1
|
Badii M, Klück V, Gaal O, Cabău G, Hotea I, Nica V, Mirea AM, Bojan A, Zdrenghea M, Novakovic B, Merriman TR, Liu Z, Li Y, Xu CJ, Pamfil C, Rednic S, Popp RA, Crişan TO, Joosten LAB. Regulation of SOCS3-STAT3 in urate-induced cytokine production in human myeloid cells. Joint Bone Spine 2024; 91:105698. [PMID: 38309518 DOI: 10.1016/j.jbspin.2024.105698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/10/2024] [Accepted: 01/23/2024] [Indexed: 02/05/2024]
Abstract
OBJECTIVE Hyperuricaemia is necessary for gout. High urate concentrations have been linked to inflammation in mononuclear cells. Here, we explore the role of the suppressor of cytokine signaling 3 (SOCS3) in urate-induced inflammation. METHODS Peripheral blood mononuclear cells (PBMCs) from gout patients, hyperuricemic and normouricemic individuals were cultured for 24h with varying concentrations of soluble urate, followed by 24h restimulation with lipopolysaccharides (LPS)±monosodium urate (MSU) crystals. Transcriptomic profiling was performed using RNA-Sequencing. DNA methylation was assessed using Illumina Infinium® MethylationEPIC BeadChip system (EPIC array). Phosphorylation of signal transducer and activator of transcription 3 (STAT3) was determined by flow cytometry. Cytokine responses were also assessed in PBMCs from patients with JAK2 V617F tyrosine kinase mutation. RESULTS PBMCs pre-treated with urate produced more interleukin-1beta (IL-1β) and interleukin-6 (IL-6) and less interleukin-1 receptor anatagonist (IL-1Ra) after LPS simulation. In vitro, urate treatment enhanced SOCS3 expression in control monocytes but no DNA methylation changes were observed at the SOCS3 gene. A dose-dependent reduction in phosphorylated STAT3 concomitant with a decrease in IL-1Ra was observed with increasing concentrations of urate. PBMCs with constitutively activated STAT3 (JAK2 V617F mutation) could not be primed by urate. CONCLUSION In vitro, urate exposure increased SOCS3 expression, while urate priming, and subsequent stimulation resulted in decreased STAT3 phosphorylation and IL-1Ra production. There was no evidence that DNA methylation constitutes a regulatory mechanism of SOCS3. Elevated SOCS3 and reduced pSTAT3 could play a role in urate-induced hyperinflammation since urate priming had no effect in PBMCs from patients with constitutively activated STAT3.
Collapse
Affiliation(s)
- Medeea Badii
- Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; Department of Internal Medicine and Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Centre, 6525GA Nijmegen, The Netherlands
| | - Viola Klück
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Centre, 6525GA Nijmegen, The Netherlands
| | - Orsolya Gaal
- Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; Department of Internal Medicine and Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Centre, 6525GA Nijmegen, The Netherlands
| | - Georgiana Cabău
- Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Ioana Hotea
- Department of Rheumatology, Iuliu Hațieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Valentin Nica
- Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Andreea M Mirea
- Department of Genetics, Clinical Emergency Hospital for Children, 400535 Cluj-Napoca, Romania
| | - Anca Bojan
- Department of Haematology, The Oncology Institute, "Prof. Dr. Ion Chiricuță", 400015 Cluj-Napoca, Romania
| | - Mihnea Zdrenghea
- Department of Haematology, The Oncology Institute, "Prof. Dr. Ion Chiricuță", 400015 Cluj-Napoca, Romania
| | - Boris Novakovic
- Murdoch Children's Research Institute and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| | - Tony R Merriman
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, 35294, United States; Department of Biochemistry, University of Otago, 9016 Dunedin, New Zealand
| | - Zhaoli Liu
- Centre for Individualized Infection Medicine (CiiM), a joint venture between Hannover Medical School and Helmholtz Centre for Infection Research, 30625 Hannover, Germany
| | - Yang Li
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Centre, 6525GA Nijmegen, The Netherlands; Centre for Individualized Infection Medicine (CiiM), a joint venture between Hannover Medical School and Helmholtz Centre for Infection Research, 30625 Hannover, Germany
| | - Cheng-Jian Xu
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Centre, 6525GA Nijmegen, The Netherlands; Centre for Individualized Infection Medicine (CiiM), a joint venture between Hannover Medical School and Helmholtz Centre for Infection Research, 30625 Hannover, Germany
| | - Cristina Pamfil
- Department of Rheumatology, Iuliu Hațieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Simona Rednic
- Department of Rheumatology, Iuliu Hațieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Radu A Popp
- Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Tania O Crişan
- Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; Department of Internal Medicine and Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Centre, 6525GA Nijmegen, The Netherlands.
| | - Leo A B Joosten
- Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; Department of Internal Medicine and Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Centre, 6525GA Nijmegen, The Netherlands
| |
Collapse
|
2
|
Klück V, Cabău G, Mies L, Bukkems F, van Emst L, Bakker R, van Caam A, Crişan TO, Joosten LAB. TGF-β is elevated in hyperuricemic individuals and mediates urate-induced hyperinflammatory phenotype in human mononuclear cells. Arthritis Res Ther 2023; 25:30. [PMID: 36850003 PMCID: PMC9969669 DOI: 10.1186/s13075-023-03001-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 01/29/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Soluble urate leads to a pro-inflammatory phenotype in human monocytes characterized by increased production of IL-1β and downregulation of IL-1 receptor antagonist, the mechanism of which remains to be fully elucidated. Previous transcriptomic data identified differential expression of genes in the transforming growth factor (TGF)-β pathway in monocytes exposed to urate in vitro. In this study, we explore the role of TGF-β in urate-induced hyperinflammation in peripheral blood mononuclear cells (PBMCs). METHODS TGF-β mRNA in unstimulated PBMCs and protein levels in plasma were measured in individuals with normouricemia, hyperuricemia and gout. For in vitro validation, PBMCs of healthy volunteers were isolated and treated with a dose ranging concentration of urate for assessment of mRNA and pSMAD2. Urate and TGF-β priming experiments were performed with three inhibitors of TGF-β signalling: SB-505124, 5Z-7-oxozeaenol and a blocking antibody against TGF-β receptor II. RESULTS TGF-β mRNA levels were elevated in gout patients compared to healthy controls. TGF-β-LAP levels in serum were significantly higher in individuals with hyperuricemia compared to controls. In both cases, TGF-β correlated positively to serum urate levels. In vitro, urate exposure of PBMCs did not directly induce TGF-β but did enhance SMAD2 phosphorylation. The urate-induced pro-inflammatory phenotype of monocytes was partly reversed by blocking TGF-β. CONCLUSIONS TGF-β is elevated in individuals with hyperuricemia and correlated to serum urate concentrations. In addition, the urate-induced pro-inflammatory phenotype in human monocytes is mediated by TGF-β signalling. Future studies are warranted to explore the intracellular pathways involved and to assess the clinical significance of urate-TGF-β relation.
Collapse
Affiliation(s)
- Viola Klück
- Department of Internal Medicine, Radboud UMC, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, The Netherlands
| | - Georgiana Cabău
- Department of Medical Genetics, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Linda Mies
- Department of Internal Medicine, Radboud UMC, Nijmegen, The Netherlands
| | - Femke Bukkems
- Departement of Rheumatology, Radboud UMC, Nijmegen, The Netherlands
| | - Liesbeth van Emst
- Department of Internal Medicine, Radboud UMC, Nijmegen, The Netherlands
| | - René Bakker
- Departement of Rheumatology, Radboud UMC, Nijmegen, The Netherlands
| | - Arjan van Caam
- Departement of Rheumatology, Radboud UMC, Nijmegen, The Netherlands
| | | | - Tania O Crişan
- Department of Medical Genetics, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud UMC, Nijmegen, The Netherlands. .,Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, The Netherlands. .,Department of Medical Genetics, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj Napoca, Romania.
| |
Collapse
|
3
|
Badii M, Gaal OI, Cleophas MC, Klück V, Davar R, Habibi E, Keating ST, Novakovic B, Helsen MM, Dalbeth N, Stamp LK, Macartney-Coxson D, Phipps-Green AJ, Stunnenberg HG, Dinarello CA, Merriman TR, Netea MG, Crişan TO, Joosten LAB. Urate-induced epigenetic modifications in myeloid cells. Arthritis Res Ther 2021; 23:202. [PMID: 34321071 PMCID: PMC8317351 DOI: 10.1186/s13075-021-02580-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/12/2021] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVES Hyperuricemia is a metabolic condition central to gout pathogenesis. Urate exposure primes human monocytes towards a higher capacity to produce and release IL-1β. In this study, we assessed the epigenetic processes associated to urate-mediated hyper-responsiveness. METHODS Freshly isolated human peripheral blood mononuclear cells or enriched monocytes were pre-treated with solubilized urate and stimulated with LPS with or without monosodium urate (MSU) crystals. Cytokine production was determined by ELISA. Histone epigenetic marks were assessed by sequencing immunoprecipitated chromatin. Mice were injected intraarticularly with MSU crystals and palmitate after inhibition of uricase and urate administration in the presence or absence of methylthioadenosine. DNA methylation was assessed by methylation array in whole blood of 76 participants with normouricemia or hyperuricemia. RESULTS High concentrations of urate enhanced the inflammatory response in vitro in human cells and in vivo in mice, and broad-spectrum methylation inhibitors reversed this effect. Assessment of histone 3 lysine 4 trimethylation (H3K4me3) and histone 3 lysine 27 acetylation (H3K27ac) revealed differences in urate-primed monocytes compared to controls. Differentially methylated regions (e.g. HLA-G, IFITM3, PRKAB2) were found in people with hyperuricemia compared to normouricemia in genes relevant for inflammatory cytokine signaling. CONCLUSION Urate alters the epigenetic landscape in selected human monocytes or whole blood of people with hyperuricemia compared to normouricemia. Both histone modifications and DNA methylation show differences depending on urate exposure. Subject to replication and validation, epigenetic changes in myeloid cells may be a therapeutic target in gout.
Collapse
Affiliation(s)
- M Badii
- Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 8, 6525 GA, Nijmegen, The Netherlands
| | - O I Gaal
- Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 8, 6525 GA, Nijmegen, The Netherlands
| | - M C Cleophas
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 8, 6525 GA, Nijmegen, The Netherlands
| | - V Klück
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 8, 6525 GA, Nijmegen, The Netherlands
| | - R Davar
- Department of Molecular Biology, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - E Habibi
- Department of Molecular Biology, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - S T Keating
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 8, 6525 GA, Nijmegen, The Netherlands
| | - B Novakovic
- Department of Molecular Biology, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - M M Helsen
- Department of Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - N Dalbeth
- Department of Medicine, University of Auckland, Auckland, New Zealand
| | - L K Stamp
- Department of Medicine, University of Otago Christchurch, Christchurch, New Zealand
| | - D Macartney-Coxson
- Human Genomics, Institute of Environmental Science and Research (ESR), Wellington, New Zealand
| | - A J Phipps-Green
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - H G Stunnenberg
- Department of Molecular Biology, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - C A Dinarello
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 8, 6525 GA, Nijmegen, The Netherlands
- Department of Medicine, University of Colorado Denver, Aurora, CO, 80045, USA
| | - T R Merriman
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - M G Netea
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 8, 6525 GA, Nijmegen, The Netherlands
- Human Genomics Laboratory, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - T O Crişan
- Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 8, 6525 GA, Nijmegen, The Netherlands
| | - L A B Joosten
- Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 8, 6525 GA, Nijmegen, The Netherlands.
| |
Collapse
|
4
|
Qadri M, ElSayed S, Elsaid KA. Fingolimod Phosphate (FTY720-P) Activates Protein Phosphatase 2A in Human Monocytes and Inhibits Monosodium Urate Crystal-Induced Interleukin-1 β Production. J Pharmacol Exp Ther 2021; 376:222-230. [PMID: 33239408 PMCID: PMC7873533 DOI: 10.1124/jpet.120.000321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/20/2020] [Indexed: 12/27/2022] Open
Abstract
Gout is a chronic inflammatory arthritis caused by monosodium urate monohydrate (MSU) crystal deposits in joints of lower limbs. Phagocytic uptake of MSU crystals by joint-resident macrophages and recruited circulating monocytes results in IL-1β expression and production. Current acute gout treatments have serious toxicities and suffer suboptimal clinical outcomes. Protein phosphatase 2A (PP2A) plays an important role in regulating signaling pathways relevant to inflammation. We hypothesized that innate immune danger signals, e.g., lipopolysaccharide (LPS) and soluble uric acid (sUA), prime human monocytes toward MSU crystal phagocytosis and that increased IL-1β production mediated by a reduction in PP2A activity and restoring PP2A activity exerts an anti-inflammatory effect in this setting. Priming monocytes with LPS + sUA increased cytosolic pro-IL-1β and mature IL-1β and enhanced MSU crystal phagocytosis and its downstream IL-1β expression (P < 0.001). A combination of LPS + sUA priming and MSU crystals reduced PP2A activity in monocytes by 60% (P = 0.013). PP2A catalytic subunit gene knockdown reduced PP2A activity and exacerbated MSU crystal-induced IL-1β expression and secretion (P < 0.0001). Fingolimod (FTY720) and its active metabolite, fingolimod phosphate (FTY720-P), were evaluated for their ability to activate PP2A in human monocytes over 24 hours. FTY720 and FTY720-P activated PP2A to a similar extent, and maximal enzyme activity occurred at 24 hours for FTY720 and at 6 hours for FTY720-P. FTY720-P (2.5 μM) reduced pro-IL-1β production and IL-1β secretion in primed and MSU crystal-stimulated monocytes (P < 0.0001) without changing the magnitude of crystal phagocytosis. We conclude that PP2A is a promising new target in acute gout. SIGNIFICANCE STATEMENT: The activity of protein phosphatase 2A (PP2A) is implicated in the enhanced expression and production of IL-1β by human monocytes in response to priming with soluble uric acid and lipopolysaccharide and phagocytosis of monosodium urate monohydrate (MSU) crystals. Fingolimod phosphate activates PP2A in human monocytes and reduces cytosolic pro-IL-1β content and its conversion to biologically active IL-1β in human monocytes exposed to MSU crystals.
Collapse
Affiliation(s)
- Marwa Qadri
- Department of Pharmacology, College of Pharmacy, Jazan University, Jazan, Kingdom of Saudi Arabia (M.Q.) and Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Sciences Campus, Irvine, California (S.E., K.A.E.)
| | - Sandy ElSayed
- Department of Pharmacology, College of Pharmacy, Jazan University, Jazan, Kingdom of Saudi Arabia (M.Q.) and Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Sciences Campus, Irvine, California (S.E., K.A.E.)
| | - Khaled A Elsaid
- Department of Pharmacology, College of Pharmacy, Jazan University, Jazan, Kingdom of Saudi Arabia (M.Q.) and Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Sciences Campus, Irvine, California (S.E., K.A.E.)
| |
Collapse
|
5
|
The IL-1 family of cytokines and receptors in rheumatic diseases. Nat Rev Rheumatol 2019; 15:612-632. [DOI: 10.1038/s41584-019-0277-8] [Citation(s) in RCA: 246] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2019] [Indexed: 02/07/2023]
|
6
|
Abstract
Background Autoinflammatory diseases are distinct from autoimmune diseases. Whereas autoinflammatory diseases are due to dysfunctional T-cells and B-cells, autoinflammatory diseases are due to overproduction of macrophage cytokines particularly interleukin-1 beta (IL-1β). A causative role for IL-1 in autoinflammatory diseases is derived from clinical studies blocking the IL-1 receptor or neutralizing monoclonal antibodies or soluble receptors. Methods A review was performed of clinical trials in autoinflammatory diseases using the IL-1 receptor antagonist (anakinra), the soluble IL-1 receptor (rilonacept), antibodies to IL-1β (canakinumab, gevokizumab) and anti-IL-1α (xilonix). Findings Anakinra blocks the IL-1 Receptor type 1 (IL-1R1) and therefore blocks the activities of both IL-1α and IL-1β. Off-label use of anakinra is common for a broad spectrum of inflammatory diseases. Neutralization of IL-1β is used to treat hereditary autoinflammatory diseases but also atherosclerosis. Rilonacept reduces arterial wall inflammation in patients with chronic kidney disease. Neutralization of IL-1α has prolonged life in patients with advanced metastatic colorectal cancer. Compared to other cytokine blocking therapies, reducing the activities of IL-1 has an excellent safety record. Conclusions Blocking IL-1 therapies can be used to treat a wide-spectrum of acute and chronic inflammatory diseases.
Collapse
|
7
|
Uric acid priming in human monocytes is driven by the AKT-PRAS40 autophagy pathway. Proc Natl Acad Sci U S A 2017; 114:5485-5490. [PMID: 28484006 DOI: 10.1073/pnas.1620910114] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Metabolic triggers are important inducers of the inflammatory processes in gout. Whereas the high serum urate levels observed in patients with gout predispose them to the formation of monosodium urate (MSU) crystals, soluble urate also primes for inflammatory signals in cells responding to gout-related stimuli, but also in other common metabolic diseases. In this study, we investigated the mechanisms through which uric acid selectively lowers human blood monocyte production of the natural inhibitor IL-1 receptor antagonist (IL-1Ra) and shifts production toward the highly inflammatory IL-1β. Monocytes from healthy volunteers were first primed with uric acid for 24 h and then subjected to stimulation with lipopolysaccharide (LPS) in the presence or absence of MSU. Transcriptomic analysis revealed broad inflammatory pathways associated with uric acid priming, with NF-κB and mammalian target of rapamycin (mTOR) signaling strongly increased. Functional validation did not identify NF-κB or AMP-activated protein kinase phosphorylation, but uric acid priming induced phosphorylation of AKT and proline-rich AKT substrate 40 kDa (PRAS 40), which in turn activated mTOR. Subsequently, Western blot for the autophagic structure LC3-I and LC3-II (microtubule-associated protein 1A/1B-light chain 3) fractions, as well as fluorescence microscopy of LC3-GFP-overexpressing HeLa cells, revealed lower autophagic activity in cells exposed to uric acid compared with control conditions. Interestingly, reactive oxygen species production was diminished by uric acid priming. Thus, the Akt-PRAS40 pathway is activated by uric acid, which inhibits autophagy and recapitulates the uric acid-induced proinflammatory cytokine phenotype.
Collapse
|
8
|
Lamacchia O, Fontana A, Pacilli A, Copetti M, Fariello S, Garofolo M, Penno G, Trischitta V, De Cosmo S, Cignarelli M. On the non-linear association between serum uric acid levels and all-cause mortality rate in patients with type 2 diabetes mellitus. Atherosclerosis 2017; 260:20-26. [PMID: 28334637 DOI: 10.1016/j.atherosclerosis.2017.03.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 02/28/2017] [Accepted: 03/06/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS High levels of serum uric acid (SUA) are associated with increased mortality risk in the general population. Contrasting results are available in people with diabetes. The aim of our study was to investigate the association and its functional form between SUA and all cause-mortality in patients with type 2 diabetes mellitus (T2DM). METHODS We studied three cohorts of patients with T2DM: Gargano Mortality Study, Foggia Mortality Study, Pisa Mortality Study. All-cause mortality rate was the end point of this study. RESULTS The most reliable relationship between SUA levels and all-cause mortality rate was quadratic, with such model being well approximated by SUA tertiles. Both tertiles 1 and 3 were at higher risk of mortality as compared to tertile 2: Hazard Ratio (HR) [95% Confidence Interval (CI)] = 1.34 (1.07-1.68) and 1.61 (1.29-1.99), respectively. In the pseudo-sample, created from the real pooled sample, the best relationship between SUA and all-cause mortality rate was quadratic. In a tree-based Recursive Partitioning and Regression Tree analysis two subgroups at increased risk of mortality were identified, namely those with SUA levels ≥7.28 mg/dl and with SUA levels <4.16 mg/dl as compared to patients with intermediate SUA levels (i.e. 4.16-7.28), thus providing further evidence on the J-shaped relationship between SUA levels and mortality rate. CONCLUSIONS SUA was not linearly associated with all-cause mortality rate in patients with T2DM. For clinical and public health purposes such association is J-shaped.
Collapse
Affiliation(s)
- Olga Lamacchia
- Unit of Endocrinology and Diabetology, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Andrea Fontana
- Unit of Biostatistics, Scientific Institute "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Italy
| | - Antonio Pacilli
- Unit of Internal Medicine, Department of Medical Sciences, Scientific Institute "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Italy
| | - Massimiliano Copetti
- Unit of Biostatistics, Scientific Institute "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Italy.
| | - Stefania Fariello
- Unit of Endocrinology and Diabetology, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Monia Garofolo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giuseppe Penno
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Vincenzo Trischitta
- Research Unit of Diabetes and Endocrine Diseases, Scientific Institute "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Italy; Mendel-Laboratory, Scientific Institute "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Italy; Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Salvatore De Cosmo
- Unit of Internal Medicine, Department of Medical Sciences, Scientific Institute "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Italy.
| | - Mauro Cignarelli
- Unit of Endocrinology and Diabetology, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy.
| |
Collapse
|
9
|
Crișan TO, Netea MG, Joosten LAB. Innate immune memory: Implications for host responses to damage-associated molecular patterns. Eur J Immunol 2016; 46:817-28. [PMID: 26970440 DOI: 10.1002/eji.201545497] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 12/29/2015] [Accepted: 03/07/2016] [Indexed: 12/12/2022]
Abstract
Cells of the innate immune system build immunological memory via epigenetic reprogramming after stimulations with microbial ligands. This functional readjustment allows for enhanced nonspecific inflammatory responses upon secondary challenges, a process termed "trained immunity." The epigenomic blueprint of trained monocytes has been recently reported, which revealed several important immunologic and metabolic mechanisms that underlie these changes. Interestingly, similar long-term reprogramming of cytokine production has also been described to be induced by endogenous damage-associated molecular patterns (DAMPs). Here, we present an overview of the novel data showing that endogenous alarm signals associated with tissue damage and sterile inflammation can induce trained immunity through epigenetic regulation of transcriptional programs. We describe new and old evidence of persistent effects of DAMPs in driving inflammation and enforce the concept that the influence of tissue-derived signals is critical in adjusting the magnitude and type of immune response built by the host. The better characterization of trained immunity for the persistence of inflammation induced by DAMPs would provide new possibilities for intervention in aging and autoinflammatory disorders.
Collapse
Affiliation(s)
- Tania O Crișan
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Medical Genetics, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
10
|
Li H, Zha X, Zhu Y, Liu M, Guo R, Wen Y. An Invert U-Shaped Curve: Relationship Between Fasting Plasma Glucose and Serum Uric Acid Concentration in a Large Health Check-Up Population in China. Medicine (Baltimore) 2016; 95:e3456. [PMID: 27100447 PMCID: PMC4845851 DOI: 10.1097/md.0000000000003456] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
There are some published studies focus on the invert U-shaped relationship between fasting plasma glucose (FPG) and serum uric acid (UA), while the threshold value and gender differences of this relationship were still obscure. We aimed to explore the dose-response relation between FPG level and serum UA concentration by conducted this epidemiological research in a large health check-up population in China. A total of 237,703 people were collected from January 2011 to July 2014 in our cross-sectional study; 100,348 subjects age 18 to 89 years and without known diabetes were included for the current analysis. One-way analysis of variance, generalized additive models, and 2-piecewise linear regression model were used. The mean concentration of UA with FPG of <6.1, 6.1 to 6.9, and ≥7.0 mmol/L was 240.9, 260.2, and 259.6 μmol/L in women and 349.0, 360.8, and 331.0 μmol/L in men. An invert U-shape with a threshold FPG of 7.5 (women)/6.5 (men) mmol/L was observed in the regression curve of FPG and UA, even after adjusting for potential confounders. The adjusted regression coefficients were 2.4 (95% confidence interval [CI]: 1.5 to 3.4, P < 0.001) for FPG < 7.5 mmol/L, -3.2 (95% CI: -5.0 to -1.3, P < 0.001) for FPG ≥ 7.5 mmol/L in women; while 0.8 (95% CI: -0.4 to 2.0, P = 0.19) for FPG < 6.5 mmol/L, -7.1 (95% CI: -8.0 to -6.1, P < 0.001) for FPG ≥ 6.5 mmol/L in men. Furthermore, the interaction between different FPG level and sex was significant (P < 0.05). An invert U-shape with a threshold of FPG was existed for serum UA level in Chinese adults age 18 to 89 years without known diabetes, and significant gender differences were found. Future researches should pay more attention to this relationship.
Collapse
Affiliation(s)
- Haibo Li
- From the School of Public Health, Wannan Medical College (HL, YZ, ML, RG, YW) and Physical Examination Center, The First Affiliated Hospital of Wannan Medical College (XZ), Wuhu, China
| | | | | | | | | | | |
Collapse
|
11
|
Crișan TO, Cleophas MCP, Oosting M, Lemmers H, Toenhake-Dijkstra H, Netea MG, Jansen TL, Joosten LAB. Soluble uric acid primes TLR-induced proinflammatory cytokine production by human primary cells via inhibition of IL-1Ra. Ann Rheum Dis 2016; 75:755-62. [PMID: 25649144 DOI: 10.1136/annrheumdis-2014-206564] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 01/13/2015] [Indexed: 12/19/2022]
Abstract
OBJECTIVES The study of the proinflammatory role of uric acid has focused on the effects of its crystals of monosodium urate (MSU). However, little is known whether uric acid itself can directly have proinflammatory effects. In this study, we investigate the priming effects of uric acid exposure on the cytokine production of primary human cells upon stimulation with gout-related stimuli. METHODS Peripheral blood mononuclear cells (PBMCs) were harvested from patients with gout and healthy volunteers. Cells were pretreated with or without uric acid in soluble form for 24 h and then stimulated for 24 h with toll-like receptor (TLR)2 or TLR4 ligands in the presence or absence of MSU crystals. Cytokine production was measured by ELISA; mRNA levels were assessed using qPCR. RESULTS The production of interleukin (IL)-1β and IL-6 was higher in patients compared with controls and this correlated with serum urate levels. Proinflammatory cytokine production was significantly potentiated when cells from healthy subjects were pretreated with uric acid. Surprisingly, this was associated with a significant downregulation of the anti-inflammatory cytokine IL-1 receptor antagonist (IL-1Ra). This effect was specific to stimulation by uric acid and was exerted at the level of gene transcription. Epigenetic reprogramming at the level of histone methylation by uric acid was involved in this effect. CONCLUSIONS In this study we demonstrate a mechanism through which high concentrations of uric acid (up to 50 mg/dL) influence inflammatory responses by facilitating IL-1β production in PBMCs. We show that a mechanism for the amplification of IL-1β consists in the downregulation of IL-1Ra and that this effect could be exerted via epigenetic mechanisms such as histone methylation. Hyperuricaemia causes a shift in the IL-1β/IL-1Ra balance produced by PBMCs after exposure to MSU crystals and TLR-mediated stimuli, and this phenomenon is likely to reinforce the enhanced state of chronic inflammation.
Collapse
Affiliation(s)
- Tania O Crișan
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands Radboud Institute of Molecular Life Science (RIMLS), Radboud University Medical Center, Nijmegen, The Netherlands Department of Medical Genetics, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Maartje C P Cleophas
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands Radboud Institute of Molecular Life Science (RIMLS), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marije Oosting
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands Radboud Institute of Molecular Life Science (RIMLS), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Heidi Lemmers
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands Radboud Institute of Molecular Life Science (RIMLS), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Helga Toenhake-Dijkstra
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands Radboud Institute of Molecular Life Science (RIMLS), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands Radboud Institute of Molecular Life Science (RIMLS), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tim L Jansen
- Department of Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands Department of Rheumatology, VieCuri Medical Centre, Venlo, The Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands Radboud Institute of Molecular Life Science (RIMLS), Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
12
|
Athyros VG, Tziomalos K, Katsiki N, Doumas M, Karagiannis A, Mikhailidis DP. Cardiovascular risk across the histological spectrum and the clinical manifestations of non-alcoholic fatty liver disease: An update. World J Gastroenterol 2015; 21:6820-6834. [PMID: 26078558 PMCID: PMC4462722 DOI: 10.3748/wjg.v21.i22.6820] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/31/2015] [Accepted: 05/07/2015] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is considered to be an independent cardiovascular disease (CVD) risk factor. However, simple steatosis has a benign clinical course without excess mortality. In contrast, the advanced form of NAFLD, non-alcoholic steatohepatitis (NASH) with liver fibrosis increases mortality by approximately 70%, due to an increase in CVD mortality by approximately 300%. Chronic kidney disease (CKD) may be caused by NAFLD/NASH and it substantially increases CVD risk, especially in the presence of type 2 diabetes mellitus. Moreover, CKD may trigger NAFLD/NASH deterioration in a vicious cycle. NAFLD/NASH is also related to increased arterial stiffness (AS), an independent CVD risk factor that further raises CVD risk. Diagnosis of advanced liver fibrosis (mainly by simple non-invasive tests), CKD, and increased AS should be made early in the course of NAFLD and treated appropriately. Lifestyle measures and statin treatment may help resolve NAFLD/NASH and beneficially affect the CVD risk factors mentioned above.
Collapse
|
13
|
Athyros VG, Katsiki N, Karagiannis A, Mikhailidis DP. Statins can improve proteinuria and glomerular filtration rate loss in chronic kidney disease patients, further reducing cardiovascular risk. Fact or fiction? Expert Opin Pharmacother 2015; 16:1449-1461. [PMID: 26037614 DOI: 10.1517/14656566.2015.1053464] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION The prevalence of chronic kidney disease (CKD), a risk factor for cardiovascular disease (CVD), is increasing worldwide. Statin treatment, the cornerstone of prevention or treatment of CVD, might have beneficial effects on urine protein excretion and renal function as determined by the glomerular filtration rate, whereas it might protect from acute kidney injury (AKI), mainly due to contrast-induced AKI. These beneficial effects on CKD may not be drug class effects; specific statins at specific doses may help prevent CKD deterioration and reduce CVD risk. We analysed all statin studies that had renal and CVD endpoints as main outcome measures. MEDLINE, EMBASE and the Cochrane Central Register of Controlled Trials were searched up to February 2015. AREAS COVERED We consider the effects of statins on microalbuminuria, proteinuria, glomerular filtration rate, AKI associated with angiography or percutaneous coronary intervention and on CVD event rates in patients with CKD. EXPERT OPINION Current evidence points towards the need to prescribe high-potency statins in patients with CKD, before a major decline in kidney function occurs. This may reduce CVD risk and delay the progress of CKD. Administration of either atorvastatin or rosuvastatin can prevent contrast-induced AKI before angiography or percutaneous coronary intervention. The combination of simvastatin + ezetimibe may decrease vascular events in patients with advanced CKD.
Collapse
Affiliation(s)
- Vasilios G Athyros
- Aristotle University of Thessaloniki, Hippocration Hospital, Medical School, Second Propedeutic Department of Internal Medicine , Thessaloniki , Greece +30 2310 892606 ; +30 2310 835955 ;
| | | | | | | |
Collapse
|
14
|
Gotsis E, Anagnostis P, Mariolis A, Vlachou A, Katsiki N, Karagiannis A. Health benefits of the Mediterranean Diet: an update of research over the last 5 years. Angiology 2014; 66:304-18. [PMID: 24778424 DOI: 10.1177/0003319714532169] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The Mediterranean Diet (MedDiet) has been reported to be protective against the occurrence of several diseases. Increasing evidence suggests that the MedDiet could counter diseases associated with chronic inflammation, including metabolic syndrome, atherosclerosis, cancer, diabetes, obesity, pulmonary diseases, and cognition disorders. Adoption of a MedDiet was associated with beneficial effects on the secretion of anti-inflammatory cytokines, antioxidant cellular and circulating biomarkers as well as with regulation of gene polymorphisms involved in the atherosclerotic process. The MedDiet has been considered for the prevention of cardiovascular and other chronic degenerative diseases focusing on the impact of a holistic dietary approach rather than on single nutrients. Epidemiological dietary scores measuring adherence to a MedDiet have been developed. This narrative review considers the results of up-to-date clinical studies (with a focus on the last 5 years) that evaluated the effectiveness of the MedDiet in reducing the prevalence of chronic and degenerative diseases.
Collapse
Affiliation(s)
- Efthymios Gotsis
- Second Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippokration Hospital, Thessaloniki, Greece
| | - Panagiotis Anagnostis
- Second Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippokration Hospital, Thessaloniki, Greece
| | | | - Athanasia Vlachou
- Second Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippokration Hospital, Thessaloniki, Greece
| | - Niki Katsiki
- Second Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippokration Hospital, Thessaloniki, Greece
| | - Asterios Karagiannis
- Second Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippokration Hospital, Thessaloniki, Greece
| |
Collapse
|