1
|
Sun Y, Sun X, Wu H, Xiao Z, Luo W. A review of recent advances in anesthetic drugs for patients undergoing cardiac surgery. Front Pharmacol 2025; 16:1533162. [PMID: 40041490 PMCID: PMC11876421 DOI: 10.3389/fphar.2025.1533162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 01/21/2025] [Indexed: 03/06/2025] Open
Abstract
Inducing and maintaining general anesthesia requires a diverse set of medications. Currently, heart surgery anesthetic management does not adhere to any one standard protocol or set of drugs. To ensure steady circulatory function while providing sufficient sedation, anesthetic medications are carefully selected for cardiovascular operations. Among the opioids used most often in cardiac surgery are fentanyl, sufentanil, and remifentanil. As a cardiac anesthesiologist, your key responsibilities will be to maintain your patient's blood pressure (BP) and oxygen levels, reduce the frequency and intensity of ischemia events, and make it easy for them to get off of cardiopulmonary bypass (CPB) and supplemental oxygen fast. Additionally, new knowledge gaps have been identified as a result of developments in cardiac anesthetics, which must be addressed. The goal of the most recent developments in cardiac anesthesia has been to decrease risks and increase accuracy in patient outcomes during cardiac surgeries. Furthermore, new methods and tools are contributing to the evolution of cardiovascular anesthesia toward a more dynamic, patient-centered approach, with an eye on boosting safety, decreasing complications, and facilitating better recovery for patients. New medications and methods have emerged in the field of anesthetic pharmacology, aiming to improve anesthesia management, particularly for patients who have cardiovascular disease. Optimal cardiovascular stability, fewer side effects, and enhanced surgical recovery are achieved by use of these medications. We have reviewed all the different kinds of cardiac anesthetic techniques and medications in this research. We have also examined the many new anesthetic medicines that have been produced and used for individuals with cardiovascular issues. Next, we covered prospects in the realm of cardiovascular anesthesia and novel cardiac anesthetic drugs.
Collapse
Affiliation(s)
- Yutian Sun
- Department of Cardiac Surgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xiangyou Sun
- Department of Cardiac Surgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Haibo Wu
- Department of Cardiac Surgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Zhaoyang Xiao
- Department of Anesthesiology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Wei Luo
- Department of Anesthesiology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
2
|
Mubarak N, Waqar MA, Khan AM, Asif Z, Alvi AS, Virk AA, Amir S. A comprehensive insight of innovations and recent advancements in nanocarriers for nose-to-brain drug targeting. Des Monomers Polym 2025; 28:7-29. [PMID: 39935823 PMCID: PMC11812116 DOI: 10.1080/15685551.2025.2464132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025] Open
Abstract
Central Nervous System (CNS) disorders are the leading cause of illness and affect the everyday lives of people all around the globe and are predicted to increase tremendously in the upcoming decades. Traditional methods of delivering drugs to the CNS face considerable limitations. Nose-to-brain targeting offers a promising alternative that bypasses the blood-brain barrier (BBB), enabling targeted drug administration to the central nervous system (CNS). Nanotechnology has brought forward innovative solutions to the challenges of drug delivery in CNS disorders. Nanocarriers such as liposomes, nanoparticles, nanoemulsions and dendrimers can enhance drug stability, bioavailability, and targeted delivery to the brain. These nanocarriers are designed to overcome physiological barriers and provide controlled and sustained drug release directly to the CNS. Nanocarrier technology has made significant strides in recent years, enabling more effective and targeted delivery of drugs to the brain. With recent advancements, intranasal delivery coupled with nanocarriers seems to be a promising combination that can provide better clinical profiles, pharmacokinetics, and pharmacodynamics for neurodegenerative disorders. This study focuses on exploring the nose-to-brain drug delivery system, emphasizing the use of various nanocarriers designed for this purpose. Additionally, the study encompasses recent advancements in nanocarrier technology tailored specifically to improve the efficiency of drug administration through the nasal route to the brain.
Collapse
Affiliation(s)
- Naeem Mubarak
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Lahore University of Biological and Applied Sciences, Lahore, Pakistan
| | - Muhammad Ahsan Waqar
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Lahore University of Biological and Applied Sciences, Lahore, Pakistan
| | - Asad Majeed Khan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Lahore University of Biological and Applied Sciences, Lahore, Pakistan
| | - Zainab Asif
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Lahore University of Biological and Applied Sciences, Lahore, Pakistan
| | - Aima Subia Alvi
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Lahore University of Biological and Applied Sciences, Lahore, Pakistan
| | - Aqsa Arshad Virk
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Lahore University of Biological and Applied Sciences, Lahore, Pakistan
| | - Sakeena Amir
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Lahore University of Biological and Applied Sciences, Lahore, Pakistan
| |
Collapse
|
3
|
Dhandapani S, Ha Y, Wang R, Kwon TW, Cho IH, Kim YJ. Lipid-encapsulated gold nanoparticles: an advanced strategy for attenuating the inflammatory response in SARS-CoV-2 infection. J Nanobiotechnology 2025; 23:15. [PMID: 39815303 PMCID: PMC11734238 DOI: 10.1186/s12951-024-03064-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 12/05/2024] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Nanodrugs play a crucial role in biomedical applications by enhancing drug delivery. To address safety and toxicity concerns associated with nanoparticles, lipid-nanocarrier-based drug delivery systems have emerged as a promising approach for developing next-generation smart nanomedicines. Ginseng has traditionally been used for various therapeutic purposes, including antiviral activity. This study aimed to prepare a biocompatible and therapeutically potent Korean ginseng nanoemulsion (KGS-NE) using ginseng seed oil (GSO), optimize its encapsulation and drug delivery efficiency, and evaluate its antiviral activity. RESULTS Various techniques were utilized to confirm the KGS-NE formation. Energy-dispersive X-ray spectroscopy identified gold nanoparticles with the highest Au peak at 2.1 keV. Selected area diffraction patterns revealed crystallographic structures. FT-IR spectrometry detected functional groups, with peaks at 2922.09 cm-1 (alkene C-H stretching), 1740.24 cm-1 (aldehyde C=O stretching), and 1098.07 cm-1 (C-O stretching in secondary alcohol). Storage stability studies showed that KGS-NE maintained its size and stability for 6 months at 4 °C. The KGS-NE exhibited a dose-dependent suppression of HCoV-OC43 viral replication in Vero E6 cells. RNA sequencing analysis unveiled differentially expressed genes (DEGs) specifically involved in the ABC transporters signaling pathway. KGS-NE oral administration facilitated the recovery of mice induced with the receptor binding domain (RBD) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein, as confirmed by inflammatory markers expression in lung tissue. In the Syrian hamster infected with the SARS-CoV-2 model, the lungs dissected showed enlarged morphology and induced inflammatory cytokines. This effect was mitigated with KGS-NE oral administration, as observed through H&E and qRT-PCR analysis. Biochemical analysis at various oral administration concentrations demonstrated that KGS-NE had no adverse effects on the kidney and liver. CONCLUSIONS Our findings strongly suggest that oral administering KGS-NE in mice and Syrian hamster models has the potential to effectively mitigate lung inflammation against coronavirus. This indicates a promising new strategy for developing the antiviral nano-agent against SARS-CoV-2.
Collapse
Affiliation(s)
- Sanjeevram Dhandapani
- Graduate School of Biotechnology, and College of Life Science, Kyung Hee University, Yongin-Si, 17104, Gyeonggi-Do, Republic of Korea
| | - Yujeong Ha
- Department of Science in Korean Medicine and Brain Korea 21 Plus Program, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Rongbo Wang
- Graduate School of Biotechnology, and College of Life Science, Kyung Hee University, Yongin-Si, 17104, Gyeonggi-Do, Republic of Korea
| | - Tae Woo Kwon
- Department of Science in Korean Medicine and Brain Korea 21 Plus Program, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Ik-Hyun Cho
- Department of Science in Korean Medicine and Brain Korea 21 Plus Program, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea.
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Yeon-Ju Kim
- Graduate School of Biotechnology, and College of Life Science, Kyung Hee University, Yongin-Si, 17104, Gyeonggi-Do, Republic of Korea.
| |
Collapse
|
4
|
Sharma S, Chakraborty M, Yadav D, Dhullap A, Singh R, Verma RK, Bhattacharya S, Singh S. Strategic Developments in Polymer-Functionalized Liposomes for Targeted Colon Cancer Therapy: An Updated Review of Clinical Trial Data and Future Horizons. Biomacromolecules 2024; 25:5650-5669. [PMID: 39162323 DOI: 10.1021/acs.biomac.4c00847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Liposomes, made up of phospholipid bilayers, are efficient nanocarriers for drug delivery because they can encapsulate both hydrophilic and lipophilic drugs. Conventional cancer treatments sometimes involve considerable toxicities and adverse drug reactions (ADRs), which limits their clinical value. Despite liposomes' promise in addressing these concerns, clinical trials have revealed significant limitations, including stability, targeted distribution, and scaling challenges. Recent clinical trials have focused on enhancing liposome formulations to increase therapeutic efficacy while minimizing negative effects. Notably, the approval of liposomal medications like Doxil demonstrates their potential in cancer treatment. However, the intricacy of liposome preparation and the requirement for comprehensive regulatory approval remain substantial impediments. Current clinical trial updates show continued efforts to improve liposome stability, targeting mechanisms, and payload capacity in order to address these issues. The future of liposomal drug delivery in cancer therapy depends on addressing these challenges in order to provide patients with more effective and safer treatment alternatives.
Collapse
Affiliation(s)
- Satyam Sharma
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur 844102, India
| | - Moitrai Chakraborty
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur 844102, India
| | - Dharmendra Yadav
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur 844102, India
| | - Aniket Dhullap
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur 844102, India
| | - Raghuraj Singh
- Pharmaceutical Nanotechnology lab, Institute of Nano Science and Technology (INST), Sector 81, Mohali, Punjab 140306, India
| | - Rahul Kumar Verma
- Pharmaceutical Nanotechnology lab, Institute of Nano Science and Technology (INST), Sector 81, Mohali, Punjab 140306, India
| | - Sankha Bhattacharya
- SVKM's NMIMS School of Pharmacy & Technology Management, Shirpur, Dist. Dhule, Maharashtra 425405, India
| | - Sanjiv Singh
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur 844102, India
| |
Collapse
|
5
|
Feng B, Li N, Bi Y, Kong F, Wang Z, Tan S. Bio-based Carbon dots Loaded with 5-Fu: A Multifunctional drug Delivery System. J Fluoresc 2024; 34:1683-1692. [PMID: 37594586 DOI: 10.1007/s10895-023-03385-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/06/2023] [Indexed: 08/19/2023]
Abstract
In the present work, a simple and efficient stirring method was used to successfully synthesize a novel multifunctional carbon dots-drug delivery system AMP-CDs@5-Fu in the form of intertwined filaments. The results showed that AMP-CDs@5-Fu had the highest final release in the medium mimicking the physiological environment of the human small intestine compared to that of 5-Fu and that the drug release behaviors followed a zero-grade drug release within the first 3 h. The results also showed that AMP-CDs@5-Fu could be used to reduce the toxicity of 5-Fu while significantly improving the anticancer ability. In vitro hemolysis and anticancer assays showed that AMP-CDs@5-Fu could significantly improve the anticancer ability while decreasing the toxicity of 5-Fu, and the hemolysis rate of AMP-CDs@5-Fu was significantly lower than that of 5-Fu; their IC50 against 4T1 cancer cells were 201.63 ± 8.94 µg 5-Fu/mL and 241.24 ± 11.05 µg 5- Fu/mL. In addition, AMP-CDs@5-Fu allowed clear cell imaging. Therefore, AMP-CDs@5-Fu is expected to improve the bioavailability of 5-Fu as a novel oral agent with fluorescent properties and very promising as a novel fluorescence tracking drug loading system, which is expected to be used in the field of anticancer targeted therapy and fluorescence tracking to monitor the distribution of drugs.
Collapse
Affiliation(s)
- Baijian Feng
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Na Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Yongguang Bi
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China.
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
- Guangdong Dongshenglin Pharmaceutical Co., Ltd, Guangzhou, 510006, China.
| | - Fansheng Kong
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Zhong Wang
- Yunfu Traditional Chinese Medicine Hospital, Yunfu, 527300, China
| | - Shaofan Tan
- Guangdong Dongshenglin Pharmaceutical Co., Ltd, Guangzhou, 510006, China
| |
Collapse
|
6
|
El-Zahaby SA, Kaur L, Sharma A, Prasad AG, Wani AK, Singh R, Zakaria MY. Lipoplexes' Structure, Preparation, and Role in Managing Different Diseases. AAPS PharmSciTech 2024; 25:131. [PMID: 38849687 DOI: 10.1208/s12249-024-02850-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
Lipid-based vectors are becoming promising alternatives to traditional therapies over the last 2 decades specially for managing life-threatening diseases like cancer. Cationic lipids are the most prevalent non-viral vectors utilized in gene delivery. The increasing number of clinical trials about lipoplex-based gene therapy demonstrates their potential as well-established technology that can provide robust gene transfection. In this regard, this review will summarize this important point. These vectors however have a modest transfection efficiency. This limitation can be partly addressed by using functional lipids that provide a plethora of options for investigating nucleic acid-lipid interactions as well as in vitro and in vivo nucleic acid delivery for biomedical applications. Despite their lower gene transfer efficiency, lipid-based vectors such as lipoplexes have several advantages over viral ones: they are less toxic and immunogenic, can be targeted, and are simple to produce on a large scale. Researchers are actively investigating the parameters that are essential for an effective lipoplex delivery method. These include factors that influence the structure, stability, internalization, and transfection of the lipoplex. Thorough understanding of the design principles will enable synthesis of customized lipoplex formulations for life-saving therapy.
Collapse
Affiliation(s)
- Sally A El-Zahaby
- Department of Pharmaceutics and Industrial Pharmacy, PharmD Program, Egypt-Japan University of Science and Technology (E-JUST), Alexandria, Egypt.
| | - Lovepreet Kaur
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, 144411, Punjab, India
| | - Ankur Sharma
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| | - Aprameya Ganesh Prasad
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, 144411, Punjab, India
| | - Rattandeep Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, 144411, Punjab, India
| | - Mohamed Y Zakaria
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Port Said University, Port Said, 42526, Egypt
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Salman International University, Ras Sudr, 46612, South Sinai, Egypt
| |
Collapse
|
7
|
Chu PC, Liao MH, Liu MG, Li CZ, Lai PS. Key Transdermal Patch Using Cannabidiol-Loaded Nanocarriers with Better Pharmacokinetics in vivo. Int J Nanomedicine 2024; 19:4321-4337. [PMID: 38770103 PMCID: PMC11104392 DOI: 10.2147/ijn.s455032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/29/2024] [Indexed: 05/22/2024] Open
Abstract
Purpose Cannabidiol (CBD) is a promising therapeutic drug with low addictive potential and a favorable safety profile. However, CBD did face certain challenges, including poor solubility in water and low oral bioavailability. To harness the potential of CBD by combining it with a transdermal drug delivery system (TDDS). This innovative approach sought to develop a transdermal patch dosage form with micellar vesicular nanocarriers to enhance the bioavailability of CBD, leading to improved therapeutic outcomes. Methods A skin-penetrating micellar vesicular nanocarriers, prepared using nano emulsion method, cannabidiol loaded transdermal nanocarriers-12 (CTD-12) was presented with a small particle size, high encapsulation efficiency, and a drug-loaded ratio for CBD. The skin permeation ability used Strat-M™ membrane with a transdermal diffusion system to evaluate the CTD and patch of CTD-12 (PCTD-12) within 24 hrs. PCTD-12 was used in a preliminary pharmacokinetic study in rats to demonstrate the potential of the developed transdermal nanocarrier drug patch for future applications. Results In the transdermal application of CTD-12, the relative bioavailability of the formulation was 3.68 ± 0.17-fold greater than in the free CBD application. Moreover, PCTD-12 indicated 2.46 ± 0.18-fold higher relative bioavailability comparing with free CBD patch in the ex vivo evaluation. Most importantly, in the pharmacokinetics of PCTD-12, the relative bioavailability of PCTD-12 was 9.47 ± 0.88-fold higher than in the oral application. Conclusion CTD-12, a transdermal nanocarrier, represents a promising approach for CBD delivery, suggesting its potential as an effective transdermal dosage form.
Collapse
Affiliation(s)
- Po-Cheng Chu
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan
- Basic Research and Development Department, Powin Biomedical Co. Ltd., Taichung, Taiwan
| | - Man-Hua Liao
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Mao-Gu Liu
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan
| | - Cun-Zhao Li
- Basic Research and Development Department, Powin Biomedical Co. Ltd., Taichung, Taiwan
| | - Ping-Shan Lai
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
8
|
Balakrishnan P, Gopi S. Revolutionizing transdermal drug delivery: unveiling the potential of cubosomes and ethosomes. J Mater Chem B 2024; 12:4335-4360. [PMID: 38619889 DOI: 10.1039/d3tb02927a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The area of drug delivery systems has witnessed significant advancements in recent years, with a particular focus on improving efficacy, stability, and patient compliance. Transdermal drug delivery offers numerous benefits compared to conventional methods of drug administration through the skin. It helps in avoiding gastric irritation, hepatic first-pass metabolism, and gastric degradation of the drug. It bypasses the gastrointestinal tract, eliminating the risk of first-pass metabolism and allowing drugs to be administered without being affected by pH, enzymes, or intestinal bacteria. Additionally, it allows for sustained release of the drug, is noninvasive, and enhances patient adherence to the treatment regimen. The transdermal drug delivery system (TDDS) can serve as an alternative route for drug administration in individuals who cannot tolerate oral medications, experience nausea, or are unconscious. When compared to intravenous, hypodermic, and other parenteral routes, TDDS stands out due to its ability to eliminate pain, reduce the risk of infection, and prevent disease transmission associated with needle reuse. Consequently, the overall patient compliance is significantly improved with the utilization of TDDS. Among the noteworthy developments are cubosomes and ethosomes, two distinct yet promising carriers that have garnered attention for their unique properties. In conclusion, this review synthesizes the current knowledge on cubosomes and ethosomes, shedding light on their individual strengths and potential synergies. The exploration of their application in various therapeutic areas underscores their versatility and establishes them as key players in the evolving landscape of drug delivery systems.
Collapse
Affiliation(s)
- Preetha Balakrishnan
- Molecules Biolabs Private Limited, First Floor, 3/634, Commercial Building Kinfra Konoor Road, Muringur, Vadakkummuri, Thrissur, Kerala Kinfra Park Koratti Mukundapuram, Thrissur, KL 680309, India.
| | - Sreerag Gopi
- Molecules Biolabs Private Limited, First Floor, 3/634, Commercial Building Kinfra Konoor Road, Muringur, Vadakkummuri, Thrissur, Kerala Kinfra Park Koratti Mukundapuram, Thrissur, KL 680309, India.
| |
Collapse
|
9
|
Liu H, Guo S, Wei S, Liu J, Tian B. Pharmacokinetics and pharmacodynamics of cyclodextrin-based oral drug delivery formulations for disease therapy. Carbohydr Polym 2024; 329:121763. [PMID: 38286540 DOI: 10.1016/j.carbpol.2023.121763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/07/2023] [Accepted: 12/28/2023] [Indexed: 01/31/2024]
Abstract
Oral drug administration has become the most common and preferred mode of disease treatment due to its good medication adherence and convenience. For orally administered drugs, the safety, efficacy, and targeting ability requirements have grown as disease treatment research advances. It is difficult to obtain prominent efficacy of traditional drugs simply via oral administration. Numerous studies have demonstrated that cyclodextrins (CDs) can improve the clinical applications of certain orally administered drugs by enhancing their water solubility and masking undesirable odors. Additionally, deeper studies have discovered that CDs can influence disease treatment by altering the drug pharmacokinetics (PK) or pharmacodynamics (PD). This review highlights recent research progress on the PK and PD effects of CD-based oral drug delivery in disease therapy. Firstly, the review describes the characteristics of current drug delivery modes in oral administration. Besides, we minutely summarized the different CD-containing drugs, focusing on the impact of CD-based alterations in PK or PD of orally administered drugs in treating diseases. Finally, we deeply discussed current challenges and future opportunities with regard to PK and PD of CD-based oral drug delivery formulations.
Collapse
Affiliation(s)
- Hui Liu
- Pharmacy Department, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Songlin Guo
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Shijie Wei
- Pharmacy Department, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Jiayue Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China.
| | - Bingren Tian
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| |
Collapse
|
10
|
Dasari N, Guntuku GS, Pindiprolu SKSS. Targeting triple negative breast cancer stem cells using nanocarriers. DISCOVER NANO 2024; 19:41. [PMID: 38453756 PMCID: PMC10920615 DOI: 10.1186/s11671-024-03985-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/27/2024] [Indexed: 03/09/2024]
Abstract
Breast cancer is a complex and heterogeneous disease, encompassing various subtypes characterized by distinct molecular features, clinical behaviors, and treatment responses. Categorization of subtypes is based on the presence or absence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), leading to subtypes such as luminal A, luminal B, HER2-positive, and triple-negative breast cancer (TNBC). TNBC, comprising around 20% of all breast cancers, lacks expression of ER, PR, and HER2 receptors, rendering it unresponsive to targeted therapies and presenting significant challenges in treatment. TNBC is associated with aggressive behavior, high rates of recurrence, and resistance to chemotherapy. Tumor initiation, progression, and treatment resistance in TNBC are attributed to breast cancer stem cells (BCSCs), which possess self-renewal, differentiation, and tumorigenic potential. Surface markers, self-renewal pathways (Notch, Wnt, Hedgehog signaling), apoptotic protein (Bcl-2), angiogenesis inhibition (VEGF inhibitors), and immune modulation (cytokines, immune checkpoint inhibitors) are among the key targets discussed in this review. However, targeting the BCSC subpopulation in TNBC presents challenges, including off-target effects, low solubility, and bioavailability of anti-BCSC agents. Nanoparticle-based therapies offer a promising approach to target various molecular pathways and cellular processes implicated in survival of BSCS in TNBC. In this review, we explore various nanocarrier-based approaches for targeting BCSCs in TNBC, aiming to overcome these challenges and improve treatment outcomes for TNBC patients. These nanoparticle-based therapeutic strategies hold promise for addressing the therapeutic gap in TNBC treatment by delivering targeted therapies to BCSCs while minimizing systemic toxicity and enhancing treatment efficacy.
Collapse
Affiliation(s)
- Nagasen Dasari
- Andhra University College of Pharmaceutical Sciences, Andhra University, Vishakhapatnam, Andhra Pradesh, India.
- Aditya Pharmacy College, Surampalem, Andhra Pradesh, India.
- Jawaharlal Nehru Technological University, Kakinada, Andhra Pradesh, India.
| | - Girija Sankar Guntuku
- Andhra University College of Pharmaceutical Sciences, Andhra University, Vishakhapatnam, Andhra Pradesh, India
| | - Sai Kiran S S Pindiprolu
- Aditya Pharmacy College, Surampalem, Andhra Pradesh, India
- Jawaharlal Nehru Technological University, Kakinada, Andhra Pradesh, India
| |
Collapse
|
11
|
Preeti, Sambhakar S, Malik R, Bhatia S, Harrasi AA, Saharan R, Aggarwal G, Kumar S, Sehrawat R, Rani C. Lipid Horizons: Recent Advances and Future Prospects in LBDDS for Oral Administration of Antihypertensive Agents. Int J Hypertens 2024; 2024:2430147. [PMID: 38410720 PMCID: PMC10896658 DOI: 10.1155/2024/2430147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 12/20/2023] [Accepted: 01/18/2024] [Indexed: 02/28/2024] Open
Abstract
The lipid-based drug delivery system (LBDDS) is a well-established technique that is anticipated to bring about comprehensive transformations in the pharmaceutical field, impacting the management and administration of drugs, as well as treatment and diagnosis. Various LBDDSs verified to be an efficacious mechanism for monitoring hypertension systems are SEDDS (self-nano emulsifying drug delivery), nanoemulsion, microemulsions, vesicular systems (transferosomes and liposomes), and solid lipid nanoparticles. LBDDSs overcome the shortcomings that are associated with antihypertensive agents because around fifty percent of the antihypertensive agents experience a few drawbacks including short half-life because of hepatic first-pass metabolism, poor aqueous solubility, low permeation rate, and undesirable side effects. This review emphasizes antihypertensive agents that were encapsulated into the lipid carrier to improve their poor oral bioavailability. Incorporating cutting-edge technologies such as nanotechnology and targeted drug delivery, LBDDS holds promise in addressing the multifactorial nature of hypertension. By fine-tuning drug release profiles and enhancing drug uptake at specific sites, LBDDS can potentially target renin-angiotensin-aldosterone system components, sympathetic nervous system pathways, and endothelial dysfunction, all of which play crucial roles in hypertension pathophysiology. The future of hypertension management using LBDDS is promising, with ongoing reviews focusing on precision medicine approaches, improved biocompatibility, and reduced toxicity. As we delve deeper into understanding the intricate mechanisms underlying hypertension, LBDDS offers a pathway to develop next-generation antihypertensive therapies that are safer, more effective, and tailored to individual patient needs.
Collapse
Affiliation(s)
- Preeti
- Banasthali Vidyapith, Vanasthali Road, Aliyabad 304022, Rajasthan, India
- Gurugram Global College of Pharmacy, Haily Mandi Rd, Farukh Nagar 122506, Haryana, India
| | - Sharda Sambhakar
- Banasthali Vidyapith, Vanasthali Road, Aliyabad 304022, Rajasthan, India
| | - Rohit Malik
- Gurugram Global College of Pharmacy, Haily Mandi Rd, Farukh Nagar 122506, Haryana, India
- SRM Modinagar College of Pharmacy, SRMIST, Delhi-NCR Campus, Ghaziabad, India
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mouz, Nizwa, Oman
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Ahmed Al Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mouz, Nizwa, Oman
| | - Renu Saharan
- Banasthali Vidyapith, Vanasthali Road, Aliyabad 304022, Rajasthan, India
- Maharishi Markandeshwar Deemed to be University, Mullana, Ambala 133203, Haryana, India
| | - Geeta Aggarwal
- Banasthali Vidyapith, Vanasthali Road, Aliyabad 304022, Rajasthan, India
| | - Suresh Kumar
- Bharat Institute of Pharmacy, Pehladpur, Babain, Kurukshetra 136132, Haryana, India
| | - Renu Sehrawat
- School of Medical & Allied Sciences, K. R. Mangalam University, Gurugram, Haryana 122103, India
| | - Chanchal Rani
- Gurugram Global College of Pharmacy, Haily Mandi Rd, Farukh Nagar 122506, Haryana, India
| |
Collapse
|
12
|
Jamroży M, Kudłacik-Kramarczyk S, Drabczyk A, Krzan M. Advanced Drug Carriers: A Review of Selected Protein, Polysaccharide, and Lipid Drug Delivery Platforms. Int J Mol Sci 2024; 25:786. [PMID: 38255859 PMCID: PMC10815656 DOI: 10.3390/ijms25020786] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 12/29/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Studies on bionanocomposite drug carriers are a key area in the field of active substance delivery, introducing innovative approaches to improve drug therapy. Such drug carriers play a crucial role in enhancing the bioavailability of active substances, affecting therapy efficiency and precision. The targeted delivery of drugs to the targeted sites of action and minimization of toxicity to the body is becoming possible through the use of these advanced carriers. Recent research has focused on bionanocomposite structures based on biopolymers, including lipids, polysaccharides, and proteins. This review paper is focused on the description of lipid-containing nanocomposite carriers (including liposomes, lipid emulsions, lipid nanoparticles, solid lipid nanoparticles, and nanostructured lipid carriers), polysaccharide-containing nanocomposite carriers (including alginate and cellulose), and protein-containing nanocomposite carriers (e.g., gelatin and albumin). It was demonstrated in many investigations that such carriers show the ability to load therapeutic substances efficiently and precisely control drug release. They also demonstrated desirable biocompatibility, which is a promising sign for their potential application in drug therapy. The development of bionanocomposite drug carriers indicates a novel approach to improving drug delivery processes, which has the potential to contribute to significant advances in the field of pharmacology, improving therapeutic efficacy while minimizing side effects.
Collapse
Affiliation(s)
- Mateusz Jamroży
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 8 Niezapominajek Str., 30-239 Krakow, Poland;
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (S.K.-K.); (A.D.)
| | - Sonia Kudłacik-Kramarczyk
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (S.K.-K.); (A.D.)
| | - Anna Drabczyk
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (S.K.-K.); (A.D.)
| | - Marcel Krzan
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 8 Niezapominajek Str., 30-239 Krakow, Poland;
| |
Collapse
|
13
|
Wang W, Yang C, Xue L, Wang Y. Key Challenges, Influencing Factors, and Future Perspectives of Nanosuspensions in Enhancing Brain Drug Delivery. Curr Pharm Des 2024; 30:2524-2537. [PMID: 38988170 DOI: 10.2174/0113816128317347240625105501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/30/2024] [Indexed: 07/12/2024]
Abstract
Many brain diseases pose serious challenges to human life. Alzheimer's Disease (AD) and Parkinson's Disease (PD) are common neurodegenerative diseases that seriously threaten human health. Glioma is a common malignant tumor. However, drugs cannot cross physiological and pathological barriers and most therapeutic drugs cannot enter the brain because of the presence of the Blood-brain Barrier (BBB) and Bloodbrain Tumor Barrier (BBTB). How to enable drugs to penetrate the BBB to enter the brain, reduce systemic toxicity, and penetrate BBTB to exert therapeutic effects has become a challenge. Nanosuspension can successfully formulate drugs that are difficult to dissolve in water and oil by using surfactants as stabilizers, which is suitable for the brain target delivery of class II and IV drugs in the Biopharmaceutical Classification System (BCS). In nanosuspension drug delivery systems, the physical properties of nanostructures have a great impact on the accumulation of drugs at the target site, such as the brain. Optimizing the physical parameters of the nanosuspension can improve the efficiency of brain drug delivery and disease treatment. Therefore, the key challenges, influencing factors, and future perspectives of nanosuspension in enhancing brain drug delivery are summarized and reviewed here. This article aims to provide a better understanding of nanosuspension formulation technology used for brain delivery and strategies used to overcome various physiological barriers.
Collapse
Affiliation(s)
- Wenlu Wang
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Chongzhao Yang
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Linying Xue
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Yancai Wang
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| |
Collapse
|
14
|
Naser SS, Singh D, Preetam S, Kishore S, Kumar L, Nandi A, Simnani FZ, Choudhury A, Sinha A, Mishra YK, Suar M, Panda PK, Malik S, Verma SK. Posterity of nanoscience as lipid nanosystems for Alzheimer's disease regression. Mater Today Bio 2023; 21:100701. [PMID: 37415846 PMCID: PMC10320624 DOI: 10.1016/j.mtbio.2023.100701] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 07/08/2023] Open
Abstract
Alzheimer's disease (AD) is a type of dementia that affects a vast number of people around the world, causing a great deal of misery and death. Evidence reveals a relationship between the presence of soluble Aβ peptide aggregates and the severity of dementia in Alzheimer's patients. The BBB (Blood Brain Barrier) is a key problem in Alzheimer's disease because it prevents therapeutics from reaching the desired places. To address the issue, lipid nanosystems have been employed to deliver therapeutic chemicals for anti-AD therapy in a precise and targeted manner. The applicability and clinical significance of lipid nanosystems to deliver therapeutic chemicals (Galantamine, Nicotinamide, Quercetin, Resveratrol, Curcumin, HUPA, Rapamycin, and Ibuprofen) for anti-AD therapy will be discussed in this review. Furthermore, the clinical implications of the aforementioned therapeutic compounds for anti-AD treatment have been examined. Thus, this review will pave the way for researchers to fashion therodiagnostics approaches based on nanomedicine to overcome the problems of delivering therapeutic molecules across the blood brain barrier (BBB).
Collapse
Affiliation(s)
- Shaikh Sheeran Naser
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Dibyangshee Singh
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Subham Preetam
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, 59053 Ulrika, Sweden
| | - Shristi Kishore
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, Jharkhand 834001, India
| | - Lamha Kumar
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India
| | - Aditya Nandi
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Faizan Zarreen Simnani
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Anmol Choudhury
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Adrija Sinha
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alison 2, 6400 Sønderborg, Denmark
| | - Mrutyunjay Suar
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Pritam Kumar Panda
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden
| | - Sumira Malik
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India
| | - Suresh K. Verma
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| |
Collapse
|