1
|
Umapathy S, Pan I, Issac PK, Kumar MSK, Giri J, Guru A, Arockiaraj J. Selenium Nanoparticles as Neuroprotective Agents: Insights into Molecular Mechanisms for Parkinson's Disease Treatment. Mol Neurobiol 2025; 62:6655-6682. [PMID: 38837103 DOI: 10.1007/s12035-024-04253-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/21/2024] [Indexed: 06/06/2024]
Abstract
Oxidative stress and the accumulation of misfolded proteins in the brain are the main causes of Parkinson's disease (PD). Several nanoparticles have been used as therapeutics for PD. Despite their therapeutic potential, these nanoparticles induce multiple stresses upon entry. Selenium (Se), an essential nutrient in the human body, helps in DNA formation, stress control, and cell protection from damage and infections. It can also regulate thyroid hormone metabolism, reduce brain damage, boost immunity, and promote reproductive health. Selenium nanoparticles (Se-NPs), a bioactive substance, have been employed as treatments in several disciplines, particularly as antioxidants. Se-NP, whether functionalized or not, can protect mitochondria by enhancing levels of reactive oxygen species (ROS) scavenging enzymes in the brain. They can also promote dopamine synthesis. By inhibiting the aggregation of tau, α-synuclein, and/or Aβ, they can reduce the cellular toxicities. The ability of the blood-brain barrier to absorb Se-NPs which maintain a healthy microenvironment is essential for brain homeostasis. This review focuses on stress-induced neurodegeneration and its critical control using Se-NP. Due to its ability to inhibit cellular stress and the pathophysiologies of PD, Se-NP is a promising neuroprotector with its anti-inflammatory, non-toxic, and antimicrobial properties.
Collapse
Affiliation(s)
- Suganiya Umapathy
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Tamil Nadu, 602105, India
| | - Ieshita Pan
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Tamil Nadu, 602105, India.
| | - Praveen Kumar Issac
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Tamil Nadu, 602105, India
| | - Meenakshi Sundaram Kishore Kumar
- Biomedical Research Unit and Laboratory Animal Centre (BRULAC), Department of Anatomy, Saveetha Dental College, Chennai, Tamil Nadu, 600077, India
| | - Jayant Giri
- Department of Mechanical Engineering, Yeshwantrao Chavan College of Engineering, Nagpur, India
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India.
| |
Collapse
|
2
|
Chen C, Yang Z, Ma J, Xie W, Wang Z. Recent research progress on the biological functions, synthesis and applications of selenium nanoparticles. J Chromatogr B Analyt Technol Biomed Life Sci 2025; 1252:124448. [PMID: 39778390 DOI: 10.1016/j.jchromb.2024.124448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/27/2024] [Accepted: 12/28/2024] [Indexed: 01/11/2025]
Abstract
Selenium is an essential trace element that is involved in a variety of complex biological processes and has a significant positive effect on the prevention and treatment of cardiovascular disease, inflammatory diseases, and cancer. Selenium in the body is mainly provided by daily meals. However, selenium has two sides, beneficial in moderation and harmful in excess. Selenium nanoparticles (SeNPs), which has better biocompatibility, safety and stability compared with other forms of selenium, is a good choice for selenium supplementing. Current researchers are exploring SeNPs in a variety of ways, including but not limited to antioxidant, antimicrobial, antiviral, inhibition of inflammation, anti-tumor, development of bio-diagnostic reagents, and nano-carrier systems. Also, efforts are being made to synthesize stable and efficient SeNPs for various applications. This study briefly describes how SeNPs are synthesized, summarizes in detail the wide range of uses of SeNPs, and provides an outlook on the future development of it. In addition, combined with the research results of our group, this study discusses the application and biological assays of SeNPs in diagnosis, which will provide inspiration and help for researchers to broaden the application of SeNPs.
Collapse
Affiliation(s)
- Chunxia Chen
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng 475004, China
| | - Zhan Yang
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng 475004, China
| | - Jingjing Ma
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng 475004, China
| | - Weiqi Xie
- The First Affiliated Hospital of Henan University, Kaifeng 475004, China
| | - Zhizeng Wang
- Chongqing Key Laboratory of Reproductive Health and Digital Medicine, Department of Laboratory Medicine, Chongqing General Hospital, School of Medicine, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
3
|
Castillo-Lopez E, Biber P, Sener-Aydemir A, Hummel K, Razzazi-Fazeli E, Reisinger N, Zebeli Q, Kreuzer-Redmer S, Hartinger T. Characterization of the colostrum proteome of primiparous Holstein cows and its association with colostrum immunoglobulin G concentrations. J Anim Sci Biotechnol 2025; 16:10. [PMID: 39833978 PMCID: PMC11748342 DOI: 10.1186/s40104-024-01144-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/17/2024] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND The objective was to characterize the colostrum proteome of primiparous Holstein cows in association with immunoglobulin G (IgG) content. Immediately after calving, colostrum samples were collected from 18 cows to measure IgG concentration. Based on colostrum IgG content, samples were classified through cluster analysis and were identified as poor, average, and excellent quality. The proteome was assessed with quantitative shotgun proteomics; abundance data were compared among the colostrum types; enrichment analysis of metabolic processes and proteins classes was performed as well. We also tested correlations between this proteome and blood globulin level of cows and passive immunity level of calves. RESULTS On average, 428 proteins were identified per sample, which belonged mainly to cellular process, biological regulation, response to stimulus, metabolic process, and immune system process. Most abundant proteins were complement C3 (Q2UVX4), alpha-S1-casein (P02662), Ig-like domain-containing protein (A0A3Q1M032), albumin (A0A140T897), polymeric immunoglobulin receptor (P81265), lactotransferrrin (P24627), and IGHG1*01 (X16701_4). Colostrum of excellent quality had greater (P < 0.05) abundance of serpin A3-7 (A2I7N3), complement factor I (A0A3Q1MIF4), lipocalin/cytosolic fatty-acid binding domain-containing protein (A0A3Q1MRQ2), complement C3 (E1B805), complement component 4 binding protein alpha (A0AAF6ZHP5), and complement component C6 (F1MM86). However, colostrum of excellent quality had lower (P < 0.05) abundance of HGF activator (E1BCW0), alpha-S1-casein (P02662), and xanthine dehydrogenase/oxidase (P80457). This resulted in enrichment of the biological processes predominantly for complement activation alternative pathway, complement activation, complement activation classical pathway, humoral immune response, leukocyte mediated immunity, and negative regulation of endopeptidase activity in excellent-quality colostrum. Additionally, some colostrum proteins were found to be correlated with the blood globulin level of cows and with the passive immunity level of calves (P < 0.05; r ≥ 0.57). CONCLUSIONS This study provides new insights into the bovine colostrum proteome, demonstrating associations between IgG levels and the abundance of other proteins, as well as the enrichment of metabolic processes related to innate immune response. Thus, results suggest that the colostrum proteomic profile is associated with the content of IgG. Future research should deeply explore the association of these findings with pre-calving nutrition status and blood composition of the cow, and with passive immunity transfer to the calf.
Collapse
Affiliation(s)
- Ezequias Castillo-Lopez
- Center for Animal Nutrition and Welfare, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria.
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Vienna, Austria.
| | - Patrick Biber
- Center for Animal Nutrition and Welfare, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Vienna, Austria
| | - Arife Sener-Aydemir
- Center for Animal Nutrition and Welfare, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Vienna, Austria
| | - Karin Hummel
- University of Veterinary Medicine Vienna, VetCore Facility (Mass Spectrometry), Vienna, Austria
| | - Ebrahim Razzazi-Fazeli
- University of Veterinary Medicine Vienna, VetCore Facility (Mass Spectrometry), Vienna, Austria
| | - Nicole Reisinger
- Dsm-Firmenich, Animal Nutrition & Health R&D Center, Tulln, Austria
| | - Qendrim Zebeli
- Center for Animal Nutrition and Welfare, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Vienna, Austria
| | - Susanne Kreuzer-Redmer
- Center for Animal Nutrition and Welfare, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - Thomas Hartinger
- Center for Animal Nutrition and Welfare, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Vienna, Austria
| |
Collapse
|
4
|
Ataollahi F, Amirheidari B, Amirheidari Z, Ataollahi M. Clinical and mechanistic insights into biomedical application of Se-enriched probiotics and biogenic selenium nanoparticles. Biotechnol Lett 2025; 47:18. [PMID: 39826010 DOI: 10.1007/s10529-024-03559-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/13/2024] [Accepted: 12/16/2024] [Indexed: 01/20/2025]
Abstract
Selenium is an essential element with various industrial and medical applications, hence the current considerable attention towards the genesis and utilization of SeNPs. SeNPs and other nanoparticles could be achieved via physical and chemical methods, but these methods would not only require expensive equipment and specific reagents but are also not always environment friendly. Biogenesis of SeNPs could therefore be considered as a less troublesome alternative, which opens an excellent window to the selenium and nanoparticles' world. bSeNPs have proved to exert higher bioavailability, lower toxicity, and broader utility as compared to their non-bio counterparts. Many researchers have reported promising features of bSeNP such as anti-oxidant and anti-inflammatory, in vitro and in vivo. Considering this, bSeNPs have been tried as effective agents for health disorders, especially as constituents of probiotics. This article briefly reviews selenium, selenium nanoparticles, Se-enriched probiotics, and bSeNPs' usage in an array of health disorders. Obviously, there are very many articles on bSeNPs, but we wanted to summarize studies on prominent bSeNPs features published in the twenty-first century. This review is hoped to give an outlook to researchers for their future investigations, ultimately serving better care of health disorders.
Collapse
Affiliation(s)
- Farshid Ataollahi
- Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Bagher Amirheidari
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Medical University Campus, Haft-Bagh Highway, Kerman, 76169-13555, Iran.
| | - Zohreh Amirheidari
- Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahshid Ataollahi
- Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
5
|
Sęk W, Kot AM, Kieliszek M. The Impact of Selenium on the Physiological Activity of Yeast Cells Saccharomyces cerevisiae ATCC 7090 and Rhodotorula glutinis CCY 20-2-26. FRONT BIOSCI-LANDMRK 2025; 30:26692. [PMID: 39862091 DOI: 10.31083/fbl26692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/22/2024] [Accepted: 11/28/2024] [Indexed: 01/27/2025]
Abstract
BACKGROUND This study investigated the selenium-binding capacity of the biomass of two yeast strains, Saccharomyces cerevisiae American Type Culture Collection (ATCC) 7090 and Rhodotorula glutinis CCY 20-2-26. METHODS The studies carried out methods of bioaccumulation by yeast biomass. Inorganic selenium was added to the culture media as an aqueous solution of Na2SeO3 at concentrations ranging from 0 to 40 mg Se4+/L. RESULTS The addition of selenium at concentrations >0.5 mg/L significantly reduced biomass yield compared with the control in the case of S. cerevisiae. A significant reduction in the biomass of R. glutinis was observed only at selenium doses >30 mg/L. The study found that for S. cerevisiae, cultivation should occur for 24 h in a medium with an initial selenium concentration of 20 mg/L to achieve the most efficient selenium accumulation by the yeast biomass. Under these conditions, the yeast could accumulate 4.27 mg Se4+/g. For the red yeast R. glutinis, optimal selenium binding conditions were achieved by cultivating for 48 h in a medium with an initial selenium ion concentration of 40 mg/L. This yeast strain was more resistant to high selenium doses, accumulating 7.53 mg Se4+/L at the highest tested dose (40 mg Se4+/L). Selenium supplementation of the medium from 20 mg Se4+/L and cultivation for 72 h caused significant changes in the morphology of S. cerevisiae cells (e.g., increased surface area compared with the control). Selenium doses of 20-40 mg/L after 48 h of cultivation significantly reduced the surface area compared with the control results for R. glutinis cells. CONCLUSIONS Selenium significantly impacted carotenoid pigment production, with levels decreasing as the selenium concentration in the medium increased. Furthermore, selenium in the tested concentration range increased protein content in the cellular biomass but did not affect intracellular lipid production.
Collapse
Affiliation(s)
- Wioletta Sęk
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, 02-776 Warsaw, Poland
| | - Anna M Kot
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, 02-776 Warsaw, Poland
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, 02-776 Warsaw, Poland
| |
Collapse
|
6
|
Xiao X, Huang G, Yu X, Tan Y. Advances in Selenium and Related Compounds Inhibiting Multi-Organ Fibrosis. Drug Des Devel Ther 2025; 19:251-265. [PMID: 39830783 PMCID: PMC11742456 DOI: 10.2147/dddt.s488226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/03/2024] [Indexed: 01/22/2025] Open
Abstract
Selenium (Se), a critically essential trace element, plays a crucial role in diverse physiological processes within the human body, such as oxidative stress response, inflammation regulation, apoptosis, and lipid metabolism. Organ fibrosis, a pathological condition caused by various factors, has become a significant global health issue. Numerous studies have demonstrated the substantial impact of Se on fibrotic diseases. This review delves into the latest research advancements in Se and Se-related biological agents for alleviating fibrosis in the heart, liver, lungs, and kidneys, detailing their mechanisms of action within fibrotic pathways. Additionally, the article summa-rizes some of the anti-fibrotic drugs currently in clinical trials for the aforementioned organ fibroses.
Collapse
Affiliation(s)
- Xixi Xiao
- The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Hubei Minzu University, Enshi, 445000, People’s Republic of China
| | - Guoquan Huang
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, 445000, People’s Republic of China
- Hubei Provincial Key Laboratory of Selenium Resources and Bioapplications, Enshi, 445000, People’s Republic of China
| | - Xinqiao Yu
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, 445000, People’s Republic of China
| | - Yong Tan
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, 445000, People’s Republic of China
- Hubei Provincial Key Laboratory of Selenium Resources and Bioapplications, Enshi, 445000, People’s Republic of China
| |
Collapse
|
7
|
Pattanayak P, Saha S, Chatterjee T, Ranu BC. Sustainable and solvent-free synthesis of molecules of pharmaceutical importance by ball milling. Chem Commun (Camb) 2024; 61:247-265. [PMID: 39629561 DOI: 10.1039/d4cc05127k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The solvent-free mechanochemical reactions under ball milling have emerged as a promising alternative to traditional solution-based chemistry. This approach not only eliminates the necessity for large quantities of solvents and minimizes waste production, but it also facilitates a unique reaction environment that enables strategies, reactions, and compound syntheses that are typically unattainable in solution. This solvent-less synthetic strategy under ball-milling has been well employed in synthetic organic chemistry in accessing various potential organic molecules including pharmaceutically important molecules and pharmaceuticals or drug-molecules. This review highlights the potential of ball milling in the synthesis of pharmaceutically important classes of molecules without using any solvent (solvent-free conditions).
Collapse
Affiliation(s)
- Paramita Pattanayak
- Department of Chemistry, Birla Institute of Technology and Science, Pilani (BITS Pilani), Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad 500078, India.
| | - Samiran Saha
- Department of Chemistry, Birla Institute of Technology and Science, Pilani (BITS Pilani), Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad 500078, India.
| | - Tanmay Chatterjee
- Department of Chemistry, Birla Institute of Technology and Science, Pilani (BITS Pilani), Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad 500078, India.
| | - Brindaban C Ranu
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
8
|
Boroumand S, Majidi RF, Gheibi A, Majidi RF. Selenium nanoparticles incorporated in nanofibers media eliminate H1N1 activity: a novel approach for virucidal antiviral and antibacterial respiratory mask. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:2360-2376. [PMID: 38063966 DOI: 10.1007/s11356-023-31202-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 11/20/2023] [Indexed: 01/18/2024]
Abstract
The consecutive viral infectious outbreaks impose severe complications on public health besides the economic burden which led to great interest in antiviral personal protective equipment (PPE). Nanofiber-based respiratory mask has been introduced as a significant barrier to eliminate the airborne transmission from aerosols toward reduction the viral infection spreading. Herein, selenium nanoparticles incorporated in polyamide 6 nanofibers coated on spunbond nonwoven were synthesized via electrospinning technique (PA6@SeNPs), with an average diameter of 180 ± 2 nm. The nanofiber-coated media were tested for 0.3 μm particulate filtration efficiency based on Standard NIOSH (42 CFR 84). PA6@SeNPs had a pressure drop of 45 ± 2 Pa and particulate filtration efficiency of more than 97.33 which is comparable to the N95 respiratory mask. The bacterial killing efficiency of these nanofibers was 91.25% and 16.67% against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), respectively. Furthermore, the virucidal antiviral test for H1N1 infected Madin-Darby Canine Kidney cells (MDCK) exhibited TCID50 of 108.13, 105.88, and 105.5 for 2, 10, and 120 min of exposure times in comparison with 108.5, 107.5, and 106.5 in PA6 nanofibers as control sample. MTT assay indicated excellent biocompatibility of electrospun PA6@SeNP nanofibers on L292 cells. These results propose the PA6@SeNP nanofibers have a high potential to be used as an efficient layer in respiratory masks for protection against respiratory pathogens.
Collapse
Affiliation(s)
| | | | - Ali Gheibi
- Fanavaran Nano-Meghyas (Fnm Co. Ltd.), Tehran, Iran
| | - Reza Faridi Majidi
- Fanavaran Nano-Meghyas (Fnm Co. Ltd.), Tehran, Iran.
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Sotnikova-Meleshkina ZV, Yatsyk YO, Bobrova OV, Kryvonos KA. The influence of vitamin and mineral consumption on the course of coronavirus disease (COVID-19). WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2024; 77:1086-1092. [PMID: 39008602 DOI: 10.36740/wlek202405132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
OBJECTIVE Aim: The study of the role of micronutrients in the prevention of the severe course of the coronavirus disease. PATIENTS AND METHODS Materials and Methods: In order to fulfill the task, there was conducted an analytical review of medical and biological publications in English in the electronic databases PubMed Medline of the US National Library of Medicine (NLM), Embase, Cochrane Database of Systematic Reviews for the period from 2015 to November 2023, where included 50 published articles, 28 preprints and 109 trials. In the course of the study, the bibliographic-semantic research method was used according to the "Preferred Reporting Elements for Systematic Reviews and Meta-Analyses" (PRISMA) protocol. According to this protocol, identified literary sources were sequentially analyzed by title, keywords, abstract and full text of articles. Based on the results of 16 searches, 2650 articles from PubMed, Cochrane Database of Systematic Reviews and Embase, 3162 articles from preprint servers and 237 trials were rejected. In the final article synthesis, we included 50 published articles, 28 preprints, and 109 trials. CONCLUSION Conclusions: The most effective in preventing complications of the coronavirus disease are vitamins A, D, E, K, C, B3, B6, B9, B12 and such mineral substances as Mg, Se and Zn. The consumption of appropriate bioactive complexes and source products can be considered a clinically and economically effective strategy for the prevention of a severe course of the coronavirus disease.
Collapse
|
10
|
Mikhailova EO. Selenium Nanoparticles: Green Synthesis and Biomedical Application. Molecules 2023; 28:8125. [PMID: 38138613 PMCID: PMC10745377 DOI: 10.3390/molecules28248125] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Selenium nanoparticles (SeNPs) are extremely popular objects in nanotechnology. "Green" synthesis has special advantages due to the growing necessity for environmentally friendly, non-toxic, and low-cost methods. This review considers the biosynthesis mechanism of bacteria, fungi, algae, and plants, including the role of various biological substances in the processes of reducing selenium compounds to SeNPs and their further packaging. Modern information and approaches to the possible biomedical use of selenium nanoparticles are presented: antimicrobial, antiviral, anticancer, antioxidant, anti-inflammatory, and other properties, as well as the mechanisms of these processes, that have important potential therapeutic value.
Collapse
Affiliation(s)
- Ekaterina O Mikhailova
- Institute of Innovation Management, Kazan National Research Technological University, K. Marx Street 68, 420015 Kazan, Russia
| |
Collapse
|