1
|
Hinckley A, Sanchez-Donoso I, Comas M, Camacho-Sanchez M, Hawkins MTR, Hasan NH, Leonard JA. Challenging ecogeographical rules: Phenotypic variation in the Mountain Treeshrew (Tupaia montana) along tropical elevational gradients. PLoS One 2022; 17:e0268213. [PMID: 35714073 PMCID: PMC9205479 DOI: 10.1371/journal.pone.0268213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 04/22/2022] [Indexed: 11/19/2022] Open
Abstract
Bergmann’s and Allen’s rules were defined to describe macroecological patterns across latitudinal gradients. Bergmann observed a positive association between body size and latitude for endothermic species while Allen described shorter appendages as latitude increases. Almost two centuries later, there is still ongoing discussion about these patterns. Temperature, the common variable in these two rules, varies predictably across both latitude and elevation. Although these rules have been assessed extensively in mammals across latitude, particularly in regions with strong seasonality, studies on tropical montane mammals are scarce. We here test for these patterns and assess the variation of several other locomotory, diet-associated, body condition, and thermoregulatory traits across elevation in the Mountain Treeshrew (Tupaia montana) on tropical mountains in Borneo. Based on morphological measurements from both the field and scientific collections, we found a complex pattern: Bergmann’s rule was not supported in our tropical mountain system, since skull length, body size, and weight decreased from the lowest elevations (<1000 m) to middle elevations (2000–2500 m), and then increased from middle elevations to highest elevations. Allen’s rule was supported for relative tail length, which decreased with elevation, but not for ear and hindfoot length, with the former remaining constant and the latter increasing with elevation. This evidence together with changes in presumed diet-related traits (rostrum length, zygomatic breadth and upper tooth row length) along elevation suggest that selective pressures other than temperature, are playing a more important role shaping the morphological variation across the distribution of the Mountain Treeshrew. Diet, food acquisition, predation pressure, and/or intra- and inter-specific competition, are some of the potential factors driving the phenotypic variation of this study system. The lack of variation in body condition might suggest local adaptation of this species across its elevational range, perhaps due to generalist foraging strategies. Finally, a highly significant temporal effect was detected in several traits but not in others, representing the first phenotypic variation temporal trends described on treeshrews.
Collapse
Affiliation(s)
- Arlo Hinckley
- Conservation & Evolutionary Genetics Group, Estación Biológica de Doñana-CSIC, Seville, Spain
- Division of Mammals, Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States of America
- Departamento de Zoología, Universidad de Sevilla, Seville, Spain
- * E-mail: (AH); (JAL)
| | - Ines Sanchez-Donoso
- Conservation & Evolutionary Genetics Group, Estación Biológica de Doñana-CSIC, Seville, Spain
| | - Mar Comas
- Conservation & Evolutionary Genetics Group, Estación Biológica de Doñana-CSIC, Seville, Spain
- Departamento de Zoología, Universidad de Granada, Granada, Spain
- Department of Biological Sciences, Dartmouth College, Hanover, NH, United States of America
| | - Miguel Camacho-Sanchez
- Conservation & Evolutionary Genetics Group, Estación Biológica de Doñana-CSIC, Seville, Spain
- Instituto Andaluz de Investigación y Formación Agraria, Pesquera, Alimentaria y de la Producción Ecológica (IFAPA), Alcalá del Río, Seville, Spain
| | - Melissa T. R. Hawkins
- Division of Mammals, Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States of America
| | - Noor Haliza Hasan
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Jennifer A. Leonard
- Conservation & Evolutionary Genetics Group, Estación Biológica de Doñana-CSIC, Seville, Spain
- * E-mail: (AH); (JAL)
| |
Collapse
|
2
|
Abd Rabou AFN, Elkahlout KE, Almabhouh FA, Mohamed WF, Khalaf NA, Al-Sadek MA, Alfarra RN, Al-Moqayed LT, Shafei AA, Fayyad NA, Adeem BS, Dardona AW, Awad AS, Al-Agha MR, Abd Rabou MA. Occurrence and Some Ecological Aspects of the Golden Jackal (<i>Canis aureus</i> Linnaeus, 1758) in the Gaza Strip, Palestine. OPEN JOURNAL OF ECOLOGY 2021; 11:105-125. [DOI: 10.4236/oje.2021.112010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
3
|
Nengovhela A, Denys C, Taylor PJ. Life history and habitat do not mediate temporal changes in body size due to climate warming in rodents. PeerJ 2020; 8:e9792. [PMID: 33024624 PMCID: PMC7520088 DOI: 10.7717/peerj.9792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 07/31/2020] [Indexed: 11/20/2022] Open
Abstract
Temporal changes in body size have been documented in a number of vertebrate species, with different contested drivers being suggested to explain these changes. Among these are climate warming, resource availability, competition, predation risk, human population density, island effects and others. Both life history traits (intrinsic factors such as lifespan and reproductive rate) and habitat (extrinsic factors such as vegetation type, latitude and elevation) are expected to mediate the existence of a significant temporal response of body size to climate warming but neither have been widely investigated. Using examples of rodents, we predicted that both life history traits and habitat might explain the probability of temporal response using two tests of this hypothesis. Firstly, taking advantage of new data from museum collections spanning the last 106 years, we investigated geographical and temporal variation in cranial size (a proxy for body size) in six African rodent species of two murid subfamilies (Murinae and Gerbillinae) of varying life history, degree of commensality, range size, and habitat. Two species, the commensal Mastomys natalensis, and the non-commensal Otomys unisulcatus showed significant temporal changes in body size, with the former increasing and the latter decreasing, in relation with climate warming. Commensalism could explain the increase in size with time due to steadily increasing food availability through increased agricultural production. Apart from this, we found no general life history or habitat predictors of a temporal response in African rodents. Secondly, in order to further test this hypothesis, we incorporated our data into a meta-analysis based on published literature on temporal responses in rodents, resulting in a combined dataset for 50 species from seven families worldwide; among these, 29 species showed no significant change, eight showed a significant increase in size, and 13 showed a decline in size. Using a binomial logistic regression model for these metadata, we found that none of our chosen life history or habitat predictors could significantly explain the probability of a temporal response to climate warming, reinforcing our conclusion based on the more detailed data from the six African species.
Collapse
Affiliation(s)
- Aluwani Nengovhela
- South African Research Chair in Biodiversity Value and Change and Centre for Invasion Biology, School of Mathematical and Natural Sciences, University of Venda, Thohoyandou, Limpopo, South Africa
| | - Christiane Denys
- Institut de Systématique, Evolution, Biodiversité (ISYEB), UMR 7205, CNRS, MNHN, UPMC, EPHE, Sorbonne Universités, Paris, France
| | - Peter J Taylor
- South African Research Chair in Biodiversity Value and Change and Centre for Invasion Biology, School of Mathematical and Natural Sciences, University of Venda, Thohoyandou, Limpopo, South Africa.,Zoology and Entomology Department and Afromontane Research Unit, University of the Free State, QwaQwa Campus, Phuthaditjhaba, South Africa
| |
Collapse
|
4
|
Guralnick R, Hantak MM, Li D, McLean BS. Body size trends in response to climate and urbanization in the widespread North American deer mouse, Peromyscus maniculatus. Sci Rep 2020; 10:8882. [PMID: 32483167 PMCID: PMC7264193 DOI: 10.1038/s41598-020-65755-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/23/2020] [Indexed: 01/08/2023] Open
Abstract
Body size decline is hypothesized to be a key response to climate warming, including warming driven by urban heat islands. However, urbanization may also generate selective gradients for body size increases in smaller endotherms via habitat fragmentation. Here we utilize a densely sampled, multi-source dataset to examine how climate and urbanization affect body size of Peromyscus maniculatus (PEMA), an abundant rodent found across North America. We predicted PEMA would conform to Bergmann's Rule, e.g. larger individuals in colder climates, spatially and temporally. Hypotheses regarding body size in relation to urbanization are less clear; however, with increased food resources due to greater anthropogenic activity, we expected an increase in PEMA size. Spatial mixed-models showed that PEMA conform to Bergmann's Rule and that PEMA were shorter in more urbanized areas. With the inclusion of decade in mixed-models, we found PEMA mass, but not length, is decreasing over time irrespective of climate or population density. We also unexpectedly found that, over time, smaller-bodied populations of PEMA are getting larger, while larger-bodied populations are getting smaller. Our work highlights the importance of using dense spatiotemporal datasets, and modeling frameworks that account for bias, to better disentangle broad-scale climatic and urbanization effects on body size.
Collapse
Affiliation(s)
- Robert Guralnick
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA.
| | - Maggie M Hantak
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| | - Daijiang Li
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| | - Bryan S McLean
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA.,Department of Biology, University of North Carolina Greensboro, Greensboro, NC, 27402, USA
| |
Collapse
|
5
|
Korablev NP, Korablev MP, Korablev AP, Korablev PN, Zinoviev AV, Zhagarayte VA, Tumanov IL. Factors of Polymorphism of Craniometric Characters in the Red Fox (Vulpes vulpes, Carnivora, Canidae) from the Center of European Russia. BIOL BULL+ 2020. [DOI: 10.1134/s1062359019080053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Docampo M, Moreno S, Santoro S. Marked reduction in body size of a wood mouse population in less than 30 years. Mamm Biol 2019. [DOI: 10.1016/j.mambio.2018.09.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
7
|
Korytin NS. Increase in Skull Size of Red Fox (Vulpes vulpes) in the Second Half of the XX Century in Northeastern Europe. RUSS J ECOL+ 2018. [DOI: 10.1134/s1067413618010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Gos’kov AM, Korytin NS. Changes of skull size in the red fox (Vulpes vulpes) during the second half of the 20th century in the Middle Urals and neighboring regions. RUSS J ECOL+ 2016. [DOI: 10.1134/s1067413616060060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Khemiri H, Colangelo P, Chétoui M, Nouira S. Skull size and shape variation in Psammomys spp. (Rodentia, Gerbillinae) from Tunisia, with emphasis on the impact of allometric variation on species recognition. AFRICAN ZOOLOGY 2016. [DOI: 10.1080/15627020.2016.1233828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Hanene Khemiri
- Laboratory of Animal Ecology, Department of Biology, Sciences Faculty of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Paolo Colangelo
- CNR, Istituto per lo studio degli Ecosistemi, Verbania-Pallanza, Italy
| | - M’barek Chétoui
- Laboratory of Animal Ecology, Department of Biology, Sciences Faculty of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Saïd Nouira
- Laboratory of Animal Ecology, Department of Biology, Sciences Faculty of Tunis, University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
10
|
Snell-Rood EC, Wick N. Anthropogenic environments exert variable selection on cranial capacity in mammals. Proc Biol Sci 2013; 280:20131384. [PMID: 23966638 DOI: 10.1098/rspb.2013.1384] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
It is thought that behaviourally flexible species will be able to cope with novel and rapidly changing environments associated with human activity. However, it is unclear whether such environments are selecting for increases in behavioural plasticity, and whether some species show more pronounced evolutionary changes in plasticity. To test whether anthropogenic environments are selecting for increased behavioural plasticity within species, we measured variation in relative cranial capacity over time and space in 10 species of mammals. We predicted that urban populations would show greater cranial capacity than rural populations and that cranial capacity would increase over time in urban populations. Based on relevant theory, we also predicted that species capable of rapid population growth would show more pronounced evolutionary responses. We found that urban populations of two small mammal species had significantly greater cranial capacity than rural populations. In addition, species with higher fecundity showed more pronounced differentiation between urban and rural populations. Contrary to expectations, we found no increases in cranial capacity over time in urban populations-indeed, two species tended to have a decrease in cranial capacity over time in urban populations. Furthermore, rural populations of all insectivorous species measured showed significant increases in relative cranial capacity over time. Our results provide partial support for the hypothesis that urban environments select for increased behavioural plasticity, although this selection may be most pronounced early during the urban colonization process. Furthermore, these data also suggest that behavioural plasticity may be simultaneously favoured in rural environments, which are also changing because of human activity.
Collapse
Affiliation(s)
- Emilie C Snell-Rood
- Department of Ecology, Evolution and Behavior, University of Minnesota, Twin Cities, MN, USA.
| | | |
Collapse
|
11
|
Yom-Tov Y, Yom-Tov S, Zachos FE. Temporal and geographical variation in skull size of the red fox (Vulpes vulpes) and the Eurasian badger (Meles meles) in Austria. Biol J Linn Soc Lond 2012. [DOI: 10.1111/j.1095-8312.2012.02028.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Yoram Yom-Tov
- Department of Zoology; Tel Aviv University; Tel Aviv 69978 Israel
| | - Shlomith Yom-Tov
- Department of Zoology; Tel Aviv University; Tel Aviv 69978 Israel
| | - Frank E. Zachos
- Mammal Collection; Natural History Museum Vienna; Burgring 7 1010 Vienna Austria
| |
Collapse
|