1
|
Zhong S, Xu T, Chen H, Tang D, Tan W, Weng W, Shi Y. Sodium citrate enhancing electrodeposition of metallic arsenic from toxic trivalent arsenic and the mechanism understanding. J Environ Sci (China) 2025; 151:79-87. [PMID: 39481978 DOI: 10.1016/j.jes.2024.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/05/2024] [Accepted: 03/17/2024] [Indexed: 11/03/2024]
Abstract
Electrochemical conversion of hypertoxic trivalent arsenic to value-added metallic arsenic can not only contribute to pollution abatement, but also resources reutilization, therefore being widely explored. Electrochemical reduction of trivalent arsenic as a promising way is widely explored. However, the high efficiency conversion is retarded by the sluggish reduction kinetics of AsO33- and fierce evolution of side products of both H2 and toxic AsH3. Herein, by using the sodium citrate as the additive, the current efficiency for metal arsenic production is increased greatly from 60% to 91%, with the accompanied evolution of hypertoxic AsH3 being restrained from 0.15 Nm3/tAs to 0.022 Nm3/tAs, promising a high-efficiency and green process. The electrochemical tests and electrode surface characterizations as well as DFT calculations indicate that the added sodium citrate promotes both the diffusion of reactive AsO33- towards the cathode and its subsequent adsorption on the Ti cathode, contributing to smoother reduction for generating metal arsenic, with the evolution of toxic AsH3 being hindered at the same time. The results can provide new insights for the high-efficiency and greener conversion of hypertoxic trivalent arsenic to value-added metallic arsenic.
Collapse
Affiliation(s)
- Shuiping Zhong
- Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350108, China; Fujian Key Laboratory of Green Extraction and High-value Utilization of New Energy Metals, Fuzhou University, Fuzhou 350108, China; Zijin Mining Group Co., Ltd., Shanghang, Longyan 364200, China
| | - Tingyu Xu
- Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350108, China
| | - Hang Chen
- Zijin Mining Group Co., Ltd., Shanghang, Longyan 364200, China
| | - Ding Tang
- Zijin Mining Group Co., Ltd., Shanghang, Longyan 364200, China
| | - Wen Tan
- Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350108, China; Fujian Key Laboratory of Green Extraction and High-value Utilization of New Energy Metals, Fuzhou University, Fuzhou 350108, China
| | - Wei Weng
- Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350108, China; Fujian Key Laboratory of Green Extraction and High-value Utilization of New Energy Metals, Fuzhou University, Fuzhou 350108, China.
| | - Yanru Shi
- Inner Mongolia Academy of Science and Technology, Hohhot 010010, China.
| |
Collapse
|
2
|
Lang Q, Liu Y, Guo G, Liu F, Zhang Y. Modeling of Power Generation and Acid Recovery in an Analogous Process of Reverse Electrodialysis. MEMBRANES 2025; 15:126. [PMID: 40277996 DOI: 10.3390/membranes15040126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Revised: 04/18/2025] [Accepted: 04/19/2025] [Indexed: 04/26/2025]
Abstract
The feasibility of an analogous reverse electrodialysis (RED) process for power generation and acid recovery from acidic waste streams in the steel industry is investigated in this study. A comprehensive model was established to simulate the transport phenomena and power generation, which was validated through experimental data. The simulated operation time was 3 h, during which an acid recovery rate of 41.7% was achieved, and the maximum output power density reached 30.37 μW·cm-2. The results demonstrated a strong dependence of output power density on the acid concentration, with a linear relationship within the tested range of 1.0-3.0 mol·L-1 HCl. An optimal flow rate range was identified that maximized power output, with the best value of 90 mL∙min-1. The differences in energy harvesting between the traditional acid diffusion dialysis process and our analogous RED process were demonstrated via simulation. The importance of system electroneutrality in driving ion migration and forming ionic currents was crucial for effective power generation. The analogous RED process is a promising solution for efficient acid recovery and power generation from industrial acid waste, offering a sustainable treatment approach.
Collapse
Affiliation(s)
- Qiaolin Lang
- Shandong Engineering Research Centre for Pollution Control and Resource Valorization in Chemical Industry, College of Environment and Safety Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, China
| | - Yang Liu
- Shandong Engineering Research Centre for Pollution Control and Resource Valorization in Chemical Industry, College of Environment and Safety Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| | - Gaojuan Guo
- National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083, China
| | - Fei Liu
- Shandong Engineering Research Centre for Pollution Control and Resource Valorization in Chemical Industry, College of Environment and Safety Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| | - Yang Zhang
- Shandong Engineering Research Centre for Pollution Control and Resource Valorization in Chemical Industry, College of Environment and Safety Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| |
Collapse
|
3
|
Kucuk I, Sadak S, Kurnalı SZ, Altınöz S, Uslu B. A novel electrochemical sensor based on MIP technology for sensitive determination of cinacalcet hydrochloride in tablet dosage form and serum samples. Mikrochim Acta 2025; 192:299. [PMID: 40234287 PMCID: PMC12000225 DOI: 10.1007/s00604-025-07152-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 04/04/2025] [Indexed: 04/17/2025]
Abstract
Cinacalcet hydrochloride (CIN) is a calcium-sensing receptor agonist used to treat hypercalcemia in the parathyroid. The molecularly imprinted polymer (MIP)-based sensor (CIN@MIP/GCE) was electropolymerized using cyclic voltammetry (CV) of the functional monomer o-phenylenediamine (o-PD) with a template molecule CIN on a glassy carbon electrode (GCE). The optimum performance of the MIP-based electrode for CIN detection was obtained with parameters of a 1:7 monomer ratio, a 15-min removal time, ethanol as a removal solution, and a 15-min rebinding time. The surface characterization of the CIN@MIP/GCE sensor was conducted using atomic force microscopy (AFM) and scanning electron microscopy (SEM), while CV and electrochemical impedance spectroscopy (EIS) were employed for electrochemical characterization with [Fe(CN)6]3-/4- redox probe. AFM findings show that the MIP sensor with CIN-specific voids on the surface has a root-mean-square (RMS) value of 27.95, while the non-imprinted polymer (NIP) sensor without voids has a smoother surface formation and an RMS value of 21.30 nm. The analytical efficacy of the constructed sensor was assessed using differential pulse voltammetry (DPV). The limit of detection (LOD) was 0.17 × 10-12, with a linear range of 1.0 × 10-12-1.0 × 10-11 M. The reliability of the constructed sensor was determined using CIN detection in real samples as tablet dosage form and human serum, yielding recovery results of 100.19% and 101.82%, respectively. The selectivity investigation was performed against prevalent interference substances. The relative imprinting factor (IF) values of CIN impurities confirmed the selectivity of the CIN sensor.
Collapse
Affiliation(s)
- Ipek Kucuk
- Department of Analytical Chemistry, Faculty of Pharmacy, Başkent University, 06790, Ankara, Türkiye
- The Graduate School of Health Sciences, Ankara University, 06110, Ankara, Türkiye
| | - Selenay Sadak
- The Graduate School of Health Sciences, Ankara University, 06110, Ankara, Türkiye
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560, Ankara, Türkiye
| | | | - Sacide Altınöz
- Department of Analytical Chemistry, Faculty of Pharmacy, Başkent University, 06790, Ankara, Türkiye
| | - Bengi Uslu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560, Ankara, Türkiye.
| |
Collapse
|
4
|
Gholizadeh R, Pavlin M, Likozar B, Huš M. Why Including Solvation is Paramount: First-Principles Calculations of Electrochemical CO 2 Reduction to CO on a Cu Electrocatalyst. Chempluschem 2025; 90:e202400346. [PMID: 39561256 PMCID: PMC11826130 DOI: 10.1002/cplu.202400346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/21/2024]
Abstract
Electrochemical reduction reaction of CO2 (eCO2RR) to produce valuable chemicals offers an attractive strategy to solve energy and environmental problems simultaneously. We have mapped out entire reaction pathways of eCO2RR to CO on Cu(100), including all intermediates and transition states using first-principles simulations. To accurately account for the solvent effect, the reaction was investigated with and without explicit water molecules, highlighting the limitations of the often (mis)used vacuum reaction pathway simplification. The results show that the reduction reaction was initiated under neutral pH conditions at an applied potential of -0.11 V (RHE, reversible hydrogen electrode) and all elementary reactions were thermodynamically favorable, while an applied potential of -1.24 V is required to ensure that all reactions exhibit spontaneous behavior. Detailed analysis revealed that solvation significantly influences the stability of the adsorbates and intermediates. Its inclusion notably alters the calculated reaction kinetics and energetic parameters by lowering the barrier energies and Gibbs free energies of all reactions. CO production proceeded mainly via the COOH* pathway (CO2 →trans-COOH*→cis-COOH*→CO*+OH*→CO*→CO). The use of water as a more sustainable and cost-effective solvent is compared to other options such as organic solvents, ionic liquids and mixed solvent systems, which are less sustainable and more expensive.
Collapse
Affiliation(s)
- Reza Gholizadeh
- Department of Catalysis and Chemical Reaction EngineeringNational Institute of ChemistryHajdrihova 19SI-1000LjubljanaSlovenia
- Department of Environmental SciencesJožef Stefan InstituteSI-1000LjubljanaSlovenia
| | - Matic Pavlin
- Department of Catalysis and Chemical Reaction EngineeringNational Institute of ChemistryHajdrihova 19SI-1000LjubljanaSlovenia
| | - Blaž Likozar
- Department of Catalysis and Chemical Reaction EngineeringNational Institute of ChemistryHajdrihova 19SI-1000LjubljanaSlovenia
| | - Matej Huš
- Department of Catalysis and Chemical Reaction EngineeringNational Institute of ChemistryHajdrihova 19SI-1000LjubljanaSlovenia
- Association for Technical Culture of SloveniaZaloška 65SI-1001LjubljanaSlovenia
- Institute for the Protection of Cultural Heritage of SloveniaConservation CentreResearch InstitutePoljanska 40SI-1000LjubljanaSlovenia
- University of Nova GoricaVipavska 13SI-5000Nova Gorica, LjubljanaSlovenia
| |
Collapse
|
5
|
Soleimani S, Bruce-Tagoe TA, Ullah N, Danquah MK. Parametric Cyclic Voltammetric Analysis of an Electrochemical Aptasensor for Staphylococcus aureus Iron-Regulated Surface Determinant Protein A Detection. MICROMACHINES 2025; 16:162. [PMID: 40047591 PMCID: PMC11857385 DOI: 10.3390/mi16020162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 03/09/2025]
Abstract
Rapid and reliable detection of pathogens requires precise and optimized analytical techniques to address challenges in food safety and public health. This study focuses on the parametric characterization of an electrochemical aptasensor for Staphylococcus aureus (S. aureus) iron-regulated surface determinant protein A (IsdA) using cyclic voltammetry (CV) analysis, which offers a robust method for evaluating electrode modifications and electrochemical responses. Key parameters were optimized to ensure maximum sensitivity, including an aptamer concentration of 5 μM, an incubation time of 4 h, a potential range from -0.1 to 0.9 V, and a scan rate of 0.05 V/s. The aptasensor achieved stability and peak performance at pH 7.5 and 25 °C. These conditions were critical for detecting the IsdA protein as a biomarker of S. aureus. The aptasensor applicability was demonstrated by successfully detecting S. aureus in food samples such as milk and apple juice with high specificity and reliability. Zeta potential measurements confirmed the layer-by-layer charge dynamics of the AuNPs-aptamer-IsdA system. This work emphasizes the importance of CV in understanding the performance of the electrochemical sensor, and supports the aptasensor as a practical, sensitive, and portable tool for addressing critical gaps in foodborne pathogen detection.
Collapse
Affiliation(s)
- Shokoufeh Soleimani
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, USA;
| | - Tracy Ann Bruce-Tagoe
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA; (T.A.B.-T.); (N.U.)
| | - Najeeb Ullah
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA; (T.A.B.-T.); (N.U.)
| | - Michael K. Danquah
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, USA;
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA; (T.A.B.-T.); (N.U.)
| |
Collapse
|
6
|
Liu W, Khorsand Ahmadi M, Dekkers MHJ, Henzen A, den Toonder JMJ, Yuan D, Groenewold J, Zhou G, Wyss HM. Charge injection mediated by inverse micelles in nonpolar solvents: A microscopic model. J Colloid Interface Sci 2025; 678:449-459. [PMID: 39303563 DOI: 10.1016/j.jcis.2024.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024]
Abstract
HYPOTHESIS Nonpolar solvents with added charge control agents are widely used in various applications, such as E-paper displays. In spite of previous work, the mechanisms governing charge generation in nonpolar liquids, particularly those induced by electrochemical reactions at the liquid-solid interface, are not completely understood. We hypothesize that a physics-based model, according to the modified Butler-Volmer equation, can be used to quantitatively predict the injection of charges and the corresponding currents, in nonpolar solvents with surfactants. SIMULATION AND EXPERIMENTS We propose a model to describe the migration and charge generation of inverse micelles. In addition to the mechanisms of electromigration, diffusion and charge generation via disproportionation that were introduced in earlier models, we include charge generation via electron injection at the electrodes using a microscopically justified expression as opposed to the previously used semi-empirical approaches. To validate our model, we compare its results to experimental current measurements in a simplified, effectively 1D, geometry. FINDINGS We find that the incorporation of both bulk and electrochemical reaction mechanisms in the model can effectively explain the experimental steady-state currents in a wide range of concentrations, voltages (0.5 V-5 V), and cell thicknesses. These numerical results of currents at longer time scales show a steady-state current only when both bulk and electrochemical reactions are taken into account. Moreover, we have observed in our simulation that at low applied voltages, the electric field in the bulk is fully shielded, and the steady-state current in this low-voltage regime is governed by the charge injection at the electrodes. Conversely, when the voltage is high enough and the electric field remains partially unscreened, the bulk disproportionation mechanism dominates the current generation. This also explains why we observe a non-Ohmic behavior where the steady-state currents at high voltages are independent of applied voltage. Hence, by elucidating the physical processes underlying the experimental observations, our model offers a more profound comprehension of charge transport in these systems, which could facilitate advancements in the design of enhanced E-ink displays and smart windows.
Collapse
Affiliation(s)
- Wei Liu
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China; Department of Mechanical Engineering, Microsystems, Eindhoven University of Technology, Eindhoven, 5600 MB, Netherlands; Institute for Complex Molecular Systems [ICMS], Eindhoven University of Technology, Eindhoven, 5600 MB, Netherlands
| | - Mohammad Khorsand Ahmadi
- Department of Mechanical Engineering, Microsystems, Eindhoven University of Technology, Eindhoven, 5600 MB, Netherlands; Institute for Complex Molecular Systems [ICMS], Eindhoven University of Technology, Eindhoven, 5600 MB, Netherlands
| | - Max H J Dekkers
- Department of Mechanical Engineering, Microsystems, Eindhoven University of Technology, Eindhoven, 5600 MB, Netherlands
| | - Alex Henzen
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Jaap M J den Toonder
- Department of Mechanical Engineering, Microsystems, Eindhoven University of Technology, Eindhoven, 5600 MB, Netherlands; Institute for Complex Molecular Systems [ICMS], Eindhoven University of Technology, Eindhoven, 5600 MB, Netherlands
| | - Dong Yuan
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China.
| | - Jan Groenewold
- Van 't Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, Padualaan 8, Utrecht, 3584 CH, Netherlands.
| | - Guofu Zhou
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Hans M Wyss
- Department of Mechanical Engineering, Microsystems, Eindhoven University of Technology, Eindhoven, 5600 MB, Netherlands; Institute for Complex Molecular Systems [ICMS], Eindhoven University of Technology, Eindhoven, 5600 MB, Netherlands.
| |
Collapse
|
7
|
Majumder T, Eremin DB, Delibas B, Sarkar A, Fokin V, Dawlaty JM. Calibrating the Oxidative Capacity of Microdroplets. Angew Chem Int Ed Engl 2025; 64:e202414746. [PMID: 39218788 DOI: 10.1002/anie.202414746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 09/01/2024] [Indexed: 09/04/2024]
Abstract
Recently, redox chemical transformations have been reported to occur spontaneously in microdroplets. The origins of such novel reactivity are still debated, and any systematic correlation of the oxidative/reductive yield with the reactivity of the reactant is yet to be established. Towards this end, we report the simple, outer-sphere, one-electron oxidation of a series of ferrocene derivatives spanning a range of oxidation potentials from -0.1 V to +0.8 V vs. Ag/AgCl in acetonitrile microdroplets generated via nebulization and measured by mass spectrometry of the corresponding ferrocenium ions. The reaction environments and dynamics in the droplets are complex, and it is still unclear whether such reactivity correlates with any bulk thermodynamic values. Our key finding is that the ion yields decrease monotonically with the oxidation potential of the ferrocenes, which is a thermodynamic quantity. The ion yields emphatically do not obey the Nernstian ratio, revealing the redox processes in the droplets do not follow the assumptions of bulk steady-state electrochemistry. Furthermore, oxidative competition in the mixture of several ferrocenes suggest a finite oxidative capacity or oxidant concentration. These results demonstrate that even though ion generation could be an out-of-equilibrium and kinetically limited process, the oxidative yield in microdroplets does correlate with thermodynamics, suggesting a possible free energy relationship between the kinetics and thermodynamics of the process.
Collapse
Affiliation(s)
- Tirthick Majumder
- Department of Chemistry, The University of Southern California, Los Angeles, CA, 90089, USA
| | - Dmitry B Eremin
- Department of Chemistry, The University of Southern California, Los Angeles, CA, 90089, USA
| | - Berk Delibas
- Department of Chemistry, The University of Southern California, Los Angeles, CA, 90089, USA
| | - Archishman Sarkar
- Department of Chemistry, The University of Southern California, Los Angeles, CA, 90089, USA
| | - ValeryV Fokin
- Department of Chemistry, The University of Southern California, Los Angeles, CA, 90089, USA
| | - Jahan M Dawlaty
- Department of Chemistry, The University of Southern California, Los Angeles, CA, 90089, USA
| |
Collapse
|
8
|
Yan LKQ, Tam SK, Ng KM. A numerical platform for predicting the performance of paper-based analytical devices. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:7888-7897. [PMID: 39431348 DOI: 10.1039/d4ay01305k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
This article presents a numerical platform for predicting the performance of paper-based analytical devices. The capillary flow, reaction, dissolution, and other physicochemical phenomena associated with device operation are accounted for using Darcy's law, Richard's equation and other transport equations. The platform can be used for different paper substrates, biorecognition methods, detection systems (such as optical and electrochemical detection), device patterns and dimensions, and ways in which the device is operated such as the input method of the body fluid. The device performance is quantified using indicators such as assay time, signal strength and product cost. The predictive capability of this numerical tool is verified with devices reported in the literature. It is shown that the platform can be used to identify possible improvements to these existing devices. More importantly, it can also serve as a numerical tool for synthesizing new paper-based analytical devices with minimum experimental effort.
Collapse
Affiliation(s)
- Lawrence K Q Yan
- Dept. of Chemical and Biological Engineering, The Hong Kong University of Science and Technology Clear Water Bay, Hong Kong.
| | - Sze Kee Tam
- Dept. of Chemical and Biological Engineering, The Hong Kong University of Science and Technology Clear Water Bay, Hong Kong.
| | - Ka Ming Ng
- Dept. of Chemical and Biological Engineering, The Hong Kong University of Science and Technology Clear Water Bay, Hong Kong.
| |
Collapse
|
9
|
Mirceski V, Lovric M. Genuine differential voltammetry. Talanta 2024; 279:126560. [PMID: 39059067 DOI: 10.1016/j.talanta.2024.126560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/20/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
A novel form of differential voltammetry is proposed, developed through the implicit anodic and cathodic current components of the experimentally accessible conventional net current measured in a voltammetric experiment. By employing basic mathematical modelling of an electrode reaction of a dissolved redox couple at a conventional, macroscopic electrode within the framework of the Butler-Volmer electrode kinetic model, the implicit anodic and cathodic current components of the net conventional current are clearly defined and can be estimated. Consequently, a novel form of differential current, calculated as the difference between anodic and cathodic implicit current components associated with a single potential of the voltammetric experiment, can be established. This differential current demonstrates remarkable characteristics in terms of electrode kinetics and analytical performance, particularly in cases involving fast, seemingly electrochemically reversible electrode processes. It holds promise to be analytically superior to the best-known differential voltammetric techniques so far (e.g., square-wave voltammetry), as well as provides a means for estimating the rate constants of very fast, apparently reversible electrode processes at macroscopic electrodes under mild experimental conditions (i.e., studied at slow potential scan rates). The practical implication of the novel methodology is significant: a simple linear sweep voltammogram of a quasi-reversible electrode reaction with unknown electrode kinetic parameters can be readily transformed into the novel type of differential voltammogram through a convolution procedure of the conventional net current, paving a new way for studying electrode processes by voltammetry.
Collapse
Affiliation(s)
- Valentin Mirceski
- Department of Inorganic and Analytical Chemistry, University of Lodz, Tamka 12, 91-403, Lodz, Poland; Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss Cyril and Methodius University in Skopje, P.O. Box 162, 1000, Skopje, Macedonia; Research Center for Environment and Materials, Macedonian Academy of Sciences and Arts, Bul. Krste Misirkov 2, 1000, Skopje, Macedonia.
| | | |
Collapse
|
10
|
Singh D, Pershaanaa M, Farhana NK, Bashir S, Ramesh K, Ramesh S. Designing nano-heterostructured nickel doped tin sulfide/tin oxide as binder free electrode material for supercapattery. BMC Chem 2024; 18:196. [PMID: 39385271 PMCID: PMC11465700 DOI: 10.1186/s13065-024-01307-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024] Open
Abstract
New generation of electrochemical energy storage devices (EESD) such as supercapattery is being intensively studied as it merges the ideal energy density of batteries and optimal power density of supercapacitors in a single device. A multitude of parameters such as the method of electrodes preparation can affect the performance of supercapattery. In this research, nickel doped tin sulfide /tin oxide (SnS@Ni/SnO2) heterostructures were grown directly on the Ni foam and subjected to different calcination temperatures to study their effect on formation, properties, and electrochemical performance through X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and electrochemical tests. The optimized SnS@Ni/SnO2 electrode achieved a maximum specific capacity of 319 C g- 1 while activated carbon based capacitive electrode exhibited maximum specific capacitance of 381.19 Fg- 1. Besides, capacitive electrodes for the supercapattery were optimized by incorporating different conductive materials such as acetylene black (AB), carbon nanotubes (CNT) and graphene (GR). Assembling these optimized electrodes with the aid of charge balancing equation, the assembled supercapattery was able to achieve outstanding maximum energy density and power density of 36.04 Wh kg- 1 and 12.48 kW kg- 1 with capacity retention of 91% over 4,000 charge/discharge cycles.
Collapse
Affiliation(s)
- Davinder Singh
- Department of Physics, Faculty of Science, Centre for Ionics Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - M Pershaanaa
- Department of Physics, Faculty of Science, Centre for Ionics Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - N K Farhana
- Department of Physics, Faculty of Science, Centre for Ionics Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Shahid Bashir
- Higher Institution Centre of Excellence (HICoE), UM Power Energy Dedicated Advanced Centre (UMPEDAC), Level 4, Wisma R&D, Universiti Malaya, Jalan Pantai Baharu, Kuala Lumpur, 59990, Malaysia.
| | - K Ramesh
- Department of Physics, Faculty of Science, Centre for Ionics Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - S Ramesh
- Department of Physics, Faculty of Science, Centre for Ionics Universiti Malaya, Kuala Lumpur, 50603, Malaysia.
- Department of Chemistry, Saveetha School of Engineering, Institute of Medical and Technical Science, Saveetha University, Chennai, 602105, Tamilnadu, India.
| |
Collapse
|
11
|
C S S, Kini V, Singh M, Mukhopadhyay C, Nag P, Sadani K. Disposable electrochemical biosensors for the detection of bacteria in the light of antimicrobial resistance. Biotechnol Bioeng 2024; 121:2549-2584. [PMID: 38822742 DOI: 10.1002/bit.28735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/30/2024] [Accepted: 04/24/2024] [Indexed: 06/03/2024]
Abstract
Persistent and inappropriate use of antibiotics is causing rife antimicrobial resistance (AMR) worldwide. Common bacterial infections are thus becoming increasingly difficult to treat without the use of last resort antibiotics. This has necessitated a situation where it is imperative to confirm the infection to be bacterial, before treating it with antimicrobial speculatively. Conventional methods of bacteria detection are either culture based which take anywhere between 24 and 96 hor require sophisticated molecular analysis equipment with libraries and trained operators. These are difficult propositions for resource limited community healthcare setups of developing or less developed countries. Customized, inexpensive, point-of-care (PoC) biosensors are thus being researched and developed for rapid detection of bacterial pathogens. The development and optimization of disposable sensor substrates is the first and crucial step in development of such PoC systems. The substrates should facilitate easy charge transfer, a high surface to volume ratio, be tailorable by the various bio-conjugation chemistries, preserve the integrity of the biorecognition element, yet be inexpensive. Such sensor substrates thus need to be thoroughly investigated. Further, if such systems were made disposable, they would attain immunity to biofouling. This article discusses a few potential disposable electrochemical sensor substrates deployed for detection of bacteria for environmental and healthcare applications. The technologies have significant potential in helping reduce bacterial infections and checking AMR. This could help save lives of people succumbing to bacterial infections, as well as improve the overall quality of lives of people in low- and middle-income countries.
Collapse
Affiliation(s)
- Sreelakshmi C S
- Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Vrinda Kini
- Department of Instrumentation and Control, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Maargavi Singh
- Department of Instrumentation and Control, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Chiranjay Mukhopadhyay
- Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Pooja Nag
- Department of Mechatronics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Kapil Sadani
- Department of Instrumentation and Control, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
12
|
Angizi S, Rahmati R, Hatamie A, Nobakht V, Simchi A. Two-Dimensional Nanorod-Shaped Co(II) Coordination Polymer on Three-Dimensional Metallic Foam: A Hybrid Platform for Electrochemical Oxidation of Glucose. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:17689-17698. [PMID: 39161300 DOI: 10.1021/acs.langmuir.4c02084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
This study unveils a novel electrochemical biosensor for monitoring glucose in biological fluids by employing nanorods of a cobalt-bispyridyl/dicarboxylate framework grown in a layer-by-layer manner on a highly porous nickel substrate. The hybrid microporous system has a bicatalytic effect on glucose oxidation due to the synergistic catalytic impact of the nickel and cobalt ions with varying oxidation states as electroactive sites. In addition, the controlled growth of inorganic-organic frameworks changes the mechanism of electron transfer from a diffusion-controlled process to an adsorption-controlled process, thus yielding a low onset oxidation potential (∼0.21 V/Ag-AgCl) and a high current intensity (∼1 mA) for the oxidation of glucose in alkaline media. A fast response time (∼2 s) and a reasonably high sensitivity (0.14 μA μM-1) within a broad linear range (40-360 μM) have determined the suitability and superiority of the hybrid electrode for glucose monitoring compared to many metal-organic-based biosensors. The facile fabrication process of the Co(II) coordination polymer/Ni substrate with a large surface area that benefits from the synergetic catalytic activity of nickel-cobalt hybrids may pave the way for the development of novel hybrid electrodes for biosensors and direct glucose fuel cells.
Collapse
Affiliation(s)
- Shayan Angizi
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S4M1, Canada
| | - Reza Rahmati
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
| | - Amir Hatamie
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), No. 444, Prof. Yousef Sobouti Boulevard, Zanjan 45137-66731, Iran
- University of Gothenburg, Department of Chemistry and Molecular Biology, Kemivägen 10, 412 96 Gothenburg, Sweden
| | - Valiollah Nobakht
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 6135743135, Iran
| | - Abdolreza Simchi
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials, 28359 Bremen, Germany
| |
Collapse
|
13
|
Jones TE, Teschner D, Piccinin S. Toward Realistic Models of the Electrocatalytic Oxygen Evolution Reaction. Chem Rev 2024; 124:9136-9223. [PMID: 39038270 DOI: 10.1021/acs.chemrev.4c00171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The electrocatalytic oxygen evolution reaction (OER) supplies the protons and electrons needed to transform renewable electricity into chemicals and fuels. However, the OER is kinetically sluggish; it operates at significant rates only when the applied potential far exceeds the reversible voltage. The origin of this overpotential is hidden in a complex mechanism involving multiple electron transfers and chemical bond making/breaking steps. Our desire to improve catalytic performance has then made mechanistic studies of the OER an area of major scientific inquiry, though the complexity of the reaction has made understanding difficult. While historically, mechanistic studies have relied solely on experiment and phenomenological models, over the past twenty years ab initio simulation has been playing an increasingly important role in developing our understanding of the electrocatalytic OER and its reaction mechanisms. In this Review we cover advances in our mechanistic understanding of the OER, organized by increasing complexity in the way through which the OER is modeled. We begin with phenomenological models built using experimental data before reviewing early efforts to incorporate ab initio methods into mechanistic studies. We go on to cover how the assumptions in these early ab initio simulations─no electric field, electrolyte, or explicit kinetics─have been relaxed. Through comparison with experimental literature, we explore the veracity of these different assumptions. We summarize by discussing the most critical open challenges in developing models to understand the mechanisms of the OER.
Collapse
Affiliation(s)
- Travis E Jones
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Department of Inorganic Chemistry, Fritz-Haber-Institute of the Max-Planck-Society, Berlin 14195, Germany
| | - Detre Teschner
- Department of Inorganic Chemistry, Fritz-Haber-Institute of the Max-Planck-Society, Berlin 14195, Germany
- Department of Heterogeneous Reactions, Max-Planck-Institute for Chemical Energy Conversion, Mülheim an der Ruhr 45470, Germany
| | - Simone Piccinin
- Consiglio Nazionale delle Ricerche, Istituto Officina dei Materiali, Trieste 34136, Italy
| |
Collapse
|
14
|
Qin T, Zhao X, Sui Y, Wang D, Chen W, Zhang Y, Luo S, Pan W, Guo Z, Leung DYC. Heterointerfaces: Unlocking Superior Capacity and Rapid Mass Transfer Dynamics in Energy Storage Electrodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402644. [PMID: 38822769 DOI: 10.1002/adma.202402644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/05/2024] [Indexed: 06/03/2024]
Abstract
Heterogeneous electrode materials possess abundant heterointerfaces with a localized "space charge effect", which enhances capacity output and accelerates mass/charge transfer dynamics in energy storage devices (ESDs). These promising features open new possibilities for demanding applications such as electric vehicles, grid energy storage, and portable electronics. However, the fundamental principles and working mechanisms that govern heterointerfaces are not yet fully understood, impeding the rational design of electrode materials. In this study, the heterointerface evolution during charging and discharging process as well as the intricate interaction between heterointerfaces and charge/mass transport phenomena, is systematically discussed. Guidelines along with feasible strategies for engineering structural heterointerfaces to address specific challenges encountered in various application scenarios, are also provided. This review offers innovative solutions for the development of heterogeneous electrode materials, enabling more efficient energy storage beyond conventional electrochemistry. Furthermore, it provides fresh insights into the advancement of clean energy conversion and storage technologies. This review contributes to the knowledge and understanding of heterointerfaces, paving the way for the design and optimization of next-generation energy storage materials for a sustainable future.
Collapse
Affiliation(s)
- Tingting Qin
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, 999077, China
| | - Xiaolong Zhao
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, 999077, China
| | - Yiming Sui
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331-4003, USA
| | - Dong Wang
- Key Laboratory of Automobile Materials of MOE School of Materials Science and Engineering and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130013, China
| | - Weicheng Chen
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, 999077, China
| | - Yingguang Zhang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, 999077, China
| | - Shijing Luo
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, 999077, China
| | - Wending Pan
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, 999077, China
| | - Zhenbin Guo
- Institute of Semiconductor Manufacturing Research, Shenzhen University, Shenzhen, 518060, China
| | - Dennis Y C Leung
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, 999077, China
| |
Collapse
|
15
|
Mirceski V, Guziejewski D, Gulaboski R. Genuine anodic and cathodic current components in cyclic voltammetry. Sci Rep 2024; 14:17314. [PMID: 39068185 PMCID: PMC11283560 DOI: 10.1038/s41598-024-67840-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024] Open
Abstract
Implicit anodic and cathodic current components associated with the real net current at a given potential of a simple quasireversible electrode reaction can be accurately estimated using basic mathematical modeling within the framework of Butler-Volmer electrode kinetics. This methodology requires only prior knowledge of the formal potential of the dissolved redox couple, offering direct insight into the electrode kinetics. The proposed approach facilitates a unique transformation of a conventional cyclic voltammogram, allowing the replacement of the common, net current with authentic anodic and cathodic current components. This simple methodology introduces a novel perspective in analyzing voltammetric data, particularly enabling the kinetic characterization of fast, seemingly electrochemically reversible electrode processes on macroscopic electrodes at slow scan rates. Theoretical predictions are experimentally demonstrated using the electrode reaction for the reduction of the hexaammineruthenium(III) complex, serving as an example of one of the fastest electrode processes involving a dissolved redox species.
Collapse
Affiliation(s)
- Valentin Mirceski
- Department of Instrumental Analysis, University of Lodz, Pomorska 163, 90-236, Łódź, Poland.
- Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss Cyril and Methodius University in Skopje, P.O. Box 162, 1000, Skopje, Republic of North Macedonia.
- Research Center for Environment and Materials, Macedonian Academy of Sciences and Arts, Bul. Krste Misirkov 2, 1000, Skopje, Republic of North Macedonia.
| | - Dariusz Guziejewski
- Department of Instrumental Analysis, University of Lodz, Pomorska 163, 90-236, Łódź, Poland
| | - Rubin Gulaboski
- Faculty of Medical Sciences, Goce Delcev University, Stip, Republic of North Macedonia
| |
Collapse
|
16
|
Babar M, Viswanathan V. Modeling Scanning Electrochemical Cell Microscopy (SECCM) in Twisted Bilayer Graphene. J Phys Chem Lett 2024; 15:7371-7378. [PMID: 38995158 DOI: 10.1021/acs.jpclett.4c01002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Twisted 2D-flat band materials host exotic quantum phenomena and novel moiré patterns, showing immense promise for advanced spintronic and quantum applications. Here, we evaluate the nanostructure-activity relationship in twisted bilayer graphene by modeling it under the scanning electrochemical cell microscopy setup to resolve its spatial moiré domains. We solve the steady state ion transport inside a 3D nanopipette to isolate the current response at AA and AB domains. Interfacial reaction rates are obtained from a modified Marcus-Hush-Chidsey theory combining input from a tight binding model that describes the electronic structure of bilayer graphene. High rates of redox exchange are observed at the AA domains, an effect that reduces with diminished flat bands or a larger cross-sectional area of the nanopipette. Using voltammograms, we identify an optimal voltage that maximizes the current difference between the domains. Our study lays down the framework to electrochemically capture prominent features of the band structure that arise from spatial domains and deformations in 2D flat-band materials.
Collapse
Affiliation(s)
- Mohammad Babar
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Venkatasubramanian Viswanathan
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Department of Aerospace Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
17
|
Ling R, Zhu Z, Peng K, Fang J, Zou W, Li Q, Liu Y, Zhu Q, Lin N, Xu T, Yang Z. Dual-Function Electrolyte Additive Design for Long Life Alkaline Zinc Flow Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404834. [PMID: 38678302 DOI: 10.1002/adma.202404834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/19/2024] [Indexed: 04/29/2024]
Abstract
Alkaline zinc-based flow batteries (AZFBs) have emerged as a promising electrochemical energy storage technology owing to Zn abundance, high safety, and low cost. However, zinc dendrite growth and the formation of dead zinc greatly impede the development of AZFBs. Herein, a dual-function electrolyte additive strategy is proposed to regulate zinc nucleation and mitigate the hydroxide corrosion of zinc depositions for stable AZFBs. This strategy, as exemplified by urea, introduces an electrolyte additive to coordinate with Zn2+/Zn with proper strength, slowing zinc deposition kinetics to induce uniform nucleation and protecting the deposited zinc surface from attack by hydroxide ions through preferable adsorption. The zincate complexes with urea are identified to be Zn(OH)2(urea)(H2O)2 and Zn2(OH)4(H2O)4(urea), which exhibit slow zinc deposition kinetics, allowing instantaneous nucleation. Calculation results reveal an additional energy barrier of 1.29 eV for the subsequent adsorption of an OH- group when a urea molecule absorbs on the zinc cluster, significantly mitigating the formation of dead zinc. Consequently, prolonged cell cycling of the prototype alkaline zinc-iron flow battery demonstrates stable operation for over 130 h and an average coulombic efficiency of 98.5%. It is anticipated that this electrolyte additive strategy will pave the way for developing highly stable AZFBs.
Collapse
Affiliation(s)
- Rene Ling
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Zixuan Zhu
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Kang Peng
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Junkai Fang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Wenhao Zou
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Qixuan Li
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yulin Liu
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Qinshan Zhu
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Ning Lin
- Yongjiang Laboratory, Ningbo, 315202, P. R. China
| | - Tongwen Xu
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Zhengjin Yang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
18
|
Babar M, Zhu Z, Kurchin R, Kaxiras E, Viswanathan V. Twisto-Electrochemical Activity Volcanoes in Trilayer Graphene. J Am Chem Soc 2024; 146:16105-16111. [PMID: 38829312 PMCID: PMC11177310 DOI: 10.1021/jacs.4c03464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/12/2024] [Accepted: 05/14/2024] [Indexed: 06/05/2024]
Abstract
In this work, we develop a twist-dependent electrochemical activity map, combining a low-energy continuum electronic structure model with modified Marcus-Hush-Chidsey kinetics in trilayer graphene. We identify a counterintuitive rate enhancement region spanning the magic angle curve and incommensurate twists in the system geometry. We find a broad activity peak with a ruthenium hexamine redox couple in regions corresponding to both magic angles and incommensurate angles, a result qualitatively distinct from the twisted bilayer case. Flat bands and incommensurability offer new avenues for reaction rate enhancements in electrochemical transformations.
Collapse
Affiliation(s)
- Mohammad Babar
- Department
of Mechanical Engineering, University of
Michigan, Ann Arbor, Michigan 48109, United States
| | - Ziyan Zhu
- Stanford
Institute of Materials and Energy Science, SLAC National Accelerator
Laboratory, Menlo
Park, California 94025, United States
| | - Rachel Kurchin
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Efthimios Kaxiras
- Department
of Physics, Harvard University, Cambridge, Massachusetts 02138, United States
| | | |
Collapse
|
19
|
Zhou Q, Shou H, Qiao S, Cao Y, Zhang P, Wei S, Chen S, Wu X, Song L. Analyzing the Active Site and Predicting the Overall Activity of Alloy Catalysts. J Am Chem Soc 2024; 146:15167-15175. [PMID: 38717376 DOI: 10.1021/jacs.4c01542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
As one of the potential catalysts, disordered solid solution alloys can offer a wealth of catalytic sites. However, accurately evaluating their activity localization structure and overall activity from each individual site remains a formidable challenge. Herein, an approach based on density functional theory and machine learning was used to obtain a large number of sites of the Pt-Ru alloy as the model multisite catalyst for the hydrogen evolution reaction. Subsequently, a series of statistical approaches were employed to unveil the relationship between the geometric structure and overall activity. Based on the radial frequency distribution of metal elements and the distribution of ΔGH, we have identified the surface and subsurface sites occupied by Pt and Ru, respectively, as the most active sites. Particularly, the concept of equivalent site ratio predicts that the overall activity is highest when the Ru content is 20-30%. Furthermore, a series of Pt-Ru alloys were synthesized to validate the proposed theory. This provides crucial insights into understanding the origin of catalytic activity in alloys and thus will better guide the rational development of targeted multisite catalysts.
Collapse
Affiliation(s)
- Quan Zhou
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, CAS Center for Excellence in Nanoscience, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230029, China
| | - Hongwei Shou
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, CAS Center for Excellence in Nanoscience, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230029, China
- School of Chemistry and Materials Sciences, Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei 230026, China
| | - Sicong Qiao
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, CAS Center for Excellence in Nanoscience, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230029, China
| | - Yuyang Cao
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, CAS Center for Excellence in Nanoscience, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230029, China
| | - Pengjun Zhang
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, CAS Center for Excellence in Nanoscience, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230029, China
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Shiqiang Wei
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, CAS Center for Excellence in Nanoscience, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230029, China
| | - Shuangming Chen
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, CAS Center for Excellence in Nanoscience, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230029, China
| | - Xiaojun Wu
- School of Chemistry and Materials Sciences, Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Li Song
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, CAS Center for Excellence in Nanoscience, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230029, China
- Zhejiang Institute of Photonelectronics, Jinhua, Zhejiang 321004, China
| |
Collapse
|
20
|
Macedo DS, Rodopoulos T, Vepsäläinen M, Bajaj S, Hogan CF. More Accurate Measurement of Return Peak Current in Cyclic Voltammetry Using Diffusional Baseline Fitting. Anal Chem 2024; 96:1530-1537. [PMID: 38226588 DOI: 10.1021/acs.analchem.3c04181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
The difficulty associated with accurately measuring the height of the back peak (Ipb) in cyclic voltammetry (CV) has long plagued electrochemists. Most commonly, Ipb is measured by extrapolating a linear fit from a selected region of a voltammogram after the switching potential (Eλ), but without substantial separation between the peak potential (Ep) and Eλ, this approach always overestimates the background current and so underestimates Ipb. Moreover, experimental conditions can present challenges for this method as an appropriate region for linear fitting is often lacking due to neighboring peaks or solvent electrolysis current. Here, we present a new method for finding the baseline current for the back peak in CV experiments. By examining the CV data as a function of time rather than potential, it is possible to fit a generalized Cottrell or Shoup-Szabo equation to the current decay of the forward peak and extrapolate this function as a baseline for the return peak. This approach was tested by using simulated and experimental data in a variety of conditions, including data demonstrating linear and radial diffusional control. We found that the method allows for more accurate determination of back peak currents, especially when linear fits are complicated by narrow electrochemical windows or radial diffusion. A user-friendly Python program was written to automatically find an appropriate fitting range for this analysis and measure peak currents. We have made this program available to the electrochemical community at large.
Collapse
Affiliation(s)
- David S Macedo
- Mineral Resources, CSIRO, Melbourne, Victoria 3168, Australia
- Department of Biochemistry and Chemistry, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Theo Rodopoulos
- Mineral Resources, CSIRO, Melbourne, Victoria 3168, Australia
| | | | - Samridhi Bajaj
- Department of Biochemistry and Chemistry, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Conor F Hogan
- Department of Biochemistry and Chemistry, La Trobe University, Melbourne, Victoria 3086, Australia
| |
Collapse
|
21
|
Katiyar AK, Hoang AT, Xu D, Hong J, Kim BJ, Ji S, Ahn JH. 2D Materials in Flexible Electronics: Recent Advances and Future Prospectives. Chem Rev 2024; 124:318-419. [PMID: 38055207 DOI: 10.1021/acs.chemrev.3c00302] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Flexible electronics have recently gained considerable attention due to their potential to provide new and innovative solutions to a wide range of challenges in various electronic fields. These electronics require specific material properties and performance because they need to be integrated into a variety of surfaces or folded and rolled for newly formatted electronics. Two-dimensional (2D) materials have emerged as promising candidates for flexible electronics due to their unique mechanical, electrical, and optical properties, as well as their compatibility with other materials, enabling the creation of various flexible electronic devices. This article provides a comprehensive review of the progress made in developing flexible electronic devices using 2D materials. In addition, it highlights the key aspects of materials, scalable material production, and device fabrication processes for flexible applications, along with important examples of demonstrations that achieved breakthroughs in various flexible and wearable electronic applications. Finally, we discuss the opportunities, current challenges, potential solutions, and future investigative directions about this field.
Collapse
Affiliation(s)
- Ajit Kumar Katiyar
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Anh Tuan Hoang
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Duo Xu
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Juyeong Hong
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Beom Jin Kim
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Seunghyeon Ji
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jong-Hyun Ahn
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
22
|
Di Mari GM, Scuderi M, Lanza G, Salluzzo MG, Salemi M, Caraci F, Bruno E, Strano V, Mirabella S, Scandurra A. Pain-Free Alpha-Synuclein Detection by Low-Cost Hierarchical Nanowire Based Electrode. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:170. [PMID: 38251136 PMCID: PMC10819810 DOI: 10.3390/nano14020170] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024]
Abstract
Analytical methods for the early detection of the neurodegenerative biomarker for Parkinson's disease (PD), α-synuclein, are time-consuming and invasive, and require skilled personnel and sophisticated and expensive equipment. Thus, a pain-free, prompt and simple α-synuclein biosensor for detection in plasma is highly demanded. In this paper, an α-synuclein electrochemical biosensor based on hierarchical polyglutamic acid/ZnO nanowires decorated by gold nanoparticles, assembled as nanostars (NSs), for the determination of α-synuclein in human plasma is proposed. ZnO NSs were prepared by chemical bath deposition (CBD) and decorated with electrodeposited Au nanoparticles (Au NPs). Then, electro-polymerized glutamic acid was grown and functionalized with anti-α-synuclein. A synergistic enhancement of electrode sensitivity was observed when Au NPs were embedded into ZnO NSs. The analytical performance of the biosensor was evaluated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), using the Fe(II)(CN)64-/Fe(III)(CN)63- probe. The charge transfer resistance after α-synuclein recognition was found to be linear, with a concentration in the range of 0.5 pg·mL-1 to 10 pg·mL-1, a limit of detection of 0.08 pg·mL-1, and good reproducibility (5% variation) and stability (90%). The biosensor was also shown to reliably discriminate between healthy plasma and PD plasma. These results suggest that the proposed biosensor provides a rapid, quantitative and high-sensitivity result of the α-synuclein content in plasma, and represents a feasible tool capable of accelerating the early and non-invasive identification of Parkinson's disease.
Collapse
Affiliation(s)
- Gisella M. Di Mari
- Department of Physics and Astronomy, University of Catania, “Ettore Majorana”, Via Santa Sofia 64, 95123 Catania, Italy; (G.M.D.M.); (E.B.); (S.M.)
- Institute for Microelectronics and Microsystems of National Research Council of Italy (CNR-IMM), Catania (University) UNIT, Via S. Sofia 64, 95123 Catania, Italy;
| | - Mario Scuderi
- Institute for Microelectronics and Microsystems of National Research Council of Italy (CNR-IMM), VIII Strada 5, 95121 Catania, Italy;
| | - Giuseppe Lanza
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy;
- Oasi Research Institute-IRCCS, Via Conte Ruggero 73, 94018 Troina, Italy; (M.G.S.); (M.S.); (F.C.)
| | - Maria Grazia Salluzzo
- Oasi Research Institute-IRCCS, Via Conte Ruggero 73, 94018 Troina, Italy; (M.G.S.); (M.S.); (F.C.)
| | - Michele Salemi
- Oasi Research Institute-IRCCS, Via Conte Ruggero 73, 94018 Troina, Italy; (M.G.S.); (M.S.); (F.C.)
| | - Filippo Caraci
- Oasi Research Institute-IRCCS, Via Conte Ruggero 73, 94018 Troina, Italy; (M.G.S.); (M.S.); (F.C.)
- Department of Drug and Health Sciences, University of Catania, Via Santa Sofia 64, 95123 Catania, Italy
| | - Elena Bruno
- Department of Physics and Astronomy, University of Catania, “Ettore Majorana”, Via Santa Sofia 64, 95123 Catania, Italy; (G.M.D.M.); (E.B.); (S.M.)
- Institute for Microelectronics and Microsystems of National Research Council of Italy (CNR-IMM), Catania (University) UNIT, Via S. Sofia 64, 95123 Catania, Italy;
| | - Vincenzina Strano
- Institute for Microelectronics and Microsystems of National Research Council of Italy (CNR-IMM), Catania (University) UNIT, Via S. Sofia 64, 95123 Catania, Italy;
| | - Salvo Mirabella
- Department of Physics and Astronomy, University of Catania, “Ettore Majorana”, Via Santa Sofia 64, 95123 Catania, Italy; (G.M.D.M.); (E.B.); (S.M.)
- Institute for Microelectronics and Microsystems of National Research Council of Italy (CNR-IMM), Catania (University) UNIT, Via S. Sofia 64, 95123 Catania, Italy;
| | - Antonino Scandurra
- Department of Physics and Astronomy, University of Catania, “Ettore Majorana”, Via Santa Sofia 64, 95123 Catania, Italy; (G.M.D.M.); (E.B.); (S.M.)
- Institute for Microelectronics and Microsystems of National Research Council of Italy (CNR-IMM), Catania (University) UNIT, Via S. Sofia 64, 95123 Catania, Italy;
- Research Unit of the University of Catania, National Interuniversity Consortium of Materials Science and Technology (INSTM-UdR of Catania), Via Santa Sofia 64, 95125 Catania, Italy
| |
Collapse
|
23
|
Xu S, Eisenberg R, Song Z, Huang H. Coupled chemical reactions: Effects of electric field, diffusion, and boundary control. Phys Rev E 2023; 108:064413. [PMID: 38243466 DOI: 10.1103/physreve.108.064413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/31/2023] [Indexed: 01/21/2024]
Abstract
Chemical reactions involve the movement of charges, and this paper presents a mathematical model for describing chemical reactions in electrolytes. The model is developed using an energy variational method that aligns with classical thermodynamics principles. It encompasses both electrostatics and chemical reactions within consistently defined energetic and dissipative functionals. Furthermore, the energy variation method is extended to account for open systems that involve the input and output of charge and mass. Such open systems have the capability to convert one form of input energy into another form of output energy. In particular, a two-domain model is developed to study a reaction system with self-regulation and internal switching, which plays a vital role in the electron transport chain of mitochondria responsible for ATP generation-a crucial process for sustaining life. Simulations are conducted to explore the influence of electric potential on reaction rates and switching dynamics within the two-domain system. It shows that the electric potential inhibits the oxidation reaction while accelerating the reduction reaction.
Collapse
Affiliation(s)
- Shixin Xu
- Zu Chongzhi Center for Mathematics and Computational Sciences, Duke Kunshan University, 8 Duke Ave, Kunshan, Jiangsu 215316, China
| | - Robert Eisenberg
- Department of Applied Mathematics, Illinois Institute of Technology, Chicago, Illinois 60616, USA and Department of Physiology and Biophysics, Rush University, Chicago, Ilinois 60612, USA
| | - Zilong Song
- Math and Statistics Department, Utah State University, Old Main Hill Logan, Utah 84322, USA
| | - Huaxiong Huang
- Research Center for Mathematics, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong, 519088, China; Guangdong Provincial Key Laboratory of Interdisciplinary Research and Application for Data Science, BNU-HKBU United International College, Zhuhai, Guangdong 519088, China; Laboratory of Mathematics and Complex Systems, MOE, Beijing Normal University, Beijing 100875, China; and Department of Mathematics and Statistics York University, Toronto, Ontario, Canada M3J 1P3
| |
Collapse
|
24
|
Wu L, Ning M, Xing X, Wang Y, Zhang F, Gao G, Song S, Wang D, Yuan C, Yu L, Bao J, Chen S, Ren Z. Boosting Oxygen Evolution Reaction of (Fe,Ni)OOH via Defect Engineering for Anion Exchange Membrane Water Electrolysis Under Industrial Conditions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2306097. [PMID: 37607336 DOI: 10.1002/adma.202306097] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/10/2023] [Indexed: 08/24/2023]
Abstract
Developing non-precious catalysts with long-term catalytic durability and structural stability under industrial conditions is the key to practical alkaline anion exchange membrane (AEM) water electrolysis. Here, an energy-saving approach is proposed to synthesize defect-rich iron nickel oxyhydroxide for stability and efficiency toward the oxygen evolution reaction. Benefiting from in situ cation exchange, the nanosheet-nanoflake-structured catalyst is homogeneously embedded in, and tightly bonded to, its substrate, making it ultrastable at high current densities. Experimental and theoretical calculation results reveal that the introduction of Ni in FeOOH reduces the activation energy barrier for the catalytic reaction and that the purposely created oxygen defects not only ensure the exposure of active sites and maximize the effective catalyst surface but also modulate the local coordination environment and chemisorption properties of both Fe and Ni sites, thus lowering the energy barrier from *O to *OOH. Consequently, the optimized d-(Fe,Ni)OOH catalyst exhibits outstanding catalytic activity with long-term durability under both laboratory and industrial conditions. The large-area d-(Fe,Ni)OOH||NiMoN pair requires 1.795 V to reach a current density of 500 mA cm-2 at an absolute current of 12.5 A in an AEM electrolyzer for overall water electrolysis, showing great potential for industrial water electrolysis.
Collapse
Affiliation(s)
- Libo Wu
- Department of Physics and Texas Center for Superconductivity at the University of Houston (TcSUH), University of Houston, Houston, TX, 77204, USA
| | - Minghui Ning
- Department of Physics and Texas Center for Superconductivity at the University of Houston (TcSUH), University of Houston, Houston, TX, 77204, USA
| | - Xinxin Xing
- Department of Electrical and Computer Engineering and Texas Center for Superconductivity at the University of Houston (TcSUH), University of Houston, Houston, TX, 77204, USA
- School of Materials and Energy, Yunnan University, Kunming, Yunnan, 650091, China
| | - Yu Wang
- Department of Physics and Texas Center for Superconductivity at the University of Houston (TcSUH), University of Houston, Houston, TX, 77204, USA
- Materials Science and Engineering Program, University of Houston, Houston, TX, 77204, USA
| | - Fanghao Zhang
- Department of Physics and Texas Center for Superconductivity at the University of Houston (TcSUH), University of Houston, Houston, TX, 77204, USA
| | - Guanhui Gao
- Department of Materials Science and Nano-Engineering, Rice University, Houston, TX, 77005, USA
| | - Shaowei Song
- Department of Physics and Texas Center for Superconductivity at the University of Houston (TcSUH), University of Houston, Houston, TX, 77204, USA
| | - Dezhi Wang
- Department of Physics and Texas Center for Superconductivity at the University of Houston (TcSUH), University of Houston, Houston, TX, 77204, USA
| | - Chuqing Yuan
- Department of Physics and Texas Center for Superconductivity at the University of Houston (TcSUH), University of Houston, Houston, TX, 77204, USA
| | - Luo Yu
- Department of Physics and Texas Center for Superconductivity at the University of Houston (TcSUH), University of Houston, Houston, TX, 77204, USA
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, Hubei, 430074, China
| | - Jiming Bao
- Department of Electrical and Computer Engineering and Texas Center for Superconductivity at the University of Houston (TcSUH), University of Houston, Houston, TX, 77204, USA
| | - Shuo Chen
- Department of Physics and Texas Center for Superconductivity at the University of Houston (TcSUH), University of Houston, Houston, TX, 77204, USA
| | - Zhifeng Ren
- Department of Physics and Texas Center for Superconductivity at the University of Houston (TcSUH), University of Houston, Houston, TX, 77204, USA
| |
Collapse
|
25
|
Chen S, Zou J, Pan X, Zeng S, Liu Y, Ye J, Lu L, Yang S, Zhan G. ZIF-67-Derived Co/N-Doped Carbon-Functionalized MXene for Enhanced Electrochemical Sensing of Carbendazim. Molecules 2023; 28:7347. [PMID: 37959766 PMCID: PMC10650760 DOI: 10.3390/molecules28217347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/22/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Herein, ZIF-67-derived Co and N-doped carbon (Co/NC) particle-modified multilayer MXene (MXene@Co/NC) was developed as remarkable electrode material for carbendazim (CBZ) detection. MXene as a substrate provides an excellent conductive framework and plentiful accessibility sites. Co/NC particles embedding in MXene can not only prevent the interlayer stacking of MXene but also contribute a great deal of metal catalytic active sites and finally improve the adsorption and catalytic properties of the composite. Accordingly, the MXene@Co/NC electrode displays excellent electrocatalytic activity toward CBZ oxidation. Experimental parameters such as pH value, accumulation time, MXene@Co/NC modification volume and constituent materials' mass ratios were optimized. Under optimal conditions, the as-prepared sensor based on MXene@Co/NC holds a broad linearity range from 0.01 μM to 45.0 μM with a low limit of detection (LOD) of 3.3 nM (S/N = 3, S means the detection signal, while N represents the noise of the instrument). Moreover, the proposed sensor displays excellent anti-interference ability, superior reproducibility, excellent stability, and successfully achieves actual applications for CBZ detection in a lettuce sample.
Collapse
Affiliation(s)
- Shuxian Chen
- Laboratory of Quality and Safety Risk Assessment on Agro-Products (Zhanjiang), Ministry of Agriculture and Rural Affairs PRC, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jiamin Zou
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaowei Pan
- Laboratory of Quality and Safety Risk Assessment on Agro-Products (Zhanjiang), Ministry of Agriculture and Rural Affairs PRC, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China
| | - Shaodong Zeng
- Laboratory of Quality and Safety Risk Assessment on Agro-Products (Zhanjiang), Ministry of Agriculture and Rural Affairs PRC, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China
| | - Yuanjing Liu
- Laboratory of Quality and Safety Risk Assessment on Agro-Products (Zhanjiang), Ministry of Agriculture and Rural Affairs PRC, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China
| | - Jianzhi Ye
- Laboratory of Quality and Safety Risk Assessment on Agro-Products (Zhanjiang), Ministry of Agriculture and Rural Affairs PRC, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China
| | - Limin Lu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shu Yang
- Laboratory of Quality and Safety Risk Assessment on Agro-Products (Zhanjiang), Ministry of Agriculture and Rural Affairs PRC, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China
- College of Tropical Crops, Yunnan Agricultural University, Pu’er 665000, China
| | - Guoyan Zhan
- Laboratory of Quality and Safety Risk Assessment on Agro-Products (Zhanjiang), Ministry of Agriculture and Rural Affairs PRC, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China
| |
Collapse
|
26
|
Huang M, Schwacke M, Onen M, Del Alamo J, Li J, Yildiz B. Electrochemical Ionic Synapses: Progress and Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2205169. [PMID: 36300807 DOI: 10.1002/adma.202205169] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Artificial neural networks based on crossbar arrays of analog programmable resistors can address the high energy challenge of conventional hardware in artificial intelligence applications. However, state-of-the-art two-terminal resistive switching devices based on conductive filament formation suffer from high variability and poor controllability. Electrochemical ionic synapses are three-terminal devices that operate by electrochemical and dynamic insertion/extraction of ions that control the electronic conductivity of a channel in a single solid-solution phase. They are promising candidates for programmable resistors in crossbar arrays because they have shown uniform and deterministic control of electronic conductivity based on ion doping, with very low energy consumption. Here, the desirable specifications of these programmable resistors are presented. Then, an overview of the current progress of devices based on Li+ , O2- , and H+ ions and material systems is provided. Achieving nanosecond speed, low operation voltage (≈1 V), low energy consumption, with complementary metal-oxide-semiconductor compatibility all simultaneously remains a challenge. Toward this goal, a physical model of the device is constructed to provide guidelines for the desired material properties to overcome the remaining challenges. Finally, an outlook is provided, including strategies to advance materials toward the desirable properties and the future opportunities for electrochemical ionic synapses.
Collapse
Affiliation(s)
- Mantao Huang
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Miranda Schwacke
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Murat Onen
- Microsystems Technology Laboratories, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jesús Del Alamo
- Microsystems Technology Laboratories, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ju Li
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Bilge Yildiz
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
27
|
Li S, Ming P, Zhang J, Zhang Y, Yan L. Concurrently Fabricating Precision Meso- and Microscale Cross-Scale Arrayed Metal Features and Components by Using Wire-Anode Scanning Electroforming Technique. MICROMACHINES 2023; 14:mi14050979. [PMID: 37241603 DOI: 10.3390/mi14050979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023]
Abstract
In order to improve the thickness uniformity of the electroformed metal layer and components, a new electroforming technique is proposed-wire-anode scanning electroforming (WAS-EF). WAS-EF uses an ultrafine inert anode so that the interelectrode voltage/current is superimposed upon a very narrow ribbon-shaped area at the cathode, thus ensuring better localization of the electric field. The anode of WAS-EF is in constant motion, which reduces the effect of the current edge effect. The stirring paddle of WAS-EF can affect the fluid flow in the microstructure, and improve the mass transfer effect inside the structure. The simulation results show that, when the depth-to-width ratio decreases from 1 to 0.23, the depth of fluid flow in the microstructure can increase from 30% to 100%. Experimental results show that. Compared with the traditional electroforming method, the single metal feature and arrayed metal components prepared by WAS-EF are respectively improved by 15.5% and 11.4%.
Collapse
Affiliation(s)
- Shicheng Li
- School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Pingmei Ming
- School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Junzhong Zhang
- School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Yunyan Zhang
- School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Liang Yan
- School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| |
Collapse
|
28
|
Zheng J, Kang Z, Han B, Mo J. Three-Dimensional Numerical Simulation of the Performance and Transport Phenomena of Oxygen Evolution Reactions in a Proton Exchange Membrane Water Electrolyzer. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1310. [PMID: 36770315 PMCID: PMC9919129 DOI: 10.3390/ma16031310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Proton exchange membrane (PEM) water electrolysis, which is one of methods of hydrogen production with the most potential, has attracted more attention due to its energy conversion and storage potential. In this paper, a steady state, three-dimensional mathematical model coupled with the electrochemical and mass transfer physical fields for a PEM water electrolyzer was established. The influence of the different operation parameters on the cell performance was discussed. Moreover, the different patterns of the flow field, such as parallel, serpentine, multi-serpentine, and interdigitate flow fields, were simulated to reveal their influence on the mass transfer and current distribution and how they consequently affected the cell performance. The results of the numerical modeling were in good agreement with the experimental data. The results demonstrated that a higher temperature led to a better mass transfer, current distribution, and cell performance. By comparing the polarization curve, current, velocity, and pressure distribution, the results also indicated that the PEM water electrolyzer with a parallel flow field had the best performance. The results in this study can help in optimizing the design of PEM water electrolyzers.
Collapse
Affiliation(s)
- Jinsong Zheng
- Department of Aeronautics and Astronautics, Fudan University, Shanghai 200433, China
| | - Zhenye Kang
- School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Bo Han
- Department of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China
| | - Jingke Mo
- Department of Aeronautics and Astronautics, Fudan University, Shanghai 200433, China
| |
Collapse
|
29
|
Scandurra A, Iacono V, Boscarino S, Scalese S, Grimaldi MG, Ruffino F. Alkaline Electro-Sorption of Hydrogen Onto Nanoparticles of Pt, Pd, Pt 80Pd 20 and Cu(OH) 2 Obtained by Pulsed Laser Ablation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:561. [PMID: 36770523 PMCID: PMC9919309 DOI: 10.3390/nano13030561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Recently, hydrogen evolution reaction (HER) in alkaline media has received a renewed interest both in the fundamental research as well as in practical applications. Pulsed Laser Ablation in Liquid (PLAL) has been demonstrated as a very useful technique for the unconventional preparation of nanomaterials with amazing electro-catalyst properties toward HER, compared to those of nanomaterials prepared by conventional methods. In this paper, we compared the electro-sorption properties of hydrogen in alkaline media by Pt, Pd, Pt80Pd20, and Cu(OH)2 nanoparticles (NPs) prepared by PLAL. The NPs were placed onto graphene paper (GP). Noble metal particles have an almost spherical shape, whereas Cu(OH)2 presents a flower-bud-like shape, formed by very thin nanowalls. XPS analyses of Cu(OH)2 are compatible with a high co-ordination of Cu(II) centers by OH and H2O. A thin layer of perfluorosulfone ionomer placed onto the surface of nanoparticles (NPs) enhances their distribution on the surface of graphene paper (GP), thereby improving their electro-catalytic properties. The proposed mechanisms for hydrogen evolution reaction (HER) on noble metals and Cu(OH)2 are in line with the adsorption energies of H, OH, and H2O on the surfaces of Pt, Pd, and oxidized copper. A significant spillover mechanism was observed for the noble metals when supported by graphene paper. Cu(OH)2 prepared by PLAL shows a competitive efficiency toward HER that is attributed to its high hydrophilicity which, in turn, is due to the high co-ordination of Cu(II) centers in very thin Cu(OH)2 layers by OH- and H2O. We propose the formation of an intermediate complex with water which can reduce the barrier energy of water adsorption and dissociation.
Collapse
Affiliation(s)
- Antonino Scandurra
- Department of Physics and Astronomy “Ettore Majorana”, University of Catania, via Santa Sofia 64, 95123 Catania, Italy
- Institute for Microelectronics and Microsystems of National Research Council of Italy (CNR-IMM, Catania University Unit), via Santa Sofia 64, 95123 Catania, Italy
- Research Unit of the University of Catania, National Interuniversity Consortium of Materials Science and Technology (INSTM-UdR of Catania), via S. Sofia 64, 95125 Catania, Italy
| | - Valentina Iacono
- Department of Physics and Astronomy “Ettore Majorana”, University of Catania, via Santa Sofia 64, 95123 Catania, Italy
- Institute for Microelectronics and Microsystems of National Research Council of Italy (CNR-IMM, Catania University Unit), via Santa Sofia 64, 95123 Catania, Italy
| | - Stefano Boscarino
- Department of Physics and Astronomy “Ettore Majorana”, University of Catania, via Santa Sofia 64, 95123 Catania, Italy
- Institute for Microelectronics and Microsystems of National Research Council of Italy (CNR-IMM, Catania University Unit), via Santa Sofia 64, 95123 Catania, Italy
| | - Silvia Scalese
- Institute for Microelectronics and Microsystems of National Research Council of Italy (CNR-IMM), Ottava Strada, 5 (Zona Industriale), 95121 Catania, Italy
| | - Maria Grazia Grimaldi
- Department of Physics and Astronomy “Ettore Majorana”, University of Catania, via Santa Sofia 64, 95123 Catania, Italy
- Institute for Microelectronics and Microsystems of National Research Council of Italy (CNR-IMM, Catania University Unit), via Santa Sofia 64, 95123 Catania, Italy
| | - Francesco Ruffino
- Department of Physics and Astronomy “Ettore Majorana”, University of Catania, via Santa Sofia 64, 95123 Catania, Italy
- Institute for Microelectronics and Microsystems of National Research Council of Italy (CNR-IMM, Catania University Unit), via Santa Sofia 64, 95123 Catania, Italy
- Research Unit of the University of Catania, National Interuniversity Consortium of Materials Science and Technology (INSTM-UdR of Catania), via S. Sofia 64, 95125 Catania, Italy
| |
Collapse
|
30
|
Hopsort G, Carmo DPD, Latapie L, Loubière K, Serrano KG, Tzedakis T. Progress toward a better understanding of the urea oxidation by electromediation of Ni(II)/Ni(III) system in alkaline media. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.141898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
31
|
Xu X, Liu Y, Kapitanova OO, Song Z, Sun J, Xiong S. Electro-Chemo-Mechanical Failure of Solid Electrolytes Induced by Growth of Internal Lithium Filaments. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2207232. [PMID: 36148601 DOI: 10.1002/adma.202207232] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Growth of lithium (Li) filaments within solid electrolytes, leading to mechanical degradation of the electrolyte and even short circuit of the cell under high current density, is a great barrier to commercialization of solid-state Li-metal batteries. Understanding of this electro-chemo-mechanical phenomenon is hindered by the challenge of tracking local fields inside the solid electrolyte. Here, a multiphysics simulation aiming to investigate evolution of the mechanical failure of the solid electrolyte induced by the internal growth of Li is reported. Visualization of local stress, damage, and crack propagation within the solid electrolyte enables examination of factors dominating the degradation process, including the geometry, number, and size of Li filaments and voids in the electrolyte. Relative damage induced by locally high stress is found to preferentially occur in the region of the electrolyte/Li interface having great fluctuations. A high number density of Li filaments or voids triggers integration of damage and crack networks by enhanced propagation. This model is built on coupling of mechanical and electrochemical processes for internal plating of Li, revealing evolution of multiphysical fields that can barely be captured by the state-of-the-art experimental techniques. Understanding mechanical degradation of solid electrolytes with the presence of Li filaments paves the way to design advanced solid electrolytes for future solid-state Li-metal batteries.
Collapse
Affiliation(s)
- Xieyu Xu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yangyang Liu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Olesya O Kapitanova
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Zhongxiao Song
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jun Sun
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Shizhao Xiong
- Department of Physics, Chalmers University of Technology, Göteborg, SE 412 96, Sweden
| |
Collapse
|
32
|
Corva M, Blanc N, Bondue CJ, Tschulik K. Differential Tafel Analysis: A Quick and Robust Tool to Inspect and Benchmark Charge Transfer in Electrocatalysis. ACS Catal 2022; 12:13805-13812. [DOI: 10.1021/acscatal.2c03581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Manuel Corva
- Analytical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum44780, Germany
| | - Niclas Blanc
- Analytical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum44780, Germany
| | - Christoph J. Bondue
- Analytical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum44780, Germany
| | - Kristina Tschulik
- Analytical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum44780, Germany
- Max-Planck-Institut für Eisenforschung, Max-Planck-Straße 1, Düsseldorf40237, Germany
| |
Collapse
|
33
|
Zhang Q, Su Y, Shi Z, Yang X, Sun J. Artificial Interphase Layer for Stabilized Zn Anodes: Progress and Prospects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203583. [PMID: 35996805 DOI: 10.1002/smll.202203583] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/23/2022] [Indexed: 06/15/2023]
Abstract
The burgeoning Li-ion battery is regarded as a powerful energy storage system by virtue of its high energy density. However, inescapable issues concerning safety and cost aspects retard its prospect in certain application scenarios. Accordingly, strenuous efforts have been devoted to the development of the emerging aqueous Zn-ion battery (AZIB) as an alternative to inflammable organic batteries. In particular, the instability from the anode side severely impedes the commercialization of AZIB. Constructing an artificial interphase layer (AIL) has been widely employed as an effective strategy to stabilize the Zn anode. This review specializes in the state-of-the-art of AIL design for Zn anode protection, encompassing the preparation methods, mechanism investigations, and device performances based on the classification of functional materials. To begin with, the origins of Zn instability are interpreted from the perspective of electrical field, mass transfer, and nucleation process, followed by a comprehensive summary with respect to functions of AIL and its designing criteria. In the end, current challenges and future outlooks based upon theoretical and experimental considerations are included.
Collapse
Affiliation(s)
- Qihui Zhang
- College of Energy, Soochow Institute for Energy and Materials Innovations, Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou, 215006, China
| | - Yiwen Su
- College of Energy, Soochow Institute for Energy and Materials Innovations, Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou, 215006, China
| | - Zixiong Shi
- College of Energy, Soochow Institute for Energy and Materials Innovations, Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou, 215006, China
| | - Xianzhong Yang
- College of Energy, Soochow Institute for Energy and Materials Innovations, Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou, 215006, China
| | - Jingyu Sun
- College of Energy, Soochow Institute for Energy and Materials Innovations, Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou, 215006, China
| |
Collapse
|
34
|
Yu Q, Wu D, Min H, Ma Y, Liu Y. Research on electrochemical behaviour of reference electrodes for corrosion test under high hydrostatic pressure for simulating deep-sea. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Non-invasive imaging of ion concentration distribution around cell spheroids by electrical impedance tomographic sensor printed on circuit board under temporal compensation by ion transport impedance model. Biosens Bioelectron 2022; 212:114432. [DOI: 10.1016/j.bios.2022.114432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/29/2022] [Accepted: 05/25/2022] [Indexed: 11/20/2022]
|
36
|
Lukács Z, Kristóf T. Determination of kinetic parameters from a new quadratic approximation of the Butler-Volmer equation. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Scandurra A, Censabella M, Gulino A, Grimaldi MG, Ruffino F. Electro-Sorption of Hydrogen by Platinum, Palladium and Bimetallic Pt-Pd Nanoelectrode Arrays Synthesized by Pulsed Laser Ablation. MICROMACHINES 2022; 13:mi13060963. [PMID: 35744577 PMCID: PMC9228338 DOI: 10.3390/mi13060963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/08/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022]
Abstract
Sustainable and renewable production of hydrogen by water electrolysers is expected to be one of the most promising methods to satisfy the ever-growing demand for renewable energy production and storage. Hydrogen evolution reaction in alkaline electrolyte is still challenging due to its slow kinetic properties. This study proposes new nanoelectrode arrays for high Faradaic efficiency of the electro-sorption reaction of hydrogen in an alkaline electrolyte. A comparative study of the nanoelectrode arrays, consisting of platinum or palladium or bimetallic nanoparticles (NPs) Pt80Pd20 (wt.%), obtained by nanosecond pulsed laser ablation in aqueous environment, casted onto graphene paper, is proposed. The effects of thin films of perfluoro-sulfonic ionomer on the material morphology, nanoparticles dispersion, and electrochemical performance have been investigated. The NPs-GP systems have been characterized by field emission scanning electron microscopy, Rutherford backscattering spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, cyclic voltammetry, and galvanostatic charge-discharge cycles. Faradaic efficiency up to 86.6% and hydrogen storage capacity up to 6 wt.% have been obtained by the Pt-ionomer and Pd/Pt80Pd20 systems, respectively.
Collapse
Affiliation(s)
- Antonino Scandurra
- Department of Physics and Astronomy “Ettore Majorana”, University of Catania, Via Santa Sofia 64, 95123 Catania, Italy; (M.C.); (M.G.G.); (F.R.)
- Institute for Microelectronics and Microsystems of National Research Council of Italy (CNR-IMM), Via Santa Sofia 64, 95123 Catania, Italy
- Research Unit of the University of Catania, National Interuniversity Consortium of Materials Science and Technology (INSTM-UdR of Catania), Viale Andrea Doria 8 and Via S. Sofia 64, 95125 Catania, Italy;
- Correspondence:
| | - Maria Censabella
- Department of Physics and Astronomy “Ettore Majorana”, University of Catania, Via Santa Sofia 64, 95123 Catania, Italy; (M.C.); (M.G.G.); (F.R.)
- Institute for Microelectronics and Microsystems of National Research Council of Italy (CNR-IMM), Via Santa Sofia 64, 95123 Catania, Italy
| | - Antonino Gulino
- Research Unit of the University of Catania, National Interuniversity Consortium of Materials Science and Technology (INSTM-UdR of Catania), Viale Andrea Doria 8 and Via S. Sofia 64, 95125 Catania, Italy;
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95123 Catania, Italy
| | - Maria Grazia Grimaldi
- Department of Physics and Astronomy “Ettore Majorana”, University of Catania, Via Santa Sofia 64, 95123 Catania, Italy; (M.C.); (M.G.G.); (F.R.)
- Institute for Microelectronics and Microsystems of National Research Council of Italy (CNR-IMM), Via Santa Sofia 64, 95123 Catania, Italy
| | - Francesco Ruffino
- Department of Physics and Astronomy “Ettore Majorana”, University of Catania, Via Santa Sofia 64, 95123 Catania, Italy; (M.C.); (M.G.G.); (F.R.)
- Institute for Microelectronics and Microsystems of National Research Council of Italy (CNR-IMM), Via Santa Sofia 64, 95123 Catania, Italy
- Research Unit of the University of Catania, National Interuniversity Consortium of Materials Science and Technology (INSTM-UdR of Catania), Viale Andrea Doria 8 and Via S. Sofia 64, 95125 Catania, Italy;
| |
Collapse
|
38
|
Three-Dimensional Modeling and Performance Study of High Temperature Solid Oxide Electrolysis Cell with Metal Foam. SUSTAINABILITY 2022. [DOI: 10.3390/su14127064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Optimizing the flow field of solid oxide electrolysis cells (SOECs) has a significant effect on improving performance. In this study, the effect of metal foam in high temperature SOEC electrolysis steam is investigated by a three-dimensional model. The simulation results show that the SOEC performance is improved by using metal foam as a gas flow field. The steam conversion rate of the SOEC increases from 72.21% to 76.18% and the diffusion flux of steam increases from 2.3 × 10−4 kg/(m2∙s) to 2.5 × 10−4 kg/(m2∙s) at 10,000 A/m2. In addition, the permeability, temperature, steam mole fraction, and gas utilization are investigated to understand the effect of the improved performance of the SOEC with metal foam. The results of this study provide a baseline for the optimal design of SOECs with metal foam.
Collapse
|
39
|
Yang TT, Saidi WA. Reconciling the Volcano Trend with the Butler-Volmer Model for the Hydrogen Evolution Reaction. J Phys Chem Lett 2022; 13:5310-5315. [PMID: 35675155 DOI: 10.1021/acs.jpclett.2c01411] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The volcano trend has been widely utilized to forecast new optimum catalysts in computational chemistry while the Butler-Volmer relationship is the norm to explain current-potential characteristics from cyclic voltammetry in analytical chemistry. Herein, we develop an electrochemical model for hydrogen evolution reaction exchange currents that reconciles device-level chemistry, atomic-level volcano trend, and the Butler-Volmer relation. We show that the model is a function of the easy-to-compute hydrogen adsorption energy invariably obtained from first-principles atomic simulations. In addition, the model reproduces with high fidelity the experimental exchange currents for elemental metal catalysts over 15 orders of magnitude and is consistent with the recently proposed analytical model based on a data-driven approach. Our findings based on fundamental electrochemistry principles are general and can be applied to other reactions including CO2 reduction, metal oxidation, and lithium (de)intercalation reactions.
Collapse
Affiliation(s)
- Timothy T Yang
- Department of Materials Science and Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Wissam A Saidi
- Department of Materials Science and Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
40
|
Mourouga G, Schaerer RP, Yang X, Janoschka T, Schmidt TJ, Schumacher JO. Physics-based 0D-U-I-SoC cell performance model for aqueous organic redox flow batteries. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
41
|
Photocatalytic Fuel Cells for Simultaneous Wastewater Treatment and Power Generation: Mechanisms, Challenges, and Future Prospects. ENERGIES 2022. [DOI: 10.3390/en15093216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Technological advancement is accompanied by excessive consumption of fossil fuels and affluent uses of chemical substances in many sectors, including transportation and manufacturing companies, and so on. Being an exhaustible resource, the excessive use of fossil fuels and of chemical substances may lead to a serious energy crisis in the long run, and it may additionally impose environmental pollution. Attempts have been made in the solution of such serious issues from every nook and corner. Nonetheless, no method has been found to be a panacea in waste water treatment and subsequent beneficiaries. One of the attempts in the solution to such issues is the application of photocatalytic technology, which could serve as a dual function in environmental remediation and clean energy production. A photocatalytic fuel cell is a tool developed for the recovery of energy from organic wastes. A rational cell construction needs the fabrication of photoelectrodes, the design of a photoanode and a photocathode chamber, in addition to an ion-transport membrane for pollution treatment and electricity generation. In this review, comprehensive fundamental assessments and recent developments in the design of photocatalytic fuel cells, their applications, future prospects, and challenges are covered.
Collapse
|
42
|
Xie X, Li P, Xu Y, Zhou L, Yan Y, Xie L, Jia C, Guo X. Single-Molecule Junction: A Reliable Platform for Monitoring Molecular Physical and Chemical Processes. ACS NANO 2022; 16:3476-3505. [PMID: 35179354 DOI: 10.1021/acsnano.1c11433] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Monitoring and manipulating the physical and chemical behavior of single molecules is an important development direction of molecular electronics that aids in understanding the molecular world at the single-molecule level. The electrical detection platform based on single-molecule junctions can monitor physical and chemical processes at the single-molecule level with a high temporal resolution, stability, and signal-to-noise ratio. Recently, the combination of single-molecule junctions with different multimodal control systems has been widely used to explore significant physical and chemical phenomena because of its powerful monitoring and control capabilities. In this review, we focus on the applications of single-molecule junctions in monitoring molecular physical and chemical processes. The methods developed for characterizing single-molecule charge transfer and spin characteristics as well as revealing the corresponding intrinsic mechanisms are introduced. Dynamic detection and regulation of single-molecule conformational isomerization, intermolecular interactions, and chemical reactions are also discussed in detail. In addition to these dynamic investigations, this review discusses the open challenges of single-molecule detection in the fields of physics and chemistry and proposes some potential applications in this field.
Collapse
Affiliation(s)
- Xinmiao Xie
- Center for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, PR China
| | - Peihui Li
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, PR China
| | - Yanxia Xu
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, PR China
| | - Li Zhou
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, PR China
| | - Yong Yan
- Center for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, PR China
| | - Linghai Xie
- Center for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, PR China
| | - Chuancheng Jia
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, PR China
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, PR China
| | - Xuefeng Guo
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, PR China
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, PR China
| |
Collapse
|
43
|
Yoo DJ, Liu Q, Cohen O, Kim M, Persson KA, Zhang Z. Understanding the Role of SEI Layer in Low-Temperature Performance of Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:11910-11918. [PMID: 35192763 DOI: 10.1021/acsami.1c23934] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Low-temperature electrolytes (LTEs) have been considered as one of the most challenging aspects for the wide adoption of lithium-ion batteries (LIBs) since the SOA electrolytes cannot sufficiently support the redox reactions at LT resulting in dramatic performance degradation. Although many attempts have been taken by employing various noncarbonate solvent electrolytes, there was a lack of fundamental understanding of the limiting factors for low-temperature operations (e.g., -20 to -40 °C). In this paper, the crucial role of the solid-electrolyte-interface (SEI) in LIB performance at low temperature using a butyronitrile (BN)-based electrolyte was demonstrated. These results suggested that an additive formed SEI with low resistance and low charge transfer dictates the LT performance in terms of capacity and cycle life, presenting a useful guideline in designing new electrolytes to address the LT issue.
Collapse
Affiliation(s)
- Dong-Joo Yoo
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Qian Liu
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Orion Cohen
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Minkyu Kim
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Kristin A Persson
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Zhengcheng Zhang
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
44
|
Unraveling local structure of molten salt KF-KCl-KI via molecular dynamics simulation. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
45
|
A direct comparison of 2D versus 3D diffusion analysis at nanowire electrodes: A finite element analysis and experimental study. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
46
|
Chen J, Zhao Y, Wan Y, Zhu L, Li B, Wu J, Li L, Huang Y, Li Y, Long X, Deng S. Electrochemiluminescent Ion-Channeling Framework for Membrane Binding and Transmembrane Activity Assays. Anal Chem 2022; 94:2154-2162. [PMID: 35041791 DOI: 10.1021/acs.analchem.1c04593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recent upgrades in the electrochemiluminescence (ECL) technique showcased its brilliant knack in probing microscopic biointerfacial events, many of which were actually underlain by the ionotropic membrane processes, yet not being ostensive. Here, by modeling an artificial lipoid-supported porin ensemble, we explore and establish the ECL potency in profiling ion-channel activities. A lipophilic hollowed construct dubbed ZnPC was made out of the dynamic covalent chemistry, and its unique geometry was characterized that configured stoichiometric ECL-emissive units in a cubic stance; while the aliphatic vertices of ZnPC helped it safely snorkel and steadily irradiate in a biofilm fusion. After expounding basic ECL properties, the brightness was traced out in response to halogen contents that was lit up by F-/Cl- but down by Br-/I-. The overall pattern fitted the Langmuir isotherm, from which the membrane-binding strengths of the four were analyzed, compared, and collaterally examined in impedimetrics. On the other hand, one could derive anionic transmembrane kinetics from the time-dependent ECL statistics that pinpointed the ECL signaling via the nanocage-directed mass-transfer pathway. More data mining unveiled an ECL-featured Hofmeister series and the thermodynamic governing force behind all scenes. Finally, combining with halide-selective fluorometry, the synthetic conduit was identified as an ECL symporter. In short, this work develops a novel ECL model for the evaluation of life-mimicking membrane permeation. It might intrigue the outreach of ECL applications in the measurement of diverse surface-confined transient scenarios, e.g., in vitro gated ion or molecule trafficking, which used to be handled by nanopore and electrofluorochromic assays.
Collapse
|
47
|
Morey M, Loftus J, Cannon A, Ryan E. Interfacial studies on the effects of patterned anodes for guided lithium deposition in lithium metal batteries. J Chem Phys 2022; 156:014703. [PMID: 34998355 DOI: 10.1063/5.0073358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The lifetime and health of lithium metal batteries are greatly hindered by nonuniform deposition and growth of lithium at the anode-electrolyte interface, which leads to dendrite formation, efficiency loss, and short circuiting. Lithium deposition is influenced by several factors including local current densities, overpotentials, surface heterogeneity, and lithium-ion concentrations. However, due to the embedded, dynamic nature of this interface, it is difficult to observe the complex physics operando. Here, we present a detailed model of the interface that implements Butler-Volmer kinetics to investigate the effects of overpotential and surface heterogeneities on dendrite growth. A high overpotential has been proposed as a contributing factor in increased nucleation and growth of dendrites. Using computational methods, we can isolate the aspects of the complex physics at the interface to gain better insight into how each component affects the overall system. In addition, studies have shown that mechanical modifications to the anode surface, such as micropatterning, are a potential way of controlling deposition and increasing Coulombic efficiency. Micropatterns on the anode surface are explored along with deformations in the solid-electrolyte interface layer to understand their effects on the dendritic growth rates and morphology. The study results show that at higher overpotentials, more dendritic growth and a more branched morphology are present in comparison to low overpotentials, where more uniform and denser growth is observed. In addition, the results suggest that there is a relationship between surface chemistries and anode geometries.
Collapse
Affiliation(s)
- Madison Morey
- Division of Materials Science and Engineering, Boston University, Boston, Massachusetts 02215, USA
| | - John Loftus
- Department of Mechanical Engineering, Boston University, Boston, Massachusetts 02215, USA
| | - Andrew Cannon
- Department of Mechanical Engineering, Boston University, Boston, Massachusetts 02215, USA
| | - Emily Ryan
- Division of Materials Science and Engineering, Boston University, Boston, Massachusetts 02215, USA
| |
Collapse
|
48
|
Song P, Li Y, Bao L, Liang X, Qi M, Li H, Tang Y. An understanding of a 3D hierarchically porous carbon modified electrode based on finite element modeling. NEW J CHEM 2022. [DOI: 10.1039/d2nj01890j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new strategy for the electrochemical evaluation of a 3D hierarchically porous carbon modified electrode is proposed via finite element modeling.
Collapse
Affiliation(s)
- Peng Song
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Environmental and Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China
| | - Yan Li
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Environmental and Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China
| | - Linghan Bao
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Environmental and Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China
| | - Xiaohua Liang
- Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, P. R. China
| | - Mengyuan Qi
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Environmental and Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China
| | - Hanbing Li
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, Beijing University of Technology, Beijing 100124, P. R. China
| | - Yang Tang
- National Fundamental Research Laboratory of New Hazardous Chemicals Assessment and Accident Analysis, Institute of Applied Electrochemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
49
|
Insights into kinetics extraction of the homogeneous electrocatalytic reaction between TMPD and ascorbic acid by cyclic voltammetry. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
50
|
Zhdanov VP. Late stage of the formation of a protein corona around nanoparticles in biofluids. Phys Rev E 2022; 105:014402. [PMID: 35193252 DOI: 10.1103/physreve.105.014402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 12/12/2021] [Indexed: 12/13/2022]
Abstract
In biofluids containing various proteins, nanoparticles rapidly come to be surrounded by a nanometer-thick protein layer referred to as a protein corona. The late stage of this process occurs via replacement of proteins already bound to a nanoparticle by new ones. In the available kinetic models, this process is considered to include independent acts of protein detachment and attachment. It can, however, occur also at the level of protein pairs via exchange, i.e., concerted replacement of an attached protein by a newly arrived one. I argue that the exchange channel can be more important than the conventional one. To illustrate the likely specifics of the exchange channel, I present a kinetic model focused exclusively on this channel and based on the Evans-Polanyi-type relation between the activation energies of the protein-exchange steps and the protein binding energies. The corresponding kinetics were calculated for three qualitatively different distributions of proteins in solution over binding energy (with a maximum or monotonously decreasing or increasing, respectively) and are found to be similar, with relatively rapid replacement of weakly bound proteins and slow redistribution of strongly bound proteins. The ratio of the timescales characterizing the evolution of weakly and strongly bound proteins is found to depend on the type of the binding-energy distribution.
Collapse
Affiliation(s)
- Vladimir P Zhdanov
- Section of Nano and Biophysics, Department of Physics, Chalmers University of Technology, Göteborg, Sweden and Boreskov Institute of Catalysis, Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|