1
|
Gupta N, Saha S. Polymer-Based Designer Particles as Drug Carriers: Strategies to Construct and Modify. ACS APPLIED BIO MATERIALS 2025. [PMID: 40405643 DOI: 10.1021/acsabm.5c00041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Abstract
Biological barriers present remarkable challenges for therapeutics delivery, requiring an advanced drug delivery system that can navigate through the complex physiological environment. Polymeric particles provide remarkable versatility due to their adaptable physiochemical properties, facilitating new designs that address complex delivery issues. This review focuses on recent advancements in the morphology of polymeric particles that emulate biological barriers to improve drug efficacy. It includes how structural engineering─such as designing rod-shaped particles for improved cellular uptake, red-blood-cell-shaped particles for prolonged circulation, worm-shaped carriers for improved tissue penetration, and multicompartmental systems for providing combination therapies─profoundly alters drug delivery capabilities. These designer particles exhibit enhanced target specificity, controlled release kinetics, and improved therapeutic outcomes relative to traditional spherical carriers. This particular review also emphasizes how a combination of polymer chemistry and fabrication methods facilitates achieving these advanced structures, while highlighting ongoing challenges in scale-up, reproducibility, and clinical translations. Through the analysis of structure-functional property correlations in various biomimetic designs, we have also attempted to provide insight into future advancements in polymeric delivery systems that have the potential to transform treatment strategies for complicated diseases via shape-directed biological interactions for better therapeutic outcomes.
Collapse
Affiliation(s)
- Nidhi Gupta
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
- International College of Semiconductor Technology, National Yang-Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Sampa Saha
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
2
|
Wu Y, Kawamoto Y, Sun J, Takahashi Y, Higuchi Y, Takakura Y. Improvement of Drug Release from an Aptamer Drug Conjugate Using Reductive-sensitive Linkers for Tumor-targeted Drug Delivery. AAPS J 2025; 27:95. [PMID: 40397061 DOI: 10.1208/s12248-025-01070-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 04/04/2025] [Indexed: 05/22/2025] Open
Abstract
The selective delivery of small molecule compounds such as Gemcitabine to tumor cells is a promising methodology for enhancing therapeutic efficacy and attenuating the side effects of anticancer drugs. Aptamers are useful as target-directed ligands for tumor-selective drug delivery due to their ability to bind specific proteins. However, the drug must be released from the aptamer after the conjugate is taken up by the cell to exert its pharmacological effect. In this study, we designed and synthesized a conjugate in which a linker cleaved by glutathione, which is highly expressed in tumor cells, was inserted between the aptamer (AS1411) and Gemcitabine. Almost all Gemcitabine was released from the conjugate after 30 min in the presence of 6 mM glutathione. AS1411 is known to bind to nucleolin, which is highly expressed on tumor cells. The cytotoxicity of the AS1411 and Gemcitabine conjugate with a disulfide bond on A549 cells was higher than that of the conjugate without a disulfide bond. Furthermore, the cytotoxicity of the disulfide-linked conjugate of AS1411 and Gemcitabine was higher in A549 cells than in MCF10A cells, which were used as the model of normal cells. These results indicate that disulfide conjugation enhanced the tumor cell-selective cytotoxicity of Gemcitabine with AS1411.
Collapse
Affiliation(s)
- You Wu
- Graduate School of Pharmaceutical Science, Kyoto University, 46-29 Yoshida-shimoadachicho, Sakyo-ku, Kyoto, Japan
| | - Yusuke Kawamoto
- Graduate School of Pharmaceutical Science, Kyoto University, 46-29 Yoshida-shimoadachicho, Sakyo-ku, Kyoto, Japan
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, China.
| | - Yuki Takahashi
- Graduate School of Pharmaceutical Science, Kyoto University, 46-29 Yoshida-shimoadachicho, Sakyo-ku, Kyoto, Japan
| | - Yuriko Higuchi
- Graduate School of Pharmaceutical Science, Kyoto University, 46-29 Yoshida-shimoadachicho, Sakyo-ku, Kyoto, Japan.
| | - Yoshinobu Takakura
- Graduate School of Pharmaceutical Science, Kyoto University, 46-29 Yoshida-shimoadachicho, Sakyo-ku, Kyoto, Japan.
| |
Collapse
|
3
|
Liu X, Yang X, Tao L, Li X, Chen G, Liu Q. Nano/Micro-Enabled Modification and Innovation of Conventional Adjuvants for Next-Generation Vaccines. J Funct Biomater 2025; 16:185. [PMID: 40422849 DOI: 10.3390/jfb16050185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2025] [Revised: 05/09/2025] [Accepted: 05/14/2025] [Indexed: 05/28/2025] Open
Abstract
The global spread of infectious diseases has raised public awareness of vaccines, highlighting their essential role in protecting public health. Among the components of modern vaccines, adjuvants have received increasing attention for boosting immune responses and enhancing efficacy. Recent advancements in adjuvant research, particularly nanodelivery systems, have paved the way for developing more effective and safer adjuvants. This review outlines the properties, progress, and mechanisms of FDA-approved conventional adjuvants, focusing on their contributions to and challenges in vaccine success. Despite these advancements, conventional adjuvants still face suboptimal immunomodulatory effects, potential side effects, and limitations in targeting specific immune pathways. Nanodelivery systems have emerged as a transformative approach in adjuvant design, offering unique advantages such as enhancing vaccine stability, enabling controlled antigen release, and inducing specific immune responses. By addressing these limitations, nanocarriers improve the safety and efficacy of conventional adjuvants and drive the development of next-generation adjuvants for complex diseases. This review also explores strategies for incorporating nanodelivery systems into adjuvant development, emphasizing its role in optimizing vaccine formulations. By summarizing current challenges and recent advances, this review aims to provide valuable insights guiding future efforts in designing innovative adjuvants that meet the evolving needs of global immunization programs.
Collapse
Affiliation(s)
- Xingchi Liu
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Xu Yang
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Lu Tao
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Xuanchen Li
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Guoqiang Chen
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Qi Liu
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| |
Collapse
|
4
|
Khorasani MA, Naghib SM. A review of chitosan-based multifunctional nanocomposites for drug/gene/protein delivery and gene therapy in cancer treatments: Promises, challenges and outlooks. Int J Biol Macromol 2025; 306:141394. [PMID: 39993690 DOI: 10.1016/j.ijbiomac.2025.141394] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/06/2025] [Accepted: 02/20/2025] [Indexed: 02/26/2025]
Abstract
This study provides a comprehensive examination of chitosan-based multifunctional nanocomposites and their extensive applications in drug/gene/protein delivery, tissue engineering and cancer therapy. As a natural polymer with eco-friendly characteristics and both antimicrobial and anti-cancer properties, chitosan has garnered attention in numerous medical and pharmaceutical domains. The research explores diverse chitosan nanocomposites, including those incorporating magnetic nanoparticles, carbon nanotubes, and clay- and alginate-based nanocomposites. Additionally, the study addresses the obstacles encountered in developing these materials and their potential for creating advanced drug delivery systems and targeted treatments. The study highlights the applications of these nanocomposites in bone, cartilage, and skin tissue regeneration, as well as their potential in neural tissue engineering. in conclusion, the research underscores the promising future of chitosan-based nanocomposites in revolutionizing drug delivery, tissue engineering, and cancer therapy. It emphasizes the need for further studies to fully harness the potential of these materials and translate laboratory findings into clinical applications, paving the way for more effective and personalized medical treatments. Our reason for writing this article appears to be a comprehensive exploration of the potential and challenges of chitosan-based multifunctional nanocomposites in medicine, particularly in drug/gene/protein delivery and cancer therapy. The aim is to provide a detailed analysis of the material's versatility, its integration with advanced nanotechnologies, and its applications in targeted treatments, and regenerative medicine. we seek to address existing challenges, such as safety, scalability, and regulatory compliance, while highlighting the promising future of these materials in personalized and efficient medical treatments.
Collapse
Affiliation(s)
- Mohammad Ali Khorasani
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran.
| |
Collapse
|
5
|
Parvin N, Joo SW, Jung JH, Mandal TK. Innovative Micro- and Nano-Architectures in Biomedical Engineering for Therapeutic and Diagnostic Applications. MICROMACHINES 2025; 16:419. [PMID: 40283294 PMCID: PMC12029970 DOI: 10.3390/mi16040419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/29/2025] [Accepted: 03/29/2025] [Indexed: 04/29/2025]
Abstract
The rapid evolution of micro- and nano-architectures is revolutionizing biomedical engineering, particularly in the fields of therapeutic and diagnostic micromechanics. This review explores the recent innovations in micro- and nanostructured materials and their transformative impact on healthcare applications, ranging from drug delivery and tissue engineering to biosensing and diagnostics. Key advances in fabrication techniques, such as lithography, 3D printing, and self-assembly, have enabled unprecedented control over material properties and functionalities at microscopic scales. These engineered architectures offer enhanced precision in targeting and controlled release in drug delivery, foster cellular interactions in tissue engineering, and improve sensitivity and specificity in diagnostic devices. We examine critical design parameters, including biocompatibility, mechanical resilience, and scalability, which influence their clinical efficacy and long-term stability. This review also highlights the translational potential and current limitations in bringing these materials from the laboratory research to practical applications. By providing a comprehensive overview of the current trends, challenges, and future perspectives, this article aims to inform and inspire further development in micro- and nano-architectures that hold promise for advancing personalized and precision medicine.
Collapse
Affiliation(s)
- Nargish Parvin
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (N.P.); (S.W.J.)
| | - Sang Woo Joo
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (N.P.); (S.W.J.)
| | - Jae Hak Jung
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Tapas K. Mandal
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (N.P.); (S.W.J.)
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
6
|
Saripilli R, Sharma DK. Nanotechnology-based drug delivery system for the diagnosis and treatment of ovarian cancer. Discov Oncol 2025; 16:422. [PMID: 40155504 PMCID: PMC11953507 DOI: 10.1007/s12672-025-02062-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 03/05/2025] [Indexed: 04/01/2025] Open
Abstract
Current research in nanotechnology is improving or developing novel applications that could improve disease diagnosis or treatment. This study highlights several nanoscale drug delivery technologies, such as nano micelles, nanocapsules, nanoparticles, liposomes, branching dendrimers, and nanostructured lipid formulations for the targeted therapy of ovarian cancer (OC), to overcome the limitations of traditional delivery. Because traditional drug delivery to malignant cells has intrinsic flaws, new nanotechnological-based treatments have been developed to address these conditions. Ovarian cancer is the most common gynecological cancer and has a higher death rate because of its late diagnosis and recurrence. This review emphasizes the discipline of medical nanotechnology, which has made great strides in recent years to solve current issues and enhance the detection and treatment of many diseases, including cancer. This system has the potential to provide real-time monitoring and diagnostics for ovarian cancer treatment, as well as simultaneous delivery of therapeutic agents.
Collapse
Affiliation(s)
- Rajeswari Saripilli
- School of Pharmacy, Centurion University of Technology and Management, Gajapati, Odisha, India
| | - Dinesh Kumar Sharma
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India.
| |
Collapse
|
7
|
Wang ZX, Wang YZ, Chen X, Wu AJ, Liu W, Li HJ. Construction of chitosan hydrochloride-carboxymethyl chitosan nanoparticles using anti-solvent method for the co-delivery of puerarin and resveratrol. J Food Sci 2025; 90:e17628. [PMID: 39731710 DOI: 10.1111/1750-3841.17628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 11/09/2024] [Accepted: 12/11/2024] [Indexed: 12/30/2024]
Abstract
The applications of resveratrol (RES) and puerarin (PUE) with notable physiological functions are greatly limited in functional food and pharmaceutical industries due to their poor water solubility and chemical instability. Accordingly, co-loading of RES and PUE into chitosan-based nanoparticles (NPs) is performed here by an anti-solvent method to improve their bioavailability. The fabricated NPs at 8:1 mass ratio of carboxymethyl chitosan (CMC) to chitosan hydrochloride (CHC) with the particle size of 375.1 nm and zeta potential of +36.5 mV showed encouraging encapsulation efficiency and loading capacity at 85.2% (RES), 89.5% (PUE), and 15.5%. The microstructure of core-shell CMC-CHC was confirmed through dynamic light scattering and transmission electron microscopy. Molecular docking and storage stability indicating the more beneficial encapsulation of chitosan derivatives to PUE in comparison to RES. Cellular antioxidant activity experiments showed that the bioactivities of PUE/RES after loading with 20 and 40 mg·mL-1 were improved by 13.2% and 18.5%, respectively, with respect to free ones. Therefore, RES/PUE-loaded CHC-CMC NPs were successfully prepared in this study, thus significantly improving the RES and PUE bioavailability and promoting their applications in functional food and pharmaceutical industries.
Collapse
Affiliation(s)
- Zi-Xuan Wang
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, P.R. China
| | - Yi-Zhen Wang
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, P.R. China
| | - Xiao Chen
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, P.R. China
| | - An-Ji Wu
- Weihai NO.1 High School, Weihai, P.R. China
| | - Wei Liu
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, P.R. China
| | - Hui-Jing Li
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, P.R. China
| |
Collapse
|
8
|
Vedarethinam V, Jeevanandam J. Role of nanotechnology in microbiome drug development. HUMAN MICROBIOME DRUG TARGETS 2025:245-263. [DOI: 10.1016/b978-0-443-15435-5.00018-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
9
|
Geng Y, Guo X, Yue F, Xiang M, Zhu Q. Mass Production of Multishell Hollow SiO 2 Spheres With Adjustable Void Ratios and Pore Structures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409421. [PMID: 39291880 DOI: 10.1002/adma.202409421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/30/2024] [Indexed: 09/19/2024]
Abstract
SiO2 multishell hollow spheres (MHSs) as supports have multiple porous layers and internal voids, which present notable advantages in regulating mass transport and chemical reactions. However, practical applications of SiO2 MHSs are severely hindered because of their high costs and low production efficiency issues. Herein, it is overcome these obstacles by developing a precursor hydrolysis method and demonstrate a cost-effective production of void-ratio tunable SiO2 MHSs on a large scale, which has a much lower cavitation temperature (25 °C) and one order of magnitude decrease in cost. In addition, the new method can also be applied to fabricate TiO2 and SnO2 hollow spheres (HSs). In particular, an NH4Cl precipitation-pyrolysis strategy is developed to tune the pore diameters and pore distributions of SiO2 MHSs with different void ratios. SiO2 MHSs with varying void ratios and pore distributions have the broadest controlling release time ranges (30-430 h). The precursor hydrolysis method and NH4Cl precipitation-pyrolysis strategy offer adequate stimulus to push forward SiO2 MHSs from laboratory-scale to industry-scale applications.
Collapse
Affiliation(s)
- Yuqi Geng
- State Key Laboratory of Multiphase Complex Systems Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaojun Guo
- State Key Laboratory of Multiphase Complex Systems Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Fen Yue
- State Key Laboratory of Multiphase Complex Systems Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Maoqiao Xiang
- State Key Laboratory of Multiphase Complex Systems Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingshan Zhu
- State Key Laboratory of Multiphase Complex Systems Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of the Chinese Academy of Sciences, Beijing, 100049, China
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
10
|
Zhang Y, Tian J. Strategies, Challenges, and Prospects of Nanoparticles in Gynecological Malignancies. ACS OMEGA 2024; 9:37459-37504. [PMID: 39281920 PMCID: PMC11391544 DOI: 10.1021/acsomega.4c04573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/18/2024]
Abstract
Gynecologic cancers are a significant health issue for women globally. Early detection and successful treatment of these tumors are crucial for the survival of female patients. Conventional therapies are often ineffective and harsh, particularly in advanced stages, necessitating the exploration of new therapy options. Nanotechnology offers a novel approach to biomedicine. A novel biosensor utilizing bionanotechnology can be employed for early tumor identification and therapy due to the distinctive physical and chemical characteristics of nanoparticles. Nanoparticles have been rapidly applied in the field of gynecologic malignancies, leading to significant advancements in recent years. This study highlights the significance of nanoparticles in treating gynecological cancers. It focuses on using nanoparticles for precise diagnosis and continuous monitoring of the disease, innovative imaging, and analytic methods, as well as multifunctional drug delivery systems and targeted therapies. This review examines several nanocarrier systems, such as dendrimers, liposomes, nanocapsules, and nanomicelles, for gynecological malignancies. The review also examines the enhanced therapeutic potential and targeted delivery of ligand-functionalized nanoformulations for gynecological cancers compared to nonfunctionalized anoformulations. In conclusion, the text also discusses the constraints and future exploration prospects of nanoparticles in chemotherapeutics. Nanotechnology will offer precise methods for diagnosing and treating gynecological cancers.
Collapse
Affiliation(s)
- Yingfeng Zhang
- University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Jing Tian
- University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| |
Collapse
|
11
|
Khan MUA, Aslam MA, Abdullah MFB, Gul H, Stojanović GM, Abdal-Hay A, Hasan A. Microneedle system for tissue engineering and regenerative medicines: a smart and efficient therapeutic approach. Biofabrication 2024; 16:042005. [PMID: 39121888 DOI: 10.1088/1758-5090/ad6d90] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/09/2024] [Indexed: 08/12/2024]
Abstract
The global demand for an enhanced quality of life and extended lifespan has driven significant advancements in tissue engineering and regenerative medicine. These fields utilize a range of interdisciplinary theories and techniques to repair structurally impaired or damaged tissues and organs, as well as restore their normal functions. Nevertheless, the clinical efficacy of medications, materials, and potent cells used at the laboratory level is always constrained by technological limitations. A novel platform known as adaptable microneedles has been developed to address the abovementioned issues. These microneedles offer a solution for the localized distribution of various cargos while minimizing invasiveness. Microneedles provide favorable patient compliance in clinical settings due to their effective administration and ability to provide a painless and convenient process. In this review article, we summarized the most recent development of microneedles, and we started by classifying various microneedle systems, advantages, and fundamental properties. Subsequently, it provides a comprehensive overview of different types of microneedles, the material used to fabricate microneedles, the fundamental properties of ideal microneedles, and their applications in tissue engineering and regenerative medicine, primarily focusing on preserving and restoring impaired tissues and organs. The limitations and perspectives have been discussed by concluding their future therapeutic applications in tissue engineering and regenerative medicines.
Collapse
Affiliation(s)
- Muhammad Umar Aslam Khan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar
- Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Muhammad Azhar Aslam
- Department of Physics, University of Engineering and Technology, Lahore 39161, Pakistan
| | - Mohd Faizal Bin Abdullah
- Oral and Maxillofacial Surgery Unit, School of Dental Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kota Bharu, Kelantan, Malaysia
- Oral and Maxillofacial Surgery Unit, Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kota Bharu, Kelantan, Malaysia
| | - Hilal Gul
- Department of Biomedical Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Goran M Stojanović
- Department of Electronics, Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Abdalla Abdal-Hay
- School of Dentistry, University of Queensland, 288 Herston Road, Herston, QLD 4006, Australia
- Department of Mechanical Engineering, Faculty of Engineering, South Valley University, Qena 83523, Egypt
- Faculty of Industry and Energy Technology, Mechatronics Technology Program, New Cairo Technological University, New Cairo-Fifth Settlement, Cairo 11835, Egypt
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar
- Biomedical Research Center, Qatar University, Doha 2713, Qatar
| |
Collapse
|
12
|
Gajbhiye KR, Salve R, Narwade M, Sheikh A, Kesharwani P, Gajbhiye V. Lipid polymer hybrid nanoparticles: a custom-tailored next-generation approach for cancer therapeutics. Mol Cancer 2023; 22:160. [PMID: 37784179 PMCID: PMC10546754 DOI: 10.1186/s12943-023-01849-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/23/2023] [Indexed: 10/04/2023] Open
Abstract
Lipid-based polymeric nanoparticles are the highly popular carrier systems for cancer drug therapy. But presently, detailed investigations have revealed their flaws as drug delivery carriers. Lipid polymer hybrid nanoparticles (LPHNPs) are advanced core-shell nanoconstructs with a polymeric core region enclosed by a lipidic layer, presumed to be derived from both liposomes and polymeric nanounits. This unique concept is of utmost importance as a combinable drug delivery platform in oncology due to its dual structured character. To add advantage and restrict one's limitation by other, LPHNPs have been designed so to gain number of advantages such as stability, high loading of cargo, increased biocompatibility, rate-limiting controlled release, and elevated drug half-lives as well as therapeutic effectiveness while minimizing their drawbacks. The outer shell, in particular, can be functionalized in a variety of ways with stimuli-responsive moieties and ligands to provide intelligent holding and for active targeting of antineoplastic medicines, transport of genes, and theragnostic. This review comprehensively provides insight into recent substantial advancements in developing strategies for treating various cancer using LPHNPs. The bioactivity assessment factors have also been highlighted with a discussion of LPHNPs future clinical prospects.
Collapse
Affiliation(s)
- Kavita R Gajbhiye
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth, Erandwane, Pune, 411038, India
| | - Rajesh Salve
- Nanobioscience, Agharkar Research Institute, Pune, 411038, India
- Savitribai Phule Pune University, Pune, 411007, India
| | - Mahavir Narwade
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth, Erandwane, Pune, 411038, India
| | - Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
- Center for Global health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Virendra Gajbhiye
- Nanobioscience, Agharkar Research Institute, Pune, 411038, India.
- Savitribai Phule Pune University, Pune, 411007, India.
| |
Collapse
|
13
|
Rajeshkumar RR, Pavadai P, Panneerselvam T, Deepak V, Pandian SRK, Kabilan SJ, Vellaichamy S, Jeyaraman A, Kumar ASK, Sundar K, Kunjiappan S. Glucose-conjugated glutenin nanoparticles for selective targeting and delivery of camptothecin into breast cancer cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2571-2586. [PMID: 37022437 DOI: 10.1007/s00210-023-02480-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023]
Abstract
Receptor-mediated drug delivery systems are a promising tool for targeting malignant cells to suppress/inhibit the malignancy without disturbing healthy cells. Protein-based nanocarrier systems possess numerous advantages for the delivery of variety of chemotherapeutics, including therapeutic peptides and genes. In the present work, glucose-conjugated camptothecin-loaded glutenin nanoparticles (Glu-CPT-glutenin NPs) were fabricated to deliver camptothecin to MCF-7 cells via GLUT-1 transporter protein. Initially, Glu-conjugated glutenin polymer was successfully synthesized through reductive amination reaction, and this was confirmed by FTIR and 13C-NMR. Then, camptothecin (CPT) was loaded into Glu-conjugated glutenin polymer forming Glu-CPT-glutenin NPs. The nanoparticles were studied for their drug releasing capacity, morphological shape, size, physical nature, and zeta potential. The fabricated Glu-CPT-glutenin NPs were found to be spherical in shape and amorphous in nature with 200-nm size range and a zeta potential of - 30 mV. Furthermore, MTT assay using Glu-CPT-glutenin NPs confirmed concentration-dependent cytotoxicity against MCF-7 cells after 24-h treatment, and IC50 was found to be 18.23 μg mL-1. In vitro cellular uptake study demonstrated that the Glu-CPT-glutenin NPs had enhanced endocytosis and delivered CPT in MCF-7 cells. A typical apoptotic morphological change of condensed nuclei and distorted membrane bodies was found after treatment with IC50 concentration of NPs. The released CPT from NPs also targeted mitochondria of MCF-7 cells, significantly increasing the level of reactive oxygen species and causing the damage of mitochondrial membrane integrity. These outcomes confirmed that the wheat glutenin can positively serve as a significant delivery vehicle and enhance the anticancer potential of this drug.
Collapse
Affiliation(s)
- Raja Rajeswari Rajeshkumar
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, Virudhunagar, 626126, India
| | - Parasuraman Pavadai
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru, 560054, India
| | - Theivendren Panneerselvam
- Department of Pharmaceutical Chemistry, Swamy Vivekanandha College of Pharmacy, Elayampalayam, Namakkal, 637205, India
| | - Venkataraman Deepak
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, Virudhunagar, 626126, India
- Maternal and Fetal Health Research Centre, 5Th Floor St. Mary's Hospital, University of Manchester, Oxford Road, Manchester, M13 9WL, UK
| | - Sureshbabu Ram Kumar Pandian
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, Virudhunagar, 626126, India
| | | | - Sivakumar Vellaichamy
- Department of Pharmaceutics, Arulmigu Kalasalingam College of Pharmacy, Krishnankoil, Virudhunagar, 626126, India
| | - Anbu Jeyaraman
- Department of Pharmacology, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru, 560054, India
| | - A Santhana Krishna Kumar
- Department of Chemistry, National Sun Yat-Sen University, Gushan District, No. 70, Lien-Hai Road, Kaohsiung, 80424, Taiwan
- Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, 30-059, Krakow, Poland
| | - Krishnan Sundar
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, Virudhunagar, 626126, India
| | - Selvaraj Kunjiappan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, Virudhunagar, 626126, India.
| |
Collapse
|
14
|
Chehelgerdi M, Chehelgerdi M. The use of RNA-based treatments in the field of cancer immunotherapy. Mol Cancer 2023; 22:106. [PMID: 37420174 PMCID: PMC10401791 DOI: 10.1186/s12943-023-01807-w] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/13/2023] [Indexed: 07/09/2023] Open
Abstract
Over the past several decades, mRNA vaccines have evolved from a theoretical concept to a clinical reality. These vaccines offer several advantages over traditional vaccine techniques, including their high potency, rapid development, low-cost manufacturing, and safe administration. However, until recently, concerns over the instability and inefficient distribution of mRNA in vivo have limited their utility. Fortunately, recent technological advancements have mostly resolved these concerns, resulting in the development of numerous mRNA vaccination platforms for infectious diseases and various types of cancer. These platforms have shown promising outcomes in both animal models and humans. This study highlights the potential of mRNA vaccines as a promising alternative approach to conventional vaccine techniques and cancer treatment. This review article aims to provide a thorough and detailed examination of mRNA vaccines, including their mechanisms of action and potential applications in cancer immunotherapy. Additionally, the article will analyze the current state of mRNA vaccine technology and highlight future directions for the development and implementation of this promising vaccine platform as a mainstream therapeutic option. The review will also discuss potential challenges and limitations of mRNA vaccines, such as their stability and in vivo distribution, and suggest ways to overcome these issues. By providing a comprehensive overview and critical analysis of mRNA vaccines, this review aims to contribute to the advancement of this innovative approach to cancer treatment.
Collapse
Affiliation(s)
- Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran.
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Matin Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
15
|
Zhang J, Ding H, Zhang F, Xu Y, Liang W, Huang L. New trends in diagnosing and treating ovarian cancer using nanotechnology. Front Bioeng Biotechnol 2023; 11:1160985. [PMID: 37082219 PMCID: PMC10110946 DOI: 10.3389/fbioe.2023.1160985] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/22/2023] [Indexed: 04/07/2023] Open
Abstract
Ovarian cancer stands as the fifth most prevalent cancer among women, causing more mortalities than any other disease of the female reproductive system. There are numerous histological subtypes of ovarian cancer, each of which has distinct clinical characteristics, risk factors, cell origins, molecular compositions, and therapeutic options. Typically, it is identified at a late stage, and there is no efficient screening method. Standard therapies for newly diagnosed cancer are cytoreductive surgery and platinum-based chemotherapy. The difficulties of traditional therapeutic procedures encourage researchers to search for other approaches, such as nanotechnology. Due to the unique characteristics of matter at the nanoscale, nanomedicine has emerged as a potent tool for creating novel drug carriers that are more effective and have fewer adverse effects than traditional treatments. Nanocarriers including liposomes, dendrimers, polymer nanoparticles, and polymer micelles have unique properties in surface chemistry, morphology, and mechanism of action that can distinguish between malignant and normal cells, paving the way for targeted drug delivery. In contrast to their non-functionalized counterparts, the development of functionalized nano-formulations with specific ligands permits selective targeting of ovarian cancers and ultimately increases the therapeutic potential. This review focuses on the application of various nanomaterials to the treatment and diagnosis of ovarian cancer, their advantages over conventional treatment methods, and the effective role of controlled drug delivery systems in the therapy of ovarian cancer.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Gynecology, Shaoxing Maternity and Child Healthcare Hospital, Shaoxing, China
- Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
| | - Haigang Ding
- Department of Gynecology, Shaoxing Maternity and Child Healthcare Hospital, Shaoxing, China
- Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
| | - Feng Zhang
- Department of Gynecology, Shaoxing Maternity and Child Healthcare Hospital, Shaoxing, China
- Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
| | - Yan Xu
- Intensive Care Unit, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Wenqing Liang
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
- *Correspondence: Liping Huang, ; Wenqing Liang,
| | - Liping Huang
- Department of Medical Oncology, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
- *Correspondence: Liping Huang, ; Wenqing Liang,
| |
Collapse
|
16
|
Allangawi A, Sajid H, Ayub K, Gilani MA, Akhter MS, Mahmood T. High drug carrying efficiency of boron-doped Triazine based covalent organic framework toward anti-cancer tegafur; a theoretical perspective. COMPUT THEOR CHEM 2023. [DOI: 10.1016/j.comptc.2022.113990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Shah IU, Jadhav SA, Belekar VM, Patil PS. Smart polymer grafted silica based drug delivery systems. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ishika U. Shah
- School of Nanoscience and Technology Shivaji University Kolhapur Maharashtra India
| | | | - Vedika M. Belekar
- School of Nanoscience and Technology Shivaji University Kolhapur Maharashtra India
| | - Pramod S. Patil
- School of Nanoscience and Technology Shivaji University Kolhapur Maharashtra India
- Department of Physics Shivaji University Kolhapur Maharashtra India
| |
Collapse
|
18
|
Ali Z, Sajid M, Manzoor S, Ahmad MM, Khan MI, Elboughdiri N, Kashif M, Shanableh A, Rajhi W, Mersni W, Bayraktar E, Salem SB. Biodegradable Magnetic Molecularly Imprinted Anticancer Drug Carrier for the Targeted Delivery of Docetaxel. ACS OMEGA 2022; 7:28516-28524. [PMID: 35990493 PMCID: PMC9386705 DOI: 10.1021/acsomega.2c03299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/22/2022] [Indexed: 05/07/2023]
Abstract
Molecularly imprinted biodegradable polymers are receiving considerable attention in drug delivery due to their ability of targeted recognition and biocompatibility. This study reports the synthesis of a novel fluorescence-active magnetic molecularly imprinted drug carrier (MIDC) using a glucose-based biodegradable cross-linking agent for the delivery of anticancer drug docetaxel. The magnetic molecularly imprinted polymer (MMIP) was characterized through scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction spectroscopy, and vibrating sample magnetometry (VSM). The MMIP presented a magnetization value of 0.0059 emu g-1 and binding capacity of 72 mg g-1 with docetaxel. In vitro and in vivo studies were performed to observe the effectiveness of the MIDC for drug delivery. The cell viability assay suggested that the MMIP did not present toxic effects on healthy cells. The magnetic property of the MMIP allowed quick identification of the drug carrier at the target site by applying the external magnetic field to mice (after 20 min of loading) and taking X-ray images. The novel MMIP-based drug carrier could thus deliver the drug at the target site without affecting the healthy cells.
Collapse
Affiliation(s)
- Zeeshan Ali
- Institute
of Chemical Sciences, Bahauddin Zakariya
University, Multan 60000, Pakistan
| | - Muhammad Sajid
- Institute
of Chemical Sciences, Bahauddin Zakariya
University, Multan 60000, Pakistan
- . Tel.: 00923040801998
| | - Suryyia Manzoor
- Institute
of Chemical Sciences, Bahauddin Zakariya
University, Multan 60000, Pakistan
| | | | - Muhammad Imran Khan
- Research
Institute of Sciences and Engineering (RISE), University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Noureddine Elboughdiri
- Chemical
Engineering Process Department, National
School of Engineers Gabes, University of Gabes, Gabes 6011, Tunisia
- . Tel.: 00966549571015
| | - Muhammad Kashif
- Department
of Chemistry, Emerson University, Multan 60000, Pakistan
| | - Abdallah Shanableh
- Research
Institute of Sciences and Engineering (RISE), University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Wajdi Rajhi
- Mechanical
Engineering Department, College of Engineering,
University of Ha’il, P.O. Box 2440, Ha’il 81441,Saudi Arabia
| | - Wael Mersni
- National
School of Engineers of Tunis, University
of Tunis El Manar, Tunis 1068, Tunisia
| | - Emin Bayraktar
- School
of Mechanical and Manufacturing Engineering, ISAE-SUPMECA Institute
of Mechanics of Paris, Saint-Ouen 93400, France
| | - Sahbi Ben Salem
- National
School of Engineers of Tunis, University
of Tunis El Manar, Tunis 1068, Tunisia
| |
Collapse
|
19
|
Simon AT, Chattopadhyay A, Ghosh SS. In Vitro Therapeutic Attributes of Luminescent Hydroxyapatite Nanoparticles in Codelivery Module. ACS APPLIED BIO MATERIALS 2022; 5:2741-2753. [PMID: 35608933 DOI: 10.1021/acsabm.2c00201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Imminent prospects of clinical importance have been accomplished through divergent treatment modalities implemented using nanoscale platforms. In the present study, hydroxyapatite nanoparticles doped with copper nanoclusters (HAPs) were explored for codelivery of a hydrophobic drug, namely, norfloxacin (NX), and a hydrophilic photosensitizer, such as methylene blue (MB). NX and MB were successfully homed into HAPs (MB-NX-HAPs), which further exhibited a pH-dependent release of both. With the objective of attaining an enhanced effect, MB-NX-HAPs were evaluated for combination therapy, involving chemotherapy and photodynamic therapy (PDT) with irradiation at 640 nm. The combinatorial therapy approach was initially applied for antibacterial therapy, which suggested a considerable reduction in bacterial growth of Gram-negative strain Pseudomonas aeruginosa MTCC 2488. Thereafter, the antiproliferative study performed in cancer cell lines (HeLa and MCF-7) revealed the efficiency of MB-NX-HAPs in bestowing a combinatorial effect through chemotherapy and PDT (irradiation at 640 nm). The combined effect exerted through MB-NX-HAPs subsequently induced reactive oxygen species (ROS) generation, cell cycle alteration, and apoptosis activation in cancer cells. The biocompatible nature of MB-NX-HAPs was appreciably shown through their minimal effect on the normal cell line (HEK-293). Additionally, HAPs through luminescence of copper nanoclusters were suggested to aid in bioimaging of cancer cell lines.
Collapse
Affiliation(s)
- Anitha T Simon
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Arun Chattopadhyay
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, India.,Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati781039, India
| | - Siddhartha Sankar Ghosh
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, India.,Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati781039, India
| |
Collapse
|
20
|
Li T, Wang K, Zheng C, Zheng W, Cheng Y, Ning Q, Xu H, Cui D. Magnetic frequency mixing technological advances for the practical improvement of point-of-care testing. Biotechnol Bioeng 2021; 119:347-360. [PMID: 34859425 DOI: 10.1002/bit.28005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/17/2021] [Accepted: 11/27/2021] [Indexed: 11/09/2022]
Abstract
Nanomaterials, especially superparamagnetic nanomaterials, have recently played essential roles in point-of-care testing due to their intrinsic magnetic, electrochemical, and optical properties. The inherent superparamagnetism of magnetic nanoparticles makes them highly sensitive for quantitative detection. Among the various magnetic detection technologies, frequency mixing technology (FMT) technology is an emerging detection technique in the nanomedical field. FMT sensors have high potential for development in the field of biomedical quantitative detection due to their simple structure, and they are not limited to the materials used. In particular, they can be applied for large-scale disease screening, early tumor marker detection, and low-dose drug detection. This review summarizes the principles of FMT and recent advances in the fields of immunoadsorption, lateral flow assay detection, magnetic imaging, and magnetic nanoparticles recognition. The advantages and limitations of FMT sensors for robust, ultrasensitive biosensing are highlighted. Finally, the future requirements and challenges in the development of this technology are described. This review provides further insights for researchers to inspire the future development of FMT by integration into biosensing and devices with a broad field of applications in analytical sensing and clinical usage.
Collapse
Affiliation(s)
- Tangan Li
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai Engineering Research Center for Intelligent diagnosis and treatment instrument, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai, Shanghai, China
| | - Kan Wang
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai Engineering Research Center for Intelligent diagnosis and treatment instrument, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai, Shanghai, China
| | - Chujun Zheng
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai Engineering Research Center for Intelligent diagnosis and treatment instrument, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai, Shanghai, China
| | - Wei Zheng
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai Engineering Research Center for Intelligent diagnosis and treatment instrument, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai, Shanghai, China
| | - Yuemeng Cheng
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai Engineering Research Center for Intelligent diagnosis and treatment instrument, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai, Shanghai, China
| | - Qihong Ning
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai Engineering Research Center for Intelligent diagnosis and treatment instrument, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai, Shanghai, China
| | - Hao Xu
- School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, Shanghai, China
| | - Daxiang Cui
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai Engineering Research Center for Intelligent diagnosis and treatment instrument, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai, Shanghai, China
| |
Collapse
|
21
|
Gutiérrez Galán DK, Pacheco-Moisés FP, Silva Bezerra F, Alves de Matos N, González Rojas NA, Arratia-Quijada J, Carbajal Arízaga GG. Hydrophilic lycopene-coated layered double hydroxide nanoparticles to enhance the antioxidant activity and the oxidative stress evaluation. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-02205-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|