1
|
Channabasavana Hundi Puttaningaiah KP. Innovative Carbonaceous Materials and Metal/Metal Oxide Nanoparticles for Electrochemical Biosensor Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1890. [PMID: 39683279 DOI: 10.3390/nano14231890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/11/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024]
Abstract
Electrochemical biosensors have emerged as predominant devices for sensitive, rapid, and specific sensing of biomolecules, with significant applications in clinical diagnostics, environmental observation, and food processing. The improvement of inventive materials, especially carbon-based materials, and metal/metal oxide nanoparticles (M/MONPs), has changed the impact of biosensing, improving the performance and flexibility of electrochemical biosensors. Carbon-based materials, such as graphene, carbon nanotubes, and carbon nanofibers, have excellent electrical conductivity, a high surface area, large pore size, and good biocompatibility, making them ideal electrocatalysts for biosensor applications. Furthermore, M and MONPs have highly effective synergistic, electronic, and optical properties that influence signal transduction, selectivity, and sensitivity. This study completely explored continuous progressions and upgrades in carbonaceous materials (CBN materials) and M/MONPs for electrochemical biosensor applications. It analyzed the synergistic effects of hybrid nanocomposites that combine carbon materials with metal nanoparticles (MNPs) and their part in upgrading sensor performance. The paper likewise incorporated the surface alteration procedures and integration of these materials into biosensor models. The study examined difficulties, requirements, and possibilities for executing these innovative materials in practical contexts. This overview aimed to provide specialists with insights into the most recent patterns in the materials study of electrochemical biosensors and advance further progressions in this dynamic sector.
Collapse
|
2
|
Chen H, Gu T, Lv L, Chen X, Lu Q, Kotb A, Chen W. A Biocompatible, Highly Sensitive, and Non-Enzymatic Glucose Electrochemical Sensor Based on a Copper-Cysteamine (Cu-Cy)/Chitosan-Modified Electrode. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1430. [PMID: 39269092 PMCID: PMC11397198 DOI: 10.3390/nano14171430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
A biocompatible, highly sensitive, and enzyme-free glucose electrochemical sensor was developed based on a copper-cysteamine (Cu-Cy)-modified electrode. The catalytically active biocompatible material Cu-Cy was immobilized on the electrode surface by the natural polymer chitosan (CTS). The electrochemical characterization and glucose response of the Cu-Cy/CTS/glassy carbon electrode (GCE) were investigated by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and constant potential amperometry. The significant electrocatalytic activity of Cu-Cy to the oxidation of glucose in an alkaline environment was revealed. Several crucial parameters, including the number of scanning cycles for electrode activation, applied potential, and the contents of Cu-Cy and chitosan, were investigated to understand their impact on the sensor's response. The proposed sensing platform exhibited linear ranges of 2.7 μM to 1.3 mM and 1.3 mM to 7.7 mM for glucose detection, coupled with high sensitivity (588.28 and 124.42 μA·mM-1·cm-2), and commendable selectivity and stability. Moreover, a Cu-Cy/CTS-modified screen-printed electrode (SPE) was further developed for portable direct detection of glucose in real samples.
Collapse
Affiliation(s)
- Huan Chen
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China
| | - Tingting Gu
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China
| | - Longyang Lv
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China
| | - Xing Chen
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China
| | - Qifeng Lu
- School of Chips, XJTLU Entrepreneur College (Taicang), Xi'an Jiaotong-Liverpool University, Taicang, Suzhou 215400, China
| | - Amer Kotb
- School of Chips, XJTLU Entrepreneur College (Taicang), Xi'an Jiaotong-Liverpool University, Taicang, Suzhou 215400, China
| | - Wei Chen
- School of Chips, XJTLU Entrepreneur College (Taicang), Xi'an Jiaotong-Liverpool University, Taicang, Suzhou 215400, China
| |
Collapse
|
3
|
Siciliano G, Alsadig A, Chiriacò MS, Turco A, Foscarini A, Ferrara F, Gigli G, Primiceri E. Beyond traditional biosensors: Recent advances in gold nanoparticles modified electrodes for biosensing applications. Talanta 2024; 268:125280. [PMID: 37862755 DOI: 10.1016/j.talanta.2023.125280] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/22/2023]
Abstract
Gold nanoparticles (AuNPs) have emerged as powerful tools in the construction of highly sensitive electrochemical biosensors. Their unique properties, such as the ability to serve as an effective platform for biomolecule immobilization and to facilitate electron transfer between the electrode surface and the immobilized molecules, make them a promising choice for biosensor applications. Utilizing AuNPs modified electrodes can lead to improved sensitivity and lower limits of detection compared to unmodified electrodes. This review provides a comprehensive overview of the recent advancements and applications of AuNPs-based electrochemical biosensors in the biomedical field. The synthesis methods of AuNPs, their key properties, and various strategies employed for electrode modification are discussed. Furthermore, this review highlights the remarkable applications of these nanostructure-integrated electrodes, including immunosensors, enzyme biosensors, and DNA biosensors.
Collapse
Affiliation(s)
- Giulia Siciliano
- CNR NANOTEC Institute of Nanotechnology, via Monteroni, 73100 Lecce, Italy
| | - Ahmed Alsadig
- CNR NANOTEC Institute of Nanotechnology, via Monteroni, 73100 Lecce, Italy
| | | | - Antonio Turco
- CNR NANOTEC Institute of Nanotechnology, via Monteroni, 73100 Lecce, Italy
| | - Alessia Foscarini
- CNR NANOTEC Institute of Nanotechnology, via Monteroni, 73100 Lecce, Italy
| | - Francesco Ferrara
- CNR NANOTEC Institute of Nanotechnology, via Monteroni, 73100 Lecce, Italy.
| | - Giuseppe Gigli
- CNR NANOTEC Institute of Nanotechnology, via Monteroni, 73100 Lecce, Italy
| | | |
Collapse
|
4
|
Kalita N, Gogoi S, Minteer SD, Goswami P. Advances in Bioelectrode Design for Developing Electrochemical Biosensors. ACS MEASUREMENT SCIENCE AU 2023; 3:404-433. [PMID: 38145027 PMCID: PMC10740130 DOI: 10.1021/acsmeasuresciau.3c00034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 12/26/2023]
Abstract
The critical performance factors such as selectivity, sensitivity, operational and storage stability, and response time of electrochemical biosensors are governed mainly by the function of their key component, the bioelectrode. Suitable design and fabrication strategies of the bioelectrode interface are essential for realizing the requisite performance of the biosensors for their practical utility. A multifaceted attempt to achieve this goal is visible from the vast literature exploring effective strategies for preparing, immobilizing, and stabilizing biorecognition elements on the electrode surface and efficient transduction of biochemical signals into electrical ones (i.e., current, voltage, and impedance) through the bioelectrode interface with the aid of advanced materials and techniques. The commercial success of biosensors in modern society is also increasingly influenced by their size (and hence portability), multiplexing capability, and coupling in the interface of the wireless communication technology, which facilitates quick data transfer and linked decision-making processes in real-time in different areas such as healthcare, agriculture, food, and environmental applications. Therefore, fabrication of the bioelectrode involves careful selection and control of several parameters, including biorecognition elements, electrode materials, shape and size of the electrode, detection principles, and various fabrication strategies, including microscale and printing technologies. This review discusses recent trends in bioelectrode designs and fabrications for developing electrochemical biosensors. The discussions have been delineated into the types of biorecognition elements and their immobilization strategies, signal transduction approaches, commonly used advanced materials for electrode fabrication and techniques for fabricating the bioelectrodes, and device integration with modern electronic communication technology for developing electrochemical biosensors of commercial interest.
Collapse
Affiliation(s)
- Nabajyoti Kalita
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sudarshan Gogoi
- Department
of Chemistry, Sadiya College, Chapakhowa, Assam 786157, India
| | - Shelley D. Minteer
- Department
of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
- Kummer
Institute Center for Resource Sustainability, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Pranab Goswami
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
5
|
Lyzwinski L, Elgendi M, Shokurov AV, Cuthbert TJ, Ahmadizadeh C, Menon C. Opportunities and challenges for sweat-based monitoring of metabolic syndrome via wearable technologies. COMMUNICATIONS ENGINEERING 2023; 2:48. [PMCID: PMC10955995 DOI: 10.1038/s44172-023-00097-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/30/2023] [Indexed: 10/05/2024]
Abstract
Metabolic syndrome is a prevalent condition in adults over the age of 65 and is a risk factor for developing cardiovascular disease and type II diabetes. Thus, methods to track the condition, prevent complications and assess symptoms and risk factors are needed. Here we discuss sweat-based wearable technologies as a potential monitoring tool for patients with metabolic syndrome. We describe several key symptoms that can be evaluated that could employ sweat patches to assess inflammatory markers, glucose, sodium, and cortisol. We then discuss the challenges with material property, sensor integration, and sensor placement and provide feasible solutions to optimize them. Together with a list of recommendations, we propose a pathway toward successfully developing and implementing reliable sweat-based technologies to monitor metabolic syndrome. Metabolic syndrome is a risk factor for developing cardiovascular disease and type II diabetes. Lyzwinski, Elgendi and colleagues discuss the potential role of sweat-based wearable technologies for monitoring metabolic syndrome along with engineering challenges towards implementation and optimization
Collapse
Affiliation(s)
- Lynnette Lyzwinski
- Menrva Research Group, Schools of Mechatronic Systems Engineering and Engineering Science, Simon Fraser University, Metro Vancouver, BC Canada
| | - Mohamed Elgendi
- Biomedical and Mobile Health Technology Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Alexander V. Shokurov
- Biomedical and Mobile Health Technology Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Tyler J. Cuthbert
- Biomedical and Mobile Health Technology Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Chakaveh Ahmadizadeh
- Biomedical and Mobile Health Technology Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Carlo Menon
- Menrva Research Group, Schools of Mechatronic Systems Engineering and Engineering Science, Simon Fraser University, Metro Vancouver, BC Canada
- Biomedical and Mobile Health Technology Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Zou Y, Chu Z, Guo J, Liu S, Ma X, Guo J. Minimally invasive electrochemical continuous glucose monitoring sensors: Recent progress and perspective. Biosens Bioelectron 2023; 225:115103. [PMID: 36724658 DOI: 10.1016/j.bios.2023.115103] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/25/2022] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
Diabetes and its complications are seriously threatening the health and well-being of hundreds of millions of people. Glucose levels are essential indicators of the health conditions of diabetics. Over the past decade, concerted efforts in various fields have led to significant advances in glucose monitoring technology. In particular, the rapid development of continuous glucose monitoring (CGM) based on electrochemical sensing principles has great potential to overcome the limitations of self-monitoring blood glucose (SMBG) in continuously tracking glucose trends, evaluating diabetes treatment options, and improving the quality of life of diabetics. However, the applications of minimally invasive electrochemical CGM sensors are still limited owing to the following aspects: i) invasiveness, ii) short lifespan, iii) biocompatibility, and iv) calibration and prediction. In recent years, the performance of minimally invasive electrochemical CGM systems (CGMSs) has been significantly improved owing to breakthrough developments in new materials and key technologies. In this review, we summarize the history of commercial CGMSs, the development of sensing principles, and the research progress of minimally invasive electrochemical CGM sensors in reducing the invasiveness of implanted probes, maintaining enzyme activity, and improving the biocompatibility of the sensor interface. In addition, this review also introduces calibration algorithms and prediction algorithms applied to CGMSs and describes the application of machine learning algorithms for glucose prediction.
Collapse
Affiliation(s)
- Yuanyuan Zou
- University of Electronic Science and Technology of China, 611731, Chengdu, China
| | - Zhengkang Chu
- School of Sensing Science and Engineering, Shanghai Jiaotong University, Shanghai, China
| | - Jiuchuan Guo
- University of Electronic Science and Technology of China, 611731, Chengdu, China; Chongqing Medical University, 400016, Chongqing, China
| | - Shan Liu
- Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu, 610072, China.
| | - Xing Ma
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| | - Jinhong Guo
- Chongqing Medical University, 400016, Chongqing, China; School of Sensing Science and Engineering, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
7
|
Rasitanon N, Veenuttranon K, Thandar Lwin H, Kaewpradub K, Phairatana T, Jeerapan I. Redox-Mediated Gold Nanoparticles with Glucose Oxidase and Egg White Proteins for Printed Biosensors and Biofuel Cells. Int J Mol Sci 2023; 24:ijms24054657. [PMID: 36902087 PMCID: PMC10002497 DOI: 10.3390/ijms24054657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Glucose oxidase (GOx)-based electrodes are important for bioelectronics, such as glucose sensors. It is challenging to effectively link GOx with nanomaterial-modified electrodes while preserving enzyme activity in a biocompatible environment. To date, no reports have used biocompatible food-based materials, such as egg white proteins, combined with GOx, redox molecules, and nanoparticles to create the biorecognition layer for biosensors and biofuel cells. This article demonstrates the interface of GOx integrated with egg white proteins on a 5 nm gold nanoparticle (AuNP) functionalized with a 1,4-naphthoquinone (NQ) and conjugated with a screen-printed flexible conductive carbon nanotube (CNT)-modified electrode. Egg white proteins containing ovalbumin can form three-dimensional scaffolds to accommodate immobilized enzymes and adjust the analytical performance. The structure of this biointerface prevents the escape of enzymes and provides a suitable microenvironment for the effective reaction. The bioelectrode's performance and kinetics were evaluated. Using redox-mediated molecules with the AuNPs and the three-dimensional matrix made of egg white proteins improves the transfer of electrons between the electrode and the redox center. By engineering the layer of egg white proteins on the GOx-NQ-AuNPs-mediated CNT-functionalized electrodes, we can modulate analytical performances such as sensitivity and linear range. The bioelectrodes demonstrate high sensitivity and can prolong the stability by more than 85% after 6 h of continuous operation. The use of food-based proteins with redox molecule-modified AuNPs and printed electrodes demonstrates advantages for biosensors and energy devices due to their small size, large surface area, and ease of modification. This concept holds a promise for creating biocompatible electrodes for biosensors and self-sustaining energy devices.
Collapse
Affiliation(s)
- Natcha Rasitanon
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai 90110, Thailand
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai 90110, Thailand
| | - Kornautchaya Veenuttranon
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai 90110, Thailand
| | - Hnin Thandar Lwin
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai 90110, Thailand
| | - Kanyawee Kaewpradub
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai 90110, Thailand
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai 90110, Thailand
| | - Tonghathai Phairatana
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai 90110, Thailand
- Institute of Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai 90110, Thailand
| | - Itthipon Jeerapan
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai 90110, Thailand
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai 90110, Thailand
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai 90110, Thailand
- Correspondence:
| |
Collapse
|
8
|
Chen H, Liu H, Cui C, Zhang X, Yang W, Zuo Y. Highly sensitive detection of Brucella in milk by cysteamine functionalized nanogold/4-Mercaptobenzoic acid electrochemical biosensor. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01428-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
9
|
Dudkaitė V, Bagdžiūnas G. Functionalization of Glucose Oxidase in Organic Solvent: Towards Direct Electrical Communication across Enzyme-Electrode Interface. BIOSENSORS 2022; 12:bios12050335. [PMID: 35624637 PMCID: PMC9138778 DOI: 10.3390/bios12050335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 05/24/2023]
Abstract
Enzymatic biosensors based on glucose oxidase has been proven to be one of the effective strategies for the detection of glucose and contributed to health improvements. Therefore, research and debates to date are ongoing in an attempt to find the most effective way to detect this analyte using this enzyme as the recognition center. The 3rd generation biosensors using direct electron transfer (DET) type enzymes are a great way towards practical devices. In this work, we developed a simple method for the functionalization of glucose oxidase with redoxable ferrocene groups in chloroform. The enzyme retained its activity after storage in this organic solvent and after the functionalization procedures. This enzyme functionalization strategy was employed to develop the biosensing monolayer-based platforms for the detection of glucose utilizing the quasi-DET mechanism. As a result of an electrochemical regeneration of the catalytic center, the formation of harmful H2O2 is minimized during enzymatic electrocatalysis.
Collapse
Affiliation(s)
- Vygailė Dudkaitė
- Group of Supramolecular Analysis, Department of Bioanalysis, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio Av. 7, LT-10257 Vilnius, Lithuania;
| | - Gintautas Bagdžiūnas
- Group of Supramolecular Analysis, Department of Bioanalysis, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio Av. 7, LT-10257 Vilnius, Lithuania;
- Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
| |
Collapse
|
10
|
Kulabhusan PK, Tripathi A, Kant K. Gold Nanoparticles and Plant Pathogens: An Overview and Prospective for Biosensing in Forestry. SENSORS 2022; 22:s22031259. [PMID: 35162004 PMCID: PMC8840466 DOI: 10.3390/s22031259] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 12/20/2022]
Abstract
Plant diseases and their diagnoses are currently one of the global challenges and cause significant impact to the economy of farmers and industries depending on plant-based products. Plant pathogens such as viruses, bacteria, fungi, and pollution caused by the nanomaterial, as well as other important elements of pollution, are the main reason for the loss of plants in agriculture and in forest ecosystems. Presently, various techniques are used to detect pathogens in trees, which includes DNA-based techniques, as well as other microscopy based identification and detection. However, these methodologies require complex instruments and time. Lately, nanomaterial-based new biosensing systems for early detection of diseases, with specificity and sensitivity, are developed and applied. This review highlights the nanomaterial-based biosensing methods of disease detection. Precise and time effective identification of plant pathogens will help to reduce losses in agriculture and forestry. This review focuses on various plant diseases and the requirements for a reliable, fast, and cost-effective testing method, as well as new biosensing technologies for the detection of diseases of field plants in forests at early stages of their growth.
Collapse
Affiliation(s)
- Prabir Kumar Kulabhusan
- Institute for Global Food Security, School of Biological Sciences, Queen’s University, Belfast BT9 5DL, UK;
| | - Anugrah Tripathi
- Monitoring and Evolution Division, Directorate of Research, Indian Council of Forestry Research and Education, Dehradun 248006, India;
| | - Krishna Kant
- Departamento de Química Física, Campus Universitario, CINBIO Universidade de Vigo, 36310 Vigo, Spain
- Correspondence:
| |
Collapse
|
11
|
Zafar H, Channa A, Jeoti V, Stojanović GM. Comprehensive Review on Wearable Sweat-Glucose Sensors for Continuous Glucose Monitoring. SENSORS (BASEL, SWITZERLAND) 2022; 22:638. [PMID: 35062598 PMCID: PMC8781973 DOI: 10.3390/s22020638] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/16/2021] [Accepted: 12/31/2021] [Indexed: 02/07/2023]
Abstract
The incidence of diabetes is increasing at an alarming rate, and regular glucose monitoring is critical in order to manage diabetes. Currently, glucose in the body is measured by an invasive method of blood sugar testing. Blood glucose (BG) monitoring devices measure the amount of sugar in a small sample of blood, usually drawn from pricking the fingertip, and placed on a disposable test strip. Therefore, there is a need for non-invasive continuous glucose monitoring, which is possible using a sweat sensor-based approach. As sweat sensors have garnered much interest in recent years, this study attempts to summarize recent developments in non-invasive continuous glucose monitoring using sweat sensors based on different approaches with an emphasis on the devices that can potentially be integrated into a wearable platform. Numerous research entities have been developing wearable sensors for continuous blood glucose monitoring, however, there are no commercially viable, non-invasive glucose monitors on the market at the moment. This review article provides the state-of-the-art in sweat glucose monitoring, particularly keeping in sight the prospect of its commercialization. The challenges relating to sweat collection, sweat sample degradation, person to person sweat amount variation, various detection methods, and their glucose detection sensitivity, and also the commercial viability are thoroughly covered.
Collapse
Affiliation(s)
- Hima Zafar
- Faculty of Technical Sciences, University of Novi Sad, T. Dositeja Obradovića 6, 21000 Novi Sad, Serbia; (V.J.); (G.M.S.)
| | - Asma Channa
- Computer Science Department, University Politehnica of Bucharest, 060042 Bucharest, Romania;
- DIIES Department, Mediterranea University of Reggio Calabria, 89100 Reggio Calabria, Italy
| | - Varun Jeoti
- Faculty of Technical Sciences, University of Novi Sad, T. Dositeja Obradovića 6, 21000 Novi Sad, Serbia; (V.J.); (G.M.S.)
| | - Goran M. Stojanović
- Faculty of Technical Sciences, University of Novi Sad, T. Dositeja Obradovića 6, 21000 Novi Sad, Serbia; (V.J.); (G.M.S.)
| |
Collapse
|
12
|
Liu H, Ouyang D, Wang J, Lei C, Shi W, Gilliam T, Liu J, Li Y, Chopra N. Chemical Vapor Deposition Mechanism of Graphene-Encapsulated Au Nanoparticle Heterostructures and Their Plasmonics. ACS APPLIED MATERIALS & INTERFACES 2021; 13:58134-58143. [PMID: 34807555 DOI: 10.1021/acsami.1c16608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Direct encapsulation of graphene shells on noble metal nanoparticles via chemical vapor deposition (CVD) has been recently reported as a unique way to design and fabricate new plasmonic heterostructures. But currently, the fundamental nature of the growth mechanism of graphene layers on metal nanostructures is still unknown. Herein, we report a systematic investigation on the CVD growth of graphene-encapsulated Au nanoparticles (Au@G) by combining an experimental parameter study and theoretical modeling. We studied the effect of growth temperature, duration, hydrocarbon precursor concentration, and extent of reducing (H2) environment on the morphology of the products. In addition, the influence of plasma oxidation conditions for the surface oxidation of gold nanoparticles on the graphene shell growth is evaluated in combination with thermodynamic calculations. We find that these parameters critically aid in the evolution of graphene shells around gold nanoparticles and allow for controlling shell thickness, graphene shell quality and morphology, and hybrid nanoparticle diameter. An optimized condition including the growth temperature of ∼675 °C, duration of 30 min, and xylene feed rate of ∼10 mL/h with 10% H2/Ar carrier gas was finally obtained for the best morphology evolution. We further performed finite-element analysis (FEA) simulations to understand the equivalent von Mises stress distribution and discrete dipolar approximation (DDA) calculation to reveal the optical properties of such new core-shell heterostructures. This study brings new insight to the nature of CVD mechanism of Au@G and might help guiding their controlled growth and future design and application in plasmonic applications.
Collapse
Affiliation(s)
- Heguang Liu
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi 710048, China
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
| | - Decai Ouyang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jing Wang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Chao Lei
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi 710048, China
| | - Wenwu Shi
- Department of Metallurgical and Materials Engineering, The University of Alabama, Tuscaloosa, Alabama 35401, United States
| | - Todd Gilliam
- Department of Metallurgical and Materials Engineering, The University of Alabama, Tuscaloosa, Alabama 35401, United States
| | - Jianxi Liu
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yuan Li
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Nitin Chopra
- Department of Metallurgical and Materials Engineering, The University of Alabama, Tuscaloosa, Alabama 35401, United States
| |
Collapse
|
13
|
In-situ redox-active hybrid graphene platform for label-free electrochemical biosensor: Insights from electrodeposition and electroless deposition. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Johnston L, Wang G, Hu K, Qian C, Liu G. Advances in Biosensors for Continuous Glucose Monitoring Towards Wearables. Front Bioeng Biotechnol 2021; 9:733810. [PMID: 34490230 PMCID: PMC8416677 DOI: 10.3389/fbioe.2021.733810] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/09/2021] [Indexed: 11/18/2022] Open
Abstract
Continuous glucose monitors (CGMs) for the non-invasive monitoring of diabetes are constantly being developed and improved. Although there are multiple biosensing platforms for monitoring glucose available on the market, there is still a strong need to enhance their precision, repeatability, wearability, and accessibility to end-users. Biosensing technologies are being increasingly explored that use different bodily fluids such as sweat and tear fluid, etc., that can be calibrated to and therefore used to measure blood glucose concentrations accurately. To improve the wearability of these devices, exploring different fluids as testing mediums is essential and opens the door to various implants and wearables that in turn have the potential to be less inhibiting to the wearer. Recent developments have surfaced in the form of contact lenses or mouthguards for instance. Challenges still present themselves in the form of sensitivity, especially at very high or low glucose concentrations, which is critical for a diabetic person to monitor. This review summarises advances in wearable glucose biosensors over the past 5 years, comparing the different types as well as the fluid they use to detect glucose, including the CGMs currently available on the market. Perspectives on the development of wearables for glucose biosensing are discussed.
Collapse
Affiliation(s)
- Lucy Johnston
- School of Engineering, The University of Glasgow, Glasgow, United Kingdom
| | - Gonglei Wang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
| | - Kunhui Hu
- Shenzhen YHLO Biotech Co., Ltd., Shenzhen, China
| | - Chungen Qian
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Guozhen Liu
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
15
|
Miao K, Yan L, Bi R, Ma X. Enzymatic Biosensor Based on One‐step Electrodeposition of Graphene‐gold Nanohybrid Materials and its Sensing Performance for Glucose. ELECTROANAL 2021. [DOI: 10.1002/elan.202100293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Kunpeng Miao
- School of Chemistry and Chemical Engineering Northwestern Polytechnic University Xi'an 710129 Shaanxi China
| | - Long Yan
- School of Chemistry and Chemical Engineering Northwestern Polytechnic University Xi'an 710129 Shaanxi China
| | - Ran Bi
- School of Chemistry and Chemical Engineering Northwestern Polytechnic University Xi'an 710129 Shaanxi China
| | - Xiaoyan Ma
- School of Chemistry and Chemical Engineering Northwestern Polytechnic University Xi'an 710129 Shaanxi China
| |
Collapse
|
16
|
Wang Z, Xu T, Noel A, Chen YC, Liu T. Applications of liquid crystals in biosensing. SOFT MATTER 2021; 17:4675-4702. [PMID: 33978639 DOI: 10.1039/d0sm02088e] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Liquid crystals (LCs), as a promising branch of highly-sensitive, quick-response, and low-cost materials, are widely applied to the detection of weak external stimuli and have attracted significant attention. Over the past decade, many research groups have been devoted to developing LC-based biosensors due to their self-assembly potential and functional diversity. In this paper, recent investigations on the design and application of LC-based biosensors are reviewed, based on the phenomenon that the orientation of LCs can be directly influenced by the interactions between biomolecules and LC molecules. The sensing principle of LC-based biosensors, as well as their signal detection by probing interfacial interactions, is described to convert, amplify, and quantify the information from targets into optical and electrical parameters. Furthermore, commonly-used LC biosensing targets are introduced, including glucose, proteins, enzymes, nucleic acids, cells, microorganisms, ions, and other micromolecules that are critical to human health. Due to their self-assembly potential, chemical diversity, and high sensitivity, it has been reported that tunable stimuli-responsive LC biosensors show bright perspectives and high superiorities in biological applications. Finally, challenges and future prospects are discussed for the fabrication and application of LC biosensors to both enhance their performance and to realize their promise in the biosensing industry.
Collapse
Affiliation(s)
- Ziyihui Wang
- School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin, 300072, China.
| | | | | | | | | |
Collapse
|
17
|
Lipińska W, Grochowska K, Siuzdak K. Enzyme Immobilization on Gold Nanoparticles for Electrochemical Glucose Biosensors. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1156. [PMID: 33925155 PMCID: PMC8146701 DOI: 10.3390/nano11051156] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 11/17/2022]
Abstract
More than 50 years have passed since Clark and Lyon developed the concept of glucose biosensors. Extensive research about biosensors has been carried out up to this day, and an exponential trend in this topic can be observed. The scope of this review is to present various enzyme immobilization methods on gold nanoparticles used for glucose sensing over the past five years. This work covers covalent bonding, adsorption, cross-linking, entrapment, and self-assembled monolayer methods. The experimental approach of each modification as well as further results are described. Designated values of sensitivity, the limit of detection, and linear range are used for the comparison of immobilization techniques.
Collapse
Affiliation(s)
| | | | - Katarzyna Siuzdak
- Centre for Plasma and Laser Engineering, The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14 St., 80-231 Gdańsk, Poland; (W.L.); (K.G.)
| |
Collapse
|
18
|
Aykaç A, Gergeroglu H, Beşli B, Akkaş EÖ, Yavaş A, Güler S, Güneş F, Erol M. An Overview on Recent Progress of Metal Oxide/Graphene/CNTs-Based Nanobiosensors. NANOSCALE RESEARCH LETTERS 2021; 16:65. [PMID: 33877478 PMCID: PMC8056378 DOI: 10.1186/s11671-021-03519-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/30/2021] [Indexed: 05/07/2023]
Abstract
Nanobiosensors are convenient, practical, and sensitive analyzers that detect chemical and biological agents and convert the results into meaningful data between a biologically active molecule and a recognition element immobilized on the surface of the signal transducer by a physicochemical detector. Due to their fast, accurate and reliable operating characteristics, nanobiosensors are widely used in clinical and nonclinical applications, bedside testing, medical textile industry, environmental monitoring, food safety, etc. They play an important role in such critical applications. Therefore, the design of the biosensing interface is essential in determining the performance of the nanobiosensor. The unique chemical and physical properties of nanomaterials have paved the way for new and improved sensing devices in biosensors. The growing demand for devices with improved sensing and selectivity capability, short response time, lower limit of detection, and low cost causes novel investigations on nanobiomaterials to be used as biosensor scaffolds. Among all other nanomaterials, studies on developing nanobiosensors based on metal oxide nanostructures, graphene and its derivatives, carbon nanotubes, and the widespread use of these nanomaterials as a hybrid structure have recently attracted attention. Nanohybrid structures created by combining these nanostructures will directly meet the future biosensors' needs with their high electrocatalytic activities. This review addressed the recent developments on these nanomaterials and their derivatives, and their use as biosensor scaffolds. We reviewed these popular nanomaterials by evaluating them with comparative studies, tables, and charts.
Collapse
Affiliation(s)
- Ahmet Aykaç
- Department of Engineering Sciences, Izmir Katip Çelebi University, 35620, Izmir, Turkey.
- Department of Nanoscience and Nanotechnology, Izmir Katip Çelebi University, 35620, Izmir, Turkey.
| | - Hazal Gergeroglu
- Department of Nanoscience and Nanoengineering, Dokuz Eylul University, 35390, Izmir, Turkey
| | - Büşra Beşli
- Department of Nanoscience and Nanotechnology, Izmir Katip Çelebi University, 35620, Izmir, Turkey
| | - Emine Özge Akkaş
- Department of Nanoscience and Nanotechnology, Izmir Katip Çelebi University, 35620, Izmir, Turkey
| | - Ahmet Yavaş
- Department of Material Science and Engineering, Izmir Katip Çelebi University, 35620, Izmir, Turkey
| | - Saadet Güler
- Department of Material Science and Engineering, Izmir Katip Çelebi University, 35620, Izmir, Turkey
| | - Fethullah Güneş
- Department of Material Science and Engineering, Izmir Katip Çelebi University, 35620, Izmir, Turkey
| | - Mustafa Erol
- Department of Metallurgical and Materials Engineering, Dokuz Eylul University, 35390, Izmir, Turkey
| |
Collapse
|
19
|
Menaa F, Fatemeh Y, Vashist SK, Iqbal H, Sharts ON, Menaa B. Graphene, an Interesting Nanocarbon Allotrope for Biosensing Applications: Advances, Insights, and Prospects. Biomed Eng Comput Biol 2021; 12:1179597220983821. [PMID: 33716517 PMCID: PMC7917420 DOI: 10.1177/1179597220983821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/07/2020] [Indexed: 12/27/2022] Open
Abstract
Graphene, a relatively new two-dimensional (2D) nanomaterial, possesses unique structure (e.g. lighter, harder, and more flexible than steel) and tunable physicochemical (e.g. electronical, optical) properties with potentially wide eco-friendly and cost-effective usage in biosensing. Furthermore, graphene-related nanomaterials (e.g. graphene oxide, doped graphene, carbon nanotubes) have inculcated tremendous interest among scientists and industrials for the development of innovative biosensing platforms, such as arrays, sequencers and other nanooptical/biophotonic sensing systems (e.g. FET, FRET, CRET, GERS). Indeed, combinatorial functionalization approaches are constantly improving the overall properties of graphene, such as its sensitivity, stability, specificity, selectivity, and response for potential bioanalytical applications. These include real-time multiplex detection, tracking, qualitative, and quantitative characterization of molecules (i.e. analytes [H2O2, urea, nitrite, ATP or NADH]; ions [Hg2+, Pb2+, or Cu2+]; biomolecules (DNA, iRNA, peptides, proteins, vitamins or glucose; disease biomarkers such as genetic alterations in BRCA1, p53) and cells (cancer cells, stem cells, bacteria, or viruses). However, there is still a paucity of comparative reports that critically evaluate the relative toxicity of carbon nanoallotropes in humans. This manuscript comprehensively reviews the biosensing applications of graphene and its derivatives (i.e. GO and rGO). Prospects and challenges are also introduced.
Collapse
Affiliation(s)
- Farid Menaa
- Department of Nanomedicine and Fluoro-Carbon Spectroscopy, Fluorotronics, Inc and California Innovations Corporation, San Diego, CA, USA
| | - Yazdian Fatemeh
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Sandeep K Vashist
- Hahn-Schickard-Gesellschaft für Angewandte Forschung e.V. (HSG-IMIT), Freiburg, Germany.,College of Pharmaceutical Sciences, Soochow University, Suzhou, P.R. China
| | - Haroon Iqbal
- College of Pharmaceutical Sciences, Soochow University, Suzhou, P.R. China
| | - Olga N Sharts
- Department of Nanomedicine and Fluoro-Carbon Spectroscopy, Fluorotronics, Inc and California Innovations Corporation, San Diego, CA, USA
| | - Bouzid Menaa
- Department of Nanomedicine and Fluoro-Carbon Spectroscopy, Fluorotronics, Inc and California Innovations Corporation, San Diego, CA, USA
| |
Collapse
|
20
|
An electroanalytical method for glabridin investigation based on poly(diallyldimethylammonium chloride)-functionalized graphene-modified electrode. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Silva AD, Paschoalino WJ, Damasceno JPV, Kubota LT. Structure, Properties, and Electrochemical Sensing Applications of Graphene‐Based Materials. ChemElectroChem 2020. [DOI: 10.1002/celc.202001168] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Alexsandra D. Silva
- Department of Analytical Chemistry Institute of Chemistry University of Campinas P.O. Box 6154 13084-971 Campinas SP Brazil
| | - Waldemir J. Paschoalino
- Department of Analytical Chemistry Institute of Chemistry University of Campinas P.O. Box 6154 13084-971 Campinas SP Brazil
| | - João Paulo V. Damasceno
- Department of Analytical Chemistry Institute of Chemistry University of Campinas P.O. Box 6154 13084-971 Campinas SP Brazil
| | - Lauro T. Kubota
- Department of Analytical Chemistry Institute of Chemistry University of Campinas P.O. Box 6154 13084-971 Campinas SP Brazil
| |
Collapse
|
22
|
A Critical Review of Electrochemical Glucose Sensing: Evolution of Biosensor Platforms Based on Advanced Nanosystems. SENSORS 2020; 20:s20216013. [PMID: 33113948 PMCID: PMC7660208 DOI: 10.3390/s20216013] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 01/17/2023]
Abstract
The research field of glucose biosensing has shown remarkable growth and development since the first reported enzyme electrode in 1962. Extensive research on various immobilization methods and the improvement of electron transfer efficiency between the enzyme and the electrode have led to the development of various sensing platforms that have been constantly evolving with the invention of advanced nanostructures and their nano-composites. Examples of such nanomaterials or composites include gold nanoparticles, carbon nanotubes, carbon/graphene quantum dots and chitosan hydrogel composites, all of which have been exploited due to their contributions as components of a biosensor either for improving the immobilization process or for their electrocatalytic activity towards glucose. This review aims to summarize the evolution of the biosensing aspect of these glucose sensors in terms of the various generations and recent trends based on the use of applied nanostructures for glucose detection in the presence and absence of the enzyme. We describe the history of these biosensors based on commercialized systems, improvements in the understanding of the surface science for enhanced electron transfer, the various sensing platforms developed in the presence of the nanomaterials and their performances.
Collapse
|
23
|
A Non-Enzymatic Sensor Based on Fc-CHIT/CNT@Cu Nanohybrids for Electrochemical Detection of Glucose. Polymers (Basel) 2020; 12:polym12102419. [PMID: 33092222 PMCID: PMC7589752 DOI: 10.3390/polym12102419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 11/26/2022] Open
Abstract
Herein, a composite structure, consisting of Cu nanoparticles (NPs) deposited onto carbon nanotubes and modified with ferrocene-branched chitosan, was prepared in order to develop a nonenzymatic electrochemical glucose biosensor ferrocene-chitosan/carbon nanotube@ Cu (Fc-CHIT/CNT@Cu). The elemental composition of the carbon nanohybrids, morphology and structure were characterized by various techniques. Electrochemical impedance spectroscopy (EIS) was used to study the interfacial properties of the electrodes. Cyclic voltammetry (CV) and chronoamperometry methods in alkaline solution were used to determine glucose biosensing properties. The synergy effect of Cu NPs and Fc on current responses of the developed electrode resulted in good glucose sensitivity, including broad linear detection between 0.2 mM and 22 mM, a low detection limit of 13.52 μM and sensitivity of 1.256 μA mM−1cm−2. Moreover, the modified electrode possessed long-term stability and good selectivity in the presence of ascorbic acid, dopamine and uric acid. The results indicated that this inexpensive electrode had potential application for non-enzymatic electrochemical glucose detection.
Collapse
|
24
|
Şerban I, Enesca A. Metal Oxides-Based Semiconductors for Biosensors Applications. Front Chem 2020; 8:354. [PMID: 32509722 PMCID: PMC7248172 DOI: 10.3389/fchem.2020.00354] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/06/2020] [Indexed: 01/07/2023] Open
Abstract
The present mini review contains a concessive overview on the recent achievement regarding the implementation of a metal oxide semiconductor (MOS) in biosensors used in biological and environmental systems. The paper explores the pathway of enhancing the sensing characteristics of metal oxides by optimizing various parameters such as synthesis methods, morphology, composition, and structure. Four representative metal oxides (TiO2, ZnO, SnO2, and WO3) are presented based on several aspects: synthesis method, morphology, functionalizing molecules, detection target, and limit of detection (LOD).
Collapse
Affiliation(s)
- Ionel Şerban
- Product Design, Mechatronics and Environmental Department, Transilvania University of Brasov, Brasov, Romania
| | - Alexandru Enesca
- Product Design, Mechatronics and Environmental Department, Transilvania University of Brasov, Brasov, Romania
| |
Collapse
|