1
|
Zhang Y, Xu X, Zhang X, Ni S, Chen D, Cheng Y, Liu X, Cui N, Tang L, Cheng H, Zhou F. Changes in the Immune Profile and Chromatin Accessibility of Peripheral Regulatory T Cells in Psoriasis Patients Before and After Treatment With Biologics. Exp Dermatol 2025; 34:e70079. [PMID: 40269508 DOI: 10.1111/exd.70079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 02/01/2025] [Accepted: 03/02/2025] [Indexed: 04/25/2025]
Abstract
Psoriasis is a chronic inflammatory skin disease. The excessive activation of proinflammatory cytokines interleukin-17 (IL-17), IL-23 and T helper cell 17(Th17) is the main pathogenic factor. In addition, the dysfunction of suppressor cells such as regulatory T cells (Tregs) and the imbalance of the Th17/Treg ratio also play important roles in the pathogenesis of psoriasis. By testing the immune function of peripheral Tregs in psoriasis, psoriasis treated with anti-IL-17 biologics, and healthy controls, we found that the number and function of psoriatic peripheral Tregs were abnormal, and Tregs differentiated from 'inhibitory' to 'inflammatory' cells in the inflammatory environment, which may be the cause of Tregs dysfunction in psoriasis. We also found through the assay for targeting accessible chromatin with high-throughput sequencing (ATAC-seq) analysis that the chromatin accessibility of psoriatic peripheral Tregs was significantly higher than that of healthy controls and decreased after treatment, which may be related to INO80, a gene that controls changes in chromatin tightness or relaxation status. In addition, the differentially expressed genes (DEGs) of three groups, such as NCAM2, CDH18, ZEB1 and CCDC22, were mainly concentrated in the signalling pathways related to effector T(Teff) cell aggregation and Tregs dysfunction. This study provides an important basis for the study of peripheral Tregs dysfunction in psoriasis.
Collapse
Affiliation(s)
- Yuxi Zhang
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China
| | - Xiaoqing Xu
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China
| | - Xiaojing Zhang
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China
| | - Shuangying Ni
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China
| | - Donger Chen
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China
| | - Yuqi Cheng
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China
| | - Xiaonan Liu
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China
| | - Niannian Cui
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China
| | - Lili Tang
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China
- Collaborative Innovation Center of Complex and Severe Skin Disease, Anhui Medical University, Hefei, Anhui, China
| | - Hui Cheng
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China
- Collaborative Innovation Center of Complex and Severe Skin Disease, Anhui Medical University, Hefei, Anhui, China
| | - Fusheng Zhou
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China
- Collaborative Innovation Center of Complex and Severe Skin Disease, Anhui Medical University, Hefei, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, People's Republic of China
| |
Collapse
|
2
|
Wu L, Shen Y, Zhang J, Shen Z, Li T. Causal relationship between psoriasis and sudden deafness: a Mendelian randomization study. Arch Dermatol Res 2025; 317:167. [PMID: 39755810 DOI: 10.1007/s00403-024-03700-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/15/2024] [Accepted: 12/20/2024] [Indexed: 01/06/2025]
Abstract
OBJECTIVE This study aims to investigate the genetic link between psoriasis and sudden sensorineural hearing loss (SSNHL). METHODS From a genetic standpoint, this study further highlighted the connection between psoriasis and SSNHL. Single nucleotide polymorphisms (SNPs) connected to SSNHL could be found using a genome-wide association study from the IEU OpenGWAS project website. In addition, the inverse variance weighted (IVW) technique was used to evaluate the connection between psoriasis and SSNHL. RESULTS According to Mendelian randomization analysis, IVW supported the causal relationship between psoriasis and SSNHL (OR = 808.86, 95%CI 3.32 ~ 196942.07, P = 0.02). In the sensitivity analysis, there was no heterogeneity or horizontal pleiotropy, and the Leave-one-out analysis suggested that the causal effect was robust.The results of MR-Egger (Q = 13.53, P = 0.76) and IVW (Q = 14.73, P = 0.74) showed that there was no heterogeneity in SNPs, and the results were reliable. We also performed a horizontal pleiotropic analysis (P = 0.29), which showed that there was no horizontal pleiotropy and no confounding factors in the study. CONCLUSION From a genetic perspective, there is a causal relationship between psoriasis and an increased risk of sudden sensorineural hearing loss.
Collapse
Affiliation(s)
- Linrong Wu
- Department of Otolaryngology, Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, 315100, China
| | - Yiming Shen
- Otology and Skull Base Surgery, National Health Commission Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200000, China
| | - Junjun Zhang
- Department of Trauma Surgery, Ningbo Yinzhou No.2 Hospital, Ningbo, 315100, China.
| | - Zhisen Shen
- Department of Otolaryngology, Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, 315100, China
| | - Tian Li
- Tianjin Medical University, Tianjin, 300102, China.
| |
Collapse
|
3
|
Sortebech D, Schoenfeldt T, Duvetorp A, Agerholm-Nielsen R, Eidsmo L. Skin-resident T Cells Contribute to the Dynamic Disease Manifestations of Psoriasis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1267-1277. [PMID: 39432869 DOI: 10.4049/jimmunol.2400020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/23/2024] [Indexed: 10/23/2024]
Abstract
The human skin forms a dynamic barrier to physical injuries and microbial invasion. Constant interactions between stroma and tissue-confined immune cells maintain skin homeostasis. However, the cellular interactions that maintain skin health also contribute to focal immunopathology. Psoriasis is a common disease that manifests with focal pathology induced by environmental triggers in genetically susceptible individuals. Within psoriasis plaques, cross-talk between skin-resident T cells and stroma cells leads to chronic inflammation. Inflammatory cytokines such as TNF-α, IL-17, IL-22, and IL-23 amplify the local chronic inflammation and sustain the well-demarcated thick and scaly plaques that characterize the disease. In resolved lesions, T cells remain poised for IL-17 and IL-22 production, and postinflammatory epigenetic modifications lower the threshold for initiation of local relapse. This review focuses on how tissue-resident memory T cells contribute to the onset, maintenance, resolution, and relapse of psoriasis.
Collapse
Affiliation(s)
- Daniel Sortebech
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Trine Schoenfeldt
- Leo Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Albert Duvetorp
- Leo Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
- Department of Dermatology, Skåne University Hospital, Malmö, Sweden
| | - Rasmus Agerholm-Nielsen
- Leo Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Liv Eidsmo
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Leo Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Ge J, Yin X, Chen L. Regulatory T cells: masterminds of immune equilibrium and future therapeutic innovations. Front Immunol 2024; 15:1457189. [PMID: 39290699 PMCID: PMC11405253 DOI: 10.3389/fimmu.2024.1457189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Regulatory T cells (Tregs), a subset of CD4+T cells marked by the expression of the transcription factor forkhead box protein 3 (Foxp3), are pivotal in maintaining immune equilibrium and preventing autoimmunity. In our review, we addressed the functional distinctions between Foxp3+Tregs and other T cells, highlighting their roles in autoimmune diseases and cancer. We uncovered the dual nature of Tregs: they prevented autoimmune diseases by maintaining self-tolerance while contributing to tumor evasion by suppressing anti-tumor immunity. This study underscored the potential for targeted therapeutic strategies, such as enhancing Treg activity to restore balance in autoimmune diseases or depleting Foxp3+Tregs to augment anti-tumor immune responses in cancer. These insights laid the groundwork for future research and clinical applications, emphasizing the critical role of Foxp3+Tregs in immune regulation and the advancement of next-generation immunotherapies.
Collapse
Affiliation(s)
- Junwei Ge
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Xuan Yin
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Lujun Chen
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| |
Collapse
|
5
|
Cui N, Xu X, Zhou F. Single-cell technologies in psoriasis. Clin Immunol 2024; 264:110242. [PMID: 38750947 DOI: 10.1016/j.clim.2024.110242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/30/2024] [Accepted: 05/01/2024] [Indexed: 05/24/2024]
Abstract
Psoriasis is a chronic and recurrent inflammatory skin disorder. The primary manifestation of psoriasis arises from disturbances in the cutaneous immune microenvironment, but the specific functions of the cellular components within this microenvironment remain unknown. Recent advancements in single-cell technologies have enabled the detection of multi-omics at the level of individual cells, including single-cell transcriptome, proteome, and metabolome, which have been successfully applied in studying autoimmune diseases, and other pathologies. These techniques allow the identification of heterogeneous cell clusters and their varying contributions to disease development. Considering the immunological traits of psoriasis, an in-depth exploration of immune cells and their interactions with cutaneous parenchymal cells can markedly advance our comprehension of the mechanisms underlying the onset and recurrence of psoriasis. In this comprehensive review, we present an overview of recent applications of single-cell technologies in psoriasis, aiming to improve our understanding of the underlying mechanisms of this disorder.
Collapse
Affiliation(s)
- Niannian Cui
- First School of Clinical Medicine, Anhui Medical University, Hefei 230032, China
| | - Xiaoqing Xu
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230031, China; Institute of Dermatology, Anhui Medical University, Hefei, Anhui 230022, China; The Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230022, China
| | - Fusheng Zhou
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230031, China; Institute of Dermatology, Anhui Medical University, Hefei, Anhui 230022, China; The Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230022, China.
| |
Collapse
|
6
|
Dold L, Kalthoff S, Frank L, Zhou T, Esser P, Lutz P, Strassburg CP, Spengler U, Langhans B. STAT activation in regulatory CD4 + T cells of patients with primary sclerosing cholangitis. Immun Inflamm Dis 2024; 12:e1248. [PMID: 38607233 PMCID: PMC11010953 DOI: 10.1002/iid3.1248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/25/2024] [Accepted: 03/31/2024] [Indexed: 04/13/2024] Open
Abstract
INTRODUCTION Regulatory CD4+ T cells (Tregs) are pivotal for inhibition of autoimmunity. Primary sclerosing cholangitis (PSC) is an autoimmune cholestatic liver disease of unknown etiology where contribution of Tregs is still unclear. Activation of the JAK-STAT pathway critically modifies functions of Tregs. In PSC, we studied activation of STAT proteins and Treg functions in response to cytokines. METHODS In 51 patients with PSC, 10 disease controls (chronic replicative hepatitis C), and 36 healthy controls we analyzed frequencies of Foxp3+CD25+CD127lowCD4+ Tregs, their expression of ectonucleotidase CD39, and cytokine-induced phosphorylation of STAT1, 3, 5, and 6 using phospho-flow cytometry. In parallel, we measured cytokines IFN-gamma, interleukin (IL)-6, IL-2, and IL-4 in serum via bead-based immunoassays. RESULTS In patients with PSC, ex vivo frequencies of peripheral Tregs and their expression of CD39 were significantly reduced (p < .05 each). Furthermore, serum levels of IFN-gamma, IL-6, IL-2, and IL-4 were markedly higher in PSC (p < .05 each). Unlike activation of STAT1, STAT5, and STAT6, IL-6 induced increased phosphorylation of STAT3 in Tregs of PSC-patients (p = .0434). Finally, STAT3 activation in Tregs correlated with leukocyte counts. CONCLUSIONS In PSC, we observed enhanced STAT3 responsiveness of CD4+ Tregs together with reduced CD39 expression probably reflecting inflammatory activity of the disease.
Collapse
Affiliation(s)
- Leona Dold
- Department of Internal Medicine IUniversity Hospital of BonnBonnGermany
- German Center for Infection Research (DZIF)Partner Site Cologne‐BonnBonnGermany
| | - Sandra Kalthoff
- Department of Internal Medicine IUniversity Hospital of BonnBonnGermany
| | - Leonie Frank
- Department of Internal Medicine IUniversity Hospital of BonnBonnGermany
| | - Taotao Zhou
- Department of Internal Medicine IUniversity Hospital of BonnBonnGermany
| | - Pia Esser
- Department of Internal Medicine IUniversity Hospital of BonnBonnGermany
| | - Philipp Lutz
- Department of Internal Medicine IUniversity Hospital of BonnBonnGermany
| | | | - Ulrich Spengler
- Department of Internal Medicine IUniversity Hospital of BonnBonnGermany
| | - Bettina Langhans
- Department of Internal Medicine IUniversity Hospital of BonnBonnGermany
- German Center for Infection Research (DZIF)Partner Site Cologne‐BonnBonnGermany
| |
Collapse
|
7
|
Sieminska I, Pieniawska M, Grzywa TM. The Immunology of Psoriasis-Current Concepts in Pathogenesis. Clin Rev Allergy Immunol 2024; 66:164-191. [PMID: 38642273 PMCID: PMC11193704 DOI: 10.1007/s12016-024-08991-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2024] [Indexed: 04/22/2024]
Abstract
Psoriasis is one of the most common inflammatory skin diseases with a chronic, relapsing-remitting course. The last decades of intense research uncovered a pathological network of interactions between immune cells and other types of cells in the pathogenesis of psoriasis. Emerging evidence indicates that dendritic cells, TH17 cells, and keratinocytes constitute a pathogenic triad in psoriasis. Dendritic cells produce TNF-α and IL-23 to promote T cell differentiation toward TH17 cells that produce key psoriatic cytokines IL-17, IFN-γ, and IL-22. Their activity results in skin inflammation and activation and hyperproliferation of keratinocytes. In addition, other cells and signaling pathways are implicated in the pathogenesis of psoriasis, including TH9 cells, TH22 cells, CD8+ cytotoxic cells, neutrophils, γδ T cells, and cytokines and chemokines secreted by them. New insights from high-throughput analysis of lesional skin identified novel signaling pathways and cell populations involved in the pathogenesis. These studies not only expanded our knowledge about the mechanisms of immune response and the pathogenesis of psoriasis but also resulted in a revolution in the clinical management of patients with psoriasis. Thus, understanding the mechanisms of immune response in psoriatic inflammation is crucial for further studies, the development of novel therapeutic strategies, and the clinical management of psoriasis patients. The aim of the review was to comprehensively present the dysregulation of immune response in psoriasis with an emphasis on recent findings. Here, we described the role of immune cells, including T cells, B cells, dendritic cells, neutrophils, monocytes, mast cells, and innate lymphoid cells (ILCs), as well as non-immune cells, including keratinocytes, fibroblasts, endothelial cells, and platelets in the initiation, development, and progression of psoriasis.
Collapse
Affiliation(s)
- Izabela Sieminska
- University Centre of Veterinary Medicine, University of Agriculture in Krakow, Krakow, Poland
| | - Monika Pieniawska
- Institute of Human Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Tomasz M Grzywa
- Laboratory of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland.
- Department of Methodology, Medical University of Warsaw, Warsaw, Poland.
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, USA.
| |
Collapse
|
8
|
Lobão B, Lourenço D, Giga A, Mendes-Bastos P. From PsO to PsA: the role of T RM and Tregs in psoriatic disease, a systematic review of the literature. Front Med (Lausanne) 2024; 11:1346757. [PMID: 38405187 PMCID: PMC10884248 DOI: 10.3389/fmed.2024.1346757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/25/2024] [Indexed: 02/27/2024] Open
Abstract
Introduction Psoriasis (PsO) is a chronic skin condition driven by immune mediators like TNFα, INFγ, IL-17, and IL-23. Psoriatic arthritis (PsA) can develop in PsO patients. Although psoriatic lesions may apparently resolve with therapy, subclinical cutaneous inflammation may persist. The role of tissue-resident memory T-cells (TRM), and regulatory T cells (Tregs) that also contribute to chronic inflammation are being explored in this context. This systematic review explores TRM and Tregs in psoriatic disease (PsD) and its progression. Methods A systematic review, following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, was performed using Pubmed® and Web of Science™ databases on June 3rd 2023, using patient/population, intervention, comparison, and outcomes (PICO) criteria limited to the English language. Results A total of 62 reports were identified and included. In PsO, chronic inflammation is driven by cytokines including IL-17 and IL-23, and cellular mediators such as CD8+ and CD4+ T cells. TRM contributes to local inflammation, while Tregs may be dysfunctional in psoriatic skin lesions. Secukinumab and guselkumab, which target IL-17A and the IL-23p19 subunit, respectively, have different effects on CD8+ TRM and Tregs during PsO treatment. Inhibition of IL-23 may provide better long-term results due to its impact on the Treg to CD8+ TRM ratio. IL-23 may contribute to inflammation persisting even after treatment. In PsA, subclinical enthesitis is perceived as an early occurence, and Th17 cells are involved in this pathogenic process. Recent EULAR guidelines highlight the importance of early diagnosis and treatment to intercept PsA. In PsA, CD8+ TRM cells are present in synovial fluid and Tregs are reduced in peripheral blood. The progression from PsO to PsA is marked by a shift in immune profiles, with specific T-cells subsets playing key roles in perpetuating inflammation. Early intervention targeting TRM cells may hold promising, but clinical studies are limited. Ongoing studies such as IVEPSA and PAMPA aim to improve our knowledge regarding PsA interception in high-risk PsO patients, emphasizing the need for further research in this area. Conclusion Early intervention is crucial for PsO patients at high risk of PsA; T cells, particularly type 17 helper T cells, and CD8+ cells are key in the progression from PsO-to-PsA. Early targeting of TRM in PsD shows promise but more research is needed.
Collapse
Affiliation(s)
- Bárbara Lobão
- Instituto Português de Reumatologia, Lisboa, Portugal
- Centro Hospitalar de Setúbal, Setúbal, Portugal
| | | | - Ana Giga
- Janssen Portugal, Oeiras, Portugal
| | | |
Collapse
|
9
|
Qiao Z, Zhao W, Liu Y, Feng W, Ma Y, Jin H. Low-dose Interleukin-2 For Psoriasis Therapy Based on the Regulation of Th17/Treg Cell Balance in Peripheral Blood. Inflammation 2023; 46:2359-2373. [PMID: 37596509 PMCID: PMC10673739 DOI: 10.1007/s10753-023-01883-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2023] [Indexed: 08/20/2023]
Abstract
The imbalance between regulatory T (Treg) cells and efficient T cells plays an important role in psoriasis. Low-dose interleukin (IL)-2 can preferentially activate Treg cells and ameliorate the imbalance of Treg/efficient T cells. This study focused on the status of circulating CD4+ T subsets and the clinical efficacy of low-dose IL-2 therapies in psoriasis. This retrospective study included peripheral blood samples obtained from 45 psoriatic patients and 40 healthy controls. The 45 psoriatic patients received three cycles of subcutaneous low-dose IL-2 treatment (0.5 million IU/day for 2 weeks) combined with conventional therapies. Inflammatory indices, CD4+ T-lymphocyte subsets, and cytokines were measured in all patients before and after treatment. The percentage of Treg cells was dramatically decreased in the psoriasis group compared to the healthy group, and the percentage of Treg cells negatively correlated with the disease indices and the Psoriasis Area and Severity Index (PASI) (P < 0.001). The Th17/Treg ratio was significantly increased in the psoriasis group compared to the healthy group, and the Th17/Treg ratio positively correlated with disease indices and PASI (P < 0.001). Low-dose IL-2 treatment significantly amplified the percentage of Treg cells and restored the Th17 and Treg immune balance in psoriasis (P < 0.001). Low-dose IL-2 combination therapy effectively improved the clinical manifestations of psoriasis but decreased the inflammatory indicators of the disease activity, with no apparent side effects. Thus, low-dose IL-2 provides a new strategy for the treatment of psoriasis.
Collapse
Affiliation(s)
- Zusha Qiao
- Department of Dermatology, Second Hospital of Shanxi Medical University, Taiyuan, China
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, 100730, China
| | - Wenpeng Zhao
- Department of Rheumatology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yan Liu
- Department of Cancer prevention and control office, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Wenli Feng
- Department of Dermatology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yan Ma
- Department of Dermatology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Hongzhong Jin
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, 100730, China.
| |
Collapse
|
10
|
Huang Y, Mao CR, Lou Y, Zhan S, Chen Z, Ding W, Ma Z. Design, Synthesis, and Biological Evaluation of an Orally Bioavailable, Potent, and Selective ROCK2 Inhibitor for Psoriasis Treatment. J Med Chem 2023; 66:15205-15229. [PMID: 37943013 DOI: 10.1021/acs.jmedchem.3c01297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Psoriasis, a prevalent chronic skin disorder, remains a significant therapeutic obstacle. This study centers on rho-associated coiled-coil-containing kinase2 (ROCK2) as an advantageous target for treating psoriasis and identifies five potent and selective ROCK2 inhibitors (A31-35). Notably, A32-35 outperform KD025 in ROCK2/ROCK1 selectivity by up to 216-fold. Among these candidates, A31 emerged as an exceedingly promising molecule, showcasing remarkable inhibitory potency (IC50 = 3.7 ± 0.8 nM), 19-fold ROCK2/ROCK1 selectivity, and favorable pharmacokinetics. Insights from the binding mode study further underscored the pivotal role of interactions with Phe103 on the P-loop in determining the selectivity between ROCK1 and ROCK2. In an imiquimod-induced psoriasis-like mouse model, oral administration of A31 notably ameliorated symptoms by targeting the IL-23/Th17 axis. Based on these compelling findings, A31 was selected as a highly promising compound for further investigation as a potential treatment for psoriasis.
Collapse
Affiliation(s)
- Yun Huang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Chu-Ru Mao
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Yijie Lou
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, the First Affiliated Hospital of Zhejiang Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Shuai Zhan
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Zhe Chen
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, the First Affiliated Hospital of Zhejiang Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Wanjing Ding
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, China
- Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Zhongjun Ma
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, China
- Hainan Institute of Zhejiang University, Sanya 572025, China
| |
Collapse
|
11
|
Zhang P, Su Y, Li S, Chen H, Wu R, Wu H. The roles of T cells in psoriasis. Front Immunol 2023; 14:1081256. [PMID: 37942312 PMCID: PMC10628572 DOI: 10.3389/fimmu.2023.1081256] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 09/29/2023] [Indexed: 11/10/2023] Open
Abstract
Psoriasis is a recurring inflammatory skin condition characterized by scaly, red patches on the skin. It affects approximately 3% of the US population and is associated with histological changes such as epidermal hyperplasia, increased blood vessel proliferation, and infiltration of leukocytes into the skin's dermis. T cells, which are classified into various subtypes, have been found to play significant roles in immune-mediated diseases, particularly psoriasis. This paper provides a review of the different T lymphocyte subtypes and their functions in psoriasis, as well as an overview of targeted therapies for treating psoriasis.
Collapse
Affiliation(s)
| | | | | | | | - Ruifang Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Haijing Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
12
|
Schäkel K, Reich K, Asadullah K, Pinter A, Jullien D, Weisenseel P, Paul C, Gomez M, Wegner S, Personke Y, Kreimendahl F, Chen Y, Angsana J, Leung MWL, Eyerich K. Early disease intervention with guselkumab in psoriasis leads to a higher rate of stable complete skin clearance ('clinical super response'): Week 28 results from the ongoing phase IIIb randomized, double-blind, parallel-group, GUIDE study. J Eur Acad Dermatol Venereol 2023; 37:2016-2027. [PMID: 37262309 DOI: 10.1111/jdv.19236] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/25/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND Guselkumab is an interleukin (IL)-23 inhibitor with demonstrated efficacy in patients with psoriasis. OBJECTIVES Evaluate the impact of early disease intervention on clinical responses following 28 weeks of guselkumab treatment in patients with moderate-to-severe plaque psoriasis. Correlate clinical response and disease duration data with serum biomarker data. METHODS GUIDE is a phase IIIb randomized, double-blind, parallel-group, multicentre study of adults with moderate-to-severe plaque psoriasis. In study part 1, patients with a short disease duration (SDD [≤2 years]) or a long disease duration (LDD [>2 years]) received guselkumab 100 mg at Week (W) 0, 4, 12, and 20. Those achieving complete skin clearance at W20 and W28 were defined as a super responder (SRe). A multivariable logistic regression analysed the association between baseline factors and the likelihood of becoming an SRe. The relationship between clinical response, disease duration and serum biomarker data was assessed at W0 and 4. RESULTS In total, 880 patients were enrolled (SDD/LDD = 40.6%/59.4% of patients). More SDD than LDD patients achieved absolute Psoriasis Area and Severity Index (PASI) = 0 at W28 (51.8% vs. 39.4%) and were SRes (43.7% vs. 28.1% [overall 34.4%]). SDD patients also achieved PASI = 0 quicker than LDD patients (median 141 vs. 200 days). Disease duration and prior biologic use had the greatest impact on becoming an SRe, with no strong association among these independent variables. At baseline, there were no significant differences in the serum biomarker levels of IL-17A, IL-17F, IL-22 and β-defensin 2 between SDD and LDD patients, or between SRe and non-SRe patients. Guselkumab rapidly decreased these markers of systemic inflammation across all patient groups analysed at W4. Guselkumab was well tolerated. CONCLUSIONS Guselkumab efficacy was consistent across subpopulations, on the skin and systemically. The proportion of SRes was higher in SDD than LDD patients, indicating early treatment intervention may improve clinical outcomes.
Collapse
Affiliation(s)
- K Schäkel
- Department of Dermatology, and Interdisciplinary Center for Inflammatory Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - K Reich
- Translational Research in Inflammatory Skin Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - K Asadullah
- Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Prof. Dr. med. Asadullah, Dermatological Practice, Potsdam, Germany
| | - A Pinter
- University Hospital Frankfurt am Main, Frankfurt, Germany
| | - D Jullien
- Department of Dermatology, Edouard Herriot Hospital, Hospices Civils de Lyon, Lyon, France
| | | | - C Paul
- Toulouse University, Toulouse, France
| | - M Gomez
- Janssen-Cilag GmbH, Neuss, Germany
| | - S Wegner
- Janssen-Cilag GmbH, Neuss, Germany
| | | | | | - Y Chen
- Janssen R&D, LLC, San Diego, USA
| | | | | | - K Eyerich
- Department of Dermatology and Venereology, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
13
|
Yan K, Zhang F, Ren J, Huang Q, Yawalkar N, Han L. MicroRNA-125a-5p regulates the effect of Tregs on Th1 and Th17 through targeting ETS-1/STAT3 in psoriasis. J Transl Med 2023; 21:678. [PMID: 37773129 PMCID: PMC10543306 DOI: 10.1186/s12967-023-04427-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/07/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Psoriasis is an inflammatory disease mediated by helper T (Th)17 and Th1 cells. MicroRNA-125a (miR-125a) is reduced in the lesional skin of psoriatic patients. However, the mechanism by which miR-125a participates in psoriasis remains unclear. METHODS The levels of miR-125a-5p and its downstream targets (ETS-1, IFN-γ, and STAT3) were detected in CD4+ T cells of healthy controls and psoriatic patients by quantitative real-time PCR (qRT-PCR). In vitro, transfection of miR-125a-5p mimics was used to analyze the effect of miR-125a-5p on the differentiation of Th17 cells by flow cytometry. Imiquimod (IMQ)-induced mouse model was used to evaluate the role of upregulating miR-125a-5p by intradermal injection of agomir-125a-5p in vivo. RESULTS miR-125a-5p was downregulated in peripheral blood CD4+ T cells of psoriatic patients, which was positively associated with the proportion of regulatory T cells (Tregs) and negatively correlated with the Psoriasis Area and Severity Index (PASI) score. Moreover, the miR-125a-5p mimics promoted the differentiation of Tregs and downregulated the messenger RNA (mRNA) levels of ETS-1, IFN-γ, and STAT3 in murine CD4+ T cells. Furthermore, agomir-125a-5p alleviated psoriasis-like inflammation in an IMQ-induced mouse model by downregulating the proportion of Th17 cells. CONCLUSIONS miR-125a-5p may have therapeutic potential in psoriasis by restoring the suppressive function of Tregs on Th17 cells through targeting STAT3, and on Th1 cells indirectly through targeting ETS-1 and IFN-γ.
Collapse
Affiliation(s)
- Kexiang Yan
- Department of Dermatology, Huashan Hospital, Shanghai Institute of Dermatology, Fudan University, Shanghai, 200040, China
| | - Fuxin Zhang
- Department of Dermatology, Huashan Hospital, Shanghai Institute of Dermatology, Fudan University, Shanghai, 200040, China
| | - Jie Ren
- Department of Dermatology, Huashan Hospital, Shanghai Institute of Dermatology, Fudan University, Shanghai, 200040, China
| | - Qiong Huang
- Department of Dermatology, Huashan Hospital, Shanghai Institute of Dermatology, Fudan University, Shanghai, 200040, China
| | - Nikhil Yawalkar
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ling Han
- Department of Dermatology, Huashan Hospital, Shanghai Institute of Dermatology, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
14
|
Lee WS, Nam KH, Kim JH, Kim WJ, Kim JE, Shin EC, Kim GR, Choi JM. Alleviating psoriatic skin inflammation through augmentation of Treg cells via CTLA-4 signaling peptide. Front Immunol 2023; 14:1233514. [PMID: 37818377 PMCID: PMC10560854 DOI: 10.3389/fimmu.2023.1233514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/11/2023] [Indexed: 10/12/2023] Open
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by hyperplasia of keratinocytes and immune cell infiltration. The IL-17-producing T cells play a key role in psoriasis pathogenesis, while regulatory T (Treg) cells are diminished during psoriatic inflammation. Current psoriasis treatments largely focus on IL-17 and IL-23, however, few studies have explored therapeutic drugs targeting an increase of Treg cells to control immune homeostasis. In this study, we investigated the effects of a cytotoxic T lymphocyte antigen-4 (CTLA-4) signaling peptide (dNP2-ctCTLA-4) in Th17, Tc17, γδ T cells, Treg cells in vitro and a mouse model of psoriasis. Treatment with dNP2-ctCTLA-4 peptide showed a significant reduction of psoriatic skin inflammation with increased Treg cell proportion and reduced IL-17 production by T cells, indicating a potential role in modulating psoriatic skin disease. We compared dNP2-ctCTLA-4 with CTLA-4-Ig and found that only dNP2-ctCTLA-4 ameliorated the psoriasis progression, with increased Treg cells and inhibited IL-17 production from γδ T cells. In vitro experiments using a T cell-antigen presenting cell co-culture system demonstrated the distinct mechanisms of dNP2-ctCTLA-4 compared to CTLA-4-Ig in the induction of Treg cells. These findings highlight the therapeutic potential of dNP2-ctCTLA-4 peptide in psoriasis by augmenting Treg/Teff ratio, offering a new approach to modulating the disease.
Collapse
Affiliation(s)
- Woo-Sung Lee
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Kyung-Ho Nam
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Jong Hoon Kim
- Department of Dermatology and Cutaneous Biology Research Institute, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Won-Ju Kim
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Jeong Eun Kim
- Department of Dermatology, Hanyang University College of Medicine, Seoul, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Republic of Korea
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- The Center for Viral Immunology, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Gil-Ran Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Je-Min Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Republic of Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
15
|
Golzari-Sorkheh M, Zúñiga-Pflücker JC. Development and function of FOXP3+ regulators of immune responses. Clin Exp Immunol 2023; 213:13-22. [PMID: 37085947 PMCID: PMC10324550 DOI: 10.1093/cei/uxad048] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/08/2023] [Accepted: 04/21/2023] [Indexed: 04/23/2023] Open
Abstract
The Forkhead Box P3 (FOXP3) protein is an essential transcription factor for the development and function of regulatory T cells (Tregs), involved in the maintenance of immunological tolerance. Although extensive research over the last decade has investigated the critical role of FOXP3+ cells in preserving immune homeostasis, our understanding of their specific functions remains limited. Therefore, unveiling the molecular mechanisms underpinning the up- and downstream transcriptional regulation of and by FOXP3 is crucial for developing Treg-targeted therapeutics. Dysfunctions in FOXP3+ Tregs have also been found to be inherent drivers of autoimmune disorders and have been shown to exhibit multifaceted functions in the context of cancer. Recent research suggests that these cells may also be involved in tissue-specific repair and regeneration. Herein, we summarize current understanding of the thymic-transcriptional regulatory landscape of FOXP3+ Tregs, their epigenetic modulators, and associated signaling pathways. Finally, we highlight the contributions of FOXP3 on the functional development of Tregs and reflect on the clinical implications in the context of pathological and physiological immune responses.
Collapse
Affiliation(s)
| | - Juan Carlos Zúñiga-Pflücker
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| |
Collapse
|
16
|
Qu Y, Li D, Xiong H, Shi D. Transcriptional regulation on effector T cells in the pathogenesis of psoriasis. Eur J Med Res 2023; 28:182. [PMID: 37270497 PMCID: PMC10239166 DOI: 10.1186/s40001-023-01144-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 05/15/2023] [Indexed: 06/05/2023] Open
Abstract
Psoriasis is one of the most common inflammatory diseases, characterized by scaly erythematous plaques on the skin. The accumulated evidence on immunopathology of psoriasis suggests that inflammatory reaction is primarily mediated by T helper (Th) cells. The differentiation of Th cells plays important roles in psoriatic progression and it is regulated by transcription factors such as T-bet, GATA3, RORγt, and FOXP3, which can convert naïve CD4+ T cells, respectively, into Th1, Th2, Th17 and Treg subsets. Through the activation of the JAK/STAT and Notch signaling pathways, together with their downstream effector molecules including TNF-α, IFN-γ, IL-17, TGF-β, these subsets of Th cells are then deeply involved in the pathogenesis of psoriasis. As a result, keratinocytes are abnormally proliferated and abundant inflammatory immune cells are infiltrated in psoriatic lesions. We hypothesize that modulation of the expression of transcription factors for each Th subset could be a new therapeutic target for psoriasis. In this review, we will focus on the recent literature concerning the transcriptional regulation of Th cells in psoriasis.
Collapse
Affiliation(s)
- Yuying Qu
- College of Clinical Medicine, Jining Medical University, Jining, 272067, Shandong, China
| | - Dongmei Li
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, USA
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Basic Medical School, Jining Medical University, Jining, 272067, Shandong, China.
| | - Dongmei Shi
- Department of Dermatology, Jining No. 1 People's Hospital, Jining, 272067, Shandong, China.
| |
Collapse
|
17
|
Autoreactive T-Cells in Psoriasis: Are They Spoiled Tregs and Can Therapies Restore Their Functions? Int J Mol Sci 2023; 24:ijms24054348. [PMID: 36901778 PMCID: PMC10002349 DOI: 10.3390/ijms24054348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Psoriasis is a chronic inflammatory skin disease, which affects 2-4% of the population worldwide. T-cell derived factors such as Th17 and Th1 cytokines or cytokines such as IL-23, which favors Th17-expansion/differentiation, dominate in the disease. Therapies targeting these factors have been developed over the years. An autoimmune component is present, as autoreactive T-cells specific for keratins, the antimicrobial peptide LL37 and ADAMTSL5 have been described. Both autoreactive CD4 and CD8 T-cells exist, produce pathogenic cytokines, and correlate with disease activity. Along with the assumption that psoriasis is a T-cell-driven disease, Tregs have been studied extensively over the years, both in the skin and in circulation. This narrative review resumes the main findings about Tregs in psoriasis. We discuss how Tregs increase in psoriasis but are impaired in their regulatory/suppressive function. We debate the possibility that Tregs convert into T-effector cells under inflammatory conditions; for instance, they may turn into Th17-cells. We put particular emphasis on therapies that seem to counteract this conversion. We have enriched this review with an experimental section analyzing T-cells specific for the autoantigen LL37 in a healthy subject, suggesting that a shared specificity may exist between Tregs and autoreactive responder T-cells. This suggests that successful psoriasis treatments may, among other effects, restore Tregs numbers and functions.
Collapse
|
18
|
Reduta T, Bacharewicz-Szczerbicka J, Stasiak-Barmuta A, Kaminski TW, Flisiak I. Osteopontin and Regulatory T Cells in Effector Phase of Allergic Contact Dermatitis. J Clin Med 2023; 12:1397. [PMID: 36835932 PMCID: PMC9962476 DOI: 10.3390/jcm12041397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/07/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Studies have shown that osteopontin (OPN) and regulatory T cells play a role in allergic contact dermatitis (ACD), but the mechanisms responsible for their function are poorly understood. The study aimed to determine CD4 T lymphocytes producing intracellular osteopontin (iOPN T cells) and assess the selected T lymphocyte subsets including regulatory T cells in the blood of patients with ACD. Twenty-six patients with a disseminated form of allergic contact dermatitis and 21 healthy controls were enrolled in the study. Blood samples were taken twice: in the acute phase of the disease and during remission. The samples were analyzed by the flow cytometry method. Patients with acute ACD showed significantly higher percentage of iOPN T cells compared with healthy controls which persisted during remission. An increase in the percentage of CD4CD25 and a reduced percentage of regulatory T lymphocytes (CD4CD25highCD127low) were also found in the patients with acute stage of ACD. The percentage of CD4CD25 T lymphocytes showed a positive correlation with the EASI index. The increase in the iOPN T cells can indicate their participation in acute ACD. The decreased percentage of regulatory T lymphocytes in the acute stage of ACD may be related to the transformation of Tregs into CD4CD25 T cells. It may also indicate their increased recruitment to the skin. The positive correlation between the percentage of CD4CD25 lymphocytes and the EASI index may be indirect evidence for the importance of activated lymphocytes-CD4CD25 in addition to CD8 lymphocytes as effector cells in ACD.
Collapse
Affiliation(s)
- Teresa Reduta
- Department of Dermatology and Venereology, Medical University of Bialystok, Zurawia 14 St., 15-540 Bialystok, Poland
| | | | - Anna Stasiak-Barmuta
- Department of Clinical Immunology, Medical University of Bialystok, Waszyngtona 17 St., 15-274 Bialystok, Poland
| | - Tomasz W. Kaminski
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Iwona Flisiak
- Department of Dermatology and Venereology, Medical University of Bialystok, Zurawia 14 St., 15-540 Bialystok, Poland
| |
Collapse
|
19
|
Oparaugo NC, Ouyang K, Nguyen NPN, Nelson AM, Agak GW. Human Regulatory T Cells: Understanding the Role of Tregs in Select Autoimmune Skin Diseases and Post-Transplant Nonmelanoma Skin Cancers. Int J Mol Sci 2023; 24:1527. [PMID: 36675037 PMCID: PMC9864298 DOI: 10.3390/ijms24021527] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Regulatory T cells (Tregs) play an important role in maintaining immune tolerance and homeostasis by modulating how the immune system is activated. Several studies have documented the critical role of Tregs in suppressing the functions of effector T cells and antigen-presenting cells. Under certain conditions, Tregs can lose their suppressive capability, leading to a compromised immune system. For example, mutations in the Treg transcription factor, Forkhead box P3 (FOXP3), can drive the development of autoimmune diseases in multiple organs within the body. Furthermore, mutations leading to a reduction in the numbers of Tregs or a change in their function facilitate autoimmunity, whereas an overabundance can inhibit anti-tumor and anti-pathogen immunity. This review discusses the characteristics of Tregs and their mechanism of action in select autoimmune skin diseases, transplantation, and skin cancer. We also examine the potential of Tregs-based cellular therapies in autoimmunity.
Collapse
Affiliation(s)
- Nicole Chizara Oparaugo
- David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Division of Dermatology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Kelsey Ouyang
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| | | | - Amanda M. Nelson
- Department of Dermatology, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - George W. Agak
- Division of Dermatology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
20
|
Yu J, Zhao Q, Wang X, Zhou H, Hu J, Gu L, Hu Y, Zeng F, Zhao F, Yue C, Zhou P, Li G, Li Y, Wu W, Zhou Y, Li J. Pathogenesis, multi-omics research, and clinical treatment of psoriasis. J Autoimmun 2022; 133:102916. [PMID: 36209691 DOI: 10.1016/j.jaut.2022.102916] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 11/07/2022]
Abstract
Psoriasis is a common inflammatory skin disease involving interactions between keratinocytes and immune cells that significantly affects the quality of life. It is characterized by hyperproliferation and abnormal differentiation of keratinocytes and excessive infiltration of immune cells in the dermis and epidermis. The immune mechanism underlying this disease has been elucidated in the past few years. Research shows that psoriasis is regulated by the complex interactions among immune cells, such as keratinocytes, dendritic cells, T lymphocytes, neutrophils, macrophages, natural killer cells, mast cells, and other immune cells. An increasing number of signaling pathways have been found to be involved in the pathogenesis of psoriasis, which has prompted the search for new treatment targets. In the past decades, studies on the pathogenesis of psoriasis have focused on the development of targeted and highly effective therapies. In this review, we have discussed the relationship between various types of immune cells and psoriasis and summarized the major signaling pathways involved in the pathogenesis of psoriasis, including the PI3K/AKT/mTOR, JAK-STAT, JNK, and WNT pathways. In addition, we have discussed the results of the latest omics research on psoriasis and the epigenetics of the disease, which provide insights regarding its pathogenesis and therapeutic prospects; we have also summarized its treatment strategies and observations of clinical trials. In this paper, the various aspects of psoriasis are described in detail, and the limitations of the current treatment methods are emphasized. It is necessary to improve and innovate treatment methods from the molecular level of pathogenesis, and further provide new ideas for the treatment and research of psoriasis.
Collapse
Affiliation(s)
- Jiadong Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, Chengdu, Sichuan, 610041, China
| | - Qixiang Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, Chengdu, Sichuan, 610041, China
| | - Xiaoyan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, Chengdu, Sichuan, 610041, China
| | - Hong Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, Chengdu, Sichuan, 610041, China
| | - Jing Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, Chengdu, Sichuan, 610041, China
| | - Linna Gu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, Chengdu, Sichuan, 610041, China
| | - Yawen Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, Chengdu, Sichuan, 610041, China
| | - Fanlian Zeng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, Chengdu, Sichuan, 610041, China
| | - Fulei Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, Chengdu, Sichuan, 610041, China
| | - Chengcheng Yue
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, Chengdu, Sichuan, 610041, China
| | - Pei Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, Chengdu, Sichuan, 610041, China
| | - Guolin Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, Chengdu, Sichuan, 610041, China
| | - Ya Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, Chengdu, Sichuan, 610041, China
| | - Wenling Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, Chengdu, Sichuan, 610041, China
| | - Yifan Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, Chengdu, Sichuan, 610041, China
| | - Jiong Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
21
|
Shen JW, Wu PY, Kuo YH, Chang QX, Wen KC, Chiang HM. Fermented Taiwanofungus camphoratus Extract Ameliorates Psoriasis-Associated Response in HaCaT Cells via Modulating NF-𝜅B and mTOR Pathways. Int J Mol Sci 2022; 23:ijms232314623. [PMID: 36498953 PMCID: PMC9739991 DOI: 10.3390/ijms232314623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Psoriasis is a chronic autoimmune disease, and until now, it remains an incurable disease. Therefore, the development of new drugs or agents that ameliorate the disease will have marketing potential. Taiwanofungus camphoratus (TC) is a specific fungus in Taiwan. It is demonstrated to have anticancer, anti-inflammation, and hepatoprotective effects. However, the effects of TC fermented extract on psoriasis are under investigation. In this research, we studied the ability of TC on antioxidative activity and the efficacy of TC on interleukin-17 (IL-17A)-induced intracellular oxidative stress, inflammation-relative, and proliferation-relative protein expression in human keratinocytes. The results of a DPPH radical scavenging assay, reducing power assay, and hydroxyl peroxide inhibition assay indicated that TC has a potent antioxidant ability. Furthermore, TC could reduce IL-17A-induced intracellular ROS generation and restore the NADPH level. In the investigation of pathogenesis, we discovered TC could regulate inflammatory and cell proliferation pathways via p-IKKα/p-p65 and p-mTOR/p-p70S6k signaling pathways in human keratinocytes. In conclusion, TC showed characteristics such as antioxidant, anti-inflammatory, and anti-psoriatic-associated responses. It is expected to be developed as a candidate for oxidative-stress-induced skin disorders or psoriasis treatment.
Collapse
Affiliation(s)
- Jia-Wei Shen
- Department of Cosmeceutics, China Medical University, Taichung 406, Taiwan
| | - Po-Yuan Wu
- Department of Dermatology, China Medical University Hospital, Taichung 404, Taiwan
- School of Medicine, China Medical University, Taichung 404, Taiwan
| | - Yueh-Hsiung Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 404, Taiwan
- Department of Biotechnology, Asia University, Taichung 413, Taiwan
| | - Qiao-Xin Chang
- Department of Cosmeceutics, China Medical University, Taichung 406, Taiwan
| | - Kuo-Ching Wen
- Department of Cosmeceutics, China Medical University, Taichung 406, Taiwan
| | - Hsiu-Mei Chiang
- Department of Cosmeceutics, China Medical University, Taichung 406, Taiwan
- Ph.D. Program for Biotechnology Industry, School of Life Sciences, China Medical University, Taichung 406, Taiwan
- Correspondence: ; Tel.: +886-4-22053366 (ext. 5302)
| |
Collapse
|
22
|
Zhang Z, Liu X, Chen D, Yu J. Radiotherapy combined with immunotherapy: the dawn of cancer treatment. Signal Transduct Target Ther 2022; 7:258. [PMID: 35906199 PMCID: PMC9338328 DOI: 10.1038/s41392-022-01102-y] [Citation(s) in RCA: 270] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/19/2022] [Accepted: 06/30/2022] [Indexed: 11/09/2022] Open
Abstract
Radiotherapy (RT) is delivered for purposes of local control, but can also exert systemic effect on remote and non-irradiated tumor deposits, which is called abscopal effect. The view of RT as a simple local treatment has dramatically changed in recent years, and it is now widely accepted that RT can provoke a systemic immune response which gives a strong rationale for the combination of RT and immunotherapy (iRT). Nevertheless, several points remain to be addressed such as the interaction of RT and immune system, the identification of the best schedules for combination with immunotherapy (IO), the expansion of abscopal effect and the mechanism to amplify iRT. To answer these crucial questions, we roundly summarize underlying rationale showing the whole immune landscape in RT and clinical trials to attempt to identify the best schedules of iRT. In consideration of the rarity of abscopal effect, we propose that the occurrence of abscopal effect induced by radiation can be promoted to 100% in view of molecular and genetic level. Furthermore, the “radscopal effect” which refers to using low-dose radiation to reprogram the tumor microenvironment may amplify the occurrence of abscopal effect and overcome the resistance of iRT. Taken together, RT could be regarded as a trigger of systemic antitumor immune response, and with the help of IO can be used as a radical and systemic treatment and be added into current standard regimen of patients with metastatic cancer.
Collapse
Affiliation(s)
- Zengfu Zhang
- Department of Radiation Oncology, Shandong University Cancer Center, Yantai Road, No. 2999, Jinan, Shandong, China
| | - Xu Liu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jiyan Road, No. 440, Jinan, Shandong, China
| | - Dawei Chen
- Department of Radiation Oncology, Shandong University Cancer Center, Yantai Road, No. 2999, Jinan, Shandong, China.
| | - Jinming Yu
- Department of Radiation Oncology, Shandong University Cancer Center, Yantai Road, No. 2999, Jinan, Shandong, China.
| |
Collapse
|
23
|
Molecular and cellular regulation of psoriatic inflammation. Clin Sci (Lond) 2022; 136:935-952. [PMID: 35730381 DOI: 10.1042/cs20210916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 02/06/2023]
Abstract
This review highlights the molecular and cellular mechanisms underlying psoriatic inflammation with an emphasis on recent developments which may impact on treatment approaches for this chronic disease. We consider both the skin and the musculoskeletal compartment and how different manifestations of psoriatic inflammation are linked. This review brings a focus to the importance of inflammatory feedback loops that exist in the initiation and chronic stages of the condition, and how close interaction between the epidermis and both innate and adaptive immune compartments drives psoriatic inflammation. Furthermore, we highlight work done on biomarkers to predict the outcome of therapy as well as the transition from psoriasis to psoriatic arthritis.
Collapse
|
24
|
Zhou HF, Wang FX, Sun F, Liu X, Rong SJ, Luo JH, Yue TT, Xiao J, Yang CL, Lu WY, Luo X, Zhou Q, Zhu H, Yang P, Xiong F, Yu QL, Zhang S, Wang CY. Aloperine Ameliorates IMQ-Induced Psoriasis by Attenuating Th17 Differentiation and Facilitating Their Conversion to Treg. Front Pharmacol 2022; 13:778755. [PMID: 35721119 PMCID: PMC9198605 DOI: 10.3389/fphar.2022.778755] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 04/11/2022] [Indexed: 11/26/2022] Open
Abstract
Aloperine is an anti-inflammatory compound isolated from the Chinese herb Sophora alopecuroides L. Previously, our group has reported that the generation of induced Treg was promoted by aloperine treatment in a mouse colitis model. However, the effect of aloperine on effector T cell subsets remains unclear. We therefore carefully examined the effect of aloperine on the differentiation of major subsets of T helper cells. Based on our results, psoriasis, a Th17 dominant skin disease, is selected to explore the potential therapeutic effect of aloperine in vivo. Herein, we demonstrated that topical application of aloperine suppressed epidermal proliferation, erythema, and infiltration of inflammatory cells in skin lesions. Mechanistic studies revealed that aloperine suppressed the differentiation of Th17 cells directly through inhibiting the phosphorylation of STAT3 or indirectly through impairing the secretion of Th17-promoting cytokines by dendritic cells. Moreover, aloperine enhanced the conversion of Th17 into Treg via altering the pSTAT3/pSTAT5 ratio. Collectively, our study supported that aloperine possesses the capacity to affect Th17 differentiation and modulates Th17/Treg balance, thereby alleviating imiquimod (IMQ)-induced psoriasis in mice.
Collapse
Affiliation(s)
- Hai-Feng Zhou
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Fa-Xi Wang
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Fei Sun
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Xin Liu
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Shan-Jie Rong
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Jia-Hui Luo
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Tian-Tian Yue
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Jun Xiao
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China.,Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Chun-Liang Yang
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Wan-Ying Lu
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Xi Luo
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Qing Zhou
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - He Zhu
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Ping Yang
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Fei Xiong
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Qi-Lin Yu
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Shu Zhang
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Cong-Yi Wang
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| |
Collapse
|
25
|
Tao T, Chen Y, Lai B, Wang J, Wang W, Xiao W, Cha X. Shikonin combined with methotrexate regulate macrophage polarization to treat psoriasis. Bioengineered 2022; 13:11146-11155. [PMID: 35485255 PMCID: PMC9208513 DOI: 10.1080/21655979.2022.2062090] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
This study aimed to investigate whether shikonin combined with methotrexate could inhibit psoriasis progression by regulating the polarization of macrophages through in vivo and in vitro experiments. Imiquimod was administrated to the exposed skin of BALB/c mice, and shikonin and methotrexate suspension were also given by gavage. The erythema, scales and thickness were scored for mice lesions in each group, and the total score was obtained by adding the above three scores, and calculated as psoriasis area and severity index (PASI) score. The skin lesion tissue from mice was isolated and used for hematoxylin-eosin staining and immunohistochemistry assay. Drug-containing serum was prepared and administrated into mouse macrophage RAW264.7 cells, followed by simulation of LPS. The levels of tumor necrosis factor-α (TNF-α), Interleukin (IL)-1β, and IL-6 in cell supernatant were assessed using ELISA Kits and real-time PCR. In imiquimod-induced psoriasis mice, shikonin combined with methotrexate exerted protective effects by reducing erythema and PASI scores, decreasing backer score and epidermal thickness, and particularly regulating macrophage polarization. In LPS-stimulated RAW264.7 cells, shikonin combined with methotrexate regulated M1/M2 polarization and altered the levels of M1 markers. Shikonin combined with methotrexate inhibit psoriasis progression by regulating the polarization of macrophages, which may be useful in the treatment of psoriasis.
Collapse
Affiliation(s)
- Tingjun Tao
- Department of Dermatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,Department of Dermatology, Yangjiang People's Hospital, Yangjiang, Guangdong, China
| | - Yan Chen
- Department of Dermatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,Department of Dermatology, Yangjiang People's Hospital, Yangjiang, Guangdong, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China
| | - Bochen Lai
- The Second Clinical Academy, Xinjiang Medical University, Xinshi District, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Jinhua Wang
- Department of Dermatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Weiliang Wang
- Department of Dermatology, Yangjiang People's Hospital, Yangjiang, Guangdong, China
| | - Weimian Xiao
- Department of Dermatology, Qingyuan Skin Disease Hospital, Qingyuan, Guangdong, China
| | - Xushan Cha
- Department of Dermatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
26
|
Orsmond A, Bereza-Malcolm L, Lynch T, March L, Xue M. Skin Barrier Dysregulation in Psoriasis. Int J Mol Sci 2021; 22:10841. [PMID: 34639182 PMCID: PMC8509518 DOI: 10.3390/ijms221910841] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 02/07/2023] Open
Abstract
The skin barrier is broadly composed of two elements-a physical barrier mostly localised in the epidermis, and an immune barrier localised in both the dermis and epidermis. These two systems interact cooperatively to maintain skin homeostasis and overall human health. However, if dysregulated, several skin diseases may arise. Psoriasis is one of the most prevalent skin diseases associated with disrupted barrier function. It is characterised by the formation of psoriatic lesions, the aberrant differentiation and proliferation of keratinocytes, and excessive inflammation. In this review, we summarize recent discoveries in disease pathogenesis, including the contribution of keratinocytes, immune cells, genetic and environmental factors, and how they advance current and future treatments.
Collapse
Affiliation(s)
- Andreas Orsmond
- Sutton Arthritis Research Laboratory, Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (A.O.); (L.B.-M.)
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (T.L.); (L.M.)
| | - Lara Bereza-Malcolm
- Sutton Arthritis Research Laboratory, Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (A.O.); (L.B.-M.)
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (T.L.); (L.M.)
| | - Tom Lynch
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (T.L.); (L.M.)
| | - Lyn March
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (T.L.); (L.M.)
| | - Meilang Xue
- Sutton Arthritis Research Laboratory, Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (A.O.); (L.B.-M.)
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (T.L.); (L.M.)
| |
Collapse
|
27
|
Pandiyan P, McCormick TS. Regulation of IL-17A-Producing Cells in Skin Inflammatory Disorders. J Invest Dermatol 2021; 142:867-875. [PMID: 34561088 DOI: 10.1016/j.jid.2021.06.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/09/2021] [Accepted: 06/22/2021] [Indexed: 12/11/2022]
Abstract
This review focuses on the IL-17A family of cytokines produced by T lymphocytes and other immune cells and how they are involved in cutaneous pathogenic responses. It will also discuss cutaneous dysbiosis and FOXP3+ regulatory T cells in the context of inflammatory conditions linked to IL-17 responses in the skin. Specifically, it will review key literature on chronic mucocutaneous candidiasis and psoriasis.
Collapse
Affiliation(s)
- Pushpa Pandiyan
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, Ohio, USA; Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.
| | - Thomas S McCormick
- Department of Dermatology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
28
|
Eyerich K, Weisenseel P, Pinter A, Schäkel K, Asadullah K, Wegner S, Muñoz-Elias EJ, Bartz H, Taut FJH, Reich K. IL-23 blockade with guselkumab potentially modifies psoriasis pathogenesis: rationale and study protocol of a phase 3b, randomised, double-blind, multicentre study in participants with moderate-to-severe plaque-type psoriasis (GUIDE). BMJ Open 2021; 11:e049822. [PMID: 34518264 PMCID: PMC8438891 DOI: 10.1136/bmjopen-2021-049822] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Guselkumab is an interleukin (IL)-23 pathway blocker with proven efficacy in patients with moderate-to-severe plaque psoriasis. Early intervention with guselkumab may result in changes to the clinical disease course versus later intervention. METHODS AND ANALYSIS Here we present the rationale and design of a phase 3b, randomised, double-blind, multicentre study (GUIDE), comparing treatment effects of guselkumab in patients with short (≤2 years) or longer (>2 years) duration of plaque-type psoriasis, measured from first appearance of psoriatic plaques. Participants achieving skin clearance (Psoriasis Area and Severity Index (PASI)=0) by week 20 and maintaining complete clearance at week 28 visit ('super-responders' (SRe)) will be randomised to continue approved maintenance dosing every 8 weeks (q8w) versus an investigational maintenance dosing interval of 16 weeks (q16w) until week 68. Primary endpoint: proportion of participants in the q8w vs q16w arms with absolute PASI <3 at week 68. Participants with PASI <3 at week 68 will be withdrawn from guselkumab treatment for up to 48 weeks. Participants not achieving SRe criteria (non-SRe) will remain in the study with q8w guselkumab dosing through week 68. Additional to serum samples obtained from all patients, skin biopsies and whole-blood samples will be taken from SRe and non-SRe participants at various time points in optional substudies. Analyses include: genetics; immunophenotyping (fluorescence-activated cell sorting); gene and protein expression profiling; immunohistology. By merging clinical endpoints with mechanistic findings, this study aims to elucidate how IL-23 blockade with guselkumab can modify the disease course by altering molecular and cellular drivers that cause relapse after treatment withdrawal, particularly among SRe. ETHICS AND DISSEMINATION Approval obtained from ethics committee Medical Council Hamburg, Germany (PVN5925). GUIDE is compliant with the Declaration of Helsinki. TRIAL REGISTRATION NUMBER Registered at ClinicalTrials.gov (NCT03818035). All primary endpoint results (prespecified analyses) will be submitted to peer-reviewed, international journals within 18 months after primary completion date.
Collapse
Affiliation(s)
- Kilian Eyerich
- Department of Medicine, Division of Dermatology and Venereology, Karolinska Institute, Stockholm, Sweden
| | | | - Andreas Pinter
- University Hospital Frankfurt am Main, Frankfurt, Germany
| | - Knut Schäkel
- Department of Dermatology, and Interdisciplinary Center for Chronic Inflammatory Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | - Kristian Reich
- Institute for Health Services Research in Dermatology and Nursing, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
29
|
The Defect in Regulatory T Cells in Psoriasis and Therapeutic Approaches. J Clin Med 2021; 10:jcm10173880. [PMID: 34501328 PMCID: PMC8432197 DOI: 10.3390/jcm10173880] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 08/26/2021] [Indexed: 12/11/2022] Open
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by accelerated tumor necrosis factor-α/interleukin (IL)-23/IL-17 axis. Patients with psoriasis manifest functional defects in CD4+CD25+ forkhead box protein 3 (Foxp3)+ regulatory T cells (Tregs), which suppress the excess immune response and mediate homeostasis. Defects in Tregs contribute to the pathogenesis of psoriasis and may attribute to enhanced inhibition and/or impaired stimulation of Tregs. IL-23 induces the conversion of Tregs into type 17 helper T (Th17) cells. IL-17A reduces transforming growth factor (TGF)-β1 production, Foxp3 expression, and suppresses Treg activity. Short-chain fatty acids (SCFAs), butyrate, propionate, and acetate are microbiota-derived fermentation products that promote Treg development and function by inducing Foxp3 expression or inducing dendritic cells or intestinal epithelial cells to produce retinoic acids or TGF-β1, respectively. The gut microbiome of patients with psoriasis revealed reduced SCFA-producing bacteria, Bacteroidetes, and Faecallibacterium, which may contribute to the defect in Tregs. Therapeutic agents currently used, viz., anti-IL-23p19 or anti-IL-17A antibodies, retinoids, vitamin D3, dimethyl fumarate, narrow-band ultraviolet B, or those under development for psoriasis, viz., signal transducer and activator of transcription 3 inhibitors, butyrate, histone deacetylase inhibitors, and probiotics/prebiotics restore the defected Tregs. Thus, restoration of Tregs is a promising therapeutic target for psoriasis.
Collapse
|
30
|
Saxena V, Lakhan R, Iyyathurai J, Bromberg JS. Mechanisms of exTreg induction. Eur J Immunol 2021; 51:1956-1967. [PMID: 33975379 PMCID: PMC8338747 DOI: 10.1002/eji.202049123] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/19/2021] [Accepted: 05/10/2021] [Indexed: 12/18/2022]
Abstract
CD4+ CD25+ Foxp3+ Tregs play an important role in the maintenance of the immune system by regulating immune responses and resolving inflammation. Tregs exert their function by suppressing other immune cells and mediating peripheral self-tolerance. Under homeostatic conditions, Tregs are stable T-cell populations. However, under inflammatory environments, Tregs are converted to CD4+ CD25low Foxp3low cells. These cells are termed "exTreg" or "exFoxp3" cells. The molecular mechanism of Treg transition to exTregs remains incompletely understood. Uncertainties might be explained by a lack of consensus of biological markers to define Treg subsets in general and exTregs in particular. In this review, we summarize known markers of Tregs and factors responsible for exTreg generation including cytokines, signaling pathways, transcription factors, and epigenetic mechanisms. We also identify studies demonstrating the presence of exTregs in various diseases and sources of exTregs. Understanding the biology of Treg transition to exTregs will help in designing Treg-based therapeutic approaches.
Collapse
Affiliation(s)
- Vikas Saxena
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ram Lakhan
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jegan Iyyathurai
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jonathan S. Bromberg
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
31
|
Zhuang JY, Li JS, Zhong YQ, Zhang FF, Li XZ, Su H, Zhang ZQ, Wang XH, Chen YF. Evaluation of short-term (16-week) effectiveness and safety of guselkumab in patients with psoriasis: A prospective real-life study on the Chinese population. Dermatol Ther 2021; 34:e15054. [PMID: 34228392 DOI: 10.1111/dth.15054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/25/2021] [Accepted: 07/03/2021] [Indexed: 12/12/2022]
Abstract
Real-life data on guselkumab in psoriasis are limited and not available in China hitherto. This study aimed to evaluate the short-term effectiveness and safety of guselkumab in patients with psoriasis under Chinese real-life conditions and to explore the effect of guselkumab on CD4+ CD25+ Foxp3+ regulatory T cells (Tregs). A Chinese prospective and real-life study involving patients with psoriasis in Dermatology Hospital of Southern Medical University, Guangzhou, China from April to September 2020 was conducted. A total of 45 patients with psoriasis were finally enrolled in the study. Psoriasis Area Severity Index (PASI) 90 and 100 responses at week 16 were achieved by 88.6% and 45.5% of patients, respectively. The analysis of PASI response in different subgroups showed no statistically significant difference. Univariate logistic regression analysis revealed that at week 16, none of the variables were associated with decreasing PASI 90 response, whereas age at onset of disease was a predictor of PASI 100 response. Dynamic detection of CD4+ CD25+ Foxp3+ Tregs frequency from peripheral blood suggested a stable maintained trend in terms of guselkumab treatment duration. No severe adverse events occurred during the follow-up period. This study confirmed the short-term effectiveness and safety of guselkumab, as well as its good tolerance against psoriasis, in the Chinese population. Guselkumab treatment maintains levels of Tregs in patients with psoriasis.
Collapse
Affiliation(s)
- Jia-Yi Zhuang
- Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jin-Sheng Li
- Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yuan-Qiu Zhong
- Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| | - Fang-Fei Zhang
- Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xin-Ze Li
- Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| | - Hang Su
- Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| | - Ze-Qiao Zhang
- Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xiao-Hua Wang
- Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yong-Feng Chen
- Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
32
|
Huang L, Xu Y, Fang J, Liu W, Chen J, Liu Z, Xu Q. Targeting STAT3 Abrogates Tim-3 Upregulation of Adaptive Resistance to PD-1 Blockade on Regulatory T Cells of Melanoma. Front Immunol 2021; 12:654749. [PMID: 33936081 PMCID: PMC8082190 DOI: 10.3389/fimmu.2021.654749] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
Background Less than 20% of melanoma patients respond to programmed cell death-1 (PD-1) blockade immunotherapies. Thus, it is crucial to understand the dynamic changes in the tumor microenvironment (TME) after PD-1 blockade, for developing immunotherapy efficacy. Methods A genomic analysis was conducted by The Cancer Genome Atlas (TCGA) datasets and web platform TIMER2.0 datasets. Pathway enrichment analysis was performed using the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. Peripheral blood mononuclear cells (PBMCs), regulatory T (Treg) cells, and B16-F10 melanoma mice were used as models. The cellular and molecular characteristics and mechanisms of Treg cells in melanoma were assessed by performing gene expression studies, immunohistochemistry, RNA sequencing, and flow cytometry. Results Here, we evaluate the countenance of T cell immunoglobulin and mucin-domain containing-3 (Tim-3), and various immunosuppressive factors within tumor-infiltrated Treg cells after treatment with anti-PD-1 or the indicator transduction and activator of transcription 3 (STAT3) inhibitors. Increased expression of Tim-3 is markedly observed within the tissues of the PD-1 blockade resistance of melanoma patients. Targeting STAT3 significantly boosts the response of resistant-PD-1 therapy within the melanoma mouse model. Mechanistically, the manifestation of STAT3 decreases the expression of Tim-3 and various cytokines in the purified Treg cells from individual PBMCs and the murine melanoma model, limiting the immunosuppression of Treg cells. Conclusions Our findings indicate that Tim-3 expression on Treg cells within the TME is STAT3-dependent, providing support to STAT3 as a target and enhancing the immunotherapy for patients suffering from melanoma.
Collapse
Affiliation(s)
- Lili Huang
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Tongji University Cancer Center, Shanghai, China
| | - Yu Xu
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Juemin Fang
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Tongji University Cancer Center, Shanghai, China
| | - Weixing Liu
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Tongji University Cancer Center, Shanghai, China
| | - Jianhua Chen
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Tongji University Cancer Center, Shanghai, China
| | - Zhuqing Liu
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Tongji University Cancer Center, Shanghai, China
| | - Qing Xu
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Tongji University Cancer Center, Shanghai, China
| |
Collapse
|
33
|
Fan F, Huang Z, Chen Y. Integrated analysis of immune-related long noncoding RNAs as diagnostic biomarkers in psoriasis. PeerJ 2021; 9:e11018. [PMID: 33732554 PMCID: PMC7950217 DOI: 10.7717/peerj.11018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 02/06/2021] [Indexed: 12/16/2022] Open
Abstract
Background Psoriasis is a chronic immune-mediated inflammatory dermatosis. Long noncoding RNAs (lncRNAs) play an important role in immune-related diseases. This study aimed to identify potential immune-related lncRNA biomarkers for psoriasis. Methods We screened differentially expressed immune-related lncRNAs biomarkers using GSE13355 (skin biopsy samples of 180 cases) from Gene Expression Omnibus (GEO). Moreover, Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and Gene Set Enrichment Analysis (GSEA) were performed to explore biological mechanisms in psoriasis. In addition, we performed LASSO logistic regression to identify potential diagnostic lncRNAs and further verify the diagnostic value and relationship with drug response using two validation sets: GSE30999 (skin biopsy samples of 170 cases) and GSE106992 (skin biopsy samples of 192 cases). Furthermore, we estimated the degree of infiltrated immune cells and investigated the correlation between infiltrated immune cells and diagnostic lncRNA biomarkers. Results A total of 394 differentially expressed genes (DEGs) were extracted from gene expression profile. GO and KEGG analysis of target genes found that immune-related lncRNAs were primarily associated with epidermis development, skin development, collagen-containing extracellular matrix, and glycosaminoglycan binding and mainly enriched in cytokine-cytokine receptor interaction and influenza A and chemokine signaling pathway. We found that LINC01137, LINC01215, MAPKAPK5-AS1, TPT1-AS1, CARMN, CCDC18-AS1, EPB41L4A-AS, and LINC01214 exhibited well diagnostic efficacy. The ROC and ROC CI were 0.944 (0.907–0.982), 0.953 (0.919–0.987), 0.822 (0.758–0.887), 0.854 (0.797–0.911), 0.957(0.929–0.985), 0.894 (0.846–0.942), and 0.964 (0.937–0.991) for LINC01137, LINC01215, MAPKAPK5-AS1, TPT1-AS1,CARMN, CCDC18-AS1, EPB41L4A-AS1, and LINC01214. LINC01137, LINC01215, and LINC01214 were correlated with drug response. LINC01137, CCDC18-AS1, and CARMN were positively correlated with activated memory CD4 T cell, activated myeloid dendritic cell (DC), neutrophils, macrophage M1, and T follicular helper (Tfh) cells, while negatively correlated with T regulatory cell (Treg). LINC01215, MAPKAPK5-AS1, TPT1-AS1, EPB41L4A-AS, and LINC01214 were negatively correlated with activated memory CD4 T cell, activated myeloid DC, neutrophils, macrophage M1, and Tfh, while positively correlated with Treg. Conclusions These findings indicated that these immune-related lncRNAs may be used as potential diagnostic and predictive biomarkers for psoriasis.
Collapse
Affiliation(s)
- Feixiang Fan
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Department of Dermatology, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Zhen Huang
- Department of Dermatology, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Yongfeng Chen
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
34
|
Afonina IS, Van Nuffel E, Beyaert R. Immune responses and therapeutic options in psoriasis. Cell Mol Life Sci 2021; 78:2709-2727. [PMID: 33386888 PMCID: PMC11072277 DOI: 10.1007/s00018-020-03726-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 11/23/2020] [Accepted: 11/28/2020] [Indexed: 02/07/2023]
Abstract
Psoriasis is a chronic inflammatory disease of the skin that affects about 2-3% of the population and greatly impairs the quality of life of affected individuals. Psoriatic skin is characterized by excessive proliferation and aberrant differentiation of keratinocytes, as well as redness caused by increased dilation of the dermal blood vessels and infiltration of immune cells. Although the pathogenesis of psoriasis has not yet been completely elucidated, it is generally believed to arise from a complex interplay between hyperproliferating keratinocytes and infiltrating, activated immune cells. So far, the exact triggers that elicit this disease are still enigmatic, yet, it is clear that genetic predisposition significantly contributes to the development of psoriasis. In this review, we summarize current knowledge of important cellular and molecular mechanisms driving the initiation and amplification stages of psoriasis development, with a particular focus on cytokines and emerging evidence illustrating keratinocyte-intrinsic defects as key drivers of inflammation. We also discuss mouse models that have contributed to a better understanding of psoriasis pathogenesis and the preclinical development of novel therapeutics, including monoclonal antibodies against specific cytokines or cytokine receptors that have revolutionized the treatment of psoriasis. Future perspectives that may have the potential to push basic research and open up new avenues for therapeutic intervention are provided.
Collapse
Affiliation(s)
- Inna S Afonina
- Unit of Molecular Signal Transduction in Inflammation, Center for Inflammation Research, Ghent University - VIB, Technologiepark 71, B-9052, Ghent, Belgium
- Department for Biomedical Molecular Biology, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
| | - Elien Van Nuffel
- Unit of Molecular Signal Transduction in Inflammation, Center for Inflammation Research, Ghent University - VIB, Technologiepark 71, B-9052, Ghent, Belgium
- Department for Biomedical Molecular Biology, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
| | - Rudi Beyaert
- Unit of Molecular Signal Transduction in Inflammation, Center for Inflammation Research, Ghent University - VIB, Technologiepark 71, B-9052, Ghent, Belgium.
- Department for Biomedical Molecular Biology, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium.
| |
Collapse
|
35
|
Mukhatayev Z, Ostapchuk YO, Fang D, Le Poole IC. Engineered antigen-specific regulatory T cells for autoimmune skin conditions. Autoimmun Rev 2021; 20:102761. [PMID: 33476816 DOI: 10.1016/j.autrev.2021.102761] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 11/28/2020] [Indexed: 12/15/2022]
Abstract
Regulatory T cells (Tregs) are a subset of T cells responsible for the regulation of immune responses, thereby maintaining immune homeostasis and providing immune tolerance to both self and non-self-antigens. An increasing number of studies revealed Treg numbers and functions in a variety of autoimmune diseases. Treg deficiency can cause the development of several autoimmune skin diseases including vitiligo, alopecia areata, pemphigoid and pemphigus, psoriasis, and systemic sclerosis. Many clinical trials have been performed for autoimmune conditions using polyclonal Tregs, but efficiency can be significantly improved using antigen-specific Tregs engineered using T cell receptor (TCR) or chimeric antigen receptor (CAR) constructs. In this review, we systematically reviewed altered frequencies, impaired functions, and phenotypic features of Tregs in autoimmune skin conditions. We also summarized new advances in TCR and CAR based antigen-specific Tregs tested both in animal models and in clinics. The advantages and limitations of each approach were carefully discussed emphasizing possible clinical relevance to patients with autoimmune skin diseases. Moreover, we have reviewed potential approaches for engineering antigen-specific Tregs, and strategies for overcoming possible hurdles in clinical applications. Thereby, antigen-specific Tregs can be infused using autologous adoptive cell transfer to restore Treg numbers and to provide local immune tolerance for autoimmune skin disorders.
Collapse
Affiliation(s)
- Zhussipbek Mukhatayev
- Department of Dermatology, Northwestern University, Chicago, IL, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA; Department of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan; M.A. Aitkhozhin's Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | | | - Deyu Fang
- Department of Pathology, Northwestern University, Chicago, IL, USA
| | - I Caroline Le Poole
- Department of Dermatology, Northwestern University, Chicago, IL, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
36
|
Nussbaum L, Chen YL, Ogg GS. Role of regulatory T cells in psoriasis pathogenesis and treatment. Br J Dermatol 2021; 184:14-24. [PMID: 32628773 DOI: 10.1111/bjd.19380] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2020] [Indexed: 12/14/2022]
Abstract
Psoriasis is a chronic inflammatory disease with a strong genetic component that can be triggered by environmental factors. Disease pathogenesis is mainly driven by type 1 and type 17 cytokine-producing cells which, in healthy individuals, are modulated by regulatory T cells (Tregs). Tregs play a fundamental role in immune homeostasis and contribute to the prevention of autoimmune disease by suppressing immune responses. In psoriasis, Tregs are impaired in their suppressive function leading to an altered T-helper 17/Treg balance. Although Treg dysfunction in patients with psoriasis is associated with disease exacerbation, it is unknown how they are functionally regulated. In this review, we discuss recent insights into Tregs in the setting of psoriasis with an emphasis on the effect of current treatments on Tregs and how already available therapeutics that modulate Treg frequency or functionality could be exploited for treatment of psoriasis.
Collapse
Affiliation(s)
- L Nussbaum
- Medical Research Council Human Immunology Unit, Radcliffe Department of Medicine, Oxford National Institute for Health Research Biomedical Research Centre, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Y L Chen
- Medical Research Council Human Immunology Unit, Radcliffe Department of Medicine, Oxford National Institute for Health Research Biomedical Research Centre, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - G S Ogg
- Medical Research Council Human Immunology Unit, Radcliffe Department of Medicine, Oxford National Institute for Health Research Biomedical Research Centre, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
37
|
Hotko AA, Pomazanova MY, Kruglova L. Targeted therapy of psoriasis: inhibition of the IL-23 signaling pathway — evidence from clinical studies and real practice. VESTNIK DERMATOLOGII I VENEROLOGII 2020. [DOI: 10.25208/vdv1160-2020-96-4-49-59] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
The article presents the results of clinical studies of the efficacy and safety of the use of a new drug of genetically engineered biological therapy guselkumab. Guselkumab is the first representative of the interleukin-23 (IL-23) inhibitor class and has a number of advantages over existing therapy.
According to direct comparative randomized clinical trials, guselkumab is superior in the short-term and, most importantly, in the long-term to most genetically engineered biologic drugs, including TNF- inhibitors, secukinumab and ustekinumab.
In phase 3 studies (VOYAGE 1 and VOYAGE 2), the ECLIPSE study shows that guselkumab can achieve complete (PASI 100) and almost complete (PASI 90) skin cleansing by 16 weeks from the start of therapy in 37.4 and 73.3% of patients, respectively, with a subsequent increase in the proportion of patients with clean and almost clean skin by 24 weeks to 44.4 and 80.2%, respectively, and maintaining the achieved performance indicators for 4 years at the level of 51.7 and 84.0% respectively.
One of the potential advantages of IL-23 inhibitors is also the long-term maintenance of the achieved effect after treatment cessation. Guselkumab therapy is characterized by a favorable safety profile comparable to ustekinumab. During the follow-up period of patients in the course of randomized controlled trials of phase 3, data were obtained on the high safety of the drug and the absence of significant risks for serious infections, cardiovascular events, malignancies or suicidal tendencies. The drug is effective for insufficient response to adalimumab and ustekinumab.
The article presents 3 clinical cases of guselkumab use in patients with severe, including "problematic" psoriasis, comorbid pathology, with inefficiency or intolerance to systemic therapy, with secondary inefficiency of adalimumab. All patients managed to achieve a PASI of 90/100. No adverse events were observed.
Collapse
|
38
|
Qiu R, Zhou L, Ma Y, Zhou L, Liang T, Shi L, Long J, Yuan D. Regulatory T Cell Plasticity and Stability and Autoimmune Diseases. Clin Rev Allergy Immunol 2020; 58:52-70. [PMID: 30449014 DOI: 10.1007/s12016-018-8721-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
CD4+CD25+ regulatory T cells (Tregs) are a class of CD4+ T cells with immunosuppressive functions that play a critical role in maintaining immune homeostasis. However, in certain disease settings, Tregs demonstrate plastic differentiation, and the stability of these Tregs, which is characterized by the stable expression or protective epigenetic modifications of the transcription factor Foxp3, becomes abnormal. Plastic Tregs have some features of helper T (Th) cells, such as the secretion of Th-related cytokines and the expression of specific transcription factors in Th cells, but also still retain the expression of Foxp3, a feature of Tregs. Although such Th-like Tregs can secrete pro-inflammatory cytokines, they still possess a strong ability to inhibit specific Th cell responses. Therefore, the plastic differentiation of Tregs not only increases the complexity of the immune circumstances under pathological conditions, especially autoimmune diseases, but also shows an association with changes in the stability of Tregs. The plastic differentiation and stability change of Tregs play vital roles in the progression of diseases. This review focuses on the phenotypic characteristics, functions, and formation conditions of several plastic Tregs and also summarizes the changes of Treg stability and their effects on inhibitory function. Additionally, the effects of Treg plasticity and stability on disease prognosis for several autoimmune diseases were also investigated in order to better understand the relationship between Tregs and autoimmune diseases.
Collapse
Affiliation(s)
- Runze Qiu
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China
| | - Liyu Zhou
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China
| | - Yuanjing Ma
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China
| | - Lingling Zhou
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China
| | - Tao Liang
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China
| | - Le Shi
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China
| | - Jun Long
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China.
| | - Dongping Yuan
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
39
|
Liu Y, Zhang C, Li B, Yu C, Bai X, Xiao C, Wang L, Dang E, Yang L, Wang G. A novel role of IL-17A in contributing to the impaired suppressive function of Tregs in psoriasis. J Dermatol Sci 2020; 101:84-92. [PMID: 33334656 DOI: 10.1016/j.jdermsci.2020.09.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/24/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Regulatory T cells (Tregs) are crucial in maintaining T cell homeostasis and preventing autoimmune responses. Deficiencies in the suppressive function of Tregs contribute to the pathogenesis of various autoimmune diseases, such as psoriasis. However, whether IL-17A upregulation in psoriatic patients contributes to Treg dysfunction is unknown. OBJECTIVE To explore the effect and underlying mechanism of IL-17A on the suppressive function of Tregs and to evaluate the restoration of the suppressive function of Tregs in psoriasis during anti-IL-17A (secukinumab) treatment. METHODS In vitro suppression assays were performed with or without the addition of IL-17A to the coculture system. The release of inhibitory cytokines, including IL-10 and TGF-β, was assessed by qRT-PCR and flow cytometry. RNA-sequencing was conducted to characterize the cellular responses of Tregs. IL-17A signaling activation was analyzed by flow cytometry and immunofluorescence. Blood samples were collected from three psoriasis patients before and after secukinumab treatment. RESULTS IL-17A blocked the suppressive function of Tregs, possibly by inhibiting the release of TGF-β and promoting the production of IFN-γ. Moreover, IL-17A activated the NF-κB signaling pathway in Tregs. Inhibition of the NF-κB pathway blocked IL-17A-induced upregulation of IFN-γ without affecting the secretion of TGF-β by Tregs. Clinical treatment in psoriasis with secukinumab restored the suppressive function and increased production of TGF-β in Tregs of psoriasis. CONCLUSION Our study implies a crucial role of IL-17A in mediating the dysfunction of the Treg suppressive function in psoriasis. Secukinumab, which neutralizes IL-17A signaling, restored the suppressive function of Tregs to exert its antipsoriatic effect.
Collapse
Affiliation(s)
- Yanghe Liu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chen Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Bing Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chen Yu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaocui Bai
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chunying Xiao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Lei Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Erle Dang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Luting Yang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
40
|
Yang L, Zhang C, Bai X, Xiao C, Dang E, Wang G. hsa_circ_0003738 Inhibits the Suppressive Function of Tregs by Targeting miR-562/IL-17A and miR-490-5p/IFN-γ Signaling Pathway. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 21:1111-1119. [PMID: 32871353 PMCID: PMC7475646 DOI: 10.1016/j.omtn.2020.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/18/2020] [Accepted: 07/31/2020] [Indexed: 12/16/2022]
Abstract
Dysfunction in the suppressive function of regulatory T cells (Tregs) has been related to the pathogenesis of psoriasis. Accumulating evidence has demonstrated the importance of circular RNAs (circRNAs) in regulating various biological process, such as cell proliferation, apoptosis, etc. However, the role of circRNAs in modulating the suppressive functions of psoriatic Tregs and the underlying mechanisms have not been investigated. Here, by using circRNA microarray analysis, we discovered four upregulated and four downregulated circRNAs in psoriatic Tregs. Quantitative real-time PCR further confirmed a significant increase of circ_0003738 in psoriatic Tregs. Importantly, knockdown of circ_0003738 by lentivirus in psoriatic Tregs could restore their suppressive functions via inhibiting the secretion of proinflammatory cytokines interleukin-17A (IL-17A) and interferon (IFN)-γ. Moreover, we found that circ_0003738 could bind to miR-562 to release the inhibition of target gene IL-17RA (IL-17 receptor A), thus promoting IL-17A signaling in psoriatic Tregs. In parallel, circ_0003738 acted also as a sponge for miR-490-5p and relieved inhibition for the target gene IFNGR2, which promoted IFN-γ signaling in psoriatic Tregs. Our study demonstrated that upregulated circ_0003738 decreased the suppressive function of psoriatic Tregs via the miR-562/IL17RA and miR-490-5p/IFNGR2 (IFN-γ receptor 2) axis, which indicated the involvement of circRNAs in the pathogenesis of dysfunctional Tregs. These findings will provide new therapeutic targets for the treatment of psoriasis.
Collapse
Affiliation(s)
- Luting Yang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China; Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, No. 620, South Chang'an Road, Xi'an 710062, China
| | - Chen Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xiaocui Bai
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Chunying Xiao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Erle Dang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
41
|
Lan XO, Wang HX, Qi RQ, Xu YY, Yu YJ, Yang Y, Guo H, Gao XH, Geng L. Shikonin inhibits CEBPD downregulation in IL‑17‑treated HaCaT cells and in an imiquimod‑induced psoriasis model. Mol Med Rep 2020; 22:2263-2272. [PMID: 32705251 PMCID: PMC7411367 DOI: 10.3892/mmr.2020.11315] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 06/08/2020] [Indexed: 01/16/2023] Open
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by well-defined scaly papules and plaques. Interleukin (IL)-17 is involved in its pathogenesis and promotes the proliferation of epidermal keratinocytes through signal transducer and activator of transcription 3 (STAT3) activation. Shikonin, a natural naphthoquinone isolated from Lithospermum erythrorhizon, possesses anti-inflammatory and immunosuppressive properties and can suppress IL-17-induced vascular endothelial growth factor expression by inhibiting the JAK/STAT3 pathway. In the present study, MTS, iCELLigence and RT-qPCR were used to determine the optimal concentration and duration of IL-17 or shikonin acting on HaCaT cells. The changes in the expression levels of genes associated with the IL-6/STAT3 pathway in differentially treated cells were analyzed via RT2Profiler™ PCR Array. Small interfering RNA was used to silence the expression levels of the target gene CCAAT/enhancer-binding protein δ (CEBPD). Western blotting and immunohistochemistry were used to evaluate the effect of shikonin on imiquimod-induced psoriasis in mice and the expression levels of CEBPD. Shikonin reversed IL-17-mediated downregulation of the tumor suppressor CEBPD in HaCaT cells. Moreover, low levels of CEBPD in the imiquimod-induced mouse model of psoriasis were restored by shikonin treatment, which ameliorated excessive keratinocyte proliferation. Taken together, these findings suggest that CEBPD plays a key role in the pathogenesis of psoriasis and can be targeted by shikonin as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Xiao-Ou Lan
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - He-Xiao Wang
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Rui-Qun Qi
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yuan-Yuan Xu
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Ya-Jie Yu
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yang Yang
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Hao Guo
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xing-Hua Gao
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Long Geng
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
42
|
Abstract
Psoriasis is chronic, immune-mediated, inflammatory disease with a multifactorial etiology that affects the skin tissue and causes the appearance of dry and scaly lesions of anywhere on the body. The study of the pathophysiology of psoriasis reveals a network of immune cells that, together with their cytokines, initiates a chronic inflammatory response. Previously attributed to T helper (Th)1 cytokines, currently the Th17 cytokine family is the major effector in the pathogenesis of psoriatic disease and strongly influences the inflammatory pattern established during the disease activity. In addition, the vast network of cells that orchestrates the pathophysiology makes psoriasis complex to study. Along with this, variations in genes that code the cytokines make psoriasis more clinically heterogeneous and present a challenge for the development of drugs that can be used in the treatment of the patients with this disease. Therefore, it is important to clarify the mechanisms by which the cytokines are involved in the pathophysiology of psoriasis and how this knowledge is translated to the medical practice.
Collapse
Affiliation(s)
| | - Edna Maria Vissoci Reiche
- Research Laboratory in Applied Immunology, State University of Londrina, Paraná, Brazil; Department of Pathology, Clinical Analysis and Toxicology, State University of Londrina, Paraná, Brazil
| | - Andréa Name Colado Simão
- Research Laboratory in Applied Immunology, State University of Londrina, Paraná, Brazil; Department of Pathology, Clinical Analysis and Toxicology, State University of Londrina, Paraná, Brazil.
| |
Collapse
|
43
|
Wang H, Lei L, Hu J, Li Y. Oncostatin M upregulates Livin to promote keratinocyte proliferation and survival via ERK and STAT3 signalling pathways. Exp Physiol 2020; 105:1151-1158. [PMID: 32359099 DOI: 10.1113/ep088584] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022]
Abstract
NEW FINDINGS What is the central question of this study? What controls the proliferation and apoptosis in the pathogenesis of psoriasis? What is the main finding and its importance? The pathogenesis psoriasis involves abnormal homeostasis of keratinocytes, with hyperproliferation and decreasing apoptosis. An inhibitor of apoptosis protein family molecule, Livin, is highly expressed in psoriasis vulgaris lesional skin tissue. Expression of Livin was upregulated at transcription and protein levels after stimulation with oncostatin M (OSM). OSM promoted the survival of HaCaT cells in oxidative stress conditions. Expression of Livin and proliferation of HaCaT cells stimulated by OSM was regulated through ERK and STAT3 signalling pathways. This study might provide new insights into targeted therapy for psoriasis. ABSTRACT Psoriasis is an immune-mediated chronic inflammatory disease. Abnormal homeostasis of keratinocytes, with hyperproliferation and decreasing apoptosis, is involved in the pathogenesis of psoriasis. Here, we report that an inhibitor of apoptosis protein family molecule, Livin, is highly expressed in psoriasis vulgaris lesional skin tissue at transcription and protein levels. Importantly, the expression level of Livin is related to the severity of psoriasis. The aim of the study was to investigate the regulation and functions of Livin in keratinocytes stimulated by the pro-inflammatory cytokine oncostatin M (OSM). The expression of Livin in HaCaT cells at mRNA and protein levels was measured by real-time PCR and Western blotting after OSM stimulation. The cell proliferation was measured by a 5-ethynyl-2'-deoxyuridine incorporation assay. Cell death was induced by the exogenous hydrogen peroxide (H2 O2 ) stress model, detected by 7-amino-actinomycin D staining and analysed by flow cytometry. Livin was overexpressed by a lentiviral transduction system to validate the roles of OSM and Livin in HaCaT cells. Specific inhibitors of ERK (U0126) and STAT3 (cryptotanshinone) were applied to investigate the signalling pathways involved in the regulation of Livin expression by OSM. The expression of Livin was upregulated after stimulation with OSM. OSM promoted the proliferation and survival of HaCaT cells. The expression of Livin and the proliferation of HaCaT cells induced by OSM were regulated through the ERK and STAT3 signalling pathways. We conclude that OSM promotes HaCaT cell proliferation and survival in conditions of oxidative stress.
Collapse
Affiliation(s)
- Hao Wang
- Department of Dermatology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lei Lei
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Jinsong Hu
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Yazhuo Li
- Department of Dermatology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
44
|
Goncharov AA, Dolgikh OV. Immunological and genetic features of pathogenetic association between psoriasis and colonic dysbiosis. RUSSIAN JOURNAL OF INFECTION AND IMMUNITY 2020; 11:237-248. [DOI: 10.15789/2220-7619-iag-1277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Psoriasis is a multifactorial systemic immune-associated disease. It is assumed that colonic dysbiosis may contribute to its development. In this review we provide the data on colonic dysbiosis in induction and progression of psoriatic inflammation assessing a role for bacterial species: Akkermansia muciniphila, Faecalibacterium prausnitzii and Escherichia coli. On one hand, these bacterial species indicate at state of dysbiotic bacterial communities, whereas on the other hand, they are functionally associated with triggering a chain of events inducing impaired intestinal barrier transforming into chronic inflammation in the colonic mucosa and systemic inflammation. Such a scenario leads to the altered systemic reactivity of innate and adaptive immune cells, impaired function of regulatory immune cells resulting in expansion of the autoreactive skin T-cells and induction of psoriatic inflammation due to molecular mimicry between persistent Streptococcus pyogenes and cutaneous antigens. The psoriatic process is envisioned as a comorbidity with inflammatory bowel diseases. Since dysbiotic changes in psoriasis and inflammatory bowel diseases (e.g. Crohn's disease) display similar features, these diseases might potentially proceed via a similar pathogenetic chain resulting from dysbiotic changes in intestinal microbiota towards impaired intestinal barrier, chronic systemic inflammation and altered anti-inflammatory immune arm. Therefore, the data on pathogenetic pathways of the diseases comorbid with psoriasis are able to uncover yet-unknown pathogenetic components for the latter. Psoriasis as a genetically-determined disease is currently believed to be associated with single nucleotide polymorphisms (SNP) in more than four hundred genes. A role for diverse SNPs in candidate genes involved in psoriasis pathogenetic chain in antigen processing and presentation, migration of immune cells, pro-inflammatory cytokine ligation and production is discussed. Crohn's disease is associated with single nucleotide polymorphisms of the genes encoding intestinal barrier proteins potentially underlying its functional deficiency. In connection with comorbidity and similarity between microbiota-associated pathogenetic psoriasis chain and inflammatory bowel diseases, it is possible to assume that such SNPs accounting for genetic defects in the intestinal barrier are manifested as dysbiotic changes in colonic bacterial community and contribute to progression not only of inflammatory bowel diseases, but psoriasis as well.
Collapse
|
45
|
Liu B, Wu H, Huang Q, Li M, Fu X. Phosphorylated STAT3 inhibited the proliferation and suppression of decidual Treg cells in unexplained recurrent spontaneous abortion. Int Immunopharmacol 2020; 82:106337. [PMID: 32151956 DOI: 10.1016/j.intimp.2020.106337] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/22/2022]
Abstract
This study aimed to investigate the effects of signal transducer and activators of transcription 3 (STAT3) phosphorylation on the function of decidual regulatory T (Treg) cells in unexplained recurrent spontaneous abortion (URSA) patients and to explore the mechanism of STAT3 in URSA. Treg cells were sorted out from the decidual tissue by magnetic beads. The inhibitor Stattic was utilized to alter the phosphorylation status of STAT3 (pSTAT3) in Treg cells. The proliferation and suppression of Treg cell were detected by flow cytometry, real-time quantitative fluorescent PCR and ELISA. The factors that caused the hyperphosphorylation of Treg cells were detected. Our results showed that the proportion of pSTAT3 cells in the decidual Treg cells of URSA patients was significantly increased. pSTAT3 inhibited the proliferation of Treg cells by downregulating the expression of STAT5 and Foxp3 and increased the number of responder T cells. pSTAT3 decreased the secretion of TGF-β1 and IL-10 in Treg cells. Overexpression of pro-inflammatory cytokines IL-6 and IL-23 stimulated STAT3 phosphorylation in Treg cells. This study suggests that hyperphosphorylation of STAT3 impairs the proliferation, suppression and cytokine secretion of Treg cells, while inhibiting the phosphorylation of STAT3 restores these functions. These findings clarify the role of STAT3 in the pathogenesis of URSA and provide new ideas for the treatment of URSA.
Collapse
Affiliation(s)
- Bo Liu
- Department of Reproductive Center, First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Huimei Wu
- Department of Reproductive Center, First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Qianyi Huang
- Department of Reproductive Center, First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Mujun Li
- Department of Reproductive Center, First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Xiaoqian Fu
- Department of Reproductive Center, First Affiliated Hospital of Guangxi Medical University, Guangxi, China.
| |
Collapse
|
46
|
Chikin VV. Guselkumab in the treatment of patients with plaque psoriasis of moderate and severe severity: Efficacy and safety of interleukin-23 blockade. VESTNIK DERMATOLOGII I VENEROLOGII 2020. [DOI: 10.25208/0042-4609-2019-95-6-68-77] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Affiliation(s)
- V. V. Chikin
- State Research Center of Dermatovenereology and Cosmetology, Ministry of Health of the Russian Federation
| |
Collapse
|
47
|
Urbano PCM, He X, van Heeswijk B, Filho OPS, Tijssen H, Smeets RL, Joosten I, Koenen HJPM. TNFα-Signaling Modulates the Kinase Activity of Human Effector Treg and Regulates IL-17A Expression. Front Immunol 2020; 10:3047. [PMID: 32038615 PMCID: PMC6986271 DOI: 10.3389/fimmu.2019.03047] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/12/2019] [Indexed: 12/14/2022] Open
Abstract
Maintenance of regulatory T cells CD4+CD25highFOXP3+ (Treg) stability is vital for proper Treg function and controlling the immune equilibrium. Treg cells are heterogeneous and can reveal plasticity, exemplified by their potential to express IL-17A. TNFα-TNFR2 signaling controls IL-17A expression in conventional T cells via the anti-inflammatory ubiquitin-editing and kinase activity regulating enzyme TNFAIP3/A20 (tumor necrosis factor-alpha-induced protein 3). To obtain a molecular understanding of TNFα signaling on IL-17 expression in the human effector (effTreg, CD25highCD45RA−) Treg subset, we here studied the kinome activity regulation by TNFα signaling. Using FACS-sorted naïve (naïveTreg, CD25highCD45RA+) and effTreg subsets, we demonstrated a reciprocal relationship between TNFα and IL-17A expression; effTreg (TNFαlow/IL-17Ahigh) and naïveTreg (TNFαhigh/IL-17Alow). In effTreg, TNFα-TNFR2 signaling prevented IL-17A expression, whereas inhibition of TNFα signaling by clinically applied anti-TNF antibodies led to increased IL-17A expression. Inhibition of TNFα signaling led to reduced TNFAIP3 expression, which, by using siRNA inhibition of TNFAIP3, appeared causally linked to increased IL-17A expression in effTreg. Kinome activity screening of CD3/CD28-activated effTreg revealed that anti-TNF-mediated neutralization led to increased kinase activity. STRING association analysis revealed that the TNF suppression effTreg kinase activity network was strongly associated with kinases involved in TCR, JAK, MAPK, and PKC pathway signaling. Small-molecule-based inhibition of TCR and JAK pathways prevented the IL-17 expression in effTreg. Together, these findings stress the importance of TNF-TNFR2 in regulating the kinase architecture of antigen-activated effTreg and controlling IL-17 expression of the human Treg. These findings might be relevant for optimizing anti-TNF-based therapy and may aid in preventing Treg plasticity in case of Treg-based cell therapy.
Collapse
Affiliation(s)
- Paulo C M Urbano
- Laboratory Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Xuehui He
- Laboratory Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Bennie van Heeswijk
- Laboratory Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Omar P S Filho
- Department of Biochemistry, Radboud University Medical Center, Nijmegen, Netherlands
| | - Henk Tijssen
- Laboratory Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ruben L Smeets
- Laboratory Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Irma Joosten
- Laboratory Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Hans J P M Koenen
- Laboratory Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
48
|
Li B, Lei J, Yang L, Gao C, Dang E, Cao T, Xue K, Zhuang Y, Shao S, Zhi D, Hao J, Jin L, Qiao P, Ouyang W, Wang G. Dysregulation of Akt-FOXO1 Pathway Leads to Dysfunction of Regulatory T Cells in Patients with Psoriasis. J Invest Dermatol 2019; 139:2098-2107. [DOI: 10.1016/j.jid.2018.12.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 12/12/2018] [Accepted: 12/26/2018] [Indexed: 10/27/2022]
|
49
|
Isac L, Jiquan S. Interleukin 10 promotor gene polymorphism in the pathogenesis of psoriasis. ACTA DERMATOVENEROLOGICA ALPINA PANNONICA ET ADRIATICA 2019. [DOI: 10.15570/actaapa.2019.29] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
50
|
Strober B, Alikhan A, Lockshin B, Shi R, Cirulli J, Schafer P. Apremilast mechanism of efficacy in systemic-naive patients with moderate plaque psoriasis: Pharmacodynamic results from the UNVEIL study. J Dermatol Sci 2019; 96:126-133. [PMID: 31787506 DOI: 10.1016/j.jdermsci.2019.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/13/2019] [Accepted: 09/06/2019] [Indexed: 01/13/2023]
Abstract
BACKGROUND Pharmacodynamic (PD) subanalyses of clinical trials in patients with moderate to severe psoriasis demonstrated the efficacy of apremilast correlated with reductions in cytokines involved in the pathogenesis of psoriasis. OBJECTIVE This PD subanalysis of a phase IV, randomized, controlled trial (UNVEIL) in systemic-naive patients with moderate plaque psoriasis (psoriasis-involved body surface area [BSA] 5%-10%; static Physician's Global Assessment [sPGA] = 3) evaluated the relationship between efficacy and changes in inflammatory biomarkers with apremilast 30 mg twice daily (BID) versus placebo. METHODS Patients were randomized (2:1) to apremilast 30 mg BID or placebo for 16 weeks. Blood samples were analyzed for interleukins (IL)-17A, -17F, -22, and -23; cardiometabolic biomarkers (leptin; adiponectin; apolipoproteins A-I, A-II, B, and E); and the number of T-helper 17 (Th17) cells, regulatory T cells, and total T cells at Weeks 0, 4, and 16. Correlations were examined between percentage change in biomarkers and efficacy (based on PGAxBSA). RESULTS Of 221 randomized patients, 38 were included in PD analyses (placebo, n = 12; apremilast, n = 26). Median percentage reductions in plasma cytokine levels were significantly greater with apremilast versus placebo for IL-17A (P < 0.05), IL -17F (P < 0.001), and IL-22 (P < 0.01) at Week 4 and IL-22 (P < 0.05) at Week 16. At Week 16, in patients receiving apremilast, improvement in PGAxBSA significantly correlated with change in IL-17A (r = 0.45, P = 0.04). Adipokines, apolipoproteins, and T-cell population levels were largely unchanged. CONCLUSION Clinical improvements in psoriasis correlated with apremilast-mediated decreases in IL-17A without significantly affecting systemic IL-23 levels, adipokines, or Th17 and regulatory T-cell numbers.
Collapse
Affiliation(s)
- Bruce Strober
- Yale University, New Haven, CT, USA; Central Connecticut Dermatology, Cromwell, CT, USA
| | - Ali Alikhan
- University of Cincinnati Medical Center, Health Dermatology, Cincinnati, OH, USA
| | | | | | | | | |
Collapse
|