1
|
Stefanini MI, Milla Carmona PS, Gómez-Bahamón V, Mongiardino Koch N, Soto IM, Gómez RO, Zyskowski K, Tambussi CP. Craniofacial modularity and the evolution of cranial kinesis in the adaptive radiation of Furnariidae (Aves: Passeriformes). Evolution 2025; 79:625-640. [PMID: 39878561 DOI: 10.1093/evolut/qpaf013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 12/30/2024] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
The role of phenotypic modularity in the evolution of skull morphology in birds has been a subject of debate in recent years. Furnariids (ovenbirds and woodcreepers), a spectacular avian adaptive radiation, are distinguished in their cranial morphology as the only passerines with two types of cranial kinesis, constituting a great model to test whether the evolution of novelties linked to kinesis was associated with shifts in patterns of evolutionary modularity and allometry in the avian skull. Our analyses by means of geometric morphometric tools and phylogenetic comparative methods show that the beak and neurocranium of furnariids evolved in a modular fashion and shaped by the cranial kinesis evolution. Besides, species with prokinesis show a higher degree of modularity and morphological disparity, lower phenotypic rates, as well as higher contribution of allometry in the evolution of the beak morphology than species with proximal rhynchokinesis, suggesting, as observed in several vertebrates, that the functional demands associated with higher degrees of cranial kinesis promoted rapid integration throughout the skull. Prokinetic-robust morphotypes and proximal rhynchokinetic-gracile morphotypes, have repeatedly evolved by evolutionary convergence in both modules, which suggests the existence of functional trade-offs and long-standing adaptive optima related to cranial kinesis.
Collapse
Affiliation(s)
- Manuel I Stefanini
- Laboratorio de Biología Integral de Sistemas Evolutivos, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA-CONICET). DEGE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II (C1428 EHA), CABA, Buenos Aires, Argentina
- Laboratorio de Biología Floral y Ecología Evolutiva, Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET). Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Pablo S Milla Carmona
- The Palaeobiology Research Group, School of Earth Sciences, University of Bristol, Bristol, United Kingdom
| | - Valentina Gómez-Bahamón
- Negaunee Integrative Research Center, The Field Museum of Natural History, Chicago, United States
- Biological Sciences Department, Virginia Tech, Blacksburg, VA, United States
| | - Nicolás Mongiardino Koch
- Department of Geology and Geophysics and Peabody Museum of Natural History, Yale University, New Haven, CT, United States
| | - Ignacio M Soto
- Laboratorio de Biología Integral de Sistemas Evolutivos, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA-CONICET). DEGE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II (C1428 EHA), CABA, Buenos Aires, Argentina
| | - Raúl O Gómez
- CONICET-Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Kristof Zyskowski
- Peabody Museum of Natural History, Yale University, New Haven, CT, United States
| | - Claudia P Tambussi
- Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
2
|
Katikaneni A, Lowe CB. Novelty versus innovation of gene regulatory elements in human evolution and disease. Curr Opin Genet Dev 2025; 90:102279. [PMID: 39591813 PMCID: PMC11769741 DOI: 10.1016/j.gde.2024.102279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/10/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024]
Abstract
It is not currently understood how much of human evolution is due to modifying existing functional elements in the genome versus forging novel elements from nonfunctional DNA. Many early experiments that aimed to assign genetic changes on the human lineage to their resulting phenotypic change have focused on mutations that modify existing elements. However, a number of recent studies have highlighted the potential ease and importance of forging novel gene regulatory elements from nonfunctional sequences on the human lineage. In this review, we distinguish gene regulatory element novelty from innovation. We propose definitions for these terms and emphasize their importance in studying the genetic basis of human uniqueness. We discuss why the forging of novel regulatory elements may have been less emphasized during the previous decades, and why novel regulatory elements are likely to play a significant role in both human adaptation and disease.
Collapse
Affiliation(s)
- Anushka Katikaneni
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA; University Program in Genetics and Genomics, Duke University, Durham, NC 27708, USA
| | - Craig B Lowe
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA; University Program in Genetics and Genomics, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
3
|
Mesrop LY, Minsky G, Drummond MS, Goodheart JA, Proulx SR, Oakley TH. Ancient Secretory Pathways Contributed to the Evolutionary Origin of an Ecologically Impactful Bioluminescence System. Mol Biol Evol 2024; 41:msae216. [PMID: 39418132 PMCID: PMC11539039 DOI: 10.1093/molbev/msae216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/30/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024] Open
Abstract
Evolutionary innovations in chemical secretion-such as the production of secondary metabolites, pheromones, and toxins-profoundly impact ecological interactions across a broad diversity of life. These secretory innovations may involve a "legacy-plus-innovation" mode of evolution, whereby new biochemical pathways are integrated with conserved secretory processes to create novel products. Among secretory innovations, bioluminescence is important because it evolved convergently many times to influence predator-prey interactions, while often producing courtship signals linked to increased rates of speciation. However, whether or not deeply conserved secretory genes are used in secretory bioluminescence remains unexplored. Here, we show that in the ostracod Vargula tsujii, the evolutionary novel c-luciferase gene is co-expressed with many conserved genes, including those related to toxin production and high-output protein secretion. Our results demonstrate that the legacy-plus-innovation mode of secretory evolution, previously applied to sensory modalities of olfaction, gustation, and nociception, also encompasses light-producing signals generated by bioluminescent secretions. This extension broadens the paradigm of secretory diversification to include not only chemical signals but also bioluminescent light as an important medium of ecological interaction and evolutionary innovation.
Collapse
Affiliation(s)
- Lisa Y Mesrop
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| | - Geetanjali Minsky
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| | - Michael S Drummond
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| | - Jessica A Goodheart
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA
| | - Stephen R Proulx
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| | - Todd H Oakley
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
4
|
Senevirathne G, Shubin NH. Molecular basis of urostyle development in frogs: genes and gene regulation underlying an evolutionary novelty. Open Biol 2024; 14:240111. [PMID: 39191278 DOI: 10.1098/rsob.240111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
Evolutionary novelties entail the origin of morphologies that enable new functions. These features can arise through changes to gene function and regulation. One key novelty is the fused rod at the end of the vertebral column in anurans, the urostyle. This feature is composed of a coccyx and a hypochord, both of which ossify during metamorphosis. To elucidate the genetic basis of these features, we used laser capture microdissection of these tissues and did RNA-seq and ATAC-seq at three developmental stages in tadpoles of Xenopus tropicalis. RNA-seq reveals that the coccyx and hypochord have two different molecular signatures. Neuronal (TUBB3) and muscle markers (MYH3) are upregulated in coccygeal tissues, whereas T-box genes (TBXT, TBXT.2), corticosteroid stress hormones (CRCH.1) and matrix metallopeptidases (MMP1, MMP8 and MMP13) are upregulated in the hypochord. ATAC-seq reveals potential regulatory regions that are observed in proximity to candidate genes that regulate ossification identified from RNA-seq. Even though an ossifying hypochord is only present in anurans, this ossification between the vertebral column and the notochord resembles a congenital vertebral anomaly seen prenatally in humans caused by an ectopic expression of the TBXT/TBXT.2 gene. This work opens the way to functional studies that can elucidate anuran bauplan evolution.
Collapse
Affiliation(s)
- Gayani Senevirathne
- Human Evolutionary Biology, Harvard University , Cambridge, MA 02138, USA
- Organismal Biology and Anatomy, University of Chicago Biological Sciences Division , Chicago, IL 60637, USA
| | - Neil H Shubin
- Organismal Biology and Anatomy, University of Chicago Biological Sciences Division , Chicago, IL 60637, USA
| |
Collapse
|
5
|
Schendel V, Müller CHG, Kenning M, Maxwell M, Jenner RA, Undheim EAB, Sombke A. The venom and telopodal defence systems of the centipede Lithobius forficatus are functionally convergent serial homologues. BMC Biol 2024; 22:135. [PMID: 38867210 PMCID: PMC11170834 DOI: 10.1186/s12915-024-01925-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/22/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Evolution of novelty is a central theme in evolutionary biology, yet studying the origins of traits with an apparently discontinuous origin remains a major challenge. Venom systems are a well-suited model for the study of this phenomenon because they capture several aspects of novelty across multiple levels of biological complexity. However, while there is some knowledge on the evolution of individual toxins, not much is known about the evolution of venom systems as a whole. One way of shedding light on the evolution of new traits is to investigate less specialised serial homologues, i.e. repeated traits in an organism that share a developmental origin. This approach can be particularly informative in animals with repetitive body segments, such as centipedes. RESULTS Here, we investigate morphological and biochemical aspects of the defensive telopodal glandular organs borne on the posterior legs of venomous stone centipedes (Lithobiomorpha), using a multimethod approach, including behavioural observations, comparative morphology, proteomics, comparative transcriptomics and molecular phylogenetics. We show that the anterior venom system and posterior telopodal defence system are functionally convergent serial homologues, where one (telopodal defence) represents a model for the putative early evolutionary state of the other (venom). Venom glands and telopodal glandular organs appear to have evolved from the same type of epidermal gland (four-cell recto-canal type) and while the telopodal defensive secretion shares a great degree of compositional overlap with centipede venoms in general, these similarities arose predominantly through convergent recruitment of distantly related toxin-like components. Both systems are composed of elements predisposed to functional innovation across levels of biological complexity that range from proteins to glands, demonstrating clear parallels between molecular and morphological traits in the properties that facilitate the evolution of novelty. CONCLUSIONS The evolution of the lithobiomorph telopodal defence system provides indirect empirical support for the plausibility of the hypothesised evolutionary origin of the centipede venom system, which occurred through functional innovation and gradual specialisation of existing epidermal glands. Our results thus exemplify how continuous transformation and functional innovation can drive the apparent discontinuous emergence of novelties on higher levels of biological complexity.
Collapse
Affiliation(s)
- Vanessa Schendel
- Centre for Advanced Imaging, The University of Queensland, St. Lucia, QLD, 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Carsten H G Müller
- Zoological Institute and Museum, University of Greifswald, Loitzer Strasse 26, Greifswald, 17489, Germany
| | - Matthes Kenning
- Zoological Institute and Museum, University of Greifswald, Loitzer Strasse 26, Greifswald, 17489, Germany
| | - Michael Maxwell
- Centre for Advanced Imaging, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | | | - Eivind A B Undheim
- Centre for Advanced Imaging, The University of Queensland, St. Lucia, QLD, 4072, Australia.
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, 0316, Norway.
| | - Andy Sombke
- Centre for Anatomy and Cell Biology, Cell and Developmental Biology, Medical University of Vienna, Schwarzspanierstrasse 17, Vienna, 1090, Austria.
- Department of Evolutionary Biology, Integrative Zoology, University of Vienna, Djerassiplatz 1, 1030, Austria.
| |
Collapse
|
6
|
Takeuchi H, Matsuishi TF, Hayakawa T. A tradeoff evolution between acoustic fat bodies and skull muscles in toothed whales. Gene 2024; 901:148167. [PMID: 38224921 DOI: 10.1016/j.gene.2024.148167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
Toothed whales have developed specialized echolocation abilities that are crucial for underwater activities. Acoustic fat bodies, including the melon, extramandibular fat body, and intramandibular fat body, are vital for echolocation. This study explores the transcriptome of acoustic fat bodies in toothed whales, revealing some insight into their evolutionary origins and ecological significance. Comparative transcriptome analysis of acoustic fat bodies and related tissues in a harbor porpoise and a Pacific white-sided dolphin reveals that acoustic fat bodies possess characteristics of both muscle and adipose tissue, occupying an intermediate position. The melon and extramandibular fat body exhibit specific muscle-related functions, implying an evolutionary connection between acoustic fat bodies and muscle tissue. Furthermore, we suggested that the melon and extramandibular fat body originate from intramuscular adipose tissue, a component of white adipose tissue. The extramandibular fat body has been identified as an evolutionary homolog of the masseter muscle, supported by the specific expression of MYH16, a pivotal protein in masticatory muscles. The intramandibular fat body, located within the mandibular foramen, shows possibilities of the presence of several immune-related functions, likely due to its proximity to bone marrow. Furthermore, this study sheds light on leucine modification in the catabolic pathway, which leads to the accumulation of isovaleric acid in acoustic fat bodies. Swallowing without chewing, a major toothed whale feeding ecology adaptation, makes the masticatory muscle redundant and leads to the formation of the extramandibular fat body. We propose that the intramuscular fat enlargement in facial muscles, which influences acoustic fat body development, is potentially related to the substantial reorganization of head morphology in toothed whales during aquatic adaptation.
Collapse
Affiliation(s)
- Hayate Takeuchi
- Division of Biosphere Science, Graduate School of Environmental Science, Hokkaido University, N10W5, Sapporo, Hokkaido 060-0810, Japan
| | - Takashi Fritz Matsuishi
- Global Center for Food, Land and Water Resources, Faculty of Fisheries Sciences, Hokkaido University, 3-1-1, Minato, Hakodate, Hokkaido 041-8611, Japan
| | - Takashi Hayakawa
- Section of Environmental Biology, Faculty of Environmental Earth Science, Hokkaido University, N10W5, Sapporo, Hokkaido 060-0810, Japan.
| |
Collapse
|
7
|
Stock M, Gorochowski TE. Open-endedness in synthetic biology: A route to continual innovation for biological design. SCIENCE ADVANCES 2024; 10:eadi3621. [PMID: 38241375 PMCID: PMC11809665 DOI: 10.1126/sciadv.adi3621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 12/20/2023] [Indexed: 01/21/2024]
Abstract
Design in synthetic biology is typically goal oriented, aiming to repurpose or optimize existing biological functions, augmenting biology with new-to-nature capabilities, or creating life-like systems from scratch. While the field has seen many advances, bottlenecks in the complexity of the systems built are emerging and designs that function in the lab often fail when used in real-world contexts. Here, we propose an open-ended approach to biological design, with the novelty of designed biology being at least as important as how well it fulfils its goal. Rather than solely focusing on optimization toward a single best design, designing with novelty in mind may allow us to move beyond the diminishing returns we see in performance for most engineered biology. Research from the artificial life community has demonstrated that embracing novelty can automatically generate innovative and unexpected solutions to challenging problems beyond local optima. Synthetic biology offers the ideal playground to explore more creative approaches to biological design.
Collapse
Affiliation(s)
- Michiel Stock
- KERMIT & Biobix, Department of Data Analysis and Mathematical Modelling, Ghent University, Ghent, Belgium
| | - Thomas E. Gorochowski
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
- BrisEngBio, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
| |
Collapse
|
8
|
Carscadden KA, Batstone RT, Hauser FE. Origins and evolution of biological novelty. Biol Rev Camb Philos Soc 2023; 98:1472-1491. [PMID: 37056155 DOI: 10.1111/brv.12963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/15/2023]
Abstract
Understanding the origins and impacts of novel traits has been a perennial interest in many realms of ecology and evolutionary biology. Here, we build on previous evolutionary and philosophical treatments of this subject to encompass novelties across biological scales and eco-evolutionary perspectives. By defining novelties as new features at one biological scale that have emergent effects at other biological scales, we incorporate many forms of novelty that have previously been treated in isolation (such as novelty from genetic mutations, new developmental pathways, new morphological features, and new species). Our perspective is based on the fundamental idea that the emergence of a novelty, at any biological scale, depends on its environmental and genetic context. Through this lens, we outline a broad array of generative mechanisms underlying novelty and highlight how genomic tools are transforming our understanding of the origins of novelty. Lastly, we present several case studies to illustrate how novelties across biological scales and systems can be understood based on common mechanisms of change and their environmental and genetic contexts. Specifically, we highlight how gene duplication contributes to the evolution of new complex structures in visual systems; how genetic exchange in symbiosis alters functions of both host and symbiont, resulting in a novel organism; and how hybridisation between species can generate new species with new niches.
Collapse
Affiliation(s)
- Kelly A Carscadden
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, 1900 Pleasant St, Boulder, CO, 80309, USA
| | - Rebecca T Batstone
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL, 61801, USA
| | - Frances E Hauser
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| |
Collapse
|
9
|
Taylor AS, Tinning H, Ovchinnikov V, Edge J, Smith W, Pullinger AL, Sutton RA, Constantinides B, Wang D, Forbes K, Forde N, O'Connell MJ. A burst of genomic innovation at the origin of placental mammals mediated embryo implantation. Commun Biol 2023; 6:459. [PMID: 37100852 PMCID: PMC10133327 DOI: 10.1038/s42003-023-04809-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 04/05/2023] [Indexed: 04/28/2023] Open
Abstract
The origin of embryo implantation in mammals ~148 million years ago was a dramatic shift in reproductive strategy, yet the molecular changes that established mammal implantation are largely unknown. Although progesterone receptor signalling predates the origin of mammals and is highly conserved in, and critical for, successful mammal pregnancy, it alone cannot explain the origin and subsequent diversity of implantation strategies throughout the placental mammal radiation. MiRNAs are known to be flexible and dynamic regulators with a well-established role in the pathophysiology of mammal placenta. We propose that a dynamic core microRNA (miRNA) network originated early in placental mammal evolution, responds to conserved mammal pregnancy cues (e.g. progesterone), and facilitates species-specific responses. Here we identify 13 miRNA gene families that arose at the origin of placental mammals and were subsequently retained in all descendent lineages. The expression of these miRNAs in response to early pregnancy molecules is regulated in a species-specific manner in endometrial epithelia of species with extreme implantation strategies (i.e. bovine and human). Furthermore, this set of miRNAs preferentially target proteins under positive selective pressure on the ancestral eutherian lineage. Discovery of this core embryo implantation toolkit and specifically adapted proteins helps explain the origin and evolution of implantation in mammals.
Collapse
Affiliation(s)
- Alysha S Taylor
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Haidee Tinning
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK
| | - Vladimir Ovchinnikov
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Jessica Edge
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK
| | - William Smith
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK
- Leeds Fertility, Leeds Teaching Hospitals NHS Trust, York Road, Seacroft, Leeds, LS14 6UH, UK
| | - Anna L Pullinger
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK
| | - Ruth A Sutton
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK
| | - Bede Constantinides
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Modernising Medical Microbiology Consortium, Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Dapeng Wang
- LeedsOmics, University of Leeds, Leeds, LS2 9JT, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Karen Forbes
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK
| | - Niamh Forde
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK.
| | - Mary J O'Connell
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, NG7 2RD, UK.
| |
Collapse
|
10
|
Whittington CM, Van Dyke JU, Liang SQT, Edwards SV, Shine R, Thompson MB, Grueber CE. Understanding the evolution of viviparity using intraspecific variation in reproductive mode and transitional forms of pregnancy. Biol Rev Camb Philos Soc 2022; 97:1179-1192. [PMID: 35098647 PMCID: PMC9064913 DOI: 10.1111/brv.12836] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 12/12/2022]
Abstract
How innovations such as vision, flight and pregnancy evolve is a central question in evolutionary biology. Examination of transitional (intermediate) forms of these traits can help address this question, but these intermediate phenotypes are very rare in extant species. Here we explore the biology and evolution of transitional forms of pregnancy that are midway between the ancestral state of oviparity (egg-laying) and the derived state, viviparity (live birth). Transitional forms of pregnancy occur in only three vertebrates, all of which are lizard species that also display intraspecific variation in reproductive phenotype. In these lizards (Lerista bougainvillii, Saiphos equalis, and Zootoca vivipara), geographic variation of three reproductive forms occurs within a single species: oviparity, viviparity, and a transitional form of pregnancy. This phenomenon offers the valuable prospect of watching 'evolution in action'. In these species, it is possible to conduct comparative research using different reproductive forms that are not confounded by speciation, and are of relatively recent origin. We identify major proximate and ultimate questions that can be addressed in these species, and the genetic and genomic tools that can help us understand how transitional forms of pregnancy are produced, despite predicted fitness costs. We argue that these taxa represent an excellent prospect for understanding the major evolutionary shift between egg-laying and live birth, which is a fundamental innovation in the history of animals.
Collapse
Affiliation(s)
- Camilla M. Whittington
- School of Life and Environmental SciencesThe University of SydneyHeydon‐Laurence Building A08SydneyNSW2006
| | - James U. Van Dyke
- Department of Pharmacy and Biomedical Sciences, School of Molecular SciencesLa Trobe UniversityBuilding 4WodongaVIC3689Australia
| | - Stephanie Q. T. Liang
- School of Life and Environmental SciencesThe University of SydneyHeydon‐Laurence Building A08SydneyNSW2006
| | - Scott V. Edwards
- Department of Organismic and Evolutionary BiologyHarvard University, and Museum of Comparative ZoologyCambridgeMA02138U.S.A.
| | - Richard Shine
- Department of Biological SciencesMacquarie UniversityNorth RydeNSW2109Australia
| | - Michael B. Thompson
- School of Life and Environmental SciencesThe University of SydneyHeydon‐Laurence Building A08SydneyNSW2006
| | - Catherine E. Grueber
- School of Life and Environmental SciencesThe University of SydneyHeydon‐Laurence Building A08SydneyNSW2006
| |
Collapse
|
11
|
A novel regulatory gene promotes novel cell fate by suppressing ancestral fate in the sea anemone Nematostella vectensis. Proc Natl Acad Sci U S A 2022; 119:e2113701119. [PMID: 35500123 PMCID: PMC9172639 DOI: 10.1073/pnas.2113701119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In this study, we demonstrate how a new cell type can arise through duplication of an ancestral cell type followed by functional divergence of the new daughter cell. Specifically, we show that stinging cells in a cnidarian (namely, a sea anemone) emerged by duplication of an ancestral neuron followed by inhibition of the RFamide neuropeptide it once secreted. This finding is evidence that stinging cells evolved from a specific subtype of neurons and suggests other neuronal subtypes may have been coopted for other novel secretory functions. Cnidocytes (i.e., stinging cells) are an unequivocally novel cell type used by cnidarians (i.e., corals, jellyfish, and their kin) to immobilize prey. Although they are known to share a common evolutionary origin with neurons, the developmental program that promoted the emergence of cnidocyte fate is not known. Using functional genomics in the sea anemone, Nematostella vectensis, we show that cnidocytes develop by suppression of neural fate in a subset of neurons expressing RFamide. We further show that a single regulatory gene, a C2H2-type zinc finger transcription factor (ZNF845), coordinates both the gain of novel (cnidocyte-specific) traits and the inhibition of ancestral (neural) traits during cnidocyte development and that this gene arose by domain shuffling in the stem cnidarian. Thus, we report a mechanism by which a truly novel regulatory gene (ZNF845) promotes the development of a truly novel cell type (cnidocyte) through duplication of an ancestral cell lineage (neuron) and inhibition of its ancestral identity (RFamide).
Collapse
|
12
|
Hines JH. Evolutionary Origins of the Oligodendrocyte Cell Type and Adaptive Myelination. Front Neurosci 2021; 15:757360. [PMID: 34924932 PMCID: PMC8672417 DOI: 10.3389/fnins.2021.757360] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/29/2021] [Indexed: 12/23/2022] Open
Abstract
Oligodendrocytes are multifunctional central nervous system (CNS) glia that are essential for neural function in gnathostomes. The evolutionary origins and specializations of the oligodendrocyte cell type are among the many remaining mysteries in glial biology and neuroscience. The role of oligodendrocytes as CNS myelinating glia is well established, but recent studies demonstrate that oligodendrocytes also participate in several myelin-independent aspects of CNS development, function, and maintenance. Furthermore, many recent studies have collectively advanced our understanding of myelin plasticity, and it is now clear that experience-dependent adaptations to myelination are an additional form of neural plasticity. These observations beg the questions of when and for which functions the ancestral oligodendrocyte cell type emerged, when primitive oligodendrocytes evolved new functionalities, and the genetic changes responsible for these evolutionary innovations. Here, I review recent findings and propose working models addressing the origins and evolution of the oligodendrocyte cell type and adaptive myelination. The core gene regulatory network (GRN) specifying the oligodendrocyte cell type is also reviewed as a means to probe the existence of oligodendrocytes in basal vertebrates and chordate invertebrates.
Collapse
Affiliation(s)
- Jacob H. Hines
- Biology Department, Winona State University, Winona, MN, United States
| |
Collapse
|
13
|
Höch R, Schneider RF, Kickuth A, Meyer A, Woltering JM. Spiny and soft-rayed fin domains in acanthomorph fish are established through a BMP- gremlin- shh signaling network. Proc Natl Acad Sci U S A 2021; 118:e2101783118. [PMID: 34230098 PMCID: PMC8307853 DOI: 10.1073/pnas.2101783118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
With over 18,000 species, the Acanthomorpha, or spiny-rayed fishes, form the largest and arguably most diverse radiation of vertebrates. One of the key novelties that contributed to their evolutionary success are the spiny rays in their fins that serve as a defense mechanism. We investigated the patterning mechanisms underlying the differentiation of median fin Anlagen into discrete spiny and soft-rayed domains during the ontogeny of the direct-developing cichlid fish Astatotilapia burtoni Distinct transcription factor signatures characterize these two fin domains, whereby mutually exclusive expression of hoxa13a/b with alx4a/b and tbx2b marks the spine to soft-ray boundary. The soft-ray domain is established by BMP inhibition via gremlin1b, which synergizes in the posterior fin with shh secreted from a zone of polarizing activity. Modulation of BMP signaling by chemical inhibition or gremlin1b CRISPR/Cas9 knockout induces homeotic transformations of spines into soft rays and vice versa. The expression of spine and soft-ray genes in nonacanthomorph fins indicates that a combination of exaptation and posterior expansion of an ancestral developmental program for the anterior fin margin allowed the evolution of robustly individuated spiny and soft-rayed domains. We propose that a repeated exaptation of such pattern might underly the convergent evolution of anterior spiny-fin elements across fishes.
Collapse
Affiliation(s)
- Rebekka Höch
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz 78457, Germany
| | - Ralf F Schneider
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz 78457, Germany
| | - Alison Kickuth
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz 78457, Germany
| | - Axel Meyer
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz 78457, Germany
| | - Joost M Woltering
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz 78457, Germany
| |
Collapse
|
14
|
Hillyer JF, Pass G. The Insect Circulatory System: Structure, Function, and Evolution. ANNUAL REVIEW OF ENTOMOLOGY 2020; 65:121-143. [PMID: 31585504 DOI: 10.1146/annurev-ento-011019-025003] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Although the insect circulatory system is involved in a multitude of vital physiological processes, it has gone grossly understudied. This review highlights this critical physiological system by detailing the structure and function of the circulatory organs, including the dorsal heart and the accessory pulsatile organs that supply hemolymph to the appendages. It also emphasizes how the circulatory system develops and ages and how, by means of reflex bleeding and functional integration with the immune system, it supports mechanisms for defense against predators and microbial invaders, respectively. Beyond that, this review details evolutionary trends and novelties associated with this system, as well as the ways in which this system also plays critical roles in thermoregulation and tracheal ventilation in high-performance fliers. Finally, this review highlights how novel discoveries could be harnessed for the control of vector-borne diseases and for translational medicine, and it details principal knowledge gaps that necessitate further investigation.
Collapse
Affiliation(s)
- Julián F Hillyer
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235, USA;
| | - Günther Pass
- Department of Integrative Zoology, University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|
15
|
Esteve-Altava B, Pierce SE, Molnar JL, Johnston P, Diogo R, Hutchinson JR. Evolutionary parallelisms of pectoral and pelvic network-anatomy from fins to limbs. SCIENCE ADVANCES 2019; 5:eaau7459. [PMID: 31086814 PMCID: PMC6506248 DOI: 10.1126/sciadv.aau7459] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
Lobe-fins transformed into limbs during the Devonian period, facilitating the water-to-land transition in tetrapods. We traced the evolution of well-articulated skeletons across the fins-to-limbs transition, using a network-based approach to quantify and compare topological features of fins and limbs. We show that the topological arrangement of bones in pectoral and pelvic appendages evolved in parallel during the fins-to-limbs transition, occupying overlapping regions of the morphospace, following a directional trend, and decreasing their disparity over time. We identify the presence of digits as the morphological novelty triggering topological changes that discriminated limbs from fins. The origin of digits caused an evolutionary shift toward appendages that were less densely and heterogeneously connected, but more assortative and modular. Disparity likewise decreased for both appendages, more markedly until a time concomitant with the earliest-known tetrapod tracks. Last, we rejected the presence of a pectoral-pelvic similarity bottleneck at the origin of tetrapods.
Collapse
Affiliation(s)
- Borja Esteve-Altava
- Structure & Motion Lab, Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
- Institute of Evolutionary Biology (UPF-CSIC), Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain
| | - Stephanie E. Pierce
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Julia L. Molnar
- Department of Anatomy, New York Institute of Technology, New York, NY, USA
| | - Peter Johnston
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Rui Diogo
- Department of Anatomy, College of Medicine, Howard University, Washington, DC, USA
| | - John R. Hutchinson
- Structure & Motion Lab, Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| |
Collapse
|
16
|
Taylor T. Evolutionary Innovations and Where to Find Them: Routes to Open-Ended Evolution in Natural and Artificial Systems. ARTIFICIAL LIFE 2019; 25:207-224. [PMID: 31150286 DOI: 10.1162/artl_a_00290] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This article presents a high-level conceptual framework to help orient the discussion and implementation of open-endedness in evolutionary systems. Drawing upon earlier work by Banzhaf et al. (2016), three different kinds of open-endedness are identified: exploratory, expansive, and transformational. These are characterized in terms of their relationship to the search space of phenotypic behaviors. A formalism is introduced to describe three key processes required for an evolutionary process: the generation of a phenotype from a genetic description, the evaluation of that phenotype, and the reproduction with variation of individuals according to their evaluation. The formalism makes explicit various influences in each of these processes that can easily be overlooked. The distinction is made between intrinsic and extrinsic implementations of these processes. A discussion then investigates how various interactions between these processes, and their modes of implementation, can lead to open-endedness. However, an important contribution of the article is the demonstration that these considerations relate to exploratory open-endedness only. Conditions for the implementation of the more interesting kinds of open-endedness-expansive and transformational-are also discussed, emphasizing factors such as multiple domains of behavior, transdomain bridges, and non-additive compositional systems. In contrast to a traditional Darwinian analysis, these factors relate not to the generic evolutionary properties of individuals and populations, but rather to the nature of the building blocks out of which individual organisms are constructed, and the laws and properties of the environment in which they exist. The article ends with suggestions of how the framework can be used to categorize and compare the open-ended evolutionary potential of different systems, how it might guide the design of systems with greater capacity for open-ended evolution, and how it might be further improved.
Collapse
Affiliation(s)
- Tim Taylor
- Monash University, Faculty of Information Technology.
| |
Collapse
|
17
|
Benowitz KM, McKinney EC, Cunningham CB, Moore AJ. Predictable gene expression related to behavioral variation in parenting. Behav Ecol 2018. [DOI: 10.1093/beheco/ary179] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
AbstractDifferential gene expression has been associated with transitions between behavioral states for a wide variety of organisms and behaviors. Heterochrony, genetic toolkits, and predictable pathways underlying behavioral transitions have been hypothesized to explain the relationship between transcription and behavioral changes. Less studied is how variation in transcription is related to variation within a behavior, and if the genes that are associated with this variation are predictable. Here, we adopt an evolutionary systems biology perspective to address 2 hypotheses relating differential expression to changes within and between behavior. We predicted fewer genes will be associated with variation within a behavior than with transitions between states, and the genes underlying variation within a behavior will represent a narrower set of biological functions. We tested for associations with parenting variation within a state with a set of genes known a priori to be differentially expressed (DE) between parenting states in the burying beetle Nicrophorus vespilloides. As predicted, we found that far fewer genes are DE related to variation within parenting. Moreover, these were not randomly distributed among categories or pathways in the gene set we tested and primarily involved genes associated with neurotransmission. We suggest that this means candidate genes will be easier to identify for associations within a behavior, as descriptions of behavioral state may include more than a single phenotype.
Collapse
Affiliation(s)
- Kyle M Benowitz
- Department of Entomology, University of Arizona, Forbes, Tucson, USA
| | | | | | - Allen J Moore
- Department of Entomology, University of Georgia, Athens, USA
| |
Collapse
|
18
|
Pass G. Beyond aerodynamics: The critical roles of the circulatory and tracheal systems in maintaining insect wing functionality. ARTHROPOD STRUCTURE & DEVELOPMENT 2018; 47:391-407. [PMID: 29859244 DOI: 10.1016/j.asd.2018.05.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/19/2018] [Accepted: 05/22/2018] [Indexed: 06/08/2023]
Abstract
Insect wings consist almost entirely of lifeless cuticle; yet their veins host a complex multimodal sensory apparatus and other tissues that require a continuous supply of water, nutrients and oxygen. This review provides a survey of the various living components in insect wings, as well as the specific contribution of the circulatory and tracheal systems to provide all essential substances. In most insects, hemolymph circulates through the veinal network in a loop flow caused by the contraction of accessory pulsatile organs in the thorax. In other insects, hemolymph oscillates into and out of the wings due to the complex interaction of several factors, such as heartbeat reversal, intermittent pumping of the accessory pulsatile organs in the thorax, and the elasticity of the wall of a special type of tracheae. A practically unexplored subject is the need for continuous hydration of the wing cuticle to retain its flexibility and toughness, including the associated problem of water loss due to evaporation. Also, widely neglected is the influence of the hemolymph mass and the circulating flow in the veins on the aerodynamic properties of insect wings during flight. Ventilation of the extraordinarily long wing tracheae is probably accomplished by intricate interactions with the circulatory system, and by the exchange of oxygen via cutaneous respiration.
Collapse
Affiliation(s)
- Günther Pass
- Department of Integrative Zoology, University of Vienna, Althanstraße 14, A-1090, Vienna, Austria.
| |
Collapse
|
19
|
Hochberg ME, Marquet PA, Boyd R, Wagner A. Innovation: an emerging focus from cells to societies. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0414. [PMID: 29061887 DOI: 10.1098/rstb.2016.0414] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2017] [Indexed: 12/20/2022] Open
Abstract
Innovations are generally unexpected, often spectacular changes in phenotypes and ecological functions. The contributions to this theme issue are the latest conceptual, theoretical and experimental developments, addressing how ecology, environment, ontogeny and evolution are central to understanding the complexity of the processes underlying innovations. Here, we set the stage by introducing and defining key terms relating to innovation and discuss their relevance to biological, cultural and technological change. Discovering how the generation and transmission of novel biological information, environmental interactions and selective evolutionary processes contribute to innovation as an ecosystem will shed light on how the dominant features across life come to be, generalize to social, cultural and technological evolution, and have applications in the health sciences and sustainability.This article is part of the theme issue 'Process and pattern in innovations from cells to societies'.
Collapse
Affiliation(s)
- Michael E Hochberg
- Institut des Sciences de l'Evolution, Université de Montpellier, 34095 Montpellier, France .,Santa Fe Institute, Santa Fe, NM 87501, USA.,Institute for Advanced Study in Toulouse, 31015 Toulouse, France
| | - Pablo A Marquet
- Santa Fe Institute, Santa Fe, NM 87501, USA.,Departamento de Ecologı́a, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile.,Instituto de Ecología y Biodiversidad (IEB), Casilla 653, Santiago, Chile.,Instituto de Sistemas Complejos de Valparaíso (ISCV), Artillería 4780, Valparaíso, Chile
| | - Robert Boyd
- Santa Fe Institute, Santa Fe, NM 87501, USA.,School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287, USA
| | - Andreas Wagner
- Santa Fe Institute, Santa Fe, NM 87501, USA.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
20
|
Woltering JM, Holzem M, Schneider RF, Nanos V, Meyer A. The skeletal ontogeny of Astatotilapia burtoni - a direct-developing model system for the evolution and development of the teleost body plan. BMC DEVELOPMENTAL BIOLOGY 2018; 18:8. [PMID: 29614958 PMCID: PMC5883283 DOI: 10.1186/s12861-018-0166-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 03/01/2018] [Indexed: 12/20/2022]
Abstract
Background The experimental approach to the evolution and development of the vertebrate skeleton has to a large extent relied on “direct-developing” amniote model organisms, such as the mouse and the chicken. These organisms can however only be partially informative where it concerns secondarily lost features or anatomical novelties not present in their lineages. The widely used anamniotes Xenopus and zebrafish are “indirect-developing” organisms that proceed through an extended time as free-living larvae, before adopting many aspects of their adult morphology, complicating experiments at these stages, and increasing the risk for lethal pleiotropic effects using genetic strategies. Results Here, we provide a detailed description of the development of the osteology of the African mouthbrooding cichlid Astatotilapia burtoni, primarily focusing on the trunk (spinal column, ribs and epicentrals) and the appendicular skeleton (pectoral, pelvic, dorsal, anal, caudal fins and scales), and to a lesser extent on the cranium. We show that this species has an extremely “direct” mode of development, attains an adult body plan within 2 weeks after fertilization while living off its yolk supply only, and does not pass through a prolonged larval period. Conclusions As husbandry of this species is easy, generation time is short, and the species is amenable to genetic targeting strategies through microinjection, we suggest that the use of this direct-developing cichlid will provide a valuable model system for the study of the vertebrate body plan, particularly where it concerns the evolution and development of fish or teleost specific traits. Based on our results we comment on the development of the homocercal caudal fin, on shared ontogenetic patterns between pectoral and pelvic girdles, and on the evolution of fin spines as novelty in acanthomorph fishes. We discuss the differences between “direct” and “indirect” developing actinopterygians using a comparison between zebrafish and A. burtoni development.
Collapse
Affiliation(s)
- Joost M Woltering
- Chair in Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Universitätsstraße 10, 78457, Constance, Germany.
| | - Michaela Holzem
- Chair in Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Universitätsstraße 10, 78457, Constance, Germany.,Current address: Department of Biological an Medical Sciences, Oxford Brookes University, Headington Campus, Oxford, OX3 0 BP, UK
| | - Ralf F Schneider
- Chair in Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Universitätsstraße 10, 78457, Constance, Germany
| | - Vasilios Nanos
- Chair in Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Universitätsstraße 10, 78457, Constance, Germany
| | - Axel Meyer
- Chair in Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Universitätsstraße 10, 78457, Constance, Germany.
| |
Collapse
|
21
|
Furcation and fusion: The phylogenetics of evolutionary novelty. Dev Biol 2017; 431:69-76. [DOI: 10.1016/j.ydbio.2017.09.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 09/11/2017] [Accepted: 09/11/2017] [Indexed: 01/02/2023]
|
22
|
Özsu N, Chan QY, Chen B, Gupta MD, Monteiro A. Wingless is a positive regulator of eyespot color patterns in Bicyclus anynana butterflies. Dev Biol 2017; 429:177-185. [PMID: 28668322 DOI: 10.1016/j.ydbio.2017.06.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 06/19/2017] [Accepted: 06/27/2017] [Indexed: 12/15/2022]
Abstract
Eyespot patterns of nymphalid butterflies are an example of a novel trait yet, the developmental origin of eyespots is still not well understood. Several genes have been associated with eyespot development but few have been tested for function. One of these genes is the signaling ligand, wingless, which is expressed in the eyespot centers during early pupation and may function in eyespot signaling and color ring differentiation. Here we tested the function of wingless in wing and eyespot development by down-regulating it in transgenic Bicyclus anynana butterflies via RNAi driven by an inducible heat-shock promoter. Heat-shocks applied during larval and early pupal development led to significant decreases in wingless mRNA levels and to decreases in eyespot size and wing size in adult butterflies. We conclude that wingless is a positive regulator of eyespot and wing development in B. anynana butterflies.
Collapse
Affiliation(s)
- Nesibe Özsu
- Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
| | - Qian Yi Chan
- Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Bin Chen
- Institute of Entomology and Molecular Biology, Chongqing Normal University, Shapingba, 400047 Chongqing, China
| | - Mainak Das Gupta
- Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Antónia Monteiro
- Biological Sciences, National University of Singapore, Singapore 117543, Singapore; Yale-NUS College, Singapore 138614, Singapore.
| |
Collapse
|
23
|
Jablonski D. Approaches to Macroevolution: 1. General Concepts and Origin of Variation. Evol Biol 2017; 44:427-450. [PMID: 29142333 PMCID: PMC5661017 DOI: 10.1007/s11692-017-9420-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 05/26/2017] [Indexed: 12/11/2022]
Abstract
Approaches to macroevolution require integration of its two fundamental components, i.e. the origin and the sorting of variation, in a hierarchical framework. Macroevolution occurs in multiple currencies that are only loosely correlated, notably taxonomic diversity, morphological disparity, and functional variety. The origin of variation within this conceptual framework is increasingly understood in developmental terms, with the semi-hierarchical structure of gene regulatory networks (GRNs, used here in a broad sense incorporating not just the genetic circuitry per se but the factors controlling the timing and location of gene expression and repression), the non-linear relation between magnitude of genetic change and the phenotypic results, the evolutionary potential of co-opting existing GRNs, and developmental responsiveness to nongenetic signals (i.e. epigenetics and plasticity), all requiring modification of standard microevolutionary models, and rendering difficult any simple definition of evolutionary novelty. The developmental factors underlying macroevolution create anisotropic probabilities-i.e., an uneven density distribution-of evolutionary change around any given phenotypic starting point, and the potential for coordinated changes among traits that can accommodate change via epigenetic mechanisms. From this standpoint, "punctuated equilibrium" and "phyletic gradualism" simply represent two cells in a matrix of evolutionary models of phenotypic change, and the origin of trends and evolutionary novelty are not simply functions of ecological opportunity. Over long timescales, contingency becomes especially important, and can be viewed in terms of macroevolutionary lags (the temporal separation between the origin of a trait or clade and subsequent diversification); such lags can arise by several mechanisms: as geological or phylogenetic artifacts, or when diversifications require synergistic interactions among traits, or between traits and external events. The temporal and spatial patterns of the origins of evolutionary novelties are a challenge to macroevolutionary theory; individual events can be described retrospectively, but a general model relating development, genetics, and ecology is needed. An accompanying paper (Jablonski in Evol Biol 2017) reviews diversity dynamics and the sorting of variation, with some general conclusions.
Collapse
Affiliation(s)
- David Jablonski
- Department of Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637 USA
| |
Collapse
|
24
|
de Vladar HP, Santos M, Szathmáry E. Grand Views of Evolution. Trends Ecol Evol 2017; 32:324-334. [DOI: 10.1016/j.tree.2017.01.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 01/20/2017] [Accepted: 01/24/2017] [Indexed: 01/25/2023]
|
25
|
Griffith OW, Wagner GP. The placenta as a model for understanding the origin and evolution of vertebrate organs. Nat Ecol Evol 2017; 1:72. [DOI: 10.1038/s41559-017-0072] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 01/06/2017] [Indexed: 12/19/2022]
|
26
|
Vogt L. Assessing similarity: on homology, characters and the need for a semantic approach to non-evolutionary comparative homology. Cladistics 2016; 33:513-539. [DOI: 10.1111/cla.12179] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2016] [Indexed: 01/09/2023] Open
Affiliation(s)
- Lars Vogt
- Institut für Evolutionsbiologie und Ökologie; Universität Bonn; An der Immenburg 1 Bonn D-53121 Germany
| |
Collapse
|
27
|
Emera D, Yin J, Reilly SK, Gockley J, Noonan JP. Origin and evolution of developmental enhancers in the mammalian neocortex. Proc Natl Acad Sci U S A 2016; 113:E2617-26. [PMID: 27114548 PMCID: PMC4868431 DOI: 10.1073/pnas.1603718113] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Morphological innovations such as the mammalian neocortex may involve the evolution of novel regulatory sequences. However, de novo birth of regulatory elements active during morphogenesis has not been extensively studied in mammals. Here, we use H3K27ac-defined regulatory elements active during human and mouse corticogenesis to identify enhancers that were likely active in the ancient mammalian forebrain. We infer the phylogenetic origins of these enhancers and find that ∼20% arose in the mammalian stem lineage, coincident with the emergence of the neocortex. Implementing a permutation strategy that controls for the nonrandom variation in the ages of background genomic sequences, we find that mammal-specific enhancers are overrepresented near genes involved in cell migration, cell signaling, and axon guidance. Mammal-specific enhancers are also overrepresented in modules of coexpressed genes in the cortex that are associated with these pathways, notably ephrin and semaphorin signaling. Our results also provide insight into the mechanisms of regulatory innovation in mammals. We find that most neocortical enhancers did not originate by en bloc exaptation of transposons. Young neocortical enhancers exhibit smaller H3K27ac footprints and weaker evolutionary constraint in eutherian mammals than older neocortical enhancers. Based on these observations, we present a model of the enhancer life cycle in which neocortical enhancers initially emerge from genomic background as short, weakly constrained "proto-enhancers." Many proto-enhancers are likely lost, but some may serve as nucleation points for complex enhancers to evolve.
Collapse
Affiliation(s)
- Deena Emera
- Department of Genetics, Yale School of Medicine, New Haven, CT
| | - Jun Yin
- Department of Genetics, Yale School of Medicine, New Haven, CT
| | - Steven K Reilly
- Department of Genetics, Yale School of Medicine, New Haven, CT
| | - Jake Gockley
- Department of Genetics, Yale School of Medicine, New Haven, CT
| | - James P Noonan
- Department of Genetics, Yale School of Medicine, New Haven, CT; Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510; Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511
| |
Collapse
|
28
|
Álvarez-Buylla ER, Dávila-Velderrain J, Martínez-García JC. Systems Biology Approaches to Development beyond Bioinformatics: Nonlinear Mechanistic Models Using Plant Systems. Bioscience 2016. [DOI: 10.1093/biosci/biw027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
29
|
Pass G, Tögel M, Krenn H, Paululat A. The circulatory organs of insect wings: Prime examples for the origin of evolutionary novelties. ZOOL ANZ 2015. [DOI: 10.1016/j.jcz.2015.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|