical evidence on MSC's therapeutic applications during COVID-19 pandemic has proven to be a promising therapy for COVID-19 patient recovery with no consequences and applied as a routine treatment for challenging ailments.
Collapse
Affiliation(s)
- Usha Rani Kandula
- Department of Clinical Nursing, College of Health Sciences, Arsi University, Asella, Ethiopia
| | - Addisu Dabi Wake
- Department of Clinical Nursing, College of Health Sciences, Arsi University, Asella, Ethiopia
| |
Collapse
|
6
|
Zafardoust S, Kazemnejad S, Darzi M, Fathi-Kazerooni M, Saffarian Z, Khalili N, Edalatkhah H, Mirzadegan E, Khorasani S. Intraovarian Administration of Autologous Menstrual Blood Derived-Mesenchymal Stromal Cells in Women with Premature Ovarian Failure. Arch Med Res 2023; 54:135-144. [PMID: 36702667 DOI: 10.1016/j.arcmed.2022.12.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 11/12/2022] [Accepted: 12/20/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Premature ovarian failure (POF) is a well-known cause of infertility, particularly in women under the age of 40. POF is also associated with elevated gonadotropin levels, amenorrhea and sex-hormone deficiency. AIM OF THE STUDY In this study, the therapeutic potential of autologous mesenchymal stromal cells obtained from menstrual blood (Men-MSCs) for patients with POF was evaluated. METHODS 15 POF patients were included in the study. The cultured Men-MSCs were confirmed by flow cytometry, karyotype, endotoxin and mycoplasma and were then injected into the patients' right ovary by vaginal ultrasound guidance and under general anesthesia and aseptic conditions. Changes in patients' anti-Müllerian hormone (AMH), antral follicle count (AFC), follicle-stimulating hormone (FSH), luteal hormone (LH), and estradiol (E2) levels, as well as general flushing and vaginal dryness were followed up to one year after treatment. RESULTS All patients were satisfied with a decrease in general flushing and vaginal dryness. 4 patients (2.9%) showed a spontaneous return of menstruation without additional pharmacological treatment. There was a significant difference in AFC (0 vs. 1 ± 0.92 count, p value ≤0.001%), FSH (74 ± 22.9 vs. 54.8 ± 17.5 mIU/mL, p-value ≤0.05%), E2 (10.2 ± 6 vs. 21.8 ± 11.5 pg/mL p-value ≤0.01%), LH (74 ± 22.9 vs. 54.8 ± 17.5 IU/L,p-value ≤0.01%) during 3 months post-injection. However, there were no significant changes in AMH (p-value ≥0.05%). There were also no significant differences in assessed parameters between 3 and 6 months after cell injection. CONCLUSION According to the findings of this study, administration of Men-MSCs improved ovarian function and menstrual restoration in some POF patients.
Collapse
Affiliation(s)
- Simin Zafardoust
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Somaieh Kazemnejad
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| | - Maryam Darzi
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mina Fathi-Kazerooni
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Zahra Saffarian
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Niloofar Khalili
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Haleh Edalatkhah
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Ebrahim Mirzadegan
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Somayeh Khorasani
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| |
Collapse
|
7
|
Zhang F, Fan L, Liu Q, Tang S, Zhang S, Xiao L, Zhang L, Li Q, Maihemuti N, Li L. Comprehensive immune cell analysis of human menstrual-blood-derived stem cells therapy to concanavalin A hepatitis. Front Immunol 2022; 13:974387. [PMID: 36248904 PMCID: PMC9559565 DOI: 10.3389/fimmu.2022.974387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
Autoimmune hepatitis is an autoimmune disease with increasing occurrence worldwide. The most common and convenient mouse model is the concanavalin A (ConA) mouse model. Human menstrual-blood-derived stem cells (MenSCs) have shown great potential as a type of mesenchymal stem cell for treating various diseases. Time-of-flight mass cytometry was performed in phosphate-buffered saline control (NC) group and ConA injection with or without MenSCs treatment groups, and conventional flow cytometry was used for further validation. The serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels and H&E staining depicted that MenSCs treatment could significantly alleviate ConA-induced hepatitis. The t-distributed stochastic neighbor embedding (t-SNE) analysis of nine liver samples displayed favorable cell clustering, and the NC group was significantly different from the other two groups. The proportions of CD69+ T cells, NKT cells, and PD-L1+ macrophages were notably increased by ConA injection, while MenSCs could decrease ConA-induced macrophage percentage and M1 polarization in the liver tissue. The analysis of proinflammatory factors carried out by cytometric bead array demonstrated that tumor necrosis factor alpha (TNF-α), interleukin (IL)-17A, IL-12p70, IL-6, IL-2, IL-1b, and interferon gamma (IFN-γ) were upregulated after ConA injection and then rapidly decreased at 12 h. MenSCs also played an important role in downregulating these cytokines. Here, we described the comprehensive changes in leukocytes in the liver tissue of ConA-induced hepatitis at 12 h after ConA injection and found that MenSCs rescued ConA-induced hepatitis mostly by inhibiting macrophages and M1 polarization in mouse liver.
Collapse
Affiliation(s)
- Fen Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Linxiao Fan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiuhong Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shima Tang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sainan Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Infectious Disease, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University, Shulan International Medical College, Hangzhou, China
| | - Lanlan Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lingjian Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qian Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Nueraili Maihemuti
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Lanjuan Li,
| |
Collapse
|
8
|
Endometrial stem/progenitor cells: Properties, origins, and functions. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
9
|
Qin H, Sun C, Zhu Y, Qin Y, Ren S, Wang Z, Li C, Li X, Zhang B, Hao J, Li G, Wang H, Shao B, Zhang J, Wang H. IL-37 overexpression promotes endometrial regenerative cell-mediated inhibition of cardiac allograft rejection. Stem Cell Res Ther 2022; 13:302. [PMID: 35841010 PMCID: PMC9284885 DOI: 10.1186/s13287-022-02982-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 04/19/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Endometrial regenerative cells (ERCs) play an important role in attenuation of acute allograft rejection, while their effects are limited. IL-37, a newly discovered immunoregulatory cytokine of the IL-1 family, can regulate both innate and adaptive immunity. Whether IL-37 overexpression can enhance the therapeutic effects of ERCs in inhibition of acute cardiac allograft rejection remains unknown and will be explored in this study. METHODS C57BL/6 mice recipients receiving BALB/c mouse heterotopic heart allografts were randomly divided into the phosphate-buffered saline (untreated), ERC treated, negative lentiviral control ERC (NC-ERC) treated, and IL-37 overexpressing ERC (IL-37-ERC) treated groups. Graft pathological changes were assessed by H&E staining. The intra-graft cell infiltration and splenic immune cell populations were analyzed by immunohistochemistry and flow cytometry, respectively. The stimulatory property of recipient DCs was tested by an MLR assay. Furthermore, serum cytokine profiles of recipients were measured by ELISA assay. RESULTS Mice treated with IL-37-ERCs achieved significantly prolonged allograft survival compared with the ERC-treated group. Compared with all the other control groups, IL-37-ERC-treated group showed mitigated inflammatory response, a significant increase in tolerogenic dendritic cells (Tol-DCs), regulatory T cells (Tregs) in the grafts and spleens, while a reduction of Th1 and Th17 cell population. Additionally, there was a significant upregulation of immunoregulatory IL-10, while a reduction of IFN-γ, IL-17A, IL-12 was detected in the sera of IL-37-ERC-treated recipients. CONCLUSION IL-37 overexpression can promote the therapeutic effects of ERCs to inhibit acute allograft rejection and further prolong graft survival. This study suggests that gene-modified ERCs overexpressing IL-37 may pave the way for novel therapeutic options in the field of transplantation.
Collapse
Affiliation(s)
- Hong Qin
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Chenglu Sun
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Yanglin Zhu
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Yafei Qin
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Shaohua Ren
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Zhaobo Wang
- School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Chuan Li
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Xiang Li
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Baoren Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Jingpeng Hao
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China.,Department of Anorectal Surgery, Tianjin Medical University Second Hospital, Tianjin, China
| | - Guangming Li
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Hongda Wang
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Bo Shao
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Jingyi Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Hao Wang
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China. .,Tianjin General Surgery Institute, Tianjin, China.
| |
Collapse
|
10
|
Fathi-Kazerooni M, Fattah-Ghazi S, Darzi M, Makarem J, Nasiri R, Salahshour F, Dehghan-Manshadi SA, Kazemnejad S. Safety and efficacy study of allogeneic human menstrual blood stromal cells secretome to treat severe COVID-19 patients: clinical trial phase I & II. Stem Cell Res Ther 2022; 13:96. [PMID: 35255966 PMCID: PMC8899458 DOI: 10.1186/s13287-022-02771-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/17/2022] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Cell-free Mesenchymal stromal cells (MSCs) have been considered due to their capacity to modulate the immune system and suppress cytokine storms caused by SARS-CoV-2. This prospective randomized double-blind placebo-controlled clinical trial aimed to assess the safety and efficacy of secretome derived from allogeneic menstrual blood stromal cells (MenSCs) as a treatment in patients with severe COVID-19. METHODS Patients with severe COVID-19 were randomized (1:1) to either MenSC-derived secretome treatment or the control group. Subjects received five intravenous infusions of 5 mL secretome or the same volume of placebo for five days and were monitored for safety and efficacy for 28 days after treatment. Adverse events, laboratory parameters, duration of hospitalization, clinical symptom improvement, dynamic of O2 saturation, lymphocyte number, and serial chest imaging were analyzed. RESULTS All safety endpoints were observed without adverse events after 72 h of secretome injection. Within 28 days after enrollment, 7 patients (50%) were intubated in the treated group versus 12 patients (80%) in the control group. Overall, 64% of patients had improved oxygen levels within 5 days of starting treatment (P < 0.0001) and there was a survival rate of 57% in the treatment group compared to 28% in the control group was (P < 0.0001). Laboratory values revealed that significant acute phase reactants declined, with mean C-reactive protein, ferritin, and D-dimer reduction of 77% (P < 0.001), 43% (P < 0.001), and 42% (P < 0.05), respectively. Significant improvement in lymphopenia was associated with an increase in mean CD4+ and CD8+ lymphocyte counts of 20% (P = 0.06) and 15% (P < 0.05), respectively. Following treatment, percentage of pulmonary involvement showed a significant improvement in the secretome group (P < 0.0001). This improvement differed significantly between survivors and those who were dying (P < 0.005). CONCLUSIONS For the first time, this study demonstrated that in hospitalized patients with severe COVID-19, therapy with MenSCs-derived secretome leads to reversal of hypoxia, immune reconstitution, and downregulation of cytokine storm, with no adverse effects attributable to the treatment. Given these outcomes, it may be possible to use this type of treatment for serious inflammatory lung disease with a mechanism similar to COVID-19 in the future. However, it is necessary to evaluate the safety and efficacy of MenSCs-derived secretome therapy in clinical trials on a larger population of patients. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT05019287. Registered 24AGUEST 2021, retrospectively registered, https://clinicaltrials.gov/ct2/show/record/NCT05019287 . IRCT, IRCT20180619040147N6. Registered 04/01/2021.
Collapse
Affiliation(s)
- Mina Fathi-Kazerooni
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Samrand Fattah-Ghazi
- Department of Anesthesiology and Intensive Care, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Darzi
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Jalil Makarem
- Department of Anesthesiology and Intensive Care, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Nasiri
- Avicenna Fertility Clinic, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Faeze Salahshour
- Department of Radiology, Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Iran.,Liver Transplantation Research Center, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Dehghan-Manshadi
- Department of Infectious Diseases and Tropical Medicine, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran.
| | - Somaieh Kazemnejad
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| |
Collapse
|
11
|
Sanchez-Mata A, Gonzalez-Muñoz E. Understanding menstrual blood-derived stromal/stem cells: Definition and properties. Are we rushing into their therapeutic applications? iScience 2021; 24:103501. [PMID: 34917895 PMCID: PMC8646170 DOI: 10.1016/j.isci.2021.103501] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cells with mesenchymal stem cell properties have been identified in menstrual blood and termed menstrual blood-derived stem/stromal cells (MenSCs). MenSCs have been proposed as ideal candidates for cell-based therapy in regenerative medicine and immune-related diseases. However, MenSCs identity has been loosely defined so far and there is controversy regarding their cell markers and differentiation potential. In this review, we outline the origin of MenSCs in the context of regenerating human endometrium, with attention to endometrial eMSCs as reference cells to understand MenSCs. We summarize the cell identity markers analyzed and the immunomodulatory and reparative properties reported. We also address the recent use of MenSCs in cell reprogramming. The main goal of this review is to contribute to the understanding of the identity and properties of MenSCs as well as to identify potential caveats and new venues that deserve to be explored to strengthen their potential applications.
Collapse
Affiliation(s)
- Alicia Sanchez-Mata
- Andalusian Laboratory of Cell Reprogramming (LARCel), Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, 29590 Málaga, Spain
- Department of Cell Biology, Genetics and Physiology, University of Malaga, 29071 Málaga, Spain
| | - Elena Gonzalez-Muñoz
- Andalusian Laboratory of Cell Reprogramming (LARCel), Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, 29590 Málaga, Spain
- Department of Cell Biology, Genetics and Physiology, University of Malaga, 29071 Málaga, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, (CIBER-BBN), 29071 Málaga, Spain
| |
Collapse
|
12
|
Bi Y, Guo X, Zhang M, Zhu K, Shi C, Fan B, Wu Y, Yang Z, Ji G. Bone marrow derived-mesenchymal stem cell improves diabetes-associated fatty liver via mitochondria transformation in mice. Stem Cell Res Ther 2021; 12:602. [PMID: 34895322 PMCID: PMC8665517 DOI: 10.1186/s13287-021-02663-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/11/2021] [Indexed: 12/15/2022] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) has become a global epidemic disease. Its incidence is associated with type 2 diabetes mellitus (T2DM). Presently, there is no approved pharmacological agents specially developed for NAFLD. One promising disease-modifying strategy is the transplantation of stem cells to promote metabolic regulation and repair of injury. Method In this study, a T2DM model was established through 28-week high-fat diet (HFD) feeding resulting in T2DM-associated NAFLD, followed by the injection of bone marrow mesenchymal stem cells (BMSCs). The morphology, function, and transfer of hepatocyte mitochondria were evaluated in both vivo and in vitro. Results BMSC implantation resulted in the considerable recovery of increasing weight, HFD-induced steatosis, liver function, and disordered glucose and lipid metabolism. The treatment with BMSC transplantation was accompanied by reduced fat accumulation. Moreover, mitochondrial transfer was observed in both vivo and vitro studies. And the mitochondria-recipient steatotic cells exhibited significantly enhanced OXPHOS activity, ATP production, and mitochondrial membrane potential, and reduced reactive oxygen species levels, which were not achieved by the blocking of mitochondrial transfer. Conclusion Mitochondrial transfer from BMSCs is a feasible process to combat NAFLD via rescuing dysfunction mitochondria, and has a promising therapeutic effect on metabolism-related diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02663-5.
Collapse
Affiliation(s)
- Youkun Bi
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuejun Guo
- Puyang Oilfield General Hospital, Affiliated to Xinxiang Medical College, Puyang city, 457000, Henan Province, China.
| | - Mengqi Zhang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Keqi Zhu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chentao Shi
- Puyang Oilfield General Hospital, Affiliated to Xinxiang Medical College, Puyang city, 457000, Henan Province, China
| | - Baoqi Fan
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yanyun Wu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhiguang Yang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guangju Ji
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
13
|
Hennes DMZB, Rosamilia A, Werkmeister JA, Gargett CE, Mukherjee S. Endometrial SUSD2 + Mesenchymal Stem/Stromal Cells in Tissue Engineering: Advances in Novel Cellular Constructs for Pelvic Organ Prolapse. J Pers Med 2021; 11:jpm11090840. [PMID: 34575617 PMCID: PMC8471527 DOI: 10.3390/jpm11090840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/19/2021] [Accepted: 08/21/2021] [Indexed: 12/15/2022] Open
Abstract
Cellular therapy is an emerging field in clinical and personalised medicine. Many adult mesenchymal stem/progenitor cells (MSC) or pluripotent derivatives are being assessed simultaneously in preclinical trials for their potential treatment applications in chronic and degenerative human diseases. Endometrial mesenchymal stem/progenitor cells (eMSC) have been identified as clonogenic cells that exist in unique perivascular niches within the uterine endometrium. Compared with MSC isolated from other tissue sources, such as bone marrow and adipose tissue, eMSC can be extracted through less invasive methods of tissue sampling, and they exhibit improvements in potency, proliferative capacity, and control of culture-induced differentiation. In this review, we summarize the potential cell therapy and tissue engineering applications of eMSC in pelvic organ prolapse (POP), emphasising their ability to exert angiogenic and strong immunomodulatory responses that improve tissue integration of novel surgical constructs for POP and promote vaginal tissue healing.
Collapse
Affiliation(s)
- David M. Z. B. Hennes
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (A.R.); (J.A.W.); (C.E.G.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
- Pelvic Floor Disorders Unit, Monash Health, Clayton, VIC 3168, Australia
- Correspondence: (D.M.Z.B.H.); (S.M.)
| | - Anna Rosamilia
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (A.R.); (J.A.W.); (C.E.G.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
- Pelvic Floor Disorders Unit, Monash Health, Clayton, VIC 3168, Australia
| | - Jerome A. Werkmeister
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (A.R.); (J.A.W.); (C.E.G.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Caroline E. Gargett
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (A.R.); (J.A.W.); (C.E.G.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Shayanti Mukherjee
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (A.R.); (J.A.W.); (C.E.G.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
- Correspondence: (D.M.Z.B.H.); (S.M.)
| |
Collapse
|
14
|
Kong Y, Shao Y, Ren C, Yang G. Endometrial stem/progenitor cells and their roles in immunity, clinical application, and endometriosis. Stem Cell Res Ther 2021; 12:474. [PMID: 34425902 PMCID: PMC8383353 DOI: 10.1186/s13287-021-02526-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022] Open
Abstract
Endometrial stem/progenitor cells have been proved to exist in periodically regenerated female endometrium and can be divided into three categories: endometrial epithelial stem/progenitor cells, CD140b+CD146+ or SUSD2+ endometrial mesenchymal stem cells (eMSCs), and side population cells (SPs). Endometrial stem/progenitor cells in the menstruation blood are defined as menstrual stem cells (MenSCs). Due to their abundant sources, excellent proliferation, and autotransplantation capabilities, MenSCs are ideal candidates for cell-based therapy in regenerative medicine, inflammation, and immune-related diseases. Endometrial stem/progenitor cells also participate in the occurrence and development of endometriosis by entering the pelvic cavity from retrograde menstruation and becoming overreactive under certain conditions to form new glands and stroma through clonal expansion. Additionally, the limited bone marrow mesenchymal stem cells (BMDSCs) in blood circulation can be recruited and infiltrated into the lesion sites, leading to the establishment of deep invasive endometriosis. On the other hand, cell derived from endometriosis may also enter the blood circulation to form circulating endometrial cells (CECs) with stem cell-like properties, and to migrate and implant into distant tissues. In this manuscript, by reviewing the available literature, we outlined the characteristics of endometrial stem/progenitor cells and summarized their roles in immunoregulation, regenerative medicine, and endometriosis, through which to provide some novel therapeutic strategies for reproductive and cancerous diseases.
Collapse
Affiliation(s)
- Yue Kong
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yang Shao
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Chunxia Ren
- Center for Reproductive Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200120, China.
| | - Gong Yang
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Central Laboratory, The Fifth People's Hospital of Shanghai Fudan University, Shanghai, 200240, China.
| |
Collapse
|
15
|
Luan Y, Kong X, Feng Y. Mesenchymal stem cells therapy for acute liver failure: Recent advances and future perspectives. LIVER RESEARCH 2021; 5:53-61. [PMID: 39959343 PMCID: PMC11791815 DOI: 10.1016/j.livres.2021.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/16/2021] [Accepted: 03/24/2021] [Indexed: 12/21/2022]
Abstract
Acute liver failure (ALF) is a life-threatening disease characterized by the rapid development of hepatocyte death and a systemic inflammatory response, which leads to high mortality. Despite the prevention of ALF complications, therapeutic effectiveness remains limited because of the rapid disease progression. Thus, there is a need to explore various therapeutic approaches. Currently, the only effective treatment is liver transplantation; However, the lack of donors, surgical complications, immunosuppression, and high medical costs limit its clinical application. Recently, mesenchymal stem cells (MSCs) have been found to exert hepatoprotective effects in ALF through suppression of inflammation, immunoregulation, promotion of mitosis, anti-apoptosis effects, and alleviation of the metabolic and oxidative stress imbalance. In this review, we summarize the advantages and disadvantages of MSCs from different sources and their molecular mechanisms in ALF treatment, along with future perspectives that may provide guidance to improve the current status of MSCs therapy for ALF.
Collapse
Affiliation(s)
- Yuling Luan
- Department of General Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoni Kong
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Feng
- Department of General Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
16
|
Martínez-Aguilar R, Romero-Pinedo S, Ruiz-Magaña MJ, Olivares EG, Ruiz-Ruiz C, Abadía-Molina AC. Menstrual blood-derived stromal cells modulate functional properties of mouse and human macrophages. Sci Rep 2020; 10:21389. [PMID: 33288796 PMCID: PMC7721726 DOI: 10.1038/s41598-020-78423-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/24/2020] [Indexed: 12/24/2022] Open
Abstract
Menstrual blood-derived stromal cells (MenSCs) are emerging as a strong candidate for cell-based therapies due to their immunomodulatory properties. However, their direct impact on innate immune populations remains elusive. Since macrophages play a key role in the onset and development of inflammation, understanding MenSCs implication in the functional properties of these cells is required to refine their clinical effects during the treatment of inflammatory disorders. In this study, we assessed the effects that MenSCs had on the recruitment of macrophages and other innate immune cells in two mouse models of acute inflammation, a thioglycollate (TGC)-elicited peritonitis model and a monobacterial sepsis model. We found that, in the TGC model, MenSCs injection reduced the percentage of macrophages recruited to the peritoneum and promoted the generation of peritoneal immune cell aggregates. In the sepsis model, MenSCs exacerbated infection by diminishing the recruitment of macrophages and neutrophils to the site of infection and inducing defective bacterial clearance. Additional in vitro studies confirmed that co-culture with MenSCs impaired macrophage bactericidal properties, affecting bacterial killing and the production of reactive oxygen intermediates. Our findings suggest that MenSCs modulate the macrophage population and that this modulation must be taken into consideration when it comes to future clinical applications.
Collapse
Affiliation(s)
| | | | - M José Ruiz-Magaña
- Unidad de Inmunología, IBIMER, CIBM, Universidad de Granada, Granada, Spain
| | - Enrique G Olivares
- Departamento de Bioquímica y Biología Molecular III e Inmunología, Facultad de Medicina, Universidad de Granada, Granada, Spain.,Unidad de Gestión Clínica Laboratorios, Hospital Universitario Clínico San Cecilio, Granada, Spain
| | - Carmen Ruiz-Ruiz
- Unidad de Inmunología, IBIMER, CIBM, Universidad de Granada, Granada, Spain. .,Departamento de Bioquímica y Biología Molecular III e Inmunología, Facultad de Medicina, Universidad de Granada, Granada, Spain.
| | - Ana C Abadía-Molina
- Unidad de Inmunología, IBIMER, CIBM, Universidad de Granada, Granada, Spain. .,Departamento de Bioquímica y Biología Molecular III e Inmunología, Facultad de Medicina, Universidad de Granada, Granada, Spain.
| |
Collapse
|
17
|
Liu Y, Liang S, Yang F, Sun Y, Niu L, Ren Y, Wang H, He Y, Du J, Yang J, Lin J. Biological characteristics of endometriotic mesenchymal stem cells isolated from ectopic lesions of patients with endometriosis. Stem Cell Res Ther 2020; 11:346. [PMID: 32771033 PMCID: PMC7414689 DOI: 10.1186/s13287-020-01856-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/29/2020] [Accepted: 07/27/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Research into the pathogenesis of endometriosis (EMs) would substantially promote its effective treatment and early diagnosis. However, the aetiology of EMs is poorly understood and controversial despite the progress in EMs research in the last several decades. Currently, accumulating evidence has shed light on the importance of endometrial stem cells (EnSCs) residing in the basal layer of endometrium in the establishment and progression of endometriotic lesions. Therefore, we aimed to identify the differences between EnSCs isolated from the ectopic lesions of EMs patients (EnSC-EM-EC) and EnSCs isolated from eutopic endometrium of control group (EnSC-Control). We further performed preliminary exploration of the potential signalling pathways involved in the above abnormalities. METHODS EnSC-EM-EC (n = 12) and EnSC-Control (n = 13) were successfully isolated. Then, the proliferative capacity, migratory capacity and angiogenic potential of EnSCs were evaluated by conventional MTT assay, flow cytometry, wound healing assay, transwell assay, tube formation assay and chick embryo chorioallantoic membrane assay respectively. The expression of 11 angiogenesis-associated biological factors and 11 cytokines secreted by EnSCs and 17 adhesion molecules expressed on EnSCs were determined by protein array assays respectively. Differentially expressed genes (DEGs) between EnSC-EM-EC and EnSC-Control were analysed by RNA-sequence. RESULTS EnSC-EM-EC exhibited unique biological characteristics, including prolonged mitosis, enhanced migratory capacity and enhanced angiogenic potential. Greater amounts of angiogenic factors (especially VEGF and PDGF) were secreted by EnSC-EM-EC than by EnSC-Control; however, the distinct profiles of cytokines secreted by EnSC-EM-EC and adhesion molecules expressed by EnSC-EM-EC require further investigation. A total of 523 DEGs between EnSC-EM-EC and EnSC-Control were identified and analysed using the KEGG and Gene Ontology databases. CONCLUSIONS Our results not only improve the understanding of EMs but also contribute to the development of EnSC-EM-EC as a tool for EMs drug discovery. These cells could be of great help in exploiting promising therapeutic targets and new biomarkers for EMs treatment and prognosis.
Collapse
Affiliation(s)
- Yanli Liu
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China.,Henan Key Laboratory of Medical Tissue Regeneration, NO 601, East of JinSui Road, Xinxiang City, 453003, Henan Province, China
| | - Shengying Liang
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China.,Henan Key Laboratory of Medical Tissue Regeneration, NO 601, East of JinSui Road, Xinxiang City, 453003, Henan Province, China
| | - Fen Yang
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China.,Henan Key Laboratory of Medical Tissue Regeneration, NO 601, East of JinSui Road, Xinxiang City, 453003, Henan Province, China.,College of Biomedical Engineering, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yuliang Sun
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Lidan Niu
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China.,College of Biomedical Engineering, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yakun Ren
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China.,Henan Key Laboratory of Medical Tissue Regeneration, NO 601, East of JinSui Road, Xinxiang City, 453003, Henan Province, China
| | - Hongmei Wang
- The First Affiliated Hospital of Xinxiang Medical University, NO 88, JianKang Road, Weihui, Xinxiang City, 453100, Henan Province, China
| | - Yanan He
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jiang Du
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China.,College of Biomedical Engineering, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jun Yang
- The First Affiliated Hospital of Xinxiang Medical University, NO 88, JianKang Road, Weihui, Xinxiang City, 453100, Henan Province, China.
| | - Juntang Lin
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China. .,Henan Key Laboratory of Medical Tissue Regeneration, NO 601, East of JinSui Road, Xinxiang City, 453003, Henan Province, China.
| |
Collapse
|
18
|
Bozorgmehr M, Gurung S, Darzi S, Nikoo S, Kazemnejad S, Zarnani AH, Gargett CE. Endometrial and Menstrual Blood Mesenchymal Stem/Stromal Cells: Biological Properties and Clinical Application. Front Cell Dev Biol 2020; 8:497. [PMID: 32742977 PMCID: PMC7364758 DOI: 10.3389/fcell.2020.00497] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/25/2020] [Indexed: 12/11/2022] Open
Abstract
A highly proliferative mesenchymal stem/stromal cell (MSC) population was recently discovered in the dynamic, cyclically regenerating human endometrium as clonogenic stromal cells that fulfilled the International Society for Cellular Therapy (ISCT) criteria. Specific surface markers enriching for clonogenic endometrial MSC (eMSC), CD140b and CD146 co-expression, and the single marker SUSD2, showed their perivascular identity in the endometrium, including the layer which sheds during menstruation. Indeed, cells with MSC properties have been identified in menstrual fluid and commonly termed menstrual blood stem/stromal cells (MenSC). MenSC are generally retrieved from menstrual fluid as plastic adherent cells, similar to bone marrow MSC (bmMSC). While eMSC and MenSC share several biological features with bmMSC, they also show some differences in immunophenotype, proliferation and differentiation capacities. Here we review the phenotype and functions of eMSC and MenSC, with a focus on recent studies. Similar to other MSC, eMSC and MenSC exert immunomodulatory and anti-inflammatory impacts on key cells of the innate and adaptive immune system. These include macrophages, T cells and NK cells, both in vitro and in small and large animal models. These properties suggest eMSC and MenSC as additional sources of MSC for cell therapies in regenerative medicine as well as immune-mediated disorders and inflammatory diseases. Their easy acquisition via an office-based biopsy or collected from menstrual effluent makes eMSC and MenSC attractive sources of MSC for clinical applications. In preparation for clinical translation, a serum-free culture protocol was established for eMSC which includes a small molecule TGFβ receptor inhibitor that prevents spontaneous differentiation, apoptosis, senescence, maintains the clonogenic SUSD2+ population and enhances their potency, suggesting potential for cell-therapies and regenerative medicine. However, standardization of MenSC isolation protocols and culture conditions are major issues requiring further research to maximize their potential for clinical application. Future research will also address crucial safety aspects of eMSC and MenSC to ensure these protocols produce cell products free from tumorigenicity and toxicity. Although a wealth of data on the biological properties of eMSC and MenSC has recently been published, it will be important to address their mechanism of action in preclinical models of human disease.
Collapse
Affiliation(s)
- Mahmood Bozorgmehr
- Reproductive Immunology Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Shanti Gurung
- Centre for Reproductive Health, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Saeedeh Darzi
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Shohreh Nikoo
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Somaieh Kazemnejad
- Nanobitechnology Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Amir-Hassan Zarnani
- Reproductive Immunology Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Caroline E. Gargett
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
19
|
Improvement of Pregnancy Rate and Live Birth Rate in Poor Ovarian Responders by Intraovarian Administration of Autologous Menstrual Blood Derived- Mesenchymal Stromal Cells: Phase I/II Clinical Trial. Stem Cell Rev Rep 2020; 16:755-763. [DOI: 10.1007/s12015-020-09969-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
20
|
Cen PP, Fan LX, Wang J, Chen JJ, Li LJ. Therapeutic potential of menstrual blood stem cells in treating acute liver failure. World J Gastroenterol 2019; 25:6190-6204. [PMID: 31745380 PMCID: PMC6848012 DOI: 10.3748/wjg.v25.i41.6190] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/11/2019] [Accepted: 10/17/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Acute liver failure (ALF) is a significant and complex hepatic insult that may rapidly progress to life-threatening conditions. Recently, menstrual blood stem cells (MenSCs) have been identified as a group of easily accessible mesenchymal stem cells with the advantages of non-invasive acquisition, low immunogenicity, a greater capacity of self-renewal and multi-lineage differentiation, making them promising candidates for stem cell-based therapy to revolutionize the treatment strategies for liver failure. AIM To investigate the therapeutic potential of MenSCs for treating ALF in pigs and to dynamically trace the biodistribution of transplanted cells. METHODS MenSCs were labeled in vitro with PKH26, a lipophilic fluorescent dye. The treatment group received immediate transplantation of PKH26-labelled MenSCs (2.5 × 106/kg) via the portal vein after D-galactosamine injection, and the control group underwent sham operation. The survival time, liver function, and hepatic pathological changes were compared between the two groups. Three major organs (liver, lungs and spleen) were extracted from animals and imaged directly with the In vivo Imaging System (IVIS) at the predetermined time points. The regions of interest were drawn to quantify the cell uptake in different organs. RESULTS The labelling procedure did not affect the morphology, viability or multipotential differentiation of MenSCs. Biochemical analysis showed that the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TBIL) and prothrombin time (PT) measured at selected time points 24 h after transplantation were significantly decreased in the treatment group (P < 0.05). The survival time of ALF animals was prolonged in the treatment group compared with the control group (75.75 ± 5.11 h vs 53.75 ± 2.37 h, log rank, P < 0.001). The liver pathological tissue in the MenSC treatment group showed obviously increased numbers of remaining hepatocytes and a comparatively slight necrotic degree and area. In addition, the IVIS imaging revealed that PKH26-positive MenSCs were clearly retained in the liver initially and then diffused through the systemic circulation. Interestingly, the signal intensity in the liver increased obviously at 36 h, which corresponded to the biochemical result that liver function deteriorated most rapidly at 24 - 36 h. CONCLUSION Our study demonstrates the therapeutic efficacy and homing ability of transplanted MenSCs in a large animal model of ALF and suggests that MenSC transplantation could be a promising strategy for treating ALF.
Collapse
Affiliation(s)
- Pan-Pan Cen
- Department of Infectious Diseases, Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang Province, China
| | - Lin-Xiao Fan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; National Clinical Research Center for Infectious Diseases; The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Jie Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; National Clinical Research Center for Infectious Diseases; The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Jia-Jia Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; National Clinical Research Center for Infectious Diseases; The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Lan-Juan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; National Clinical Research Center for Infectious Diseases; The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
21
|
Manley H, Sprinks J, Breedon P. Menstrual Blood-Derived Mesenchymal Stem Cells: Women's Attitudes, Willingness, and Barriers to Donation of Menstrual Blood. J Womens Health (Larchmt) 2019; 28:1688-1697. [PMID: 31397634 DOI: 10.1089/jwh.2019.7745] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background: Menstrual blood contains mesenchymal stem cells (MenSC), considered a potential "off-the-shelf" treatment for a range of diseases and medical conditions. Samples of menstrual blood can be collected painlessly, inexpensively, and as frequently as every month for cell therapy. While there has been considerable previous research into the clinical advantages of MenSC, there is currently little understanding of potential donors' attitudes regarding menstrual blood donation and MenSC. Methods: One hundred women 18 years of age or over were surveyed to understand attitudes and potential barriers to menstrual blood donation. The questionnaire assessed participant age and brief medical history (giving birth, donating blood, donating stem cells), menstrual experience (period rating, preferred menstrual hygiene products), and whether participants would donate MenSC or accept MenSC therapy. Results: MenSC was met with a generally positive response, with 78% of menstruating women willing to donate menstrual blood. No significant relationship was recognized between willingness to donate menstrual blood with age, history of childbirth or blood donation, menstruation perception, and preferred menstrual hygiene product. Women rated their period experience better after being made aware of the ability to donate menstrual blood, meaning MenSC therapy can be beneficial for donors as well as patients. Conclusions: Considering women's attitudes to MenSC and donation of menstrual blood, the future of MenSC therapy is positive; women are generally willing to donate menstrual blood, independent of age, perception of periods, and history of childbirth and blood donation.
Collapse
Affiliation(s)
- Hannah Manley
- Medical Engineering Design Research Group, Nottingham Trent University, Nottingham, United Kingdom
| | - James Sprinks
- Medical Engineering Design Research Group, Nottingham Trent University, Nottingham, United Kingdom
| | - Philip Breedon
- Medical Engineering Design Research Group, Nottingham Trent University, Nottingham, United Kingdom
| |
Collapse
|
22
|
Liu Y, Niu R, Li W, Lin J, Stamm C, Steinhoff G, Ma N. Therapeutic potential of menstrual blood-derived endometrial stem cells in cardiac diseases. Cell Mol Life Sci 2019; 76:1681-1695. [PMID: 30721319 PMCID: PMC11105669 DOI: 10.1007/s00018-019-03019-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 12/13/2018] [Accepted: 01/15/2019] [Indexed: 12/21/2022]
Abstract
Despite significant developments in medical and surgical strategies, cardiac diseases remain the leading causes of morbidity and mortality worldwide. Numerous studies involving preclinical and clinical trials have confirmed that stem cell transplantation can help improve cardiac function and regenerate damaged cardiac tissue, and stem cells isolated from bone marrow, heart tissue, adipose tissue and umbilical cord are the primary candidates for transplantation. During the past decade, menstrual blood-derived endometrial stem cells (MenSCs) have gradually become a promising alternative for stem cell-based therapy due to their comprehensive advantages, which include their ability to be periodically and non-invasively collected, their abundant source material, their ability to be regularly donated, their superior proliferative capacity and their ability to be used for autologous transplantation. MenSCs have shown positive therapeutic potential for the treatment of various diseases. Therefore, aside from a brief introduction of the biological characteristics of MenSCs, this review focuses on the progress being made in evaluating the functional improvement of damaged cardiac tissue after MenSC transplantation through preclinical and clinical studies. Based on published reports, we conclude that the paracrine effect, transdifferentiation and immunomodulation by MenSC promote both regeneration of damaged myocardium and improvement of cardiac function.
Collapse
Affiliation(s)
- Yanli Liu
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003, People's Republic of China
- Institute of Chemistry and Biochemistry, Free University Berlin, 14195, Berlin, Germany
| | - Rongcheng Niu
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003, People's Republic of China
| | - Wenzhong Li
- Institute of Chemistry and Biochemistry, Free University Berlin, 14195, Berlin, Germany.
| | - Juntang Lin
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003, People's Republic of China.
| | - Christof Stamm
- Deutsches Herzzentrum Berlin (DHZB), Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Gustav Steinhoff
- Department of Cardiac Surgery, Reference and Translation Center for Cardiac Stem Cell Therapy, University Rostock, 18055, Rostock, Germany
| | - Nan Ma
- Institute of Chemistry and Biochemistry, Free University Berlin, 14195, Berlin, Germany
- Department of Cardiac Surgery, Reference and Translation Center for Cardiac Stem Cell Therapy, University Rostock, 18055, Rostock, Germany
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, 14513, Teltow, Germany
| |
Collapse
|
23
|
Fathi-Kazerooni M, Kazemnejad S, Khanjani S, Saltanatpour Z, Tavoosidana G. Down-regulation of miR-122 after transplantation of mesenchymal stem cells in acute liver failure in mice model. Biologicals 2019; 58:64-72. [PMID: 30824230 DOI: 10.1016/j.biologicals.2019.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 11/28/2018] [Accepted: 02/19/2019] [Indexed: 01/13/2023] Open
Abstract
This study investigated the correlation between the hepatic level of miR-122 and the extent of liver tissue regeneration in CCl4 induced liver injury mice model following transplantation of menstrual blood-(MenSCs) and bone marrow-derived stem cells (BMSCs). Hepatic miR-122 levels were significantly up-regulated following administration of CCl4 (P < 0.01). The significant positive correlations were observed between hepatic miR-122 and biochemical serum markers and the severity of liver injury in histopathological assessments (P < 0.01). Following stem cell therapy, all cell treated groups showed a significant down-regulation in miR-122 that was significantly correlated with improvement in histopathological features and biochemical markers (P < 0.01). Furthermore, the hepatic level of miR-122 was lower in the MenSCs-treated group compared with the BMSCs-treated group (P < 0.01) and in HPL cells-treated groups in reference to undifferentiated cells-treated groups (P < 0.05). These data suggest that miR-122 could be used as a potential predictor of outcome of liver injury after mesenchymal stem cell transplantation.
Collapse
Affiliation(s)
- Mina Fathi-Kazerooni
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Somaieh Kazemnejad
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Sayeh Khanjani
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Zohreh Saltanatpour
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Tavoosidana
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Platelet-rich plasma improves therapeutic effects of menstrual blood-derived stromal cells in rat model of intrauterine adhesion. Stem Cell Res Ther 2019; 10:61. [PMID: 30770774 PMCID: PMC6377773 DOI: 10.1186/s13287-019-1155-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/26/2018] [Accepted: 01/24/2019] [Indexed: 12/18/2022] Open
Abstract
Background Intrauterine adhesion (IUA) is a major cause of female secondary infertility. We previously demonstrated that menstrual blood-derived stromal cell (MenSC) transplantation helped severe IUA patients have pregnancy and endometrium regeneration. We also initiated platelet-rich plasma (PRP) acted as a beneficial supplement in MenSC culturing and a potential endometrial receptivity regulator. Here, we investigated the therapeutic effect of combined transplantation of MenSCs with PRP in rat IUA models and the mechanisms of MenSCs in endometrium regeneration. Methods Rat IUA models were established by intrauterine mechanical injured. Nine days later, all rats were randomly assigned to four groups received different treatment: placebo, MenSC transplantation, PRP transplantation, and MenSCs + PRP transplantation. The traces of MenSCs were tracked with GFP label. Endometrial morphology and pathology, tissue proliferation, inflammation, pregnancy outcomes, and mechanism of MenSCs in the regeneration of endometrium were investigated. Results Notably, at days 9 and 18 post-treatment, MenSC transplantation significantly improved endometrial proliferation, angiogenesis, and morphology recovery and decreased collagen fibrosis and inflammation in the uterus. MenSCs had lesion chemotaxis, colonized around the endometrial glands. Gene expression of human-derived secretory protein IGF-1, SDF-1, and TSP-1 was detected in the uterus received MenSCs at day 18. The three treatments can all improve fertility in IUA rats. Moreover, gene expressions of cell proliferation, developmental processes, and other biological processes were induced in MenSC transplantation group. Hippo signaling pathway was the most significantly changed pathway, and the downstream factors CTGF, Wnt5a, and Gdf5 were significantly regulated in treatment groups. PRP enhanced these parameters through a synergistic effect. Conclusions In summary, MenSCs could effectively improve uterine proliferation, markedly accelerate endometrial damage repairment and promote fertility restoration in IUA rats, suggesting a paracrine restorative effect and Hippo signaling pathway stimulation. Our results indicate MenSCs, a valuable source of cells for transplantation in the treatment intrauterine adhesion. Combined with PRP, this cell therapy was more effective. Electronic supplementary material The online version of this article (10.1186/s13287-019-1155-7) contains supplementary material, which is available to authorized users.
Collapse
|
25
|
Cuenca J, Le-Gatt A, Castillo V, Belletti J, Díaz M, Kurte G M, Gonzalez PL, Alcayaga-Miranda F, Schuh CMAP, Ezquer F, Ezquer M, Khoury M. The Reparative Abilities of Menstrual Stem Cells Modulate the Wound Matrix Signals and Improve Cutaneous Regeneration. Front Physiol 2018; 9:464. [PMID: 29867527 PMCID: PMC5960687 DOI: 10.3389/fphys.2018.00464] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/13/2018] [Indexed: 12/11/2022] Open
Abstract
Considerable advances have been made toward understanding the cellular and molecular mechanism of wound healing, however, treatments for chronic wounds remain elusive. Emerging concepts utilizing mesenchymal stem cells (MSCs) from umbilical cord, adipose tissue and bone marrow have shown therapeutical advantages for wound healing. Based on this positive outcome, efforts to determine the optimal sources for MSCs are required in order to improve their migratory, angiogenic, immunomodulatory, and reparative abilities. An alternative source suitable for repetitive, non-invasive collection of MSCs is from the menstrual fluid (MenSCs), displaying a major practical advantage over other sources. This study aims to compare the biological functions and the transcriptomic pattern of MenSCs with umbilical cord MSCs in conditions resembling the wound microenvironment. Consequently, we correlate the specific gene expression signature from MenSCs with changes of the wound matrix signals in vivo. The direct comparison revealed a superior clonogenic and migratory potential of MenSCs as well as a beneficial effect of their secretome on human dermal fibroblast migration in vitro. Furthermore, MenSCs showed increased immunomodulatory properties, inhibiting T-cell proliferation in co-culture. We further, investigated the expression of selected genes involved in wound repair (growth factors, cytokines, chemokines, AMPs, MMPs) and found considerably higher expression levels in MenSCs (ANGPT1 1.5-fold; PDGFA 1.8-fold; PDGFB 791-fold; MMP3 21.6-fold; ELN 13.4-fold; and MMP10 9.2-fold). This difference became more pronounced under a pro-inflammatory stimulation, resembling wound bed conditions. Locally applied in a murine excisional wound splinting model, MenSCs showed a significantly improved wound closure after 14 days, as well as enhanced neovascularization, compared to the untreated group. Interestingly, analysis of excised wound tissue revealed a significantly higher expression of VEGF (1.42-fold) among other factors, translating an important conversion of the matrix signals in the wound site. Furthermore, histological analysis of the wound tissue from MenSCs-treated group displayed a more mature robust vascular network and a genuinely higher collagen content confirming the pro-angiogenic and reparative effect of MenSCs treatment. In conclusion, the superior clonogenicity, immunosuppressive and migration potential in combination with specific paracrine signature of MenSCs, resulted in an enhanced wound healing and cutaneous regeneration process.
Collapse
Affiliation(s)
- Jimena Cuenca
- Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile.,Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile.,Cells for Cells, Santiago, Chile
| | - Alice Le-Gatt
- Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile
| | - Valentina Castillo
- Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile
| | - Jose Belletti
- Laboratory of Pathological Anatomy, Hospital DIPRECA, Las Condes, Chile
| | - Macarena Díaz
- Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile
| | - Mónica Kurte G
- Laboratory of Immunology, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Paz L Gonzalez
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Francisca Alcayaga-Miranda
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile.,Cells for Cells, Santiago, Chile
| | - Christina M A P Schuh
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Fernando Ezquer
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Marcelo Ezquer
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Maroun Khoury
- Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile.,Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile.,Cells for Cells, Santiago, Chile
| |
Collapse
|
26
|
Zare H, Jamshidi S, Dehghan MM, Saheli M, Piryaei A. Bone marrow or adipose tissue mesenchymal stem cells: Comparison of the therapeutic potentials in mice model of acute liver failure. J Cell Biochem 2018; 119:5834-5842. [PMID: 29575235 DOI: 10.1002/jcb.26772] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 02/02/2018] [Indexed: 12/29/2022]
Abstract
Acute liver failure (ALF) is a lethal disease with limited life-saving therapy. Because lack of whole organ donors for liver transplantation, a substitute treatment strategy is needed for these patients. Preclinical and clinical findings have proved that treatment with mesenchymal stem cells (MSCs) is beneficial for recovery from ALF. In this approach, however, the appropriate sources of these cells are unclear. In the present study, we investigated and compared the therapeutic potentials of bone marrow-mesenchymal stem cells (BM-MSC) with those of adipose tissue (AT-MSC) in carbon tetrachloride (CCL4)-induced acute liver failure in mice. Murine BM- and AT-MSCs obtained from normal mice were cultured and labelled. The cells were transplanted to CCL4-induced ALF mice models intravenously. After cell transplantation, blood samples and liver tissues were collected daily for 72 h to analyze liver enzymes and liver histopathology, respectively. We found that survival rate of AT-MSC transplanted (AT-TR) mice was significantly higher than that of control (ALF) group. Liver histopathology was superior in the AT-TR mice, but not significantly, compared to that in BM-MSC transplanted (BM-TR) ones. Furthermore, in the AT-TR mice the level of aspartate aminotransferase (AST) and alanine aminotransferase (ALT), in some time points were significantly less than those of BM-TR. Taken together, these data suggest that in comparison to BM-MSC, AT-MSCs is an appropriate choice for cell therapy in the case of acute liver failure.
Collapse
Affiliation(s)
- Hossein Zare
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Shahram Jamshidi
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohammad M Dehghan
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mona Saheli
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Piryaei
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|