1
|
Liu K, Zhang P, Zhou L, Han L, Zhao L, Yu X. Research progress in the construction of animal models of autoimmune thyroiditis. Autoimmunity 2024; 57:2317190. [PMID: 38377122 DOI: 10.1080/08916934.2024.2317190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 02/03/2024] [Indexed: 02/22/2024]
Abstract
Autoimmune thyroiditis (AIT), also known as Hashimoto's thyroiditis (HT), is an autoimmune disease that is characterised by elevated thyroid-specific antibody titres. The incidence of AIT is increasing year over year, making it urgent to establish a suitable animal model for this condition, in order to better explore its pathogenesis and potential pharmaceutical mechanisms for treatment. Owing to a lack of basic research on this disease, problems such as disparate modelling methods with unclear and varying success rates make it difficult for researchers to obtain effective information on AIT in the short term. This report summarises and analyzes the current literature on AIT and combines actual operability to explain the selection and specific implementation processes behind the uses of different modelling approaches, to provide a better overall understanding of autoimmune thyroid diseases.
Collapse
Affiliation(s)
- Ke Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Pei Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ling Zhou
- Beijing University of Chinese Medicine, Beijing, China
| | - Lin Han
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Linhua Zhao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaotong Yu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Ge Z, Qiu C, Zhou J, Yang Z, Jiang T, Yuan W, Yu L, Li J. Proteomic analysis of human Wharton's jelly mesenchymal stem/stromal cells and human amniotic epithelial stem cells: a comparison of therapeutic potential. Sci Rep 2024; 14:28061. [PMID: 39543366 PMCID: PMC11564572 DOI: 10.1038/s41598-024-79063-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024] Open
Abstract
Perinatal stem cells have prominent applications in cell therapy and regenerative medicine. Among them, human Wharton's jelly mesenchymal stem/stromal cells (hWJMSCs) and human amniotic epithelial stem cells (hAESCs) have been widely used. However, the distinction in the therapeutic potential of hWJMSCs and hAESCs is poorly understood. In this study, we reported the phenotypic differences between these two distinct cell types and provided the first systematic comparison of their therapeutic potential in terms of immunomodulation, extracellular matrix (ECM) remodelling, angiogenesis and antioxidative stress using proteomics. The results revealed that the two cell types presented different protein expression profiles and were both promising candidates for cell therapy. Both types of cells demonstrated angiogenic and antifibrotic potential, whereas hAESCs presented superior immunological tolerance and antioxidant properties, which were supported by a series of relevant in vitro assays. Our study provides clues for the selection of appropriate cell types for diverse indications in cell therapy, which contributes to the advancement of their clinical translation and application.
Collapse
Affiliation(s)
- Zhen Ge
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310013, Zhejiang, China
| | - Chen Qiu
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine of Sir Run Run Shaw Hospital, Zhejiang University-Lishui Joint Innovation Center for Life and Health, Zhejiang University, Hangzhou, 310058, China
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, 314400, China
| | - Jiayi Zhou
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine of Sir Run Run Shaw Hospital, Zhejiang University-Lishui Joint Innovation Center for Life and Health, Zhejiang University, Hangzhou, 310058, China
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, 314400, China
| | - Zhuoheng Yang
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine of Sir Run Run Shaw Hospital, Zhejiang University-Lishui Joint Innovation Center for Life and Health, Zhejiang University, Hangzhou, 310058, China
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, 314400, China
| | - Tuoying Jiang
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine of Sir Run Run Shaw Hospital, Zhejiang University-Lishui Joint Innovation Center for Life and Health, Zhejiang University, Hangzhou, 310058, China
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, 314400, China
| | - Weixin Yuan
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, 314400, China
| | - Luyang Yu
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine of Sir Run Run Shaw Hospital, Zhejiang University-Lishui Joint Innovation Center for Life and Health, Zhejiang University, Hangzhou, 310058, China.
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, 314400, China.
| | - Jinying Li
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine of Sir Run Run Shaw Hospital, Zhejiang University-Lishui Joint Innovation Center for Life and Health, Zhejiang University, Hangzhou, 310058, China.
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, 314400, China.
| |
Collapse
|
3
|
Yang PJ, Zhao XY, Kou YH, Liu J, Ren XY, Zhang YY, Wang ZD, Ge Z, Yuan WX, Qiu C, Tan B, Liu Q, Shi YN, Jiang YQ, Qiu C, Guo LH, Li JY, Huang XJ, Yu LY. Human amniotic epithelial stem cell is a cell therapy candidate for preventing acute graft-versus-host disease. Acta Pharmacol Sin 2024; 45:2339-2353. [PMID: 38802569 PMCID: PMC11489431 DOI: 10.1038/s41401-024-01283-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 04/01/2024] [Indexed: 05/29/2024]
Abstract
Graft-versus-host disease (GVHD), an immunological disorder that arises from donor T cell activation through recognition of host alloantigens, is the major limitation in the application of allogeneic hematopoietic stem cell transplantation (allo-HSCT). Traditional immunosuppressive agents can relieve GVHD, but they induce serious side effects. It is highly required to explore alternative therapeutic strategy. Human amniotic epithelial stem cells (hAESCs) were recently considered as an ideal source for cell therapy with special immune regulatory property. In this study, we evaluated the therapeutic role of hAESCs in the treatment of GVHD, based on our previous developed cGMP-grade hAESCs product. Humanized mouse model of acute GVHD (aGVHD) was established by injection of huPBMCs via the tail vein. For prevention or treatment of aGVHD, hAESCs were injected to the mice on day -1 or on day 7 post-PBMC infusion, respectively. We showed that hAESCs infusion significantly alleviated the disease phenotype, increased the survival rate of aGVHD mice, and ameliorated pathological injuries in aGVHD target organs. We demonstrated that hAESCs directly induced CD4+ T cell polarization, in which Th1 and Th17 subsets were downregulated, and Treg subset was elevated. Correspondingly, the levels of a series of pro-inflammatory cytokines were reduced while the levels of the anti-inflammatory cytokines were upregulated in the presence of hAESCs. We found that hAESCs regulated CD4+ subset polarization in a paracrine mode, in which TGFβ and PGE2 were selectively secreted to mediate Treg elevation and Th1/Th17 inhibition, respectively. In addition, transplanted hAESCs preserved the graft-versus-leukemia (GVL) effect by inhibiting leukemia cell growth. More intriguingly, hAESCs infusion in HSCT patients displayed potential anti-GVHD effect with no safety concerns and confirmed the immunoregulatory mechanisms in the preclinical study. We conclude that hAESCs infusion is a promising therapeutic strategy for post-HSCT GVHD without compromising the GVL effect. The clinical trial was registered at www.clinicaltrials.gov as #NCT03764228.
Collapse
Affiliation(s)
- Peng-Jie Yang
- MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310058, China
| | - Xiang-Yu Zhao
- Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University, Beijing, 100044, China
| | - Yao-Hui Kou
- MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310058, China
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou, 314400, China
| | - Jia Liu
- MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310058, China
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou, 314400, China
| | - Xiang-Yi Ren
- MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310058, China
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou, 314400, China
| | - Yuan-Yuan Zhang
- Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University, Beijing, 100044, China
| | - Zhi-Dong Wang
- Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University, Beijing, 100044, China
| | - Zhen Ge
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310013, China
| | - Wei-Xin Yuan
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou, 314400, China
- Shanghai iCELL Biotechnology Co. Ltd, Shanghai, 200335, China
| | - Chen Qiu
- MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310058, China
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou, 314400, China
| | - Bing Tan
- MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310058, China
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou, 314400, China
| | - Qin Liu
- Shanghai iCELL Biotechnology Co. Ltd, Shanghai, 200335, China
| | - Yan-Na Shi
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou, 314400, China
| | - Yuan-Qing Jiang
- MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310058, China
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou, 314400, China
| | - Cong Qiu
- MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310058, China
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou, 314400, China
| | - Li-He Guo
- Shanghai iCELL Biotechnology Co. Ltd, Shanghai, 200335, China
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jin-Ying Li
- MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310058, China.
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou, 314400, China.
| | - Xiao-Jun Huang
- Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University, Beijing, 100044, China.
- Peking-Tsinghua Center for Life Sciences, Beijing, 100084, China.
| | - Lu-Yang Yu
- MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310058, China.
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou, 314400, China.
| |
Collapse
|
4
|
Li J, Yao Y, Zhou J, Yang Z, Qiu C, Lu Y, Xie J, Liu J, Jiang T, Kou Y, Ge Z, Liang P, Qiu C, Shen L, Zhu Y, Gao C, Yu L. Epicardial transplantation of antioxidant polyurethane scaffold based human amniotic epithelial stem cell patch for myocardial infarction treatment. Nat Commun 2024; 15:9105. [PMID: 39438477 PMCID: PMC11496666 DOI: 10.1038/s41467-024-53531-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
Myocardial infarction (MI) is a leading cause of death globally. Stem cell therapy is considered a potential strategy for MI treatment. Transplantation of classic stem cells including embryonic, induced pluripotent and cardiac stem cells exhibited certain repairing effect on MI via supplementing cardiomyocytes, however, their clinical applications were blocked by problems of cell survival, differentiation, functional activity and also biosafety and ethical concerns. Here, we introduced human amniotic epithelial stem cells (hAESCs) featured with immunomodulatory activities, immune-privilege and biosafety, for constructing a stem cell cardiac patch based on porous antioxidant polyurethane (PUR), which demonstrated decent hAESCs compatibility. In rats, the administration of PUR-hAESC patch significantly reduced fibrosis and facilitated vascularization in myocardium after MI and consequently improved cardiac remodeling and function. Mechanistically, the patch provides a beneficial microenvironment for cardiac repair by facilitating a desirable immune response, paracrine modulation and limited oxidative milieu. Our findings may provide a potential therapeutic strategy for MI.
Collapse
Affiliation(s)
- Jinying Li
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine of Sir Run Run Shaw Hospital, Zhejiang University-Lishui Joint Innovation Center for Life and Health, Zhejiang University, Hangzhou, 310058, China
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuejun Yao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Jiayi Zhou
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine of Sir Run Run Shaw Hospital, Zhejiang University-Lishui Joint Innovation Center for Life and Health, Zhejiang University, Hangzhou, 310058, China
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhuoheng Yang
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine of Sir Run Run Shaw Hospital, Zhejiang University-Lishui Joint Innovation Center for Life and Health, Zhejiang University, Hangzhou, 310058, China
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chen Qiu
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine of Sir Run Run Shaw Hospital, Zhejiang University-Lishui Joint Innovation Center for Life and Health, Zhejiang University, Hangzhou, 310058, China
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuwen Lu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Jieqi Xie
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Jia Liu
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine of Sir Run Run Shaw Hospital, Zhejiang University-Lishui Joint Innovation Center for Life and Health, Zhejiang University, Hangzhou, 310058, China
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Tuoying Jiang
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine of Sir Run Run Shaw Hospital, Zhejiang University-Lishui Joint Innovation Center for Life and Health, Zhejiang University, Hangzhou, 310058, China
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yaohui Kou
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine of Sir Run Run Shaw Hospital, Zhejiang University-Lishui Joint Innovation Center for Life and Health, Zhejiang University, Hangzhou, 310058, China
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhen Ge
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310013, China
| | - Ping Liang
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Cong Qiu
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine of Sir Run Run Shaw Hospital, Zhejiang University-Lishui Joint Innovation Center for Life and Health, Zhejiang University, Hangzhou, 310058, China
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Liyin Shen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yang Zhu
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine of Sir Run Run Shaw Hospital, Zhejiang University-Lishui Joint Innovation Center for Life and Health, Zhejiang University, Hangzhou, 310058, China.
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
- State Key Laboratory of Transvascular Implantation Devices, Binjiang Institute of Zhejiang University, Hangzhou, 310053, China.
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
- Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, 312099, China.
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310058, China.
| | - Luyang Yu
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine of Sir Run Run Shaw Hospital, Zhejiang University-Lishui Joint Innovation Center for Life and Health, Zhejiang University, Hangzhou, 310058, China.
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
5
|
Jiang T, Huang J, Xu B, Ge Z, Li Y, Wei L, Yu L, Li J. Human amniotic epithelial stem cell-derived dopaminergic neuron-like cells ameliorate motor dysfunction in a rat model of Parkinson's disease. Life Sci 2024; 351:122816. [PMID: 38862064 DOI: 10.1016/j.lfs.2024.122816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/13/2024]
Abstract
AIMS Parkinson's disease (PD) remains a substantial clinical challenge due to the progressive loss of midbrain dopaminergic (DA) neurons in nigrostriatal pathway. In this study, human amniotic epithelial stem cells (hAESCs)-derived dopaminergic neuron-like cells (hAESCs-DNLCs) were generated, with the aim of providing new therapeutic approach to PD. MATERIALS AND METHODS hAESCs, which were isolated from discarded placentas, were induced to differentiate into hAESCs-DNLCs by following a "two stages" induction protocol. The differentiation efficiency was assessed by quantitative real-time PCR (qRT-PCR), immunocytochemistry (ICC), and ELISA. Immunogenicity, cell viability and tumorigenicity of hAESCs-DNLC were analyzed before in vivo experiments. Subsequently, hAESCs-DNLCs were transplanted into PD rats, behavioral tests were monitored after graft, and the regeneration of DA neurons was detected by immunohistochemistry (IHC). Furthermore, to trace hAESCs-DNLCs in vivo, cells were pre-labeled with PKH67 green fluorescence. KEY FINDINGS hAESCs were positive for pluripotent markers and highly expressed neural stem cells (NSCs) markers. Based on this, we established an induction method reliably generates hAESCs-DNLCs, which was evidenced by epithelium-to-neuron morphological changes, elevated expressions of neuronal and DA neuronal markers, and increased secretion of dopamine. Moreover, hAESCs-DNLCs maintained high cell viability, no tumorigenicity and low immunogenicity, suggesting hAESCs-DNLCs an attractive implant for PD therapy. Transplantation of hAESCs-DNLCs into PD rats significantly ameliorated motor disorders, as well as enhanced the reinnervation of TH+ DA neurons in nigrostriatal pathway. SIGNIFICANCE Our study has demonstrated evident therapeutic effects of hAESCs-DNLCs, and provides a safe and promising solution for PD.
Collapse
Affiliation(s)
- Tuoying Jiang
- MOE Laboratory of Biosystems Homeostasis & Protection & College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, PR China
| | - Jianan Huang
- MOE Laboratory of Biosystems Homeostasis & Protection & College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, PR China; Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310009, Zhejiang Province, PR China
| | - Bo Xu
- MOE Laboratory of Biosystems Homeostasis & Protection & College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, PR China
| | - Zhen Ge
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou 310013, Zhejiang Province, PR China
| | - Yi Li
- MOE Laboratory of Biosystems Homeostasis & Protection & College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, PR China
| | - Leiting Wei
- MOE Laboratory of Biosystems Homeostasis & Protection & College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, PR China
| | - Luyang Yu
- MOE Laboratory of Biosystems Homeostasis & Protection & College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, PR China.
| | - Jinying Li
- MOE Laboratory of Biosystems Homeostasis & Protection & College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, PR China; College of Traditional Chinese Medicine and Health Industry, Lishui University, Lishui 323000, Zhejiang Province, PR China.
| |
Collapse
|
6
|
Ye X, Lin Y, Ying Y, Shen X, Ni F, Wang F, Chen J, Zhao W, Yu X, Zhang D, Liu Y. Human Amniotic Epithelial Stem Cells Alleviate Autoimmune Premature Ovarian Insufficiency in Mice by Targeting Granulosa Cells via AKT/ERK Pathways. Stem Cell Rev Rep 2024; 20:1618-1635. [PMID: 38831179 PMCID: PMC11319531 DOI: 10.1007/s12015-024-10745-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2024] [Indexed: 06/05/2024]
Abstract
Autoimmune factors play an important role in premature ovarian insufficiency (POI). Human amniotic epithelial stem cells (hAESCs) have recently shown promising treatment effects on chemotherapy-induced POI. However, the therapeutic efficacy and underlying mechanisms of hAESCs in autoimmune POI remain to be investigated. In this study, we showed for the first time that intravenous transplantation of hAESCs could reside in the ovary of zona pellucida 3 peptide (pZP3) induced autoimmune POI mice model for at least 4 weeks. hAESCs could improve ovarian function and fertility, alleviate inflammation and reduce apoptosis of granulosa cells (GCs) in autoimmune POI mice. The transcriptome analysis of mice ovaries and in vitro co-cultivation experiments suggest that activation of the AKT and ERK pathways may be the key mechanism in the therapeutic effect of hAESCs. Our work provides the theoretical and experimental foundation for optimizing the administration of hAESCs, as well as the clinical application of hAESCs in autoimmune POI patients.
Collapse
Affiliation(s)
- Xiaohang Ye
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Yifeng Lin
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Yanyun Ying
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Xuezhi Shen
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Feida Ni
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Feixia Wang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Jianpeng Chen
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Wei Zhao
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Xiaoming Yu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Dan Zhang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China.
- Zhejiang Provincial Clinical Research Center for Child Health, Hangzhou, 310006, China.
| | - Yifeng Liu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China.
- Zhejiang Provincial Clinical Research Center for Child Health, Hangzhou, 310006, China.
| |
Collapse
|
7
|
Yu C, Yuan H, Xu Y, Luo Y, Wu ZH, Zhong JJ, Xiao JH. Hyaluronan delays human amniotic epithelial stem cell senescence by regulating CD44 isoform switch to activate AKT/mTOR signals. Biomed Pharmacother 2024; 170:116100. [PMID: 38159379 DOI: 10.1016/j.biopha.2023.116100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/19/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024] Open
Abstract
The replicative senescence of human amniotic epithelial stem cells (hAECs) is a major concern towards its clinical application. This study found that a 300-kDa hyaluronic acid (HA) could effectively delay the replicative senescence of hAECs, as indicated by the downregulation of cellular senescence markers and alteration of the cell cycle, and substantially improve the differentiation capacities of hAECs. HA was confirmed to regulate the CD44 isoform switch by upregulating the CD44s and downregulating the CD44v, thus exerting an anti-aging effect. We further found that HA induced the upregulation of hyaluronan synthase (HAS) 2, resulting in the activation of epithelial splicing regulatory protein 1 (ESRP1) and alternative splicing of CD44 mRNA, thereby promoting CD44s expression and inhibiting CD44v expression. Knockdown of HAS2 blocked ESRP1 expression and attenuated the anti-aging effects of HA. Hermes-1, a specific blocker of CD44, caused partial loss of the anti-aging effect of HA, upregulated senescence markers, and downregulated stemness markers. Furthermore, CD44s receptor activation was shown to initiate the AKT/mTOR downstream signaling. Conclusively, the study suggested that HA delayed hAEC senescence by regulating CD44 isoform switch to activate the AKT/mTOR signaling pathway, and there is potential for the clinical application of hAECs in combination with HA.
Collapse
Affiliation(s)
- Chao Yu
- Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, China
| | - Huan Yuan
- Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, China; Guizhou Provincial Key Laboratory of Medicinal Biotechnology & Research Center for Translational Medicine in Colleges and Universities, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, China
| | - Yan Xu
- Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, China; Guizhou Provincial Key Laboratory of Medicinal Biotechnology & Research Center for Translational Medicine in Colleges and Universities, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, China
| | - Yi Luo
- Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, China; Guizhou Provincial Key Laboratory of Medicinal Biotechnology & Research Center for Translational Medicine in Colleges and Universities, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, China
| | - Zuo-Hui Wu
- Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, China; Department of Ultrasonography, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, China.
| | - Jian-Jiang Zhong
- Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, China; State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Jian-Hui Xiao
- Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, China; Guizhou Provincial Key Laboratory of Medicinal Biotechnology & Research Center for Translational Medicine in Colleges and Universities, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, China; Department of Ultrasonography, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, China.
| |
Collapse
|
8
|
Xu L, Dai Q, Zhang Y, Lin N, Ji L, Song X. Prospects for the Application of Transplantation With Human Amniotic Membrane Epithelial Stem Cells in Systemic Lupus Erythematosus. Cell Transplant 2024; 33:9636897241236586. [PMID: 38469823 PMCID: PMC10935745 DOI: 10.1177/09636897241236586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 03/13/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a multi-organ and systemic autoimmune disease characterized by an imbalance of humoral and cellular immunity. The efficacy and side effects of traditional glucocorticoid and immunosuppressant therapy remain controversial. Recent studies have revealed abnormalities in mesenchymal stem cells (MSCs) in SLE, leading to the application of bone marrow-derived MSCs (BM-MSCs) transplantation technique for SLE treatment. However, autologous transplantation using BM-MSCs from SLE patients has shown suboptimal efficacy due to their dysfunction, while allogeneic mesenchymal stem cell transplantation (MSCT) still faces challenges, such as donor degeneration, genetic instability, and immune rejection. Therefore, exploring new sources of stem cells is crucial for overcoming these limitations in clinical applications. Human amniotic epithelial stem cells (hAESCs), derived from the eighth-day blastocyst, possess strong characteristics including good differentiation potential, immune tolerance with low antigen-presenting ability, and unique immune properties. Hence, hAESCs hold great promise for the treatment of not only SLE but also other autoimmune diseases.
Collapse
Affiliation(s)
- Liping Xu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- Department of Rheumatology and Immunology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine affiliated to Zhejiang Chinese Medicine University, Wenzhou, Zhejiang, China
| | - Qiaoding Dai
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Yan Zhang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Na Lin
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Lina Ji
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Xinwei Song
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| |
Collapse
|
9
|
Qiu C, Sun Y, Li J, Zhou J, Xu Y, Qiu C, Yu K, Liu J, Jiang Y, Cui W, Wang G, Liu H, Yuan W, Jiang T, Kou Y, Ge Z, He Z, Zhang S, He Y, Yu L. A 3D-Printed Dual Driving Forces Scaffold with Self-Promoted Cell Absorption for Spinal Cord Injury Repair. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301639. [PMID: 37870182 PMCID: PMC10667844 DOI: 10.1002/advs.202301639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 09/23/2023] [Indexed: 10/24/2023]
Abstract
Stem cells play critical roles in cell therapies and tissue engineering for nerve repair. However, achieving effective delivery of high cell density remains a challenge. Here, a novel cell delivery platform termed the hyper expansion scaffold (HES) is developed to enable high cell loading. HES facilitated self-promoted and efficient cell absorption via a dual driving force model. In vitro tests revealed that the HES rapidly expanded 80-fold in size upon absorbing 2.6 million human amniotic epithelial stem cells (hAESCs) within 2 min, representing over a 400% increase in loading capacity versus controls. This enhanced uptake benefited from macroscopic swelling forces as well as microscale capillary action. In spinal cord injury (SCI) rats, HES-hAESCs promoted functional recovery and axonal projection by reducing neuroinflammation and improving the neurotrophic microenvironment surrounding the lesions. In summary, the dual driving forces model provides a new rationale for engineering hydrogel scaffolds to facilitate self-promoted cell absorption. The HES platform demonstrates great potential as a powerful and efficient vehicle for delivering high densities of hAESCs to promote clinical treatment and repair of SCI.
Collapse
Affiliation(s)
- Chen Qiu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang ProvinceDepartment of CardiologySir Run Run Shaw HospitalZhejiang UniversityHangzhou310058China
- MOE Laboratory of Biosystems Homeostasis & Protection and iCell Biotechnology Regenerative Biomedicine Laboratory of College of Life SciencesZhejiang UniversityHangzhou310058China
| | - Yuan Sun
- State Key Laboratory of Fluid Power and Mechatronic SystemsSchool of Mechanical EngineeringZhejiang UniversityHangzhou310027China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang ProvinceSchool of Mechanical EngineeringZhejiang UniversityHangzhou310027China
| | - Jinying Li
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang ProvinceDepartment of CardiologySir Run Run Shaw HospitalZhejiang UniversityHangzhou310058China
- MOE Laboratory of Biosystems Homeostasis & Protection and iCell Biotechnology Regenerative Biomedicine Laboratory of College of Life SciencesZhejiang UniversityHangzhou310058China
| | - Jiayi Zhou
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang ProvinceDepartment of CardiologySir Run Run Shaw HospitalZhejiang UniversityHangzhou310058China
- MOE Laboratory of Biosystems Homeostasis & Protection and iCell Biotechnology Regenerative Biomedicine Laboratory of College of Life SciencesZhejiang UniversityHangzhou310058China
| | - Yuchen Xu
- Qiushi Academy for Advanced StudiesZhejiang UniversityHangzhou310027China
| | - Cong Qiu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang ProvinceDepartment of CardiologySir Run Run Shaw HospitalZhejiang UniversityHangzhou310058China
- MOE Laboratory of Biosystems Homeostasis & Protection and iCell Biotechnology Regenerative Biomedicine Laboratory of College of Life SciencesZhejiang UniversityHangzhou310058China
| | - Kang Yu
- State Key Laboratory of Fluid Power and Mechatronic SystemsSchool of Mechanical EngineeringZhejiang UniversityHangzhou310027China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang ProvinceSchool of Mechanical EngineeringZhejiang UniversityHangzhou310027China
| | - Jia Liu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang ProvinceDepartment of CardiologySir Run Run Shaw HospitalZhejiang UniversityHangzhou310058China
- MOE Laboratory of Biosystems Homeostasis & Protection and iCell Biotechnology Regenerative Biomedicine Laboratory of College of Life SciencesZhejiang UniversityHangzhou310058China
| | - Yuanqing Jiang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang ProvinceDepartment of CardiologySir Run Run Shaw HospitalZhejiang UniversityHangzhou310058China
- MOE Laboratory of Biosystems Homeostasis & Protection and iCell Biotechnology Regenerative Biomedicine Laboratory of College of Life SciencesZhejiang UniversityHangzhou310058China
| | - Wenyu Cui
- Eye Centerthe Second Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhou310009China
| | | | - He Liu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang ProvinceDepartment of CardiologySir Run Run Shaw HospitalZhejiang UniversityHangzhou310058China
- MOE Laboratory of Biosystems Homeostasis & Protection and iCell Biotechnology Regenerative Biomedicine Laboratory of College of Life SciencesZhejiang UniversityHangzhou310058China
| | - Weixin Yuan
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang ProvinceDepartment of CardiologySir Run Run Shaw HospitalZhejiang UniversityHangzhou310058China
- MOE Laboratory of Biosystems Homeostasis & Protection and iCell Biotechnology Regenerative Biomedicine Laboratory of College of Life SciencesZhejiang UniversityHangzhou310058China
| | - Tuoying Jiang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang ProvinceDepartment of CardiologySir Run Run Shaw HospitalZhejiang UniversityHangzhou310058China
- MOE Laboratory of Biosystems Homeostasis & Protection and iCell Biotechnology Regenerative Biomedicine Laboratory of College of Life SciencesZhejiang UniversityHangzhou310058China
| | - Yaohui Kou
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang ProvinceDepartment of CardiologySir Run Run Shaw HospitalZhejiang UniversityHangzhou310058China
- MOE Laboratory of Biosystems Homeostasis & Protection and iCell Biotechnology Regenerative Biomedicine Laboratory of College of Life SciencesZhejiang UniversityHangzhou310058China
| | - Zhen Ge
- School of Pharmaceutical SciencesHangzhou Medical CollegeHangzhou310013China
| | - Zhiying He
- Institute for Regenerative MedicineShanghai East HospitalSchool of Life Sciences and TechnologyTongji UniversityShanghai200123China
- Shanghai Engineering Research Center of Stem Cells Translational MedicineShanghai200335China
| | - Shaomin Zhang
- Qiushi Academy for Advanced StudiesZhejiang UniversityHangzhou310027China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic SystemsSchool of Mechanical EngineeringZhejiang UniversityHangzhou310027China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang ProvinceSchool of Mechanical EngineeringZhejiang UniversityHangzhou310027China
| | - Luyang Yu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang ProvinceDepartment of CardiologySir Run Run Shaw HospitalZhejiang UniversityHangzhou310058China
- MOE Laboratory of Biosystems Homeostasis & Protection and iCell Biotechnology Regenerative Biomedicine Laboratory of College of Life SciencesZhejiang UniversityHangzhou310058China
| |
Collapse
|
10
|
Cheng YW, Luo Y, Zheng SJ, Xiao JH. Combination therapy with human amniotic epithelial cells and hyaluronic acid promotes immune balance recovery in type 1 diabetic rats through local engraftment. Scand J Immunol 2023; 97:e13246. [PMID: 36575914 DOI: 10.1111/sji.13246] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/15/2022] [Accepted: 12/17/2022] [Indexed: 12/29/2022]
Abstract
Stem cell engraftment is currently a promising approach for type 1 diabetes mellitus (T1DM) treatment. In our previous study, engraftment of a combination of human amniotic epithelial cells (hAECs) and hyaluronic acid (HA) showed potent anti-diabetic effect in streptozotocin (STZ)-induced T1DM mice via tail vein injection. Here, we adopted a different route of stem cell delivery, that is via pancreatic subcapsular transplantation. This combined local engraftment of hAECs and HA in STZ-induced T1DM rats showed potent anti-diabetic activity, leading to stronger hypoglycaemia, more intact islet structure and increased number of insulin-positive cells compared with those with hAECs or insulin treatments. Engraftment of hAECs alone increased the proportion of Th1 and T-reg cells and decreased the proportion of Th2 and Th17 cells to protect islet β cells in STZ-induced T1DM rats, whereas the combined engraftment of hAECs and HA showed more potent regulatory capacity, considerably decreased the level of TNF-α and IL-17 and increased the level of TGF-β1 compared with those by other treatments. The potent synergistic effect of HA contributed to the recovery of immune balance in the diabetic rat model, thereby suggesting a new strategy for effective treatment of T1DM.
Collapse
Affiliation(s)
- Ya-Wei Cheng
- Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yi Luo
- Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology & Guizhou Provincial Research Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Shu-Juan Zheng
- Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jian-Hui Xiao
- Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology & Guizhou Provincial Research Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
11
|
Munoz-Torres JR, Martínez-González SB, Lozano-Luján AD, Martínez-Vázquez MC, Velasco-Elizondo P, Garza-Veloz I, Martinez-Fierro ML. Biological properties and surgical applications of the human amniotic membrane. Front Bioeng Biotechnol 2023; 10:1067480. [PMID: 36698632 PMCID: PMC9868191 DOI: 10.3389/fbioe.2022.1067480] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023] Open
Abstract
The amniotic membrane (AM) is the inner part of the placenta. It has been used therapeutically for the last century. The biological proprieties of AM include immunomodulatory, anti-scarring, anti-microbial, pro or anti-angiogenic (surface dependent), and tissue growth promotion. Because of these, AM is a functional tissue for the treatment of different pathologies. The AM is today part of the treatment for various conditions such as wounds, ulcers, burns, adhesions, and skin injury, among others, with surgical resolution. This review focuses on the current surgical areas, including gynecology, plastic surgery, gastrointestinal, traumatology, neurosurgery, and ophthalmology, among others, that use AM as a therapeutic option to increase the success rate of surgical procedures. Currently there are articles describing the mechanisms of action of AM, some therapeutic implications and the use in surgeries of specific surgical areas, this prevents knowing the therapeutic response of AM when used in surgeries of different organs or tissues. Therefore, we described the use of AM in various surgical specialties along with the mechanisms of action, helping to improve the understanding of the therapeutic targets and achieving an adequate perspective of the surgical utility of AM with a particular emphasis on regenerative medicine.
Collapse
|
12
|
Therapeutic Effect of Biomimetic Scaffold Loaded with Human Amniotic Epithelial Cell-Derived Neural-like Cells for Spinal Cord Injury. Bioengineering (Basel) 2022; 9:bioengineering9100535. [PMID: 36290504 PMCID: PMC9598945 DOI: 10.3390/bioengineering9100535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022] Open
Abstract
Spinal cord injury (SCI) results in devastating consequences for the motor and sensory function of patients due to neuronal loss and disrupted neural circuits, confronting poor prognosis and lack of effective therapies. A new therapeutic strategy is urgently required. Here, human amniotic epithelial cells (hAEC), featured with immunocompatibility, non-tumorgenicity and no ethical issues, were induced into neural-like cells by a compound cocktail, as evidenced with morphological change and the expression of neural cell markers. Interestingly, the hAEC-neural-like cells maintain the characteristic of low immunogenicity as hAEC. Aiming at SCI treatment in vivo, we constructed a 3D-printed GelMA hydrogel biomimetic spinal cord scaffold with micro-channels, in which hAEC-neural-like cells were well-induced and grown. In a rat full transection SCI model, hAEC-neural-like cell scaffolds that were implanted in the lesion demonstrated significant therapeutic effects; the neural circuit and hindlimb locomotion were partly recovered compared to little affection in the SCI rats receiving an empty scaffold or a sham implantation operation. Thus, the establishment of hAEC-neural-like cell biomimetic scaffolds may provide a safe and effective treatment strategy for SCI.
Collapse
|
13
|
Repair of Retinal Degeneration by Human Amniotic Epithelial Stem Cell-Derived Photoreceptor-like Cells. Int J Mol Sci 2022; 23:ijms23158722. [PMID: 35955866 PMCID: PMC9369429 DOI: 10.3390/ijms23158722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/22/2022] Open
Abstract
The loss of photoreceptors is a major event of retinal degeneration that accounts for most cases of untreatable blindness globally. To date, there are no efficient therapeutic approaches to treat this condition. In the present study, we aimed to investigate whether human amniotic epithelial stem cells (hAESCs) could serve as a novel seed cell source of photoreceptors for therapy. Here, a two–step treatment with combined Wnt, Nodal, and BMP inhibitors, followed by another cocktail of retinoic acid, taurine, and noggin induced photoreceptor–like cell differentiation of hAESCs. The differentiated cells demonstrated the morphology and signature marker expression of native photoreceptor cells and, intriguingly, bore very low levels of major histocompatibility complex (MHC) class II molecules and a high level of non–classical MHC class I molecule HLA–G. Importantly, subretinal transplantation of the hAESCs–derived PR–like cells leads to partial restoration of visual function and retinal structure in Royal College of Surgeon (RCS) rats, the classic preclinical model of retinal degeneration. Together, our results reveal hAESCs as a potential source of functional photoreceptor cells; the hAESCs–derived photoreceptor–like cells could be a promising cell–replacement candidate for therapy of retinal degeneration diseases.
Collapse
|
14
|
Yang M, Wang L, Chen Z, Hao W, You Q, Lin J, Tang J, Zhao X, Gao WQ, Xu H. Topical administration of the secretome derived from human amniotic epithelial cells ameliorates psoriasis-like skin lesions in mice. Stem Cell Res Ther 2022; 13:393. [PMID: 35922852 PMCID: PMC9351215 DOI: 10.1186/s13287-022-03091-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Psoriasis is a chronic inflammatory skin disease. Tissue stem cells have exhibited a therapeutic effect on psoriatic mice. However, the therapeutic effect of topical administration of the secretome derived from tissue stem cells on psoriasis has not been reported. METHODS The secretome from human amniotic epithelial cells (AEC-SC) and human umbilical cord mesenchymal stem cells (UMSC-SC) was topically administrated on the back of imiquimod-induced psoriasis-like mice. Subsequently, we observed the skin lesions and skin inflammation of psoriasis-like mice. Next, we further analyzed the paracrine factors in AEC-SC and UMSC-SC by protein chips. Lastly, the effect of the crucial paracrine factor was investigated by imiquimod-induced psoriasis-like mice. RESULTS We found that AEC-SC had a better therapeutic effect on attenuating psoriasis-like skin lesions including skin scales, skin redness and skin thickness than UMSC-SC, and it had a better regulatory effect on keratinocyte hyperproliferation and altered differentiation. Thus, we focused on AEC-SC. Further study showed that AEC-SC reduced the infiltration of neutrophils and interleukin-17-producing T cells. Next, the analysis of AEC-SC with protein chip revealed that the levels of anti-inflammatory factor interleukin-1 receptor antagonist (IL-1ra) were much higher in AEC-SC compared to that in UMSC-SC. More importantly, the beneficial effect of AEC-SC on psoriasis-like skin lesions and skin inflammation of mice were significantly impaired when neutralizing with IL-1ra antibody, while the recombinant human IL-1ra showed a less protective effect than AEC-SC. CONCLUSIONS The present study demonstrated that AEC-SC could efficiently ameliorate psoriasis-like skin lesions and skin inflammation and IL-1ra plays an essential role. Therefore, topical administration of AEC-SC may provide a novel strategy for treating psoriasis-like inflammatory skin diseases.
Collapse
Affiliation(s)
- Mengbo Yang
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Lanqi Wang
- Department of Dermatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Zhimin Chen
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Weijie Hao
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Qian You
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jianhua Lin
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jingzhi Tang
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xin Zhao
- Department of Dermatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China. .,Med-X Research Institute and School of Biological Medical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Huiming Xu
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
15
|
Tang PMK, Chen H, Tang Y, Nikolic-Paterson DJ, Lan HY. Editorial: Immune Landscape of Kidney Pathology. Front Physiol 2022; 12:827537. [PMID: 35145431 PMCID: PMC8822390 DOI: 10.3389/fphys.2021.827537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 12/22/2021] [Indexed: 12/21/2022] Open
Affiliation(s)
- Patrick Ming-Kuen Tang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- *Correspondence: Patrick Ming-Kuen Tang
| | - Haiyong Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ying Tang
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - David J. Nikolic-Paterson
- Department of Nephrology, Monash University, Clayton, VIC, Australia
- Department of Medicine, Monash Medical Centre, Clayton, VIC, Australia
| | - Hui Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Hui Yao Lan
| |
Collapse
|
16
|
Al Mushafi A, Ooi JD, Odobasic D. Crescentic Glomerulonephritis: Pathogenesis and Therapeutic Potential of Human Amniotic Stem Cells. Front Physiol 2021; 12:724186. [PMID: 34721059 PMCID: PMC8554237 DOI: 10.3389/fphys.2021.724186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 09/24/2021] [Indexed: 12/15/2022] Open
Abstract
Chronic kidney disease (CKD) leads to significant morbidity and mortality worldwide. Glomerulonephritis (GN) is the second leading cause of CKD resulting in end stage renal failure. The most severe and rapidly progressive type of GN is characterized by glomerular crescent formation. The current therapies for crescentic GN, which consist of broad immunosuppressive drugs, are partially effective, non-specific, toxic and cause many serious side effects including infections, cancer, and cardiovascular problems. Therefore, new and safer therapies are needed. Human amniotic epithelial cells (hAECs) are a type of stem cell which are isolated from the placenta after birth. They represent an attractive and novel therapeutic option for the treatment of various inflammatory conditions owing to their unique and selective immunosuppressive ability, as well as their excellent safety profile and clinical applicability. In this review, we will discuss the immunopathogenesis of crescentic GN, issues with currently available treatments and how hAECs offer potential to become a new and harmless treatment option for this condition.
Collapse
Affiliation(s)
- Ahmed Al Mushafi
- Department of Medicine, Monash Medical Centre, Centre for Inflammatory Diseases, Monash University, Clayton, VIC, Australia
| | - Joshua D Ooi
- Department of Medicine, Monash Medical Centre, Centre for Inflammatory Diseases, Monash University, Clayton, VIC, Australia
| | - Dragana Odobasic
- Department of Medicine, Monash Medical Centre, Centre for Inflammatory Diseases, Monash University, Clayton, VIC, Australia
| |
Collapse
|
17
|
Li J, Qiu C, Wei Y, Yuan W, Liu J, Cui W, Zhou J, Qiu C, Guo L, Huang L, Ge Z, Yu L. Human Amniotic Epithelial Stem Cell-Derived Retinal Pigment Epithelium Cells Repair Retinal Degeneration. Front Cell Dev Biol 2021; 9:737242. [PMID: 34650985 PMCID: PMC8505778 DOI: 10.3389/fcell.2021.737242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/06/2021] [Indexed: 01/05/2023] Open
Abstract
Age-related macular degeneration (AMD), featured with dysfunction and loss of retinal pigment epithelium (RPE), is lacking efficient therapeutic approaches. According to our previous studies, human amniotic epithelial stem cells (hAESCs) may serve as a potential seed cell source of RPE cells for therapy because they have no ethical concerns, no tumorigenicity, and little immunogenicity. Herein, trichostatin A and nicotinamide can direct hAESCs differentiation into RPE like cells. The differentiated cells display the morphology, marker expression and cellular function of the native RPE cells, and noticeably express little MHC class II antigens and high level of HLA-G. Moreover, visual function and retinal structure of Royal College of Surgeon (RCS) rats, a classical animal model of retinal degeneration, were rescued after subretinal transplantation with the hAESCs-derived RPE like cells. Our study possibly makes some contribution to the resource of functional RPE cells for cell therapy. Subretinal transplantation of hAESCs-RPE could be an optional therapeutic strategy for retinal degeneration diseases.
Collapse
Affiliation(s)
- Jinying Li
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Zhejiang University, Hangzhou, China
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, China
| | - Chen Qiu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Zhejiang University, Hangzhou, China
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, China
| | - Yang Wei
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, China
| | - Weixin Yuan
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jia Liu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Zhejiang University, Hangzhou, China
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, China
| | - Wenyu Cui
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Zhejiang University, Hangzhou, China
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, China
| | - Jiayi Zhou
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Zhejiang University, Hangzhou, China
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, China
| | - Cong Qiu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Zhejiang University, Hangzhou, China
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, China
| | - Lihe Guo
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Liquan Huang
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, China
| | - Zhen Ge
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, China
| | - Luyang Yu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Zhejiang University, Hangzhou, China
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, China
| |
Collapse
|
18
|
Odobasic D, Holdsworth SR. Emerging Cellular Therapies for Anti-myeloperoxidase Vasculitis and Other Autoimmune Diseases. Front Immunol 2021; 12:642127. [PMID: 34394071 PMCID: PMC8358391 DOI: 10.3389/fimmu.2021.642127] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 07/08/2021] [Indexed: 11/26/2022] Open
Abstract
Anti-myeloperoxidase vasculitis (MPO-AAV) is a life-threatening autoimmune disease which causes severe inflammation of small blood vessels, mainly in the kidney. As for many other autoimmune diseases, current treatments, which consist of general immunosuppressants, are partially effective, toxic and broadly immunosuppressive, causing significant and serious adverse effects in many patients. Therefore, there is an urgent need for more targeted and less harmful therapies. Tolerogenic dendritic cells, regulatory T cells and stem cells have emerged as attractive, new and safer options for the treatment for various autoimmune diseases due to their unique and selective immunosuppressive capacity. In this review, we will discuss how these cellular therapies offer potential to become novel and safer treatments for MPO-AAV.
Collapse
Affiliation(s)
- Dragana Odobasic
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Monash Medical Centre, Clayton, VIC, Australia
| | - Stephen R Holdsworth
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Monash Medical Centre, Clayton, VIC, Australia.,Department of Nephrology, Monash Health, Clayton, VIC, Australia.,Department of Immunology, Monash Health, Clayton, VIC, Australia
| |
Collapse
|
19
|
Regulatory Effect of Mesenchymal Stem Cells on T Cell Phenotypes in Autoimmune Diseases. Stem Cells Int 2021; 2021:5583994. [PMID: 33859701 PMCID: PMC8024100 DOI: 10.1155/2021/5583994] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/03/2021] [Accepted: 03/11/2021] [Indexed: 02/08/2023] Open
Abstract
Research on mesenchymal stem cells (MSCs) starts from the earliest assumption that cells derived from the bone marrow have the ability to repair tissues. Several scientists have since documented the crucial role of bone marrow-derived MSCs (BM-MSCs) in processes such as embryonic bone and cartilage formation, adult fracture and tissue repair, and immunomodulatory activities in therapeutic applications. In addition to BM-MSCs, several sources of MSCs have been reported to possess tissue repair and immunoregulatory abilities, making them potential treatment options for many diseases. Therefore, the therapeutic potential of MSCs in various diseases including autoimmune conditions has been explored. In addition to an imbalance of T cell subsets in most patients with autoimmune diseases, they also exhibit complex disease manifestations, overlapping symptoms among diseases, and difficult treatment. MSCs can regulate T cell subsets to restore their immune homeostasis toward disease resolution in autoimmune conditions. This review summarizes the role of MSCs in relieving autoimmune diseases via the regulation of T cell phenotypes.
Collapse
|
20
|
Magatti M, Masserdotti A, Cargnoni A, Papait A, Stefani FR, Silini AR, Parolini O. The Role of B Cells in PE Pathophysiology: A Potential Target for Perinatal Cell-Based Therapy? Int J Mol Sci 2021; 22:3405. [PMID: 33810280 PMCID: PMC8037408 DOI: 10.3390/ijms22073405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 12/16/2022] Open
Abstract
The pathophysiology of preeclampsia (PE) is poorly understood; however, there is a large body of evidence that suggests a role of immune cells in the development of PE. Amongst these, B cells are a dominant element in the pathogenesis of PE, and they have been shown to play an important role in various immune-mediated diseases, both as pro-inflammatory and regulatory cells. Perinatal cells are defined as cells from birth-associated tissues isolated from term placentas and fetal annexes and more specifically from the amniotic membrane, chorionic membrane, chorionic villi, umbilical cord (including Wharton's jelly), the basal plate, and the amniotic fluid. They have drawn particular attention in recent years due to their ability to modulate several aspects of immunity, making them promising candidates for the prevention and treatment of various immune-mediated diseases. In this review we describe main findings regarding the multifaceted in vitro and in vivo immunomodulatory properties of perinatal cells, with a focus on B lymphocytes. Indeed, we discuss evidence on the ability of perinatal cells to inhibit B cell proliferation, impair B cell differentiation, and promote regulatory B cell formation. Therefore, the findings discussed herein unveil the possibility to modulate B cell activation and function by exploiting perinatal immunomodulatory properties, thus possibly representing a novel therapeutic strategy in PE.
Collapse
Affiliation(s)
- Marta Magatti
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy; (M.M.); (A.C.); (A.P.); (F.R.S.); (A.R.S.)
| | - Alice Masserdotti
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore Facoltà di Medicina e Chirurgia, 00168 Roma, Italy;
| | - Anna Cargnoni
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy; (M.M.); (A.C.); (A.P.); (F.R.S.); (A.R.S.)
| | - Andrea Papait
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy; (M.M.); (A.C.); (A.P.); (F.R.S.); (A.R.S.)
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore Facoltà di Medicina e Chirurgia, 00168 Roma, Italy;
| | - Francesca Romana Stefani
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy; (M.M.); (A.C.); (A.P.); (F.R.S.); (A.R.S.)
| | - Antonietta Rosa Silini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy; (M.M.); (A.C.); (A.P.); (F.R.S.); (A.R.S.)
| | - Ornella Parolini
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore Facoltà di Medicina e Chirurgia, 00168 Roma, Italy;
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Roma, Italy
| |
Collapse
|
21
|
Schwab RHM, Goonetilleke M, Zhu D, Kusuma GD, Wallace EM, Sievert W, Lim R. Amnion Epithelial Cells — a Therapeutic Source. CURRENT STEM CELL REPORTS 2021. [DOI: 10.1007/s40778-021-00187-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
22
|
Bai X, Liu J, Yuan W, Liu Y, Li W, Cao S, Yu L, Wang L. Therapeutic Effect of Human Amniotic Epithelial Cells in Rat Models of Intrauterine Adhesions. Cell Transplant 2021; 29:963689720908495. [PMID: 32223314 PMCID: PMC7444214 DOI: 10.1177/0963689720908495] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
As a refractory fibrosis disease, intrauterine adhesions (IUAs) is defined as
fibrosis of the physiological endometrium. Although hysteroscopic adhesiolysis
is widely recommended as an effective treatment, prognosis and recurrence remain
poor in severe cases. Recently, stem cell therapy has been promoted as a
promising treatment for IUAs. The ability of human amniotic epithelial cells
(hAECs), emerging as a new candidate for stem cell therapy, to treat IUAs has
not been demonstrated. To study the potential effects of hAECs on IUAs, we
created an IUA rat model using mechanical injury and injected cultured primary
hAECs into the rats’ uteri. Next, we observed the morphological structure of
endometrial thickness and glands using hematoxylin and eosin staining, and we
detected extracellular-matrix collagen deposition using Masson staining. In
addition, we performed immunohistochemical staining and reverse-transcription
polymerase chain reaction (RT-PCR) to investigate potential fibrosis molecules
and angiogenesis factors 7 d after hAECs transplantation. Finally, we detected
estrogen receptor (ER) and growth factors via RT-PCR to verify the molecular
mechanism underlying cell therapy. In the IUA rat models, endometrial thickness
and endometrial glands proliferated and collagen deposition decreased
significantly after hAEC transplantation. We found that during the recovery of
injured endometrium, the crucial fibrosis marker transforming growth factor-β
(TGF-β) was regulated and angiogenesis occurred in the endometrial tissue with
the up-regulation of vascular endothelial growth factor. Furthermore, hAECs were
shown to promote ER expression in the endometrium and regulate the inflammatory
reaction in the uterine microenvironment. In conclusion, these results
demonstrated that hAEC transplantation could inhibit the progression of fibrosis
and promote proliferation and angiogenesis in IUA rat models. The current study
suggests hAECs as a novel stem cell candidate in the treatment of severe
IUA.
Collapse
Affiliation(s)
- Xuechai Bai
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Jia Liu
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Hangzhou, People's Republic of China.,Shanghai iCELL Biotechnology Co Ltd, Shanghai, People's Republic of China
| | - Weixin Yuan
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Hangzhou, People's Republic of China
| | - Yang Liu
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Wei Li
- Department of Gynecology, Ningbo Yinzhou People's Hospital, Ningbo, People's Republic of China
| | - Siyu Cao
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Luyang Yu
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Hangzhou, People's Republic of China.,College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Hangzhou, People's Republic of China
| | - Liang Wang
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| |
Collapse
|
23
|
Liu QW, Huang QM, Wu HY, Zuo GSL, Gu HC, Deng KY, Xin HB. Characteristics and Therapeutic Potential of Human Amnion-Derived Stem Cells. Int J Mol Sci 2021; 22:ijms22020970. [PMID: 33478081 PMCID: PMC7835733 DOI: 10.3390/ijms22020970] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/06/2021] [Accepted: 01/14/2021] [Indexed: 02/08/2023] Open
Abstract
Stem cells including embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and adult stem cells (ASCs) are able to repair/replace damaged or degenerative tissues and improve functional recovery in experimental model and clinical trials. However, there are still many limitations and unresolved problems regarding stem cell therapy in terms of ethical barriers, immune rejection, tumorigenicity, and cell sources. By reviewing recent literatures and our related works, human amnion-derived stem cells (hADSCs) including human amniotic mesenchymal stem cells (hAMSCs) and human amniotic epithelial stem cells (hAESCs) have shown considerable advantages over other stem cells. In this review, we first described the biological characteristics and advantages of hADSCs, especially for their high pluripotency and immunomodulatory effects. Then, we summarized the therapeutic applications and recent progresses of hADSCs in treating various diseases for preclinical research and clinical trials. In addition, the possible mechanisms and the challenges of hADSCs applications have been also discussed. Finally, we highlighted the properties of hADSCs as a promising source of stem cells for cell therapy and regenerative medicine and pointed out the perspectives for the directions of hADSCs applications clinically.
Collapse
Affiliation(s)
- Quan-Wen Liu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Q.-W.L.); (Q.-M.H.); (H.-Y.W.); (G.-S.-L.Z.); (H.-C.G.); (K.-Y.D.)
| | - Qi-Ming Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Q.-W.L.); (Q.-M.H.); (H.-Y.W.); (G.-S.-L.Z.); (H.-C.G.); (K.-Y.D.)
- School of Life and Science, Nanchang University, Nanchang 330031, China
| | - Han-You Wu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Q.-W.L.); (Q.-M.H.); (H.-Y.W.); (G.-S.-L.Z.); (H.-C.G.); (K.-Y.D.)
| | - Guo-Si-Lang Zuo
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Q.-W.L.); (Q.-M.H.); (H.-Y.W.); (G.-S.-L.Z.); (H.-C.G.); (K.-Y.D.)
| | - Hao-Cheng Gu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Q.-W.L.); (Q.-M.H.); (H.-Y.W.); (G.-S.-L.Z.); (H.-C.G.); (K.-Y.D.)
- School of Life and Science, Nanchang University, Nanchang 330031, China
| | - Ke-Yu Deng
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Q.-W.L.); (Q.-M.H.); (H.-Y.W.); (G.-S.-L.Z.); (H.-C.G.); (K.-Y.D.)
- School of Life and Science, Nanchang University, Nanchang 330031, China
| | - Hong-Bo Xin
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Q.-W.L.); (Q.-M.H.); (H.-Y.W.); (G.-S.-L.Z.); (H.-C.G.); (K.-Y.D.)
- School of Life and Science, Nanchang University, Nanchang 330031, China
- Correspondence: ; Tel.: +86-791-8396-9015
| |
Collapse
|
24
|
Li Y, Zuo X, Hua C, Zhao Y, Pei X, Tian M. Effects of Selenium Supplement on B Lymphocyte Activity in Experimental Autoimmune Thyroiditis Rats. Int J Endocrinol 2021; 2021:9439344. [PMID: 34422046 PMCID: PMC8373486 DOI: 10.1155/2021/9439344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/01/2021] [Accepted: 08/04/2021] [Indexed: 12/02/2022] Open
Abstract
METHODS 45 healthy and adult female SD rats were randomly divided into three groups: normal control group, EAT model group, and selenium yeast supplement EAT group. The EAT model rats were induced by subcutaneous injection of porcine thyroglobulin and fed with high iodine water. The concentrations of serum thyroid-stimulating hormone (TSH), TGAb, TPOAb, and B cell activating factor (BAFF) were detected in each group by enzyme-linked immunosorbent assay (ELISA), and the expression of interleukin-10 (IL-10) in thyroid tissue was detected by immunohistochemistry. B cells and regulatory B cells (Bregs) ratios in the spleen of rats were analyzed by flow cytometry. RESULTS In contrast with the EAT model group, the levels of serum TSH, TGAB, TPOAb, and BAFF were decreased, while IL-10 expression was increased in thyroid tissue, and Bregs ratio was upregulated in the spleen (all p < 0.05) in the selenium yeast supplement EAT group. CONCLUSION Selenium yeast supplement could partially attenuate immune imbalance in EAT rats, which may be related to the mechanism of modulating B lymphocyte activity.
Collapse
Affiliation(s)
- Yang Li
- Thyroid Center of Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430070, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan 430074, China
- Hubei University of Traditional Chinese Medicine, Wuhan 430061, China
| | - Xinhe Zuo
- Thyroid Center of Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430070, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan 430074, China
- Hubei University of Traditional Chinese Medicine, Wuhan 430061, China
| | - Chuan Hua
- Thyroid Center of Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430070, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan 430074, China
- Hubei University of Traditional Chinese Medicine, Wuhan 430061, China
| | - Yong Zhao
- Thyroid Center of Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430070, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan 430074, China
- Hubei University of Traditional Chinese Medicine, Wuhan 430061, China
| | - Xun Pei
- Thyroid Center of Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430070, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan 430074, China
- Hubei University of Traditional Chinese Medicine, Wuhan 430061, China
| | - Man Tian
- Thyroid Center of Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430070, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan 430074, China
- Hubei University of Traditional Chinese Medicine, Wuhan 430061, China
| |
Collapse
|
25
|
Qiu C, Ge Z, Cui W, Yu L, Li J. Human Amniotic Epithelial Stem Cells: A Promising Seed Cell for Clinical Applications. Int J Mol Sci 2020; 21:ijms21207730. [PMID: 33086620 PMCID: PMC7594030 DOI: 10.3390/ijms21207730] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
Perinatal stem cells have been regarded as an attractive and available cell source for medical research and clinical trials in recent years. Multiple stem cell types have been identified in the human placenta. Recent advances in knowledge on placental stem cells have revealed that human amniotic epithelial stem cells (hAESCs) have obvious advantages and can be used as a novel potential cell source for cellular therapy and clinical application. hAESCs are known to possess stem-cell-like plasticity, immune-privilege, and paracrine properties. In addition, non-tumorigenicity and a lack of ethical concerns are two major advantages compared with embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). All of the characteristics mentioned above and other additional advantages, including easy accessibility and a non-invasive application procedure, make hAESCs a potential ideal cell type for use in both research and regenerative medicine in the near future. This review article summarizes current knowledge on the characteristics, therapeutic potential, clinical advances and future challenges of hAESCs in detail.
Collapse
Affiliation(s)
- Chen Qiu
- MOE Laboratory of Biosystems Homeostasis & Protection and College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (C.Q.); (W.C.)
| | - Zhen Ge
- Institute of Materia Medica, Hangzhou Medical College, Hangzhou 310013, China;
| | - Wenyu Cui
- MOE Laboratory of Biosystems Homeostasis & Protection and College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (C.Q.); (W.C.)
| | - Luyang Yu
- MOE Laboratory of Biosystems Homeostasis & Protection and College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (C.Q.); (W.C.)
- Correspondence: (L.Y.); (J.L.)
| | - Jinying Li
- MOE Laboratory of Biosystems Homeostasis & Protection and College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (C.Q.); (W.C.)
- Correspondence: (L.Y.); (J.L.)
| |
Collapse
|
26
|
Zhang Q, Lai D. Application of human amniotic epithelial cells in regenerative medicine: a systematic review. Stem Cell Res Ther 2020; 11:439. [PMID: 33059766 PMCID: PMC7559178 DOI: 10.1186/s13287-020-01951-w] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/24/2020] [Indexed: 12/16/2022] Open
Abstract
Human amniotic epithelial cells (hAECs) derived from placental tissues have gained considerable attention in the field of regenerative medicine. hAECs possess embryonic stem cell-like proliferation and differentiation capabilities, and adult stem cell-like immunomodulatory properties. Compared with other types of stem cell, hAECs have special advantages, including easy isolation, plentiful numbers, the obviation of ethical debates, and non-immunogenic and non-tumorigenic properties. During the past two decades, the therapeutic potential of hAECs for treatment of various diseases has been extensively investigated. Accumulating evidence has demonstrated that hAEC transplantation helps to repair and rebuild the function of damaged tissues and organs by different molecular mechanisms. This systematic review focused on summarizing the biological characteristics of hAECs, therapeutic applications, and recent advances in treating various tissue injuries and disorders. Relevant studies published in English from 2000 to 2020 describing the role of hAECs in diseases and phenotypes were comprehensively sought out using PubMed, MEDLINE, and Google Scholar. According to the research content, we described the major hAEC characteristics, including induced differentiation plasticity, homing and differentiation, paracrine function, and immunomodulatory properties. We also summarized the current status of clinical research and discussed the prospects of hAEC-based transplantation therapies. In this review, we provide a comprehensive understanding of the therapeutic potential of hAECs, including their use for cell replacement therapy as well as secreted cytokine and exosome biotherapy. Moreover, we showed that the powerful immune-regulatory function of hAECs reveals even more possibilities for their application in the treatment of immune-related diseases. In the future, establishing the optimal culture procedure, achieving precise and accurate treatment, and enhancing the therapeutic potential by utilizing appropriate preconditioning and/or biomaterials would be new challenges for further investigation.
Collapse
Affiliation(s)
- Qiuwan Zhang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Key Laboratory of Embryo Original Diseases; Shanghai Municipal Key Clinical Speciality, 145, Guang-Yuan Road, Shanghai, 200030, People's Republic of China
| | - Dongmei Lai
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Key Laboratory of Embryo Original Diseases; Shanghai Municipal Key Clinical Speciality, 145, Guang-Yuan Road, Shanghai, 200030, People's Republic of China.
| |
Collapse
|
27
|
Zhang Q, Huang Y, Sun J, Gu T, Shao X, Lai D. Immunomodulatory effect of human amniotic epithelial cells on restoration of ovarian function in mice with autoimmune ovarian disease. Acta Biochim Biophys Sin (Shanghai) 2019; 51:845-855. [PMID: 31287492 DOI: 10.1093/abbs/gmz065] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/28/2019] [Indexed: 12/23/2022] Open
Abstract
Autoimmune ovarian disease (AOD) is considered to be a major cause of premature ovarian failure (POF). The immunomodulatory properties of human amniotic epithelial cells (hAECs) have been studied in many disease models. We previously reported that hAECs restored ovarian function in chemotherapy-induced POF mice, but the immunomodulatory mechanism of hAECs is still unclear. To investigate the effect of hAECs on recipient mice, especially on regulatory Treg cells, hAECs and hAEC-conditioned medium (hAEC-CM) were intravenously injected into AOD mice immunized with zona pellucida protein 3 peptides (pZP3). Ovarian function was evaluated through estrous cycle, hormone secretion, follicle development, and cell apoptosis analysis. Immune cells including CD3, CD4, CD8 and Treg cells in the spleens were tested by flow cytometry. To elucidate the effect of hAEC-CM on macrophage function, inflammation model in vitro was established in RAW264.7 cells induced by lipopolysaccharide (LPS). hAECs and hAEC-CM regulated estrous cycles, promoted follicle development, ameliorated cell apoptosis and fibrosis in ovaries of AOD mice. In addition, hAECs significantly reversed the decrease of pZP3-induced Treg cells in the spleens. In vitro, hAEC-CM significantly inhibited the inflammatory reaction induced by LPS in RAW264.7 cells via up-regulating the expression of M2 macrophage genes. Further study demonstrated that hAEC-secreted transforming growth factor-beta and macrophage inhibitory factor played important roles in the macrophage polarization and migration under inflammatory stimulation. Taken together, hAECs restored ovarian function by up-regulating Treg cells in the spleens and reduced the inflammatory reaction via modulating the activated macrophage function in a paracrine manner in the ovaries of AOD mice.
Collapse
Affiliation(s)
- Qiuwan Zhang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Shanghai Municipal Key Clinical Speciality, Shanghai, China
| | - Yating Huang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Junyan Sun
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tingting Gu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyan Shao
- Shanghai iCELL Biotechnology Co., Ltd, Shanghai, China
| | - Dongmei Lai
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Shanghai Municipal Key Clinical Speciality, Shanghai, China
| |
Collapse
|