1
|
Indirakumari V, Sakthilatha D, Jayakumar K, Imran H, Lim S, Khan MR. Advanced detection of bisphenol A in plastic water bottles using liquid-liquid phase extraction and LC-MS. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:2355-2363. [PMID: 39998854 DOI: 10.1039/d4ay02094d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
The release of endocrine-disrupting chemicals (EDCs) can harm humans and wildlife. It is therefore important to monitor bisphenol A (BPA) consumption, an endocrine disruptor commonly found in water from plastic products, and detect BPA at low concentrations for accurate health risk assessments. We present a method for estimating BPA levels in plastic-bottled products that is highly sensitive, precise, and effective. BPA analysis was performed using advanced liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS), with multiple reaction monitoring (MRM) on a state-of-the-art Orbitrap mass spectrometry system using negative ionization techniques. To assess the quality of Indian brands of water, we used LC-MS to obtain balanced hydrophilic-lipophilic extracts. Brand water samples showed efficiently separated BPA in 2.35 minutes, with other sources typically taking between 5 and 8 minutes. BPA concentrations, measured within a range of 10 ng mL-1 to 1 pg mL-1 with a lower detection limit (LOD) of 0.037 ng mL-1, were characterized by dynamic linear ranges and corresponding linear equations for each compound. We also evaluated the reproducibility and sensitivity of the detection of BPA in different water samples, including mineral, river, and tap water, with low levels of BPA found in Indian river water (below 4.54 ng mL-1). Thus, this study explored alternatives to solid phase extraction (SPE) for screening BPA analogs in water samples, and real samples from an Indian supermarket revealed BPA in plastic bottles at concentrations comparable to those described in Europe, the United States, Korea, Japan, and China.
Collapse
Affiliation(s)
| | | | - Kumarasamy Jayakumar
- Institute of Functional Materials and Agricultural Applied Chemistry, Jiangxi Agricultural University, Nanchang 330045, P. R. China
| | - Habibulla Imran
- Graduate School of Flexible and Printable Electronics, LANL-JBNU Engineering Institute-Korea, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Sooman Lim
- Graduate School of Flexible and Printable Electronics, LANL-JBNU Engineering Institute-Korea, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Mohammad Rashid Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P. O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
2
|
Nandhini C, Huang CH, Mani G, Arul P, Huang ST. Development of ternary hybrid composites of transition metal and noble metal-based heterostructures: Ultrasensitive simultaneous electrochemical detection of bisphenol A and bisphenol S in food samples. Food Chem 2024; 459:140451. [PMID: 39029424 DOI: 10.1016/j.foodchem.2024.140451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024]
Abstract
Bisphenols threaten human health and sensitive detection is crucial. The present study aims to develop ternary composites of copper metal-organic framework (Cu-MOF) with AuAg microstructures. The composite structure was formed by a galvanic displacement reaction and confirmed using SEM. A binder-free catalyst was used to study the electrochemical redox reaction of bisphenol A (BPA) and bisphenol S (BPS); an irreversible cyclic voltammetric signal at +0.70 V and + 0.91 V (vs. Ag/AgCl), in the dynamic range of 20 nM to 2.0 mM, and 10 nM to 1.0 mM, with limits of detection of 2.9 nM, and 3.2 nM (S/N = 3) was obtained. Practical analysis was applied to frozen tomatoes, tuna fish, milk powder, PET bottles, raw milk, and urine samples with a recovery rate of 94.00-100.80% (n = 3). Voltammetric results were validated using HPLC detection with high precision. The sensor is a promising alternative platform for measuring BPA in food samples.
Collapse
Affiliation(s)
- Chinnathambi Nandhini
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24303, Taiwan
| | - Chi-Hsien Huang
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24303, Taiwan; Center for Plasma and Thin Film Technologies, Biochemical Technology R&D Center, Ming Chi University of Technology, New Taipei City 243303, Taiwan; College of Engineering, Chang Gung University, Taoyuan City 33302, Taiwan.
| | - Govindasamy Mani
- International Ph.D. Program in Innovative Technology of Biomedical Engineering and Medical Devices, Ming Chi University of Technology, New Taipei City 243301, Taiwan
| | - Ponnusamy Arul
- Institute of Biochemical and Biomedical Engineering, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Sheng-Tung Huang
- Institute of Biochemical and Biomedical Engineering, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan
| |
Collapse
|
3
|
Ganesh PS, Elugoke SE, Lee SH, Kim SY, Ebenso EE. Smart and emerging point of care electrochemical sensors based on nanomaterials for SARS-CoV-2 virus detection: Towards designing a future rapid diagnostic tool. CHEMOSPHERE 2024; 352:141269. [PMID: 38307334 DOI: 10.1016/j.chemosphere.2024.141269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/08/2024] [Accepted: 01/18/2024] [Indexed: 02/04/2024]
Abstract
In the recent years, researchers from all over the world have become interested in the fabrication of advanced and innovative electrochemical and/or biosensors for respiratory virus detection with the use of nanotechnology. These fabricated sensors demonstrated a number of benefits, including precision, affordability, accessibility, and miniaturization which makes them a promising test method for point-of-care (PoC) screening for SARS-CoV-2 viral infection. In order to comprehend the principles of electrochemical sensing and the role of various types of sensing interfaces, we comprehensively explored the underlying principles of electroanalytical methods and terminologies related to it in this review. In addition, it is addressed how to fabricate electrochemical sensing devices incorporating nanomaterials as graphene, metal/metal oxides, metal organic frameworks (MOFs), MXenes, quantum dots, and polymers. We took an effort to carefully compile current developments, advantages, drawbacks, possible solutions in nanomaterials based electrochemical sensors.
Collapse
Affiliation(s)
- Pattan Siddappa Ganesh
- Interaction Laboratory, Advanced Technology Research Center, Future Convergence Engineering, Korea University of Technology and Education, Cheonan-si, Chungcheongnam-do, 330-708, Republic of Korea.
| | - Saheed Eluwale Elugoke
- Centre for Material Science, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa; Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa
| | - Seok-Han Lee
- Interaction Laboratory, Advanced Technology Research Center, Future Convergence Engineering, Korea University of Technology and Education, Cheonan-si, Chungcheongnam-do, 330-708, Republic of Korea
| | - Sang-Youn Kim
- Interaction Laboratory, Advanced Technology Research Center, Future Convergence Engineering, Korea University of Technology and Education, Cheonan-si, Chungcheongnam-do, 330-708, Republic of Korea.
| | - Eno E Ebenso
- Centre for Material Science, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa; Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa.
| |
Collapse
|
4
|
Beduk T, Gomes M, De Oliveira Filho JI, Shetty SS, Khushaim W, Garcia-Ramirez R, Durmus C, Ait Lahcen A, Salama KN. A Portable Molecularly Imprinted Sensor for On-Site and Wireless Environmental Bisphenol A Monitoring. Front Chem 2022; 10:833899. [PMID: 35252119 PMCID: PMC8888969 DOI: 10.3389/fchem.2022.833899] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/18/2022] [Indexed: 12/16/2022] Open
Abstract
The detection of pollutant traces in the public and environmental waters is essential for safety of the population. Bisphenol A (BPA) is a toxic chemical widely used for the production of food storage containers by plastic industries to increase the storage ability. However, the insertion of BPA in water medium leads to serious health risks. Therefore, the development of low-cost, practical, sensitive, and selective devices to monitor BPA levels on-site in the environment is highly needed. Herein, for the first time, we present a homemade portable potentiostat device integrated to a laser-scribed graphene (LSG) sensor for BPA detection as a practical environmental pollutant monitoring tool. Recently, there has been an increasing need regarding the development of graphene-based electrochemical transducers (e.g., electrodes) to obtain efficient biosensing platforms. LSG platform is combined with molecularly imprinted polymer (MIP) matrix. LSG electrodes were modified with gold nanostructures and PEDOT polymer electrodeposition to create a specific MIP biomimetic receptor for ultrasensitive BPA detection. The sensing device has a Bluetooth connection, wirelessly connected to a smartphone providing high sensitivity and sensitivity (LOD: 3.97 nM in a linear range of .01–10 µM) toward BPA. Two commercial bottled water samples, tap water, commercial milk, and baby formula samples have been used to validate the reliability of the portable sensor device.
Collapse
|
5
|
|
6
|
Beitollahi H, Shahsavari M, Sheikhshoaie I, Tajik S, Jahani PM, Mohammadi SZ, Afshar AA. Amplified electrochemical sensor employing screen-printed electrode modified with Ni-ZIF-67 nanocomposite for high sensitive analysis of Sudan I in present bisphenol A. Food Chem Toxicol 2022; 161:112824. [DOI: 10.1016/j.fct.2022.112824] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 02/07/2023]
|
7
|
Sun Z, Xiao Q, Tang J, Zhuang Q, Wang Y. Ratiometric electrochemical sensor for bisphenol A detection using a glassy carbon electrode modified with a poly(toluidine blue)/gold nanoparticle composite. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5085-5092. [PMID: 34661224 DOI: 10.1039/d1ay01366a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
A ratiometric electrochemical sensor for bisphenol A (BPA) detection is developed using a glassy carbon electrode modified with a poly(toluidine blue)/gold nanoparticle composite (PTB/AuNP/GCE). The ratiometric signal, namely, the oxidation peak current ratio of BPA to PTB, increases linearly with BPA concentration in the 0.2-5.0 μM range, with a detection limit of 0.15 μM. The electrochemical mechanism of BPA is studied at the PTB/AuNP/GCE, and the results show that BPA undergoes an electrooxidation process of two electrons and two protons at the PTB/AuNP/GCE. The proposed sensor has high sensitivity, high stability and good selectivity. The application of BPA in water samples is successfully verified using the proposed ratiometric electrochemical sensor.
Collapse
Affiliation(s)
- Zhiyuan Sun
- College of Chemistry, Nanchang University, Nanchang 330031, China.
| | - Qin Xiao
- College of Chemistry, Nanchang University, Nanchang 330031, China.
| | - Jingjing Tang
- College of Chemistry, Nanchang University, Nanchang 330031, China.
| | - Qianfen Zhuang
- College of Chemistry, Nanchang University, Nanchang 330031, China.
| | - Yong Wang
- College of Chemistry, Nanchang University, Nanchang 330031, China.
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang 330031, China
| |
Collapse
|
8
|
Jemmeli D, Dridi C, Abbas MN, Dempsey E. Development of highly sensitive and selective bisphenol A sensor based on a cobalt phthalocyanine-modified carbon paste electrode: application in dairy analysis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4674-4682. [PMID: 34549730 DOI: 10.1039/d1ay00827g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The development of an accurate, sensitive and selective sensor for the detection of bisphenol A (BPA) based on the incorporation of a new phthalocyanine derivative, cobalt phthalocyanine, C,C,C,C-tetracarboxylic acid-polyacrylamide (CoPc-PAA) into a carbon-paste matrix is presented using voltammetry and constant potential techniques. The influence of measuring parameters such as pH and scan rate on the analytical performance of the sensor was evaluated. Several kinetic parameters such as electron transfer number (n), charge transfer coefficient (α), electrode surface area (A) and diffusion coefficient (D) were also calculated. Under optimum conditions, particularly at pH 7.2, the BPA sensor resulted in a wide linear range from 25 × 10-11 M to 2.5 × 10-7 M and a limit of detection as low as 63.5 pM. Based on these findings, it can be concluded that our sensor can be substantially utilized for detecting BPA in spiked milk samples.
Collapse
Affiliation(s)
- Dhouha Jemmeli
- NANOMISENE Laboratory LR16CRMN01, Center of Research on Microelectronics and Nanotechnology (CRMN), Sousse Technopole, Tunisia.
| | - Chérif Dridi
- NANOMISENE Laboratory LR16CRMN01, Center of Research on Microelectronics and Nanotechnology (CRMN), Sousse Technopole, Tunisia.
| | - Mohammed N Abbas
- Analytical Laboratory, Department of Applied Organic Chemistry Polymer and Pigments Department, National Research Centre, Cairo, Egypt
| | - Eithne Dempsey
- Kathleen Lonsdale Institute for Human Health Research, Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
9
|
A photo-renewable ZIF-8 photo-electrochemical sensor for the sensitive detection of sulfamethoxazole antibiotic. Anal Chim Acta 2021; 1178:338793. [PMID: 34482863 DOI: 10.1016/j.aca.2021.338793] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 02/01/2023]
Abstract
Electroanalysis is an effective monitoring method for organic pollution in environmental samples. However, chemical fouling with the formation of non-conductive fouled films easily occurs on the surface of the electrode during organic pollution detection that would inactivate the electrode and affect the detecting sensitivity of organic pollution. In this work, we found that zeolitic imidazolate framework-8 (ZIF-8) electrode can achieve effective degradation of non-conductive fouled films under the light illumination during electrochemical detection of some typical organic pollution (sulfamethoxazole (SMX), Bisphenol A (BPA) and diclofenac sodium (DS)). Profiting from the charge transfer capability and photoelectric characteristics, ZIF-8 electrode exhibits a lower detection limitation for organic pollution detection and superior regeneration property. The nice detection and superior regenerated property are mainly due to non-selective superoxide radical (·O2-) and hydroxyl radicals (·OH) mediation produced by ZIF-8 electrode under light illumination that can mineralize anodic fouled products and resume surface reactive sites. Compared with the single electrochemical determination, photo-assisted electroanalysis provides a stable monitoring and a renewable pathway for practical applications.
Collapse
|
10
|
Solid-phase extraction combined with a spectrophotometric method for determination of Bisphenol-A in water samples using magnetic molecularly imprinted polymer. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106496] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Jebril S, Sierra-Padilla A, García-Guzmán JJ, Cubillana-Aguilera L, Palacios-Santander JM, Dridi C. Highly sensitive nanoplatform based on green gold sononanoparticles for phenol determination in olive oil. J APPL ELECTROCHEM 2021. [DOI: 10.1007/s10800-021-01544-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Lavanya AL, Kumari KGB, Prasad KRS, Kumar Brahman P. Nickel and Tungsten Bimetallic Nanoparticles Modified Pencil Graphite Electrode: A High‐performance Electrochemical Sensor for Detection of Endocrine Disruptor Bisphenol A. ELECTROANAL 2021. [DOI: 10.1002/elan.202060277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Akkaraboyina Lakshmi Lavanya
- Electroanalytical Lab Department of Chemistry Koneru Lakshmaiah Education Foundation Vaddeswaram Guntur-522502, Andhra Pradesh India
| | - K. Gowri Bala Kumari
- Electroanalytical Lab Department of Chemistry Koneru Lakshmaiah Education Foundation Vaddeswaram Guntur-522502, Andhra Pradesh India
- Department of Chemistry Acharya Nagarjuna University Nagarjuna Nagar-522510, Andhra Pradesh India
| | - K. R. S. Prasad
- Electroanalytical Lab Department of Chemistry Koneru Lakshmaiah Education Foundation Vaddeswaram Guntur-522502, Andhra Pradesh India
| | - Pradeep Kumar Brahman
- Electroanalytical Lab Department of Chemistry Koneru Lakshmaiah Education Foundation Vaddeswaram Guntur-522502, Andhra Pradesh India
| |
Collapse
|
13
|
Pradela-Filho LA, Araújo DAG, Takeuchi RM, Santos AL, Henry CS. Thermoplastic electrodes as a new electrochemical platform coupled to microfluidic devices for tryptamine determination. Anal Chim Acta 2021; 1147:116-123. [PMID: 33485570 DOI: 10.1016/j.aca.2020.12.059] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/19/2020] [Accepted: 12/27/2020] [Indexed: 01/24/2023]
Abstract
This study reports a new electrochemical method for tryptamine determination using a paper-based microfluidic device and a thermoplastic electrode (TPE) as an amperometric detector. Tryptamine (Tryp) is a biogenic amine present in drinks and foods. Even though this compound has some beneficial effects on human health, the ingestion of foods with high concentrations of Tryp may be detrimental, which justifies the need for monitoring the Tryp levels. The TPEs were made from 50% carbon black and 50% polycaprolactone and characterized by cyclic voltammetry, demonstrating enhancement in the analytical response compared to other carbon composites. TPEs also showed a better antifouling effect for Tryp compared to conventional glassy carbon electrodes. Once characterized, the electrodes were incorporated into the microfluidic device to determine Tryp in water and cheese samples using amperometry. A linear range was achieved from 10 to 75 μmol L-1 with limits of detection and quantification of 3.2 and 10.5 μmol L-1, respectively. Therefore, this work shows promising findings of the electrochemical determination of Tryp, bringing valuable results regarding the electrochemical properties of thermoplastic composites.
Collapse
Affiliation(s)
- Lauro A Pradela-Filho
- Institute of Chemistry, Federal University of Uberlandia, 38400-902, Uberlandia, Minas Gerais, Brazil; Institute of Exact and Natural Sciences of Pontal, Federal University of Uberlandia, 38304-402, Ituiutaba, Minas Gerais, Brazil
| | - Diele A G Araújo
- Institute of Chemistry, Federal University of Uberlandia, 38400-902, Uberlandia, Minas Gerais, Brazil; Institute of Exact and Natural Sciences of Pontal, Federal University of Uberlandia, 38304-402, Ituiutaba, Minas Gerais, Brazil
| | - Regina M Takeuchi
- Institute of Chemistry, Federal University of Uberlandia, 38400-902, Uberlandia, Minas Gerais, Brazil; Institute of Exact and Natural Sciences of Pontal, Federal University of Uberlandia, 38304-402, Ituiutaba, Minas Gerais, Brazil
| | - André L Santos
- Institute of Chemistry, Federal University of Uberlandia, 38400-902, Uberlandia, Minas Gerais, Brazil; Institute of Exact and Natural Sciences of Pontal, Federal University of Uberlandia, 38304-402, Ituiutaba, Minas Gerais, Brazil
| | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, United States.
| |
Collapse
|
14
|
Laser scribed graphene: A novel platform for highly sensitive detection of electroactive biomolecules. Biosens Bioelectron 2020; 168:112509. [DOI: 10.1016/j.bios.2020.112509] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/03/2020] [Accepted: 08/09/2020] [Indexed: 01/05/2023]
|
15
|
Two-dimensional TiO2 (001) nanosheets as an effective photo-assisted recyclable sensor for the electrochemical detection of bisphenol A. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.08.021] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
Pen sensor made with silver nanoparticles decorating graphite-polyurethane electrodes to detect bisphenol-A in tap and river water samples. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:110989. [PMID: 32993994 DOI: 10.1016/j.msec.2020.110989] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/14/2020] [Accepted: 04/18/2020] [Indexed: 12/30/2022]
Abstract
Rapid, on-site detection of emerging pollutants is critical for monitoring health threats and the environment, especially if performed through autonomous systems. In this paper, we report on a new design of a complete electrochemical system whose working (WE), auxiliary (AE) and reference (RE) electrodes were obtained on a pen (PEN Sensor) made with graphite:polyurethane (GPUE). Working electrodes were decorated with spherical, ca. 200 nm silver nanoparticles (AgNPs) reduced on graphite using the polyol method. Differential pulse voltammetry (DPV) was used to detect bisphenol-A (BPA) in a linear range from 2.5 to 15 μmol L-1 with detection limit of 0.24 μmol L-1. The PEN Sensor could also detect bisphenol-A in tap and river water samples, with satisfactory reproducibility and repeatability, while common interferents did not affect electrooxidation of bisphenol-A. The high sensitivity and rapid detection are suitable for real-time analysis and in loco monitoring of emerging pollutants. With their robustness and versatility, PEN Sensors such as those fabricated here may be integrated into futuristic smart robotic systems.
Collapse
|
17
|
Hilali N, Mohammadi H, Amine A, Zine N, Errachid A. Recent Advances in Electrochemical Monitoring of Chromium. SENSORS 2020; 20:s20185153. [PMID: 32917045 PMCID: PMC7570498 DOI: 10.3390/s20185153] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/04/2020] [Accepted: 09/06/2020] [Indexed: 12/31/2022]
Abstract
The extensive use of chromium by several industries conducts to the discharge of an immense quantity of its various forms in the environment which affects drastically the ecological and biological lives especially in the case of hexavalent chromium. Electrochemical sensors and biosensors are useful devices for chromium determination. In the last five years, several sensors based on the modification of electrode surface by different nanomaterials (fluorine tin oxide, titanium dioxide, carbon nanomaterials, metallic nanoparticles and nanocomposite) and biosensors with different biorecognition elements (microbial fuel cell, bacteria, enzyme, DNA) were employed for chromium monitoring. Herein, recent advances related to the use of electrochemical approaches for measurement of trivalent and hexavalent chromium from 2015 to 2020 are reported. A discussion of both chromium species detections and speciation studies is provided.
Collapse
Affiliation(s)
- Nazha Hilali
- Laboratory of Process Engineering & Environment, Faculty of Sciences and Techniques, Hassan II University of Casablanca, Mohammedia B.P.146, Morocco; (N.H.); (H.M.)
- Institute of Analytical Sciences, University of Claude Bernard Lyon-1, UMR 5280, CNRS, 5 Street of Doua, F-69100 Villeurbanne, France; (N.Z.); (A.E.)
| | - Hasna Mohammadi
- Laboratory of Process Engineering & Environment, Faculty of Sciences and Techniques, Hassan II University of Casablanca, Mohammedia B.P.146, Morocco; (N.H.); (H.M.)
| | - Aziz Amine
- Laboratory of Process Engineering & Environment, Faculty of Sciences and Techniques, Hassan II University of Casablanca, Mohammedia B.P.146, Morocco; (N.H.); (H.M.)
- Correspondence: or ; Tel.: +212-661454198
| | - Nadia Zine
- Institute of Analytical Sciences, University of Claude Bernard Lyon-1, UMR 5280, CNRS, 5 Street of Doua, F-69100 Villeurbanne, France; (N.Z.); (A.E.)
| | - Abdelhamid Errachid
- Institute of Analytical Sciences, University of Claude Bernard Lyon-1, UMR 5280, CNRS, 5 Street of Doua, F-69100 Villeurbanne, France; (N.Z.); (A.E.)
| |
Collapse
|
18
|
Jemmeli D, Mchiri C, Dridi C, Nasri H, Dempsey E. Development of a new bisphenol A electrochemical sensor based on a cadmium(ii) porphyrin modified carbon paste electrode. RSC Adv 2020; 10:31740-31747. [PMID: 35518173 PMCID: PMC9056557 DOI: 10.1039/d0ra04793g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/04/2020] [Indexed: 11/23/2022] Open
Abstract
In this study, the (5,10,15,20-tetrakis[(4-methoxyphenyl)]porphyrinato)cadmium(ii) complex ([Cd(TMPP)]) was successfully used as a modifier in a carbon paste electrode (CPE) and exploited for bisphenol A (BPA) detection. Analytical performance revealed two linear ranges from 0.0015-15 μM and 0.015-1.5 mM with a detection limit of 13.5 pM. The proposed method was implemented in water samples, which resulted in quantitative signals over the range 6.5-1000 μM with recoveries between 92.6 and 107.7% for tap water and between 96.6 to 106.0% for mineral water.
Collapse
Affiliation(s)
- Dhouha Jemmeli
- NANOMISENE Laboratory LR16CRMN01, Centre of Research on Microelectronics and Nanotechnology of Sousse, Technopole of Sousse Tunisia +216 73823 003
| | - Chadlia Mchiri
- Laboratory of Physical Chemistry of Materials, University of Monastir, Faculty of Sciences of Monastir Avenue de l'environnement 5019 Monastir Tunisia
| | - Chérif Dridi
- NANOMISENE Laboratory LR16CRMN01, Centre of Research on Microelectronics and Nanotechnology of Sousse, Technopole of Sousse Tunisia +216 73823 003
| | - Habib Nasri
- Laboratory of Physical Chemistry of Materials, University of Monastir, Faculty of Sciences of Monastir Avenue de l'environnement 5019 Monastir Tunisia
| | - Eithne Dempsey
- Department of Chemistry, Kathleen Lonsdale Institute for Human Health, Maynooth University Co. Kildare Ireland
| |
Collapse
|
19
|
Tajik S, Beitollahi H, Nejad FG, Zhang K, Le QV, Jang HW, Kim SY, Shokouhimehr M. Recent Advances in Electrochemical Sensors and Biosensors for Detecting Bisphenol A. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3364. [PMID: 32545829 PMCID: PMC7349560 DOI: 10.3390/s20123364] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 12/15/2022]
Abstract
In recent years, several studies have focused on environmental pollutants. Bisphenol A (BPA) is one prominent industrial raw material, and its extensive utilization and release into the environment constitute an environmental hazard. BPA is considered as to be an endocrine disruptor which mimics hormones, and has a direct relationship to the development and growth of animal and human reproductive systems. Moreover, intensive exposure to the compound is related to prostate and breast cancer, infertility, obesity, and diabetes. Hence, accurate and reliable determination techniques are crucial for preventing human exposure to BPA. Experts in the field have published general electrochemical procedures for detecting BPA. The present timely review critically evaluates diverse chemically modified electrodes using various substances that have been reported in numerous studies in the recent decade for use in electrochemical sensors and biosensors to detect BPA. Additionally, the essential contributions of these substances for the design of electrochemical sensors are presented. It has been predicted that chemically modified electrode-based sensing systems will be possible options for the monitoring of detrimental pollutants.
Collapse
Affiliation(s)
- Somayeh Tajik
- Research Center for Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 7616913555, Iran;
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 76315117, Iran;
| | - Fariba Garkani Nejad
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 76315117, Iran;
| | - Kaiqiang Zhang
- Jiangsu Key Laboratory of Advanced Organic Materials, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China;
| | - Quyet Van Le
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
| | - Ho Won Jang
- Research Institute of Advanced Materials, Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Korea;
| | - Soo Young Kim
- Department of Materials Science and Engineering, Korea University, 145, Anam-roSeongbuk-gu, Seoul 02841, Korea
| | - Mohammadreza Shokouhimehr
- Research Institute of Advanced Materials, Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Korea;
| |
Collapse
|
20
|
Jemmeli D, Marcoccio E, Moscone D, Dridi C, Arduini F. Highly sensitive paper-based electrochemical sensor for reagent free detection of bisphenol A. Talanta 2020; 216:120924. [PMID: 32456933 DOI: 10.1016/j.talanta.2020.120924] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 11/26/2022]
Abstract
Bisphenol A is one the most relevant endocrine disruptors for its toxicity and ubiquity in the environment, being largely employed as raw material for manufacturing processes of a wide number of compounds. Furthermore, bisphenol A is released in the drinking water when plastic-based bottles are incorrectly transported under sunlight, delivering contaminated drinking water. For the health of human beings and the environment, rapid and on site detection of bisphenol A in drinking water is an important issue. Herein, we report a novel and cost-effective printed electrochemical sensor for an enzymatic-free bisphenol A detection. This sensor encompasses the entire electrochemical cell printed on filter paper and the reagents for the measurement loaded in the cellulose fiber network, for delivering a reagent-free analytical tool. The working electrode was printed using ink modified with carbon black, a cost effective nanomaterial for sensitive and sustainable bisphenol A determination. Several parameters including pH, frequency, and amplitude were optimized allowing for a detection limit of 0.03 μM with two linear ranges 0.1-0.9 μM and 1 μM-50 μM, using square wave voltammetry as electrochemical technique. The satisfactory recovery values found in river and drinking water samples demonstrated the suitability of this sensor for screening analyses in water samples. These results revealed the attractiveness of this paper-based device thanks to the synergic combination of paper and carbon black as cost-effective materials.
Collapse
Affiliation(s)
- Dhouha Jemmeli
- NANOMISENE Laboratory LR16CRMN01, Center for Research on Microelectronics and Nanotechnology of Sousse, Technopole of Sousse, B.P334, 4054, Sahloul Sousse, Tunisia
| | - Eleonora Marcoccio
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Danila Moscone
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Cherif Dridi
- NANOMISENE Laboratory LR16CRMN01, Center for Research on Microelectronics and Nanotechnology of Sousse, Technopole of Sousse, B.P334, 4054, Sahloul Sousse, Tunisia
| | - Fabiana Arduini
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy; SENSE4MED via Renato Rascel 30, 00128, Rome, Italy.
| |
Collapse
|
21
|
Vieira Jodar L, Orzari LO, Storti Ortolani T, Assumpção MHMT, Vicentini FC, Janegitz BC. Electrochemical Sensor Based on Casein and Carbon Black for Bisphenol A Detection. ELECTROANAL 2019. [DOI: 10.1002/elan.201900176] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Letícia Vieira Jodar
- Department of Nature Sciences, Mathematics and EducationFederal University of São Carlos 13600-970 Araras, SP Brazil
| | - Luiz Otávio Orzari
- Department of Nature Sciences, Mathematics and EducationFederal University of São Carlos 13600-970 Araras, SP Brazil
| | - Túlio Storti Ortolani
- Department of Nature Sciences, Mathematics and EducationFederal University of São Carlos 13600-970 Araras, SP Brazil
| | - Mônica H. M. T. Assumpção
- Center of Nature SciencesFederal University of São Carlos Rod. Lauri Simões de Barros km 12 Buri, SP Brazil
| | - Fernando C. Vicentini
- Center of Nature SciencesFederal University of São Carlos Rod. Lauri Simões de Barros km 12 Buri, SP Brazil
| | - Bruno C. Janegitz
- Department of Nature Sciences, Mathematics and EducationFederal University of São Carlos 13600-970 Araras, SP Brazil
| |
Collapse
|
22
|
Si Y, Zhang AY, Liu C, Pei DN, Yu HQ. Photo-assisted electrochemical detection of bisphenol A in water samples by renewable {001}-exposed TiO 2 single crystals. WATER RESEARCH 2019; 157:30-39. [PMID: 30952006 DOI: 10.1016/j.watres.2019.03.088] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/16/2019] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
Bisphenol A (BPA) is a semi-persistent environmental endocrine disrupter and widely present in aqueous environments. Electrochemical detection is an effective method to monitor pollutants like BPA in aqueous environments. However, the electrode fouling from anodic polymeric products is one main barrier of electrochemical sensors for their practical applications. In this work, a renewable electrochemical sensor was rationally designed, constructed and tested for efficient BPA detection. The TiO2 anodic material was surface-engineered by inorganic-framework molecular imprinting sites with tailored morphological shape, exposed facet and crystal structure. This electrode could be activated mainly as an electrochemical catalyst and partially as a photochemical catalyst. The developed TiO2-based sensor exhibited a good detection reliability and cyclic stability for determining BPA in water samples, with an electrochemical signal decrease of less than 5.0% in 10-run cyclic tests. By virtue of the bi-functional properties of the tailored TiO2 anodic material, a unique photo-assisted electrochemical sensor was further developed, in which analyte digestion and analytical signal originated mainly from anodic conversion. Such a synergistic digesting mechanism distinguishes it from the reported electro-assisted photochemical TiO2 sensors. Our work provides a robust sensor for monitoring pollutants in aqueous environments and a new opportunity to develop renewable electrode materials with good reusability.
Collapse
Affiliation(s)
- Yang Si
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Ai-Yong Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China; Department of Municipal Engineering, School of Civil and Hydraulic Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Chang Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Dan-Ni Pei
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
23
|
Mahmoudi E, Hajian A, Rezaei M, Afkhami A, Amine A, Bagheri H. A novel platform based on graphene nanoribbons/protein capped Au-Cu bimetallic nanoclusters: Application to the sensitive electrochemical determination of bisphenol A. Microchem J 2019. [DOI: 10.1016/j.microc.2018.10.044] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
24
|
Zainul R, Abd Azis N, Md Isa I, Hashim N, Ahmad MS, Saidin MI, Mukdasai S. Zinc/Aluminium⁻Quinclorac Layered Nanocomposite Modified Multi-Walled Carbon Nanotube Paste Electrode for Electrochemical Determination of Bisphenol A. SENSORS 2019; 19:s19040941. [PMID: 30813385 PMCID: PMC6413131 DOI: 10.3390/s19040941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 01/25/2023]
Abstract
This paper presents the application of zinc/aluminium-layered double hydroxide-quinclorac (Zn/Al-LDH-QC) as a modifier of multiwalled carbon nanotubes (MWCNT) paste electrode for the determination of bisphenol A (BPA). The Zn/Al-LDH-QC/MWCNT morphology was examined by a transmission electron microscope and a scanning electron microscope. Electrochemical impedance spectroscopy was utilized to investigate the electrode interfacial properties. The electrochemical responses of the modified electrode towards BPA were thoroughly evaluated by using square-wave voltammetry technique. The electrode demonstrated three linear plots of BPA concentrations from 3.0 × 10−8–7.0 × 10−7 M (R2 = 0.9876), 1.0 × 10−6–1.0 × 10−5 M (R2 = 0.9836) and 3.0 × 10−5–3.0 × 10−4 M (R2 = 0.9827) with a limit of detection of 4.4 × 10−9 M. The electrode also demonstrated good reproducibility and stability up to one month. The presence of several metal ions and organic did not affect the electrochemical response of BPA. The electrode is also applicable for BPA determination in baby bottle and mineral water samples with a range of recovery between 98.22% and 101.02%.
Collapse
Affiliation(s)
- Rahadian Zainul
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Negeri Padang, West Sumatera 25171, Indonesia.
| | - Nurashikin Abd Azis
- Department of Chemistry, Faculty of Science and Mathemathics, Universiti Pendidikan Sultan Idris, Tanjong Malim 35900, Perak, Malaysia.
| | - Illyas Md Isa
- Department of Chemistry, Faculty of Science and Mathemathics, Universiti Pendidikan Sultan Idris, Tanjong Malim 35900, Perak, Malaysia.
- Nanotechnology Research Centre, Faculty of Science and Mathemathics, Universiti Pendidikan Sultan Idris, Tanjong Malim 35900, Perak, Malaysia.
| | - Norhayati Hashim
- Department of Chemistry, Faculty of Science and Mathemathics, Universiti Pendidikan Sultan Idris, Tanjong Malim 35900, Perak, Malaysia.
- Nanotechnology Research Centre, Faculty of Science and Mathemathics, Universiti Pendidikan Sultan Idris, Tanjong Malim 35900, Perak, Malaysia.
| | - Mohamad Syahrizal Ahmad
- Department of Chemistry, Faculty of Science and Mathemathics, Universiti Pendidikan Sultan Idris, Tanjong Malim 35900, Perak, Malaysia.
- Nanotechnology Research Centre, Faculty of Science and Mathemathics, Universiti Pendidikan Sultan Idris, Tanjong Malim 35900, Perak, Malaysia.
| | - Mohamad Idris Saidin
- Department of Chemistry, Faculty of Science and Mathemathics, Universiti Pendidikan Sultan Idris, Tanjong Malim 35900, Perak, Malaysia.
| | - Siriboon Mukdasai
- Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
25
|
Song M, Dang L, Long J, Hu C. Laser-Cut Polymer Tape Templates for Scalable Filtration Fabrication of User-Designed and Carbon-Nanomaterial-Based Electrochemical Sensors. ACS Sens 2018; 3:2518-2525. [PMID: 30403134 DOI: 10.1021/acssensors.8b00639] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We report here a simple filtration method for the scalable fabrication of user-designed and carbon-nanomaterial-based electrode arrays using laser-cut poly(vinyl chloride) (PVC) tape templates. This method can produce electrode arrays with high uniformity and low resistance from the dilute dispersions of single-walled carbon nanotubes (SWNTs) and graphene nanoplatelets (GNPs). For these two carbon arrays, the SWNT array is demonstrated to possess several interesting properties, e.g., good mechanical properties, excellent flexibility, and favorable electrochemical behavior. Moreover, its porous structure enables the construction of a paperlike solid-state electrochemical sensor using Nafion electrolytes, which is suitable for the on-site monitoring of trace phenol pollutants in electrolyte-free water. Besides, an electrochemically addressable 36-zone sensor was constructed by this method. With the aid of an inexpensive 3D printer, the addressable sensor can achieve the semiautomatic and high-throughput evaluation of antioxidant capacity on a series of vegetables and fruits using a single-channel electrochemical analyzer.
Collapse
Affiliation(s)
- Mengmeng Song
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Lantu Dang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Juan Long
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Chengguo Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
26
|
Beitollahi H, Mahmoudi Moghaddam H, Tajik S. Voltammetric Determination of Bisphenol A in Water and Juice Using a Lanthanum (III)-Doped Cobalt (II,III) Nanocube Modified Carbon Screen-Printed Electrode. ANAL LETT 2018. [DOI: 10.1080/00032719.2018.1545132] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Hadi Mahmoudi Moghaddam
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Environmental Health School of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Somayeh Tajik
- NanoBioElectrochemistry Research Center, Bam University of Medical Sciences, Bam, Iran
| |
Collapse
|
27
|
Ulubay Karabiberoğlu Ş. Sensitive Voltammetric Determination of Bisphenol A Based on a Glassy Carbon Electrode Modified with Copper Oxide-Zinc Oxide Decorated on Graphene Oxide. ELECTROANAL 2018. [DOI: 10.1002/elan.201800415] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
28
|
Zhang R, Zhang Y, Deng X, Sun S, Li Y. A novel dual-signal electrochemical sensor for bisphenol A determination by coupling nanoporous gold leaf and self-assembled cyclodextrin. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.03.113] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
29
|
Kanagavalli P, Senthil Kumar S. Stable and Sensitive Amperometric Determination of Endocrine Disruptor Bisphenol A at Residual Metal Impurities Within SWCNT. ELECTROANAL 2018. [DOI: 10.1002/elan.201700596] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Pandiyaraj Kanagavalli
- Electrodics and Electrocatalysis Division; CSIR-Central Electrochemical Research Institute; Karaikudi India
| | - Shanmugam Senthil Kumar
- Electrodics and Electrocatalysis Division; CSIR-Central Electrochemical Research Institute; Karaikudi India
| |
Collapse
|