1
|
Soo J, Goods P, Girard O, Deldicque L, Lawler NG, Fairchild TJ. Exercise responses to perceptually regulated high intensity interval exercise with continuous and intermittent hypoxia in inactive overweight individuals. Exp Physiol 2025. [PMID: 39937576 DOI: 10.1113/ep092338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/17/2025] [Indexed: 02/13/2025]
Abstract
To investigate the acute effects of hypoxia applied during discrete work and recovery phases of a perceptually regulated, high-intensity interval exercise (HIIE) on external and internal loads in inactive overweight individuals. On separate days, 18 inactive overweight (28.7 ± 3.3 kg m-2; 31 ± 8 years) men and women completed a cycling HIIE protocol (6 × 1 min intervals with 4 min active recovery, maintaining a perceived rating of exertion of 16 and 10 during work and recovery, respectively, on the 6-20 Borg scale) in randomized conditions: normoxia (NN), normobaric hypoxia (inspired O2 fraction ∼0.14) during both work and recovery (HH), hypoxia during recovery (NH) and hypoxia during work only (HN). Markers of external (relative mean power output, MPO) and internal load (blood lactate concentration, heart rate and tissue saturation index (TSI)) were measured. MPO was lower in HH compared to NN, NH and HN (all P < 0.001), with HN also being lower than NN (P < 0.001) and NH (P < 0.023). Heart rate was higher in HN than NN, HH and NH (all P < 0.001). Blood lactate response was higher in NN than HH (P = 0.003) and NH (P = 0.008). Changes in the TSI area above the curve were greater in HN relative to NN, HH and NH (all P < 0.001). Hypoxia applied intermittently during the work or recovery phases may mitigate the declines in mechanical output observed when exercise is performed in continuous hypoxia, although hypoxia implemented during the work phase resulted in elevated heart rate and lactate response. Specifically, exercise performance largely comparable to that in normoxia can be achieved when hypoxia is implemented exclusively during recovery.
Collapse
Affiliation(s)
- Jacky Soo
- Discipline of Exercise Science, School of Allied Health, Murdoch University, Perth, Australia
| | - Paul Goods
- Discipline of Exercise Science, School of Allied Health, Murdoch University, Perth, Australia
- The Centre for Healthy Aging, Health Futures Institute, Murdoch University, Perth, Australia
| | - Olivier Girard
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Crawley, Western Australia, Australia
| | | | - Nathan G Lawler
- Australian National Phenome Centre, Health Futures Institute, Murdoch University, Perth, Australia
| | - Timothy J Fairchild
- The Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, Australia
| |
Collapse
|
2
|
Sendra-Pérez C, Encarnacion-Martinez A, Salvador-Palmer R, Murias JM, Priego-Quesada JI. Profiles of muscle-specific oxygenation responses and thresholds during graded cycling incremental test. Eur J Appl Physiol 2025; 125:237-245. [PMID: 39259396 PMCID: PMC11752943 DOI: 10.1007/s00421-024-05593-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024]
Abstract
Compared to the determination of exercise thresholds based on systemic changes in blood lactate concentrations or gas exchange data, the determination of breakpoints based on muscle oxygen saturation offers a valid alternative to provide specific information on muscle-derived thresholds. Our study explored the profiles and timing of the second muscle oxygenation threshold (MOT2) in different muscles. Twenty-six cyclists and triathletes (15 male: age = 23 ± 7 years, height = 178 ± 5 cm, body mass = 70.2 ± 5.3 kg; 11 female: age = 22 ± 4 years, height = 164 ± 4 cm, body mass = 58.3 ± 8.1 kg) performed a graded exercise test (GXT), on a cycle ergometer. Power output, blood lactate concentration, heart rate, rating of perceived exertion, skinfolds and muscle oxygen saturation were registered in five muscles (vastus lateralis, biceps femoris, gastrocnemius medialis, tibialis anterior and triceps brachii) and percentage at which MOT2 occurred for each muscle was determinated using the Exponential Dmax. The results of Statistical Parametric Mapping and ANOVA showed that, although muscle oxygenation displayed different profiles in each muscle during a GXT, MOT2 occurred at a similar percentage of the GXT in each muscle (77% biceps femoris, 75% tibalis anterior, 76% gastrocnemius medialis and 72% vastus lateralis) and it was similar that systemic threshold (73% of the GXT). In conclusion, this study showed different profiles of muscle oxygen saturation in different muscles, but without notable differences in the timing for MOT2 and concordance with systemic threshold. Finally, we suggest the analysis of the whole signal and not to simplify it to a breakpoint.
Collapse
Affiliation(s)
- Carlos Sendra-Pérez
- Research Group in Sports Biomechanics (GIBD), Department of Physical Education and Sports, Faculty of Physical Activity and Sport Sciences, Universitat de València, St: Gascó Oliag, 3. 46010, Valencia, Spain
| | - Alberto Encarnacion-Martinez
- Research Group in Sports Biomechanics (GIBD), Department of Physical Education and Sports, Faculty of Physical Activity and Sport Sciences, Universitat de València, St: Gascó Oliag, 3. 46010, Valencia, Spain.
- Red Española de Investigación del Rendimiento Deportivo en Ciclismo y Mujer (REDICYM), Universitat de València, Ontinyent, Spain.
| | - Rosario Salvador-Palmer
- Red Española de Investigación del Rendimiento Deportivo en Ciclismo y Mujer (REDICYM), Universitat de València, Ontinyent, Spain
- Biophysics and Medical Physics Group, Department of Physiology, Universitat de València, Valencia, Spain
| | - Juan M Murias
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Jose I Priego-Quesada
- Research Group in Sports Biomechanics (GIBD), Department of Physical Education and Sports, Faculty of Physical Activity and Sport Sciences, Universitat de València, St: Gascó Oliag, 3. 46010, Valencia, Spain
- Red Española de Investigación del Rendimiento Deportivo en Ciclismo y Mujer (REDICYM), Universitat de València, Ontinyent, Spain
- Biophysics and Medical Physics Group, Department of Physiology, Universitat de València, Valencia, Spain
| |
Collapse
|
3
|
Kang S, Kim J, Kim Y, Moon J, Park S, Kim SJ. Feasibility of a new bicycle ergometer with adjustable pedaling configuration for personalized lower limb rehabilitation. Sci Rep 2024; 14:25504. [PMID: 39462057 PMCID: PMC11514035 DOI: 10.1038/s41598-024-77369-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024] Open
Abstract
Muscle atrophy due to prolonged immobilization leads to severe dysfunction and progression of disease and injury. This highlights the necessity for early rehabilitation, even during the non-ambulatory stages. As manifestations vary among individuals, target-specific rehabilitation is crucial for achieving optimal outcomes. Conventional bicycle ergometers, despite their wide usage in rehabilitation and sports training, fail to adequately recruit the muscles that predominantly operate in the coronal or axial plane. This is thought to be due to the restriction of pedaling trajectory in the sagittal plane. This study introduces a new bicycle ergometer capable of tilting the pedaling plane and adjusting the pedal orientation, in order to alter muscle recruitment patterns and limb alignments. A biomechanical analysis of eight healthy volunteers suggests that our device can elicit dynamic valgus/varus alignment and alter the axial rotations of the lower extremities. An electromyography analysis revealed a significant increase in the activation of specific muscle groups, particularly the abductors and adductors, suggesting promising results for targeted muscle recruitment. We expect this ergometer to provide a new method for target-specific rehabilitation and the treatment of bedridden patients or those with weak muscles.
Collapse
Affiliation(s)
- Seonghyun Kang
- Department of Biomedical Engineering, Korea University College of Medicine, Seoul, 02841, Korea
| | - Jaewook Kim
- Department of Biomedical Engineering, Korea University College of Medicine, Seoul, 02841, Korea
| | - Yekwang Kim
- Department of Biomedical Engineering, Korea University College of Medicine, Seoul, 02841, Korea
| | - Juhui Moon
- Department of Biomedical Engineering, Korea University College of Medicine, Seoul, 02841, Korea
| | - Seunghan Park
- Department of Biomedical Engineering, Korea University College of Medicine, Seoul, 02841, Korea
| | - Seung-Jong Kim
- Department of Biomedical Engineering, Korea University College of Medicine, Seoul, 02841, Korea.
| |
Collapse
|
4
|
Bulut N, Yalçın Aİ, Topuz S, Gürbüz İ, Yılmaz Ö, Karaduman A. Effects of cycling training on balance and gait in children with Duchenne muscular dystrophy: A randomized controlled study. Eur J Paediatr Neurol 2024; 52:76-81. [PMID: 39151278 DOI: 10.1016/j.ejpn.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/28/2024] [Accepted: 08/10/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND AND AIMS Although aerobic exercises such as cycling and swimming are increasingly being recommended in Duchenne muscular dystrophy (DMD), their effect on gait and balance parameters is unclear. This study was aimed to investigate the effect of cycling training on balance and spatio-temporal gait parameters in children with DMD. METHODS Ambulant children (age range: 6.17-11.33 years) were randomly divided into two groups: home-based exercise training applied in the control group (n = 12) while 12 weeks of supervised submaximal lower extremity cycling training in addition to home-based exercise training performed in the study group (n = 11). Gait and balance parameters were evaluated using the GAITRite electronic walkway system and the Bertec Balance Check Screener™, respectively. Assessments were applied before and after 12 weeks of training. RESULTS The mean ages of the children in the study and control groups were 8.20 (SD:1.34) and 8.86 (SD:1.30) years, consecutively (p > 0.05). Considering the baseline values, the balance and spatio-temporal gait parameters of the children were similar except for the antero-posterior postural sway on the perturbed surface with eyes open (p > 0.05). There was a significant time x group interaction effect in favor of the study group for the antero-posterior postural sway of children on the normal surface with eyes open (F (1,58) = 12.62, p = 0.002). It was found that the antero-posterior postural sway on the normal surface with eyes open was improved in the study group within group comparison (F (1,10) = 8.50, p = 0.015). CONCLUSIONS The study showed that both the cycling and the home-based exercise training groups may maintain gait and balance parameters during the study. Adding a cycling training to the rehabilitation program can also provide additional contribution to improve antero-posterior balance.
Collapse
Affiliation(s)
- Numan Bulut
- Hacettepe University, Faculty of Physical Therapy and Rehabilitation, Samanpazarı, 06100, Altındağ, Ankara, Turkey.
| | - Ali İmran Yalçın
- Hacettepe University, Faculty of Physical Therapy and Rehabilitation, Samanpazarı, 06100, Altındağ, Ankara, Turkey.
| | - Semra Topuz
- Hacettepe University, Faculty of Physical Therapy and Rehabilitation, Samanpazarı, 06100, Altındağ, Ankara, Turkey.
| | - İpek Gürbüz
- Hacettepe University, Faculty of Physical Therapy and Rehabilitation, Samanpazarı, 06100, Altındağ, Ankara, Turkey.
| | - Öznur Yılmaz
- Hacettepe University, Faculty of Physical Therapy and Rehabilitation, Samanpazarı, 06100, Altındağ, Ankara, Turkey.
| | - Ayşe Karaduman
- Lokman Hekim University, Faculty of Health Sciences, Department of Physiotherapy and Rehabilitation, Söğütözü, 06510, Çankaya, Ankara, Turkey.
| |
Collapse
|
5
|
Arnold JI, Yogev A, Nelson H, van Hooff M, Koehle MS. Muscle reoxygenation is slower after higher cycling intensity, and is faster and more reliable in locomotor than in accessory muscle sites. Front Physiol 2024; 15:1449384. [PMID: 39206382 PMCID: PMC11349675 DOI: 10.3389/fphys.2024.1449384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction Wearable near-infrared spectroscopy (NIRS) can be used during dynamic exercise to reflect the balance of muscle oxygen delivery and uptake. This study describes the behaviour and reliability of postexercise reoxygenation with NIRS as a function of exercise intensity at four muscle sites during an incremental cycling test. We discuss physiological components of faster and slower reoxygenation kinetics in the context of sport science and clinical applications. We hypothesised that reoxygenation would be slower at higher intensity, and that locomotor muscles would be faster than accessory muscles. We quantified test-retest reliability and agreement for each site. Methods Twenty-one trained cyclists performed two trials of an incremental cycling protocol with 5-min work stages and 1-min rest between stages. NIRS was recorded from the locomotor vastus lateralis and rectus femoris muscles, and accessory lumbar paraspinal and lateral deltoid muscles. Reoxygenation time course was analysed as the half-recovery time (HRT) from the end of work to half of the peak reoxygenation amplitude during rest. Coefficient of variability (CV) between participants, standard error of the measurement (SEM) within participants, and intraclass correlation coefficient (ICC) for test-retest reliability were evaluated at 50%, 75%, and 100% peak workloads. A linear mixed-effects model was used to compare differences between workloads and muscle sites. Results HRT was slower with increasing workload in the VL, RF, and PS, but not DL. VL had the fastest reoxygenation (lowest HRT) across muscle sites at all workloads (HRT = 8, 12, 17 s at 50%, 75%, 100% workload, respectively). VL also had the greatest reliability and agreement. HRT was sequentially slower between muscle sites in the order of VL < RF < PS < DL, and reliability was lower than for the VL. Discussion This study highlights the potential for using wearable NIRS on multiple muscle sites during exercise. Reoxygenation kinetics differ between local muscle sites with increasing intensity. Moderate-to-good reliability in the VL support its increasing use in sport science and clinical applications. Lower reliability in other muscle sites suggest they are not appropriate to be used alone, but may add information when combined to better reflect systemic intensity and fatigue during exercise at different intensities.
Collapse
Affiliation(s)
- Jem I. Arnold
- School of Kinesiology, The University of British Columbia, Vancouver, BC, Canada
| | - Assaf Yogev
- School of Kinesiology, The University of British Columbia, Vancouver, BC, Canada
| | - Hannah Nelson
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Martijn van Hooff
- Department of Sports and Exercise, Máxima Medical Centre, Veldhoven, Netherlands
| | - Michael S. Koehle
- School of Kinesiology, The University of British Columbia, Vancouver, BC, Canada
- Department of Biomedical Physiology and Kinesiology, Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
- Division of Sport and Exercise Medicine, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
6
|
Liu Y, Chen J, Li Q, Guo YX, Chen YJ, Zhao YJ. Locus coeruleus activation contributes to masseter muscle overactivity induced by chronic restraint stress in mice. Neuroreport 2024; 35:763-770. [PMID: 38935079 PMCID: PMC11236267 DOI: 10.1097/wnr.0000000000002058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
It is commonly accepted that exposure to stress may cause overactivity in the orofacial muscles, leading to consistent muscle pain, which is the main symptom of temporomandibular disorders. The central neural mechanism underlying this process, however, remains unclear. The locus coeruleus is considered to play an important role in stress-related behavioral changes. Therefore, the present study was designed to examine the role of locus coeruleus neurons in masseter overactivity induced by stress. C57BL/6 mice were subjected to chronic restraint stress for 14 days to establish an animal model. The behavioral changes and the electromyography of the masseter muscle in mice were measured. The expression of Fos in locus coeruleus was observed by immunofluorescence staining to assess neuronal activation. A chemogenetic test was used to inhibit locus coeruleus neuronal activity, and the behavioral changes and electromyography of the masseter muscle were observed again. The results exhibited that chronic restraint stress could induce anxiety-like behavior, overactivity of the masseter muscle, and significant activation of locus coeruleus neurons in mice. Furthermore, inhibition of noradrenergic neuron activity within the locus coeruleus could alleviate stress-induced anxiety behavior and masseter muscle overactivity. Activation of noradrenergic neurons in locus coeruleus induced by stress may be one of the central regulatory mechanisms for stress-induced anxiety-like behaviors and overactivity of masseter muscles.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, The Fourth Military Medical University
| | - Ji Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implantology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Qiang Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, The Fourth Military Medical University
| | - Yan-Xia Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, The Fourth Military Medical University
| | - Yong-Jin Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, The Fourth Military Medical University
| | - Ya-Juan Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, The Fourth Military Medical University
| |
Collapse
|
7
|
Martin-Rodriguez S, Gonzalez-Henriquez JJ, Bautista IJ, Calbet JAL, Sanchis-Moysi J. Interplay of Muscle Architecture, Morphology, and Quality in Influencing Human Sprint Cycling Performance: A Systematic Review. SPORTS MEDICINE - OPEN 2024; 10:81. [PMID: 39026135 PMCID: PMC11258115 DOI: 10.1186/s40798-024-00752-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/05/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND This systematic review aimed to discern the relationships between muscle morphology, architecture, and quality with sprint cycling performance while considering the multifaceted nature of these relationships across diverse studies. METHODS Employing the PRISMA guidelines, an exhaustive search was performed across four primary databases: MEDLINE/PubMed, Web of Science, CINAHL Complete, and SPORTDiscus. The Methodological Index For Non-Randomised Studies (MINORS) was used to assess the methodological quality of the included studies. Out of 3971 initially identified records, only 10 studies met the eligibility criteria. RESULTS These investigations underscored the robust relationship of quadriceps muscle volume with peak power output (R2 from 0.65 to 0.82), suggesting its pivotal role in force production. In muscle architecture, the pennation angle and fascicle length showed varied associations with performance. Furthermore, muscle quality, as denoted by echo intensity, showed preliminary evidence of a potential inverse relationship with performance. The methodological quality assessment revealed varied scores, with the most consistent reporting on the aim, endpoints, and inclusion of consecutive patients. However, limitations were observed in the prospective calculation of study size and unbiased assessment of study endpoints. CONCLUSION Our findings indicate that muscle volume is a major determinant of sprint cycling performance. Muscle architecture and quality also impact performance, although in a more intricate way. The review calls for standardised methodologies in future research for a more comprehensive understanding and comparability of results. PROSPERO REGISTRATION NUMBER CRD42023432824 ( https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=432824 ).
Collapse
Affiliation(s)
- Saul Martin-Rodriguez
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, 35017, Spain
- Research Institute of Biomedical and Health Sciences (IUIBS), Canary Islands, Las Palmas de Gran Canaria, 35017, Spain
| | - Juan J Gonzalez-Henriquez
- Department of Mathematics, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Iker J Bautista
- Institute of Sport, Nursing, and Allied Health, University of Chichester, Chichister, PO19 6PE, UK
| | - Jose A L Calbet
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, 35017, Spain
- Research Institute of Biomedical and Health Sciences (IUIBS), Canary Islands, Las Palmas de Gran Canaria, 35017, Spain
- Department of Physical Performance, The Norwegian School of Sport Sciences, Postboks, 4014 Ulleval Stadion, Oslo, 0806, Norway
| | - Joaquin Sanchis-Moysi
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, 35017, Spain.
- Research Institute of Biomedical and Health Sciences (IUIBS), Canary Islands, Las Palmas de Gran Canaria, 35017, Spain.
| |
Collapse
|
8
|
Vigouroux L, Cartier T, Rao G. Influence of Pedal Interface During Pedaling With the Upper Versus Lower Limbs: A Pilot Analysis of Torque Performance and Muscle Synergies. Motor Control 2024; 28:305-325. [PMID: 38589014 DOI: 10.1123/mc.2023-0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/06/2024] [Accepted: 02/20/2024] [Indexed: 04/10/2024]
Abstract
Pedaling is a physical exercise practiced with either the upper or the lower limbs. Muscle coordination during these exercises has been previously studied using electromyography and synergy analysis, and three to four synergies have been identified for the lower and upper limbs. The question of synergy adaptabilities has not been investigated during pedaling with the upper limbs, and the impact of various modalities is yet not known. This study investigates the effect of pedal type (either clipped/gripped or flat) on the torque performance and the synergy in both upper and lower limbs. Torques applied by six participants while pedaling at 30% of their maximal power have been recorded for both upper and lower limbs. Electromyographic data of 11 muscles on the upper limbs and 11 muscles on the lower limbs have been recorded and synergies extracted and compared between pedal types. Results showed that the torques were not modified by the pedal types for the lower limbs while a deep adaptation is observable for the upper limbs. Participants indeed used the additional holding possibility by pulling the pedals on top of the pushing action. Synergies were accordingly modified for upper limbs while they remain stable for the lower limbs. In both limbs, the synergies showed a good reproducibility even if larger variabilities were observed for the upper limbs. This pilot study highlights the adaptability of muscle synergies according to the condition of movement execution, especially observed for the upper limbs, and can bring some new insights for the rehabilitation exercises.
Collapse
Affiliation(s)
| | - Théo Cartier
- ISM, CNRS, Aix-Marseille Université, Marseille, France
| | - Guillaume Rao
- ISM, CNRS, Aix-Marseille Université, Marseille, France
| |
Collapse
|
9
|
Kahveci A, Cengiz BC, Alcan V, Gürses S, Zinnuroğlu M. The effect of foot somatosensory loss in postural control during Functional reach test in patients with diabetic polyneuropathy: A controlled study. Foot (Edinb) 2024; 59:102097. [PMID: 38615395 DOI: 10.1016/j.foot.2024.102097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 04/02/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND In patients with diabetic polyneuropathy (DPN), differences in postural control due to losing the lower limb somatosensory information were reported. However, it is still unclear by which mechanisms the dynamic postural instability is caused. OBJECTIVES This study aimed to investigate postural control differences and neuromuscular adaptations resulting from foot somatosensory loss due to DPN. METHODS In this controlled cross-sectional study, fourteen DPN patients and fourteen healthy controls performed the Functional Reach Test (FRT) as a dynamic task. The postural control metrics were simultaneously measured using force plate, motion capture system, and surface electromyography (sEMG). The main metrics including reach length (FR), FR to height ratio (FR/H), displacement of CoM and CoP, moment arm (MA), and arch height ratio. Also, kinematic (range of motion of ankle, knee, and hip joints), and sEMG metrics (latencies and root mean square amplitudes of ankle and hallux muscles) were measured. To compare variables between groups, the independent sample T-test for (normally distributed) and the Mann-Whitney U test (non-normally distributed) were used. RESULTS The subjects' reach length (FR), FR to height ratio, absolute MA, and displacement of CoM were significantly shorter than controls, while displacement of CoP was not significant. Arch height ratio was found significantly lower in DPN patients. We observed that CoM was lagging CoP in patients (MA = + 0.89) while leading in controls (MA = -1.60). Although, the muscles of patients showed significantly earlier activation, root mean square sEMG amplitudes were found similar. Also, DPN patients showed significantly less hip flexion, knee extension, and ankle plantar flexion. CONCLUSIONS This study presented that decreasing range of motion at lower limbs' joints and deterioration in foot function caused poor performance at motor execution during FRT in DPN patients.
Collapse
Affiliation(s)
- Abdulvahap Kahveci
- Department of Physical Medicine and Rehabilitation, School of Medicine, Gazi University, Ankara, Turkey; Division of Rheumatology, Kastamonu Training and Research Hospital, Kastamonu, Turkey.
| | - Berat Can Cengiz
- Department of Engineering Sciences, Middle East Technical University, Ankara, Turkey
| | - Veysel Alcan
- Department of Electrical and Electronics Engineering, Tarsus University, Mersin, Turkey
| | - Senih Gürses
- Department of Engineering Sciences, Middle East Technical University, Ankara, Turkey
| | - Murat Zinnuroğlu
- Department of Physical Medicine and Rehabilitation, School of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
10
|
Bing F, Zhang G, Wang Y, Zhang M. Effects of workload and saddle height on muscle activation of the lower limb during cycling. Biomed Eng Online 2024; 23:6. [PMID: 38229090 DOI: 10.1186/s12938-024-01199-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/04/2024] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Cycling workload is an essential factor in practical cycling training. Saddle height is the most studied topic in bike fitting, but the results are controversial. This study aims to investigate the effects of workload and saddle height on the activation level and coordination of the lower limb muscles during cycling. METHODS Eighteen healthy male participants with recreational cycling experience performed 15 × 2-min constant cadence cycling at five saddle heights of 95%, 97%, 100%, 103%, and 105% of greater trochanter height (GTH) and three cycling workloads of 25%, 50%, and 75% of functional threshold power (FTP). The EMG signals of the rectus femoris (RF), tibialis anterior (TA), biceps femoris (BF), and medial gastrocnemius (MG) of the right lower limb were collected throughout the experiment. RESULTS Greater muscle activation was observed for the RF and BF at a higher cycling workload, whereas no differences were observed for the TA and MG. The MG showed intensified muscle activation as the saddle height increased. The mean and maximum amplitudes of the EMG signals of the MG increased by 56.24% and 57.24% at the 25% FTP workload, 102.71% and 126.95% at the 50% FTP workload, and 84.27% and 53.81% at the 75% FTP workload, respectively, when the saddle height increased from 95 to 100% of the GTH. The muscle activation level of the RF was minimal at 100% GTH saddle height. The onset and offset timing revealed few significant differences across cycling conditions. CONCLUSIONS Muscle activation of the RF and BF was affected by cycling workload, while that of the MG was affected by saddle height. The 100% GTH is probably the appropriate saddle height for most cyclists. There was little statistical difference in muscle activation duration, which might be related to the small workload.
Collapse
Affiliation(s)
- Fangbo Bing
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Guoxin Zhang
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Yan Wang
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
- Research Institute for Sports Science and Technology, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Ming Zhang
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China.
- Research Institute for Sports Science and Technology, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China.
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China.
| |
Collapse
|
11
|
Love LK, Hodgson MD, Keir DA, Kowalchuk JM. The effect of increasing work rate amplitudes from a common metabolic baseline on the kinetic response of V̇o 2p, blood flow, and muscle deoxygenation. J Appl Physiol (1985) 2023; 135:584-600. [PMID: 37439241 DOI: 10.1152/japplphysiol.00566.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 07/14/2023] Open
Abstract
A step-transition in external work rate (WR) increases pulmonary O2 uptake (V̇o2p) in a monoexponential fashion. Although the rate of this increase, quantified by the time constant (τ), has frequently been shown to be similar between multiple different WR amplitudes (ΔWR), the adjustment of O2 delivery to the muscle (via blood flow; BF), a potential regulator of V̇o2p kinetics, has not been extensively studied. To investigate the role of BF on V̇o2p kinetics, 10 participants performed step-transitions on a knee-extension ergometer from a common baseline WR (3 W) to: 24, 33, 45, 54, and 66 W. Each transition lasted 8 min and was repeated four to six times. Volume turbinometry and mass spectrometry, Doppler ultrasound, and near-infrared spectroscopy were used to measure V̇o2p, BF, and muscle deoxygenation (deoxy[Hb + Mb]), respectively. Similar transitions were ensemble-averaged, and phase II V̇o2p, BF, and deoxy[Hb + Mb] were fit with a monoexponential nonlinear least squares regression equation. With increasing ΔWR, τV̇o2p became larger at the higher ΔWRs (P < 0.05), while τBF did not change significantly, and the mean response time (MRT) of deoxy[Hb + Mb] became smaller. These findings that V̇o2p kinetics become slower with increasing ΔWR, while BF kinetics are not influenced by ΔWR, suggest that O2 delivery could not limit V̇o2p in this situation. However, the speeding of deoxy[Hb + Mb] kinetics with increasing ΔWR does imply that the O2 delivery-to-O2 utilization of the microvasculature decreases at higher ΔWRs. This suggests that the contribution of O2 delivery and O2 extraction to V̇O2 in the muscle changes with increasing ΔWR.NEW & NOTEWORTHY A step increase in work rate produces a monoexponential increase in V̇o2p and blood flow to a new steady-state. We found that step transitions from a common metabolic baseline to increasing work rate amplitudes produced a slowing of V̇o2p kinetics, no change in blood flow kinetics, and a speeding of muscle deoxygenation kinetics. As work rate amplitude increased, the ratio of blood flow to V̇o2p became smaller, while the amplitude of muscle deoxygenation became greater. The gain in vascular conductance became smaller, while kinetics tended to become slower at higher work rate amplitudes.
Collapse
Affiliation(s)
- Lorenzo K Love
- Canadian Centre for Activity and Aging, The University of Western Ontario, London, Ontario, Canada
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, Ontario, Canada
- Department of Kinesiology and Physical Education, Redeemer University, Ancaster, Ontario, Canada
| | - Michael D Hodgson
- Canadian Centre for Activity and Aging, The University of Western Ontario, London, Ontario, Canada
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, Ontario, Canada
| | - Daniel A Keir
- Canadian Centre for Activity and Aging, The University of Western Ontario, London, Ontario, Canada
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, Ontario, Canada
- Toronto General Research Institute, Toronto General Hospital, Toronto, Ontario, Canada
| | - John M Kowalchuk
- Canadian Centre for Activity and Aging, The University of Western Ontario, London, Ontario, Canada
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, Ontario, Canada
- Department of Kinesiology and Physical Education, Redeemer University, Ancaster, Ontario, Canada
| |
Collapse
|
12
|
Kang S, Kim J, Kim Y, Moon J, Park S, Kim SJ. A Novel Tilted-Plane Ergometer System for Subject-Specific Rehabilitation. IEEE Int Conf Rehabil Robot 2023; 2023:1-6. [PMID: 37941225 DOI: 10.1109/icorr58425.2023.10304744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Immobilization due to various reasons can lead to disuse muscle atrophy. If prolonged, the circumstance is exacerbated and may lead to joint contracture, dysfunction, and long-term sequela. Thus, a balanced exercise regimen is crucial. While able-bodied individuals can perform a variety of exercises, bedridden patients typically resort to exercising primarily with bicycle ergometers. However, since the pedaling trajectory with ergometers is confined to the sagittal plane, muscles responsible for medial-lateral movement and balance are not effectively trained. Furthermore, the direction of joint reaction forces, which is crucial for specific patients with ligament injuries, recurrent dislocations, and medial osteoarthritis, is not well facilitated. Thus, it would be beneficial for patients without full body weight support ability to train ab-/ad-ductor muscles by altering the direction of extrinsic load via ergometers. In this study, we present a novel Tilted-Plane Ergometer and proof-of-concept experiment with one healthy subject. The results suggest that subtle changes in ergometer configurations lead to different movements, joint alignments, and muscle recruitment patterns.
Collapse
|
13
|
Gerez LF, Alvarez JT, Debette E, Araromi OA, Wood RJ, Walsh CJ. Investigating Changes in Muscle Coordination During Cycling with Soft Wearable Strain Sensors Sensitive to Muscle Deformation. IEEE Int Conf Rehabil Robot 2023; 2023:1-6. [PMID: 37941290 DOI: 10.1109/icorr58425.2023.10304718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Continuous monitoring of muscle coordination can provide valuable information regarding an individual's performance during physical activities. For example, changes in muscle coordination can indicate muscle fatigue during exhaustive exercise or can be used to track the rehabilitation progress of patients post-injury. Traditional methods to evaluate coordination often focus solely on measuring muscle activation with electromyography, ignoring timing changes of the resultant force produced by the activated muscle. Setups designed to evaluate force directly to study muscle coordination are often limited by either hyper-constrained settings or cost-prohibitive hardware. In this paper, we employ wearable, ultra-sensitive soft strain sensors that track muscle deformation for estimating changes in muscle coordination during cycling at different cadences and to exhaustion. The results were compared to muscle activation timing measured by electromyography and peak force timing measured by a cycle ergometer. We demonstrate that with an increase in cadence, the soft strain sensor and ergometer timing metrics align more closely than those measured by electromyography. We also demonstrate how muscle coordination is altered with the onset of fatigue during cycling to exhaustion.
Collapse
|
14
|
Naruse M, Vincenty CS, Konopka AR, Trappe SW, Harber MP, Trappe TA. Cycle exercise training and muscle mass: A preliminary investigation of 17 lower limb muscles in older men. Physiol Rep 2023; 11:e15781. [PMID: 37606179 PMCID: PMC10442866 DOI: 10.14814/phy2.15781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 08/23/2023] Open
Abstract
Cycling exercise in older individuals is beneficial for the cardiovascular system and quadriceps muscles, including partially reversing the age-related loss of quadriceps muscle mass. However, the effect of cycling exercise on the numerous other lower limb muscles is unknown. Six older men (74 ± 8 years) underwent MRI before and after 12-weeks of progressive aerobic cycle exercise training (3-4 days/week, 60-180 min/week, 60%-80% heart rate reserve, VO2 max: +13%) for upper (rectus femoris, vastii, adductor longus, adductor magnus, gracilis, sartorius, biceps femoris long head, biceps femoris short head, semimembranosus, semitendinosus) and lower (anterior tibial, posterior tibialis, peroneals, flexor digitorum longus, lateral gastrocnemius, medial gastrocnemius, soleus) leg muscle volumes. In the upper leg, cycle exercise training induced hypertrophy (p ≤ 0.05) in the vastii (+7%) and sartorius (+6%), with a trend to increase biceps femoris short head (+5%, p = 0.1). Additionally, there was a trend to decrease muscle volume in the adductor longus (-6%, p = 0.1) and biceps femoris long head (-5%, p = 0.09). In the lower leg, all 7 muscle volumes assessed were unaltered pre- to post-training (-2% to -3%, p > 0.05). This new evidence related to cycle exercise training in older individuals clarifies the specific upper leg muscles that are highly impacted, while revealing all the lower leg muscles do not appear responsive, in the context of muscle mass and sarcopenia. This study provides information for exercise program development in older individuals, suggesting other specific exercises are needed for the rectus femoris and adductors, certain hamstrings, and the anterior and posterior lower leg muscles to augment the beneficial effects of cycling exercise for older adults.
Collapse
Affiliation(s)
- Masatoshi Naruse
- Human Performance LaboratoryBall State UniversityMuncieIndianaUSA
| | | | - Adam R. Konopka
- Human Performance LaboratoryBall State UniversityMuncieIndianaUSA
| | - Scott W. Trappe
- Human Performance LaboratoryBall State UniversityMuncieIndianaUSA
| | | | - Todd A. Trappe
- Human Performance LaboratoryBall State UniversityMuncieIndianaUSA
| |
Collapse
|
15
|
Vicari DSS, Patti A, Giustino V, Figlioli F, Alamia G, Palma A, Bianco A. Saddle Pressures Factors in Road and Off-Road Cyclists of Both Genders: A Narrative Review. J Funct Morphol Kinesiol 2023; 8:71. [PMID: 37367235 DOI: 10.3390/jfmk8020071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 06/28/2023] Open
Abstract
The contact point of the pelvis with the saddle of the bicycle could generate abnormal pressure, which could lead to injuries to the perineum in cyclists. The aim of this review was to summarize in a narrative way the current literature on the saddle pressures and to present the factors that influence saddle pressures in order to prevent injury risk in road and off-road cyclists of both genders. We searched the PubMed database to identify English-language sources, using the following terms: "saddle pressures", "pressure mapping", "saddle design" AND "cycling". We also searched the bibliographies of the retrieved articles. Saddle pressures are influenced by factors such as sitting time on the bike, pedaling intensity, pedaling frequency, trunk and hand position, handlebars position, saddle design, saddle height, padded shorts, and gender. The jolts of the perineum on the saddle, especially on mountain bikes, generate intermittent pressures, which represent a risk factor for various pathologies of the urogenital system. This review highlights the importance of considering these factors that influence saddle pressures in order to prevent urogenital system injuries in cyclists.
Collapse
Affiliation(s)
- Domenico Savio Salvatore Vicari
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, 90141 Palermo, Italy
| | - Antonino Patti
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, 90141 Palermo, Italy
| | - Valerio Giustino
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, 90141 Palermo, Italy
| | - Flavia Figlioli
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, 90141 Palermo, Italy
| | - Giuseppe Alamia
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, 90141 Palermo, Italy
| | - Antonio Palma
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, 90141 Palermo, Italy
- Regional Sports School of CONI Sicilia, 90141 Palermo, Italy
| | - Antonino Bianco
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, 90141 Palermo, Italy
| |
Collapse
|
16
|
Sachet I, Brochner Nygaard NP, Guilhem G, Hug F, Dorel S. Strength capacity of lower-limb muscles in world-class cyclists: new insights into the limits of sprint cycling performance. Sports Biomech 2023; 22:536-553. [PMID: 35029136 DOI: 10.1080/14763141.2021.2024243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This study aimed to determine the relationship between the torque-generating capacity in sprint cycling and the strength capacity of the six lower-limb muscle groups in male and female world-class sprint cyclists. Eleven female and fifteen male top-elite cyclists performed 5-s sprints at maximal power in seated and standing positions. They also performed a set of maximal voluntary ankle, knee and hip flexions and extensions to assess single-joint isometric and isokinetic torques. Isokinetic torques presented stronger correlations with cycling torque than isometric torques for both body positions, regardless of the group. In the female group, knee extension and hip flexion torques accounted for 81.2% of the variance in cycling torque, while the ability to predict cycling torque was less evident in males (i.e., 59% of variance explained by the plantarflexion torque only). The standing condition showed higher correlations than seated and a better predictive model in males (R2 = 0.88). In addition to the knee extensors and flexors and hip extensors, main power producers, the strength capacity of lower-limb distal plantarflexor (and to a lesser extent dorsiflexor) muscles, as well as other non-measured qualities (e.g., the upper body), might be determinants to produce such extremely high cycling torque in males.
Collapse
Affiliation(s)
- Iris Sachet
- Laboratory "Movement, Interactions, Performance" (Ea 4334), University of Nantes, Nantes, France.,French Cycling Federation, Saint-Quentin-en-Yvelines, France
| | - Niels Peter Brochner Nygaard
- Research Unit of Health Science, Hospital of South West Jutland, University Hospital of Southern Denmark, Esbjerg, Denmark.,Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Gaël Guilhem
- Laboratory Sport, Expertise and Performance (Ea 7370), French Institute of Sport (Insep), Paris, France
| | - François Hug
- Laboratory "Movement, Interactions, Performance" (Ea 4334), University of Nantes, Nantes, France.,LAMHESS, Université Côte d'azur, Nice, France.,Nhmrc Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Australia.,Institut Universitaire de France (Iuf), Paris, France
| | - Sylvain Dorel
- Laboratory "Movement, Interactions, Performance" (Ea 4334), University of Nantes, Nantes, France
| |
Collapse
|
17
|
Trama R, Hautier C, Blache Y, Bertucci W, Chiementin X, Hintzy F. Intra-cycle analysis of muscle vibration during cycling. Sports Biomech 2023; 22:554-566. [PMID: 35658813 DOI: 10.1080/14763141.2022.2083010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cyclists are exposed for a long period to continuous vibrations. When a muscle is exposed to vibration, its efficiency decreases, the onset of fatigue occurs sooner, and the comfort of the cyclist is reduced. This study characterised the vastus lateralis (VL) soft tissue vibrations for different input frequencies and different pedalling phases. Ten cyclists were recruited to pedal at 55, 70, 85, and 100 rpm on a vibrating cycle ergometer that induced vibrations at frequencies ranging from 14.4 Hz (55 rpm) to 26.3 Hz (100 rpm). The VL vibration amplitude was quantified with a continuous wavelet transform and expressed as a function of the crank angle. The pedalling cycle was split into four phases (downstroke, backstroke, upstroke, and overstroke) to express the mean vibration amplitude and frequency of each phase. Statistical analysis depicted that VL vibration frequency increased with the pedalling cadence and that the VL was exposed to up to 50% more vibration amplitudes during the downstroke phase at a slow cadence. The increase in the pedal vibration frequency, a higher vibration transmission due to greater normal force on the pedal, and strong activation of the VL during the downstroke phase were discussed to explain these results.
Collapse
Affiliation(s)
- Robin Trama
- Laboratoire Interuniversitaire de Biologie de la Motricité, Université Claude Bernard Lyon 1, Lyon, France
| | - Christophe Hautier
- Laboratoire Interuniversitaire de Biologie de la Motricité, Université Claude Bernard Lyon 1, Lyon, France
| | - Yoann Blache
- Laboratoire Interuniversitaire de Biologie de la Motricité, Université Claude Bernard Lyon 1, Lyon, France
| | - William Bertucci
- Laboratoire Performance Métrologie Santé Société, Université de Reims Champagne Ardenne, Reims, France
| | - Xavier Chiementin
- Institut de Thermique, Mécanique, et Matériaux, Université de Reims Champagne-Ardenne, Reims, France
| | - Frédérique Hintzy
- Laboratoire Interuniversitaire de Biologie de la Motricité, Université Savoie Mont Blanc, Chambéry, France
| |
Collapse
|
18
|
Muyor JM, Antequera-Vique JA, Oliva-Lozano JM, Arrabal-Campos FM. Effect of incremental intensities on the spinal morphology and core muscle activation in competitive cyclists. Sports Biomech 2023; 22:597-620. [PMID: 35837675 DOI: 10.1080/14763141.2022.2097945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Cycling is a sport where cyclists predominantly adopt a sitting posture, with the trunk tilted forward. This posture requires a high volume of training and duration in several intensities of effort. This study aims to: 1) evaluate the behaviour of the thoracic and lumbar spine flexion and sacral inclination in the sagittal plane, the thoracic and lumbar spine flexion in the frontal plane, and the trunk torsion in the transverse plane; 2) compare the activation of the core muscles as the intensity of effort increases during an incremental test in cycling, and 3) identify which core muscle has a greater activation in each intensity zone. The spinal posture and the activation of the eight core muscles were evaluated in twelve competitive cyclists during incremental cycling intensities. Thoracic and lumbar spine flexion and sacral inclination statistically increased as the intensity of effort increased (Start < VT1 < VT2 < VO2max). A significant increase in muscle activation was observed in all core muscles evaluated as the intensity increased. The rectus abdominis showed statistically significant greater muscle activation than the other core muscles evaluated. In conclusion, as the intensity of effort in cycling increases, cyclists significantly increase the thoracic and lumbar spine flexion, the sacral inclination in the sagittal plane, the thoracic and lumbar spine flexion in the frontal plane, trunk rotation in the transverse plane, as well as the activation of the core muscles.
Collapse
Affiliation(s)
- José M Muyor
- Health Research Centre, University of Almería, Almería, Spain.,Laboratory of Kinesiology, Biomechanics and Ergonomics (KIBIOMER Lab), University of Almería, Almería, Spain
| | | | | | | |
Collapse
|
19
|
Trofè A, Piras A, Muehsam D, Meoni A, Campa F, Toselli S, Raffi M. Effect of Pulsed Electromagnetic Fields (PEMFs) on Muscular Activation during Cycling: A Single-Blind Controlled Pilot Study. Healthcare (Basel) 2023; 11:healthcare11060922. [PMID: 36981580 PMCID: PMC10048902 DOI: 10.3390/healthcare11060922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
PURPOSE PEMF stimulation results in a higher O2 muscle supply during exercise through increased O2 release and uptake. Given the importance of oxygen uptake in sport activity, especially in aerobic disciplines such as cycling, we sought to investigate the influence of PEMF on muscle activity when subjects cycled at an intensity between low and severe. METHODS Twenty semi-professional cyclists performed a constant-load exercise with randomized active (ON) or inactive (OFF) PEMF stimulation. Each subject started the recording session with 1 min of cycling without load (warm-up), followed by an instantaneous increase in power, as the individualized workload (constant-load physical effort). PEMF loops were applied on the vastus medialis and biceps femoris of the right leg. We recorded the electromyographic activity from each muscle and measured blood lactate prior the exercise and during the constant-load physical effort. RESULTS PEMF stimulation caused a significant increase in muscle activity in the warm-up condition when subjects cycled without load (p < 0.001). The blood lactate concentration was higher during PEMF stimulation (p < 0.001), a possible consequence of PEMF's influence on glycolytic metabolism. CONCLUSION PEMF stimulation augmented the activity and the metabolism of muscular fibers during the execution of physical exercise. PEMF stimulation could be used to raise the amplitude of muscular responses to physical activity, especially during low-intensity exercise.
Collapse
Affiliation(s)
- Aurelio Trofè
- Department for Life Quality Studies, University of Bologna, 47921 Rimini, Italy
| | - Alessandro Piras
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - David Muehsam
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy
| | - Andrea Meoni
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Francesco Campa
- Department for Life Quality Studies, University of Bologna, 47921 Rimini, Italy
| | - Stefania Toselli
- Department for Life Quality Studies, University of Bologna, 47921 Rimini, Italy
| | - Milena Raffi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
20
|
Foot Cooling between Interval Bouts Enhances Repeated Lower Limb Power Performance: The Role of Delaying Fatigue. J Hum Kinet 2023; 86:107-116. [PMID: 37181265 PMCID: PMC10170544 DOI: 10.5114/jhk/159623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
This study aimed to investigate whether interbout foot cooling (FC) may enhance repeated lower limb power performance and the corresponding physiological responses based on interset FC, which has been demonstrated to enhance leg-press performance. In a repeated-measures crossover design, ten active men (aged 21.5 ± 1.5 years, exercising >3 times per week) performed four bouts of 10-s cycle ergometer sprints with interbout FC at 10°C water for 2.5 min or non-cooling (NC) with a 5-day interval. The results indicated that FC elicited higher total work (27.57 ± 5.66 kJ vs. 26.55 ± 5.76 kJ) and arousal scores than NC (p < 0.05). Furthermore, under the NC condition, participants decreased mean power (p < 0.05) with no alteration of vastus lateralis (VL) electromyography (EMG) activities after the second bout; whereas under the FC condition, participants maintained steady mean power accompanied by increased VL EMG activities in the last two bouts (p < 0.05). Jointly, participants had higher mean power ([3rd = 10.14 ± 1.15 vs. 9.37 ± 1.30; 4th= 9.79 ± 1.22 vs. 9.23 ± 1.27] W/kg) and VL EMG activities in the last two bouts under the FC than NC condition (p < 0.05). However, perceived exertion and the heart rate were comparable between the two conditions (p > 0.05). In conclusion, interbout FC elicited a higher arousal level and repeated lower limb power performance, which could be explained by delaying peripheral fatigue via increasing excitatory drive and recruiting additional motor units to compensate for fatigue-related responses and power decrements.
Collapse
|
21
|
Hering GO, Bertschinger R, Stepan J. A quadriceps femoris motor pattern for efficient cycling. PLoS One 2023; 18:e0282391. [PMID: 36928839 PMCID: PMC10019633 DOI: 10.1371/journal.pone.0282391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/13/2023] [Indexed: 03/18/2023] Open
Abstract
In cycling, propulsion is generated by the muscles of the lower limbs and hips. After the first reports of pedal/crank force measurements in the late 1960s, it has been assumed that highly trained athletes have better power transfer to the pedals than recreational cyclists. However, motor patterns indicating higher levels of performance are unknown. To compare leg muscle activation between trained (3.5-4.2 W/kgbw) and highly trained (4.3-5.1 W/kgbw) athletes we applied electromyography, lactate, and bi-pedal/crank force measurements during a maximal power test, an individual lactate threshold test and a constant power test. We show that specific activation patterns of the rectus femoris (RF) and vastus lateralis (VL) impact on individual performance during high-intensity cycling. In highly trained cyclists, we found a strong activation of the RF during hip flexion. This results in reduced negative force in the fourth quadrant of the pedal cycle. Furthermore, we discovered that pre-activation of the RF during hip flexion reduces force loss at the top dead center (TDC) and can improve force development during subsequent leg extension. Finally, we found that a higher performance level is associated with earlier and more intense coactivation of the RF and VL. This quadriceps femoris recruitment pattern improves force transmission and maintains propulsion at the TDC of the pedal cycle. Our results demonstrate neuromuscular adaptations in cycling that can be utilized to optimize training interventions in sports and rehabilitation.
Collapse
Affiliation(s)
- Gernot O. Hering
- Department of Sport and Health Science, University of Konstanz, Konstanz, Germany
- * E-mail:
| | - Raphael Bertschinger
- Department of Sport and Health Science, University of Konstanz, Konstanz, Germany
| | - Jens Stepan
- Department of Sport and Health Science, University of Konstanz, Konstanz, Germany
- Department of Obstetrics and Gynecology, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
22
|
Chang Y, Liu X, Hurr C. Local passive heating administered during recovery impairs subsequent isokinetic knee extension exercise performance. ISOKINET EXERC SCI 2022. [DOI: 10.3233/ies-220030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND: Passive heating has attracted attention as a potentially promising recovery modality in sports. However, investigations of passive heating have yielded only inconsistent results for exercise performance. OBJECTIVE: To investigate the acute effects of local passive heating administered between repeated bouts of isokinetic exercise. METHODS: The experiment was a randomized crossover study. There was a total of three visits including a familiarization visit. During the remaining two visits, eleven healthy men performed three bouts of nine sets of isokinetic knee extensions using their dominant single-leg (30 repetitions/set, 180∘/sec). A 15 min recovery, during which a local passive heating pad at control (CON) or heating (HT) was applied to the rectus femoris, was afforded after the 3rd and 6th sets (Recovery 1 and 2). Isokinetic exercise performance, as assessed by peak torque, total work, and average power was analyzed using two-way repeated-measures ANOVA. RESULTS: Following Recovery 1 and 2, isokinetic exercise performance, as assessed by peak torque, total work, and average power was reduced in Set 4 (p< 0.001, p< 0.001, p= 0.080) and Set 7 (p< 0.001, p< 0.001, p= 0.009) in the HT group relative to the CON group. Electromyography analysis revealed that signal amplitude was lower in the HT group in Set 4 (p< 0.001) subsequent to Recovery 1, and that firing frequency was higher in Set 7 (p= 0.002) in the HT group after Recovery 2. Furthermore, EMG time-frequency maps from one representative participant showed that following Recovery 1 and 2 peak energy decreased during the first five repetitions in Set 4 and 7. CONCLUSIONS: Local passive heating administered during recovery decreased subsequent performance of isokinetic knee extensors, muscle activation ability and increased firing frequency maintaining force output. Therefore, local passive heating is not an appropriate acute recovery strategy for isokinetic exercises.
Collapse
|
23
|
Tang CK, Huang C, Liang KC, Cheng YJ, Hsieh YL, Shih YF, Lin HC. Effects of Different Pedaling Positions on Muscle Usage and Energy Expenditure in Amateur Cyclists. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12046. [PMID: 36231346 PMCID: PMC9564475 DOI: 10.3390/ijerph191912046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Inappropriate cycling positions may affect muscle usage strategy and raise the level of fatigue or risk of sport injury. Dynamic bike fitting is a growing trend meant to help cyclists select proper bikes and adjust them to fit their ergometry. The purpose of this study is to investigate how the "knee forward of foot" (KFOF) distance, an important dynamic bike fitting variable, influences the muscle activation, muscle usage strategy, and rate of energy expenditure during cycling. METHODS Six amateur cyclists were recruited to perform the short-distance ride test (SRT) and the graded exercise tests (GXT) with pedaling positions at four different KFOF distances (+20, 0, -20, and -40 mm). The surface electromyographic (EMG) and portable energy metabolism systems were used to monitor the muscle activation and energy expenditure. The outcome measures included the EMG root-mean-square (RMS) amplitudes of eight muscles in the lower extremity during the SRT, the regression line of the changes in the EMG RMS amplitude and median frequency (MF), and the heart rate and oxygen consumption during the GXT. RESULTS Our results revealed significant differences in the muscle activation of vastus lateralis, vastus medialis, and semitendinosus among four different pedaling positions during the SRT. During GXT, no statistically significant differences in muscle usage strategy and energy expenditure were found among different KFOF. However, most cyclists had the highest rate of energy expenditure with either KFOF at -40 mm or 20 mm. CONCLUSIONS The KFOF distance altered muscle activation in the SRT; however, no significant influence on the muscle usage strategy was found in the GXT. A higher rate of energy expenditure in the extreme pedaling positions of KFOF was observed in most amateur cyclists, so professional assistance for proper bike fitting was recommended.
Collapse
Affiliation(s)
- Chun-Kai Tang
- Department of Physical Therapy and Assistive Technology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Ching Huang
- Department of Physical Therapy, Tao Yuan General Hospital, Ministry of Health and Welfare, Taoyuan 33004, Taiwan
| | - Kai-Cheng Liang
- Department of Physical Therapy and Graduate Institute of Rehabilitation Science, China Medical University, Taichung 406040, Taiwan
| | - Yu-Jung Cheng
- Department of Physical Therapy and Graduate Institute of Rehabilitation Science, China Medical University, Taichung 406040, Taiwan
| | - Yueh-Ling Hsieh
- Department of Physical Therapy and Graduate Institute of Rehabilitation Science, China Medical University, Taichung 406040, Taiwan
| | - Yi-Fen Shih
- Department of Physical Therapy and Assistive Technology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Hsiu-Chen Lin
- Department of Physical Therapy and Graduate Institute of Rehabilitation Science, China Medical University, Taichung 406040, Taiwan
| |
Collapse
|
24
|
Viellehner J, Potthast W. The effect of vibration on kinematics and muscle activation during cycling. J Sports Sci 2022; 40:1760-1771. [PMID: 35984289 DOI: 10.1080/02640414.2022.2109841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Vibration has the potential to compromise performance in cycling. This study aimed to investigate the effects of vibration on full-body kinematics and muscle activation time series. Nineteen male amateur cyclists (mass 74.9 ± 5.9 kg, body height 1.82 ± 0.05 m, Vo2max 57 ± 9 ml/kg/min, age 27 ± 7 years) cycled (216 ± 16 W) with (Vib) and without (NoVib) vibration. Full-body kinematics and muscle activation time series were analysed. Vibration did not affect lower extremity joint kinematics significantly. The pelvic rotated with vibration towards the posterior direction (NoVib: 22.2 ± 4.8°, Vib: 23.1 ± 4.7°, p = 0.016, d = 0.20), upper body lean (NoVib: 157.8 ± 3.0°, Vib: 158.9 ± 3.4°, p = 0.001, d = 0.35) and elbow flexion (NoVib: 27.0 ± 8.2°, Vib: 29.4 ± 9.0°, p = 0.010, d = 0.28) increased significantly with vibration. The activation of lower extremity muscles (soleus, gastrocnemius lat., tibialis ant., vastus med., rectus fem., biceps fem.) increased significantly during varying phases of the crank cycle due to vibration. Vibration increased arm and shoulder muscle (triceps brachii, deltoideus pars scapularis) activation significantly over almost the entire crank cycle. The co-contraction of knee and ankle flexors and extensors (vastus med. - gastrocnemius lat., vastus med. - biceps fem., soleus - tibialis ant.) increased significantly with vibration. In conclusion vibrations influence main tasks such as propulsion and upper body stabilization on the bicycle to a different extent. The effect of vibration on the task of propulsion is limited due to unchanged lower body kinematics and only phase-specific increases of muscular activation during the crank cycle. Additional demands on upper body stabilization are indicated by adjusted upper body kinematics and increased muscle activation of the arm and shoulder muscles during major parts of the cranking cycle.
Collapse
Affiliation(s)
- Josef Viellehner
- German Sport University Cologne - Institute of Biomechanics and Orthopaedics.,German Sport University Cologne, Institute of Outdoor Sports and Environmental Science, Cologne, Germany
| | - Wolfgang Potthast
- German Sport University Cologne - Institute of Biomechanics and Orthopaedics
| |
Collapse
|
25
|
García-López J, Ferrer-Roca V, Floría P. The effect of changes in saddle height on coordination and its variability during pedalling cycle. Sports Biomech 2022:1-14. [PMID: 35943332 DOI: 10.1080/14763141.2022.2109510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/29/2022] [Indexed: 10/15/2022]
Abstract
Modifications in saddle height affect the range of movement of the lower limb's joints during pedalling. Although its effect on movement patterns is poorly understood. The purpose of this study was to analyse the acute effects of small changes in bicycle saddle height on pedalling coordination and its variability. Lower extremity kinematic data were collected in random order for ten well-trained cyclists while pedalling at three different saddle heights: preferred, 2% higher and 2% lower than preferred position. A dynamical systems approach was used to quantify the coordination and its variability for selected joint couplings. Modifications in saddle height produced large changes in the frequency of movement patterns, although they were not enough to alter the coordination classification. Lowering the saddle height increased the frequency of the proximal coordinative hip-ankle pattern (F = 11.77, p < .01) and knee-ankle couplings (F = 14.39, p < .01), while decreasing inphase coordination (F > 11.03, p < .01) during the propulsive phase. Pedalling coordination variability was not affected, being greatest during the movement transitions and when the ankle joint was included in the coupling. This study demonstrated that pedalling pattern coordination and coordination variability were generally stable to acute small changes in saddle height in well-trained cyclists.
Collapse
Affiliation(s)
- Juan García-López
- Faculty of Physical Activity and Sport Sciences, Universidad de León, León, Spain
| | | | - Pablo Floría
- Physical Performance & Sports Research, Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
26
|
Shirzad M, Tari B, Dalton C, Van Riesen J, Marsala MJ, Heath M. Passive exercise increases cerebral blood flow velocity and supports a postexercise executive function benefit. Psychophysiology 2022; 59:e14132. [PMID: 35781673 DOI: 10.1111/psyp.14132] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 12/16/2022]
Abstract
Executive function entails high-level cognitive control supporting activities of daily living. Literature has shown that a single-bout of exercise involving volitional muscle activation (i.e., active exercise) improves executive function and that an increase in cerebral blood flow (CBF) may contribute to this benefit. It is, however, unknown whether non-volitional exercise (i.e., passive exercise) wherein an individual's limbs are moved via an external force elicits a similar executive function benefit. This is a salient question given that proprioceptive and feedforward drive from passive exercise increases CBF independent of the metabolic demands of active exercise. Here, in a procedural validation participants (n = 2) used a cycle ergometer to complete separate 20-min active and passive (via mechanically driven flywheel) exercise conditions and a non-exercise control condition. Electromyography showed that passive exercise did not increase agonist muscle activation or increase ventilation or gas exchange variables (i.e., V̇O2 and V̇CO2 ). In a main experiment participants (n = 28) completed the same exercise and control conditions and transcranial Doppler ultrasound showed that active and passive exercise (but not the control condition) increased CBF through the middle cerebral artery (ps <.001); albeit the magnitude was less during passive exercise. Notably, antisaccade reaction times prior to and immediately after each condition showed that active (p < .001) and passive (p = .034) exercise improved an oculomotor-based measure of executive function, whereas no benefit was observed in the control condition (p = .85). Accordingly, results evince that passive exercise 'boosts' an oculomotor-based measure of executive function and supports convergent evidence that increased CBF mediates this benefit.
Collapse
Affiliation(s)
- Mustafa Shirzad
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, London, Ontario, Canada
| | - Benjamin Tari
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, London, Ontario, Canada
| | - Connor Dalton
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, London, Ontario, Canada
| | - James Van Riesen
- Graduate Program in Neuroscience, University of Western Ontario, London, Ontario, Canada
| | - Michael J Marsala
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, London, Ontario, Canada
| | - Matthew Heath
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, London, Ontario, Canada.,Graduate Program in Neuroscience, University of Western Ontario, London, Ontario, Canada.,Canadian Centre for Activity and Aging, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
27
|
Brownstein CG, Metra M, Sabater Pastor F, Faricier R, Millet GY. Disparate Mechanisms of Fatigability in Response to Prolonged Running versus Cycling of Matched Intensity and Duration. Med Sci Sports Exerc 2022; 54:872-882. [PMID: 35072662 DOI: 10.1249/mss.0000000000002863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Running and cycling represent two of the most common forms of endurance exercise. However, a direct comparison of the neuromuscular consequences of these two modalities after prolonged exercise has never been made. The aim of this study was to compare the alterations in neuromuscular function induced by matched-intensity and duration cycling and running exercise. METHODS During separate visits, 17 endurance-trained male participants performed 3 h of cycling and running at 105% of the gas exchange threshold. Neuromuscular assessments were taken are preexercise, midexercise, and postexercise, including knee extensor maximal voluntary contractions (MVC), voluntary activation (VA), high- and low-frequency doublets (Db100 and Db10, respectively), potentiated twitches (Qtw,pot), motor evoked potentials (MEP), and thoracic motor evoked potentials (TMEP). RESULTS After exercise, MVC was similarly reduced by ~25% after both running and cycling. However, reductions in VA were greater after running (-16% ± 10%) than cycling (-10% ± 5%; P < 0.05). Similarly, reductions in TMEP were greater after running (-78% ± 24%) than cycling (-15% ± 60%; P = 0.01). In contrast, reductions in Db100 (running vs cycling, -6% ± 21% vs -13% ± 6%) and Db10:100 (running vs cycling, -6% ± 16% vs -19% ± 13%) were greater for cycling than running (P ≤ 0.04). CONCLUSIONS Despite similar decrements in the knee extensor MVC after running and cycling, the mechanisms responsible for force loss differed. Running-based endurance exercise is associated with greater impairments in nervous system function, particularly at the spinal level, whereas cycling-based exercise elicits greater impairments in contractile function. Differences in the mechanical and metabolic demands imposed on the quadriceps could explain the disparate mechanisms of neuromuscular impairment after these two exercise modalities.
Collapse
Affiliation(s)
- Callum G Brownstein
- Univ Lyon, UJM-Saint-Etienne, Inter-university Laboratory of Human Movement Biology, EA 7424, F-42023, Saint-Etienne, FRANCE
| | - Mélanie Metra
- Univ Lyon, UJM-Saint-Etienne, Inter-university Laboratory of Human Movement Biology, EA 7424, F-42023, Saint-Etienne, FRANCE
| | - Frederic Sabater Pastor
- Univ Lyon, UJM-Saint-Etienne, Inter-university Laboratory of Human Movement Biology, EA 7424, F-42023, Saint-Etienne, FRANCE
| | - Robin Faricier
- Univ Lyon, UJM-Saint-Etienne, Inter-university Laboratory of Human Movement Biology, EA 7424, F-42023, Saint-Etienne, FRANCE
| | | |
Collapse
|
28
|
Reliability of Upper-Extremity Muscle Activity and Kinematics During Adaptive Rowing. J Sport Rehabil 2022; 31:926-932. [PMID: 35477897 DOI: 10.1123/jsr.2021-0266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 12/02/2021] [Accepted: 03/07/2022] [Indexed: 11/18/2022]
Abstract
CONTEXT The purpose of this study was to determine test-retest reliability of upper-extremity muscle activity and kinematics during submaximal adapted rowing. DESIGN A repeated-measures design was used. METHODS Data were collected on 10 individuals (7 male and 3 female) with mobility impairment. Surface electromyography of muscles of the dominant arm (upper, middle, and lower trapezius, anterior and posterior deltoid, latissimus dorsi, and infraspinatus) was acquired. Muscle activity was analyzed using the area under the curve, peak amplitude, and mean amplitude. Kinematic analysis determined joint motions for shoulder plane and angle of elevation, and trunk flexion/extension, and rotation at the catch (0%) and finish (100%) of the stroke. Three submaximal rowing trials (20 strokes each) were completed with the middle 10 strokes of each trial averaged for analysis. RESULTS An interclass correlation coefficient (3, 10) determined test-retest reliability across trials (interclass correlation coefficient defined as poor < .5; moderate .5-.75; and good .75-.9). Moderate to excellent reliability existed across all muscles for the area under the curve, peak amplitude, and mean amplitude. Excellent reliability was seen for all kinematic measures. CONCLUSION Results indicate upper-extremity muscle activity and kinematics of the adapted rowing stroke are reliable in a diverse group of individuals with mobility impairment.
Collapse
|
29
|
Umutlu G. Heavy-intensity cycling and running work-rate associated to VO2max affects isokinetic strength, the dynamic control ratio but not the conventional H:Q ratio. ISOKINET EXERC SCI 2022. [DOI: 10.3233/ies-210105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: Bilateral strength asymmetry and fatigue predispose athletes to various injuries and conventional methods appear to be poor predictors of lower extremity muscular performance under NF conditions. OBJECTIVE: The purpose of the study was to compare the conventional Hcon/Qcon (HQR) ratio and the dynamic control ratio (DCR: Hecc/Qcon) under non-fatiguing (NF) and fatiguing (F) conditions and verify the effects of heavy-intensity constant running and cycling exercise on the isokinetic performance. METHODS: Twenty healthy male participants performed running and cycling VO2max at work-rate associated with the achievement of VO2max (TTE). Isokinetic muscle strength performance was tested at 60 and 180∘/s before and after these sessions with 48-hour intervals. Quadriceps (QFR) and hamstring (HFR) muscle fatigue rates were also calculated during these sessions. Blood lactate concentration was measured before and two-minutes after running and cycling TTE. RESULTS: No between-condition differences were found for the HQR while the DCR decreased significantly at 180∘/s following cycling and running sessions (p< 0.05). Cycling TTE was positively correlated with in dominant (r= 0.535, p= 0.015) and non-dominant (r= 0.446, p= 0.048) QFR. Positive correlations were also found between running TTE and dominant (r= 0.500, p= 0.25) and non-dominant (r= 0.465, p= 0.039) HFR. CONCLUSIONS: The DCR obtained at fast angular velocities following a strenuous exercise seems to be the best indicator of muscle performance while its assessment under F conditions reveals higher ratios compared to NF conditions and conventional methods.
Collapse
|
30
|
Cartier T, Vigouroux L, Viehweger E, Rao G. Subject specific muscle synergies and mechanical output during cycling with arms or legs. PeerJ 2022; 10:e13155. [PMID: 35368343 PMCID: PMC8973464 DOI: 10.7717/peerj.13155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/02/2022] [Indexed: 01/12/2023] Open
Abstract
Background Upper (UL) and lower limb (LL) cycling is extensively used for several applications, especially for rehabilitation for which neuromuscular interactions between UL and LL have been shown. Nevertheless, the knowledge on the muscular coordination modality for UL is poorly investigated and it is still not known whether those mechanisms are similar or different to those of LL. The aim of this study was thus to put in evidence common coordination mechanism between UL and LL during cycling by investigating the mechanical output and the underlying muscle coordination using synergy analysis. Methods Twenty-five revolutions were analyzed for six non-experts' participants during sub-maximal cycling with UL or LL. Crank torque and muscle activity of eleven muscles UL or LL were recorded. Muscle synergies were extracted using nonnegative matrix factorization (NNMF) and group- and subject-specific analysis were conducted. Results Four synergies were extracted for both UL and LL. UL muscle coordination was organized around several mechanical functions (pushing, downing, and pulling) with a proportion of propulsive torque almost 80% of the total revolution while LL muscle coordination was organized around a main function (pushing) during the first half of the cycling revolution. LL muscle coordination was robust between participants while UL presented higher interindividual variability. Discussion We showed that a same principle of muscle coordination exists for UL during cycling but with more complex mechanical implications. This study also brings further results suggesting each individual has unique muscle signature.
Collapse
Affiliation(s)
- Théo Cartier
- Aix Marseille Univ, CNRS, ISM, Marseille, France
| | | | - Elke Viehweger
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland,Department of Orthopedics and Gait Laboratory, University Children’s Hospital of Both Basel, Basel, Switzerland
| | | |
Collapse
|
31
|
Voet NBM, Saris CGJ, Thijssen DHJ, Bastiaans V, Sluijs DE, Janssen MMHP. Surface Electromyography Thresholds as a Measure for Performance Fatigability During Incremental Cycling in Patients With Neuromuscular Disorders. Front Physiol 2022; 13:821584. [PMID: 35370798 PMCID: PMC8969223 DOI: 10.3389/fphys.2022.821584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
In healthy persons, there is an excellent relation between the timing of the (two) surface electromyography (sEMG) thresholds and the (two) ventilatory thresholds during exercise. The primary aim of this study was to determine the relative timing of both sEMG and ventilatory thresholds in patients with neuromuscular disorders compared with healthy subjects during a maximal ergospirometry cycling test. We hypothesized that in patients with neuromuscular disorders, the sEMG thresholds would occur relatively earlier in time than the ventilatory thresholds, compared to healthy subjects, because performance fatigability occurs more rapidly. In total, 24 healthy controls and 32 patients with a neuromuscular disorder performed a cardiopulmonary exercise test on a bicycle using a 10-min ramp protocol, during which we collected ergospirometry data: power at both ventilatory and sEMG thresholds, and sEMG data of lower leg muscles. In line with our hypothesis, normalized values for all thresholds were lower for patients than healthy subjects. These differences were significant for the first ventilatory (p = 0.008) and sEMG threshold (p < 0.001) but not for the second sEMG (p = 0.053) and ventilatory threshold (p = 0.238). Most parameters for test–retest reliability of all thresholds did not show any fixed bias, except for the second ventilatory threshold. The feasibility of the sEMG thresholds was lower than the ventilatory thresholds, particularly of the first sEMG threshold. As expected, the sEMG thresholds, particularly the first threshold, occurred relatively earlier in time than the ventilatory thresholds in patients compared with healthy subjects. A possible explanation could be (a combination of) a difference in fiber type composition, disuse, and limited muscle-specific force in patients with neuromuscular disorders. sEMG measurements during submaximal dynamic exercises are needed to generalize the measurements to daily life activities for future use in prescribing and evaluating rehabilitation interventions.
Collapse
Affiliation(s)
- Nicoline B. M. Voet
- Department of Rehabilitation, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
- Klimmendaal, Rehabilitation Center, Arnhem, Netherlands
- *Correspondence: Nicoline B. M. Voet,
| | - Christiaan G. J. Saris
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
| | - Dick H. J. Thijssen
- Department of Physiology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
| | - Vincent Bastiaans
- Sports Medicine Center, HAN Seneca, HAN University of Applied Sciences, Nijmegen, Netherlands
| | - David E. Sluijs
- Sports Medicine Center, HAN Seneca, HAN University of Applied Sciences, Nijmegen, Netherlands
| | - Mariska M. H. P. Janssen
- Department of Rehabilitation, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
- Klimmendaal, Rehabilitation Center, Arnhem, Netherlands
| |
Collapse
|
32
|
Akaiwa M, Iwata K, Saito H, Shibata E, Sasaki T, Sugawara K. The Effect of Pedaling at Different Cadence on Attentional Resources. Front Hum Neurosci 2022; 16:819232. [PMID: 35280213 PMCID: PMC8913718 DOI: 10.3389/fnhum.2022.819232] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/10/2022] [Indexed: 11/26/2022] Open
Abstract
We investigated the relationship between attentional resources and pedaling cadence using electroencephalography (EEG) to measure P300 amplitudes and latencies. Twenty-five healthy volunteers performed the oddball task while pedaling on a stationary bike or relaxing (i.e., no pedaling). We set them four conditions, namely, (1) performing only the oddball task (i.e., control), (2) performing the oddball task while pedaling at optimal cadence (i.e., optimal), (3) performing the oddball task while pedaling faster than optimal cadence (i.e., fast), and (4) performing the oddball task while pedaling slower than optimal cadence (i.e., slow). P300 amplitudes at Cz and Pz electrodes under optimal, fast, and slow conditions were significantly lower than those under control conditions. P300 amplitudes at Pz under fast and slow conditions were significantly lower than those under the optimal condition. No significant changes in P300 latency at any electrode were observed under any condition. Our findings revealed that pedaling at non-optimal cadence results in less attention being paid to external stimuli compared with pedaling at optimal cadence.
Collapse
Affiliation(s)
- Mayu Akaiwa
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Koki Iwata
- Department of Rehabilitation, Kashiwaba Neurosurgical Hospital, Sapporo, Japan
| | - Hidekazu Saito
- Department of Occupational Therapy, School of Health Science, Sapporo Medical University, Sapporo, Japan
| | - Eriko Shibata
- Department of Physical Therapy, Faculty of Human Science, Hokkaido Bunkyo University, Eniwa, Japan
| | - Takeshi Sasaki
- Department of Physical Therapy, School of Health Science, Sapporo Medical University, Sapporo, Japan
| | - Kazuhiro Sugawara
- Department of Physical Therapy, School of Health Science, Sapporo Medical University, Sapporo, Japan
- *Correspondence: Kazuhiro Sugawara,
| |
Collapse
|
33
|
Ema R. Unique neuromuscular activation of the rectus femoris during concentric and eccentric cycling. J Electromyogr Kinesiol 2022; 63:102638. [DOI: 10.1016/j.jelekin.2022.102638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 11/16/2022] Open
|
34
|
Grey Relational Analysis of Lower Limb Muscle Fatigue and Pedalling Performance Decline of Elite Athletes during a 30-Second All-Out Sprint Cycling Exercise. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:6755767. [PMID: 34938421 PMCID: PMC8687788 DOI: 10.1155/2021/6755767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 10/25/2021] [Accepted: 11/23/2021] [Indexed: 11/18/2022]
Abstract
The 30-second all-out sprint cycling exercise is a classical sport capacity evaluation method, which may cause severe lower limb muscle fatigue. However, the relationship between lower limb muscle fatigue and the decline in exercise performance during 30-second sprint cycling remains unclear. In this study, ten cyclists volunteered to participate in a 30-second all-out sprint cycling while power, cadence, and surface electromyographic (EMG) signals of eight lower limb muscles were recorded during the exercise. EMG mean frequency (MNF) of each lower limb muscle group was computed for every 3-second epoch based on wavelet packet transformation. Grey relational grades between pedalling performance and the EMG MNF of each lower limb muscle group during the whole process were calculated. The results demonstrated that EMG MNF of the rectus femoris (RF), vastus (VAS), gastrocnemius (GAS), and tibialis anterior (TA) progressively tired during a 30-second all-out sprint cycling exercise. Of the muscles evaluated, the degree of fatigue of TA showed the greatest association with exercise performance decline, whereas the muscle fatigue of RF, VAS, and GAS also significantly impacted exercise performance during a 30-second all-out sprint cycling exercise.
Collapse
|
35
|
Annandale A, Fosgate GT, Eksteen CA, Kremer WDJ, Bok HGJ, Holm DE. Electromyographic Analysis of Muscle Activation Patterns During Bovine Transrectal Palpation and the Development of the Bovine Pregnancy Diagnosis Improvement Exercise Program. JOURNAL OF VETERINARY MEDICAL EDUCATION 2021; 48:686-697. [PMID: 33657330 DOI: 10.3138/jvme-2020-0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The unusual and tiring physical activity of bovine transrectal palpation (TRP) requires a novel approach to improve students' TRP and pregnancy diagnosis (PD) skills. It has been shown that students who participated in an exercise program and students who had a grip strength (GS) of more than 30 kilograms performed better in bovine PDs. Participation in the exercise program increased students' sensitivity (ability to identify pregnant cows) but did not increase total arm muscle strength. To identify which muscles are used during TRPs and to improve the exercise program, an electromyographic (EMG) analysis was used to identify muscle activation patterns and muscle activity levels during bovine TRPs. Eight subject matter experts (SMEs) each palpated two live cows and one Breed'n Betsy® rectal examination simulator while an EMG Triggered Stimulator recorded muscle activity. Muscle activation was higher for forearm muscles compared with all other examined muscle groups (p < .001); was higher during retraction of the uterus and palpation of left and right uterine horn, compared with palpation of cervix, uterine body, left ovary, and right ovary (p < .001); and showed an endurance pattern. Findings have been used to modify the previously developed exercise program in effort to improve students' TRP and PD skills. The Bovine PD Improvement Exercise Program is available to students through an online application (http://icarus.up.ac.za/vetmlp/) and aims to not only improve GS and TRP accuracy but also stamina and well-being while adding fun to busy study schedules.
Collapse
|
36
|
A Dynamic Approach to Cycling Biomechanics. Phys Med Rehabil Clin N Am 2021; 33:1-13. [PMID: 34798992 DOI: 10.1016/j.pmr.2021.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cycling biomechanics is a complex analysis of the cyclist and the bicycle. It is important to assess the cyclist dynamically because kinematics and muscle patterns are influenced by their type of riding and fatigue and intensity. Intrinsic factors such as anthropometrics and flexibility should guide the initial bicycle configuration. Static kinematics are a valid and reliable tool in the process of bike fitting, providing an initial fast and cost-effective method of assessing the cyclist. Dynamic assessment methods should then be used to fine tune the bicycle configuration according to the specific needs and workloads of the cyclist.
Collapse
|
37
|
FUKUHARA S, OKA H. Pedaling stroke length effects on the muscle mechanical and electrical activity during recumbent cycling. GAZZETTA MEDICA ITALIANA ARCHIVIO PER LE SCIENZE MEDICHE 2021. [DOI: 10.23736/s0393-3660.20.04516-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
38
|
Hand BJ, Opie GM, Sidhu SK, Semmler JG. Motor cortex plasticity and visuomotor skill learning in upper and lower limbs of endurance-trained cyclists. Eur J Appl Physiol 2021; 122:169-184. [DOI: 10.1007/s00421-021-04825-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/30/2021] [Indexed: 11/29/2022]
|
39
|
Electromyographic and Systemic Physiological Thresholds in Single-Joint Elbow Flexion Movements. Int J Sports Physiol Perform 2021; 17:241-248. [PMID: 34611058 DOI: 10.1123/ijspp.2021-0163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/25/2021] [Accepted: 06/05/2021] [Indexed: 11/18/2022]
Abstract
PURPOSE Reported relationships between electromyographic (EMG) thresholds and systemic thresholds based on lactate, ventilation, or heart rate are contradictory. This might be related to the complexity of the investigated whole-body movements involving many muscles with different activation patterns. Therefore, the aim of the study was to investigate these relationships during an incremental single-joint exercise. METHODS Eighteen male subjects (29.7 [4.4] y) performed single-arm elbow flexions on a biceps curl machine with loads increasing every minute until exhaustion. EMG signals of the main elbow flexors (short and long head of the biceps brachii, flexor carpi radialis, and brachioradialis) as well as gas exchange variables, blood lactate concentration, and heart rate were measured, and 2 turn points based on a 3-phase model of metabolism were determined for each variable. RESULTS The first and second turn points for EMG were determined at 32.0% to 33.1% and 64.4% to 66.5% of maximal achieved performance (maximum weight), respectively. Systemic turn points were determined at 33.3% to 34.4% and 65.9% to 66.7% of maximum weight and were not significantly different from EMG turn points. Furthermore, systemic and EMG turn points showed a strong or very strong relationship at the first (ρ = .54-.93, P < .05) and second turn point (ρ = .76-.93, P < .01). CONCLUSIONS A close relationship between EMG and systemic turn points could be confirmed for the applied movement of a small muscle group. The determination of local single muscle thresholds using EMG provides additional muscle-specific information about performance-limiting properties of muscles involved in endurance-type incremental exercise.
Collapse
|
40
|
McDonald R, Holliday W, Swart J. Muscle recruitment patterns and saddle pressures indexes with alterations in effective seat tube angle. SPORTS MEDICINE AND HEALTH SCIENCE 2021; 4:29-37. [PMID: 35782780 PMCID: PMC9219297 DOI: 10.1016/j.smhs.2021.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/28/2021] [Accepted: 10/20/2021] [Indexed: 01/10/2023] Open
Abstract
Alteration of the effective seat tube angle (ESTA) may affect muscle activation patterns of the lower limbs in cycling. There is conflicting evidence due to inadequate kinematic controls in previous studies. The primary aim of this study was to determine the muscle activity of seven lower limb muscles during alterations of the ESTA by altering the position of both the handlebars and saddle forwards or backwards by 3 cm while ensuring controlled kinematics. Secondly, to determine the effect on the saddle pressure indexes. Ten participants performed two 5 min electromyography (EMG) trials at 70% of peak power output (PPO) for three consecutive visits. There was a significant increase in muscle activity in the biceps femoris, gluteus maximus, and medial gastrocnemius with reductions in ESTA while a significant increase in tibialis anterior with increases in ESTA was observed. Saddle pressure indices demonstrated a significant change in frontal versus back pressure as well as mean pubic pressure with changes in ESTA. Alteration in the ESTA affects muscle activity in some, but not all of the lower limb muscles. Further research needs to be conducted to adequately understand the mechanism behind the differences in muscle activation.
Collapse
|
41
|
Comparison of Joint Kinematics in Transition Running and Isolated Running in Elite Triathletes in Overground Conditions. SENSORS 2021; 21:s21144869. [PMID: 34300608 PMCID: PMC8309736 DOI: 10.3390/s21144869] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/05/2021] [Accepted: 07/13/2021] [Indexed: 11/17/2022]
Abstract
Triathletes often experience incoordination at the start of a transition run (TR); this is possibly reflected by altered joint kinematics. In this study, the first 20 steps of a run after a warm-up run (WR) and TR (following a 90 min cycling session) of 16 elite, male, long-distance triathletes (31.3 ± 5.4 years old) were compared. Measurements were executed on the competition course of the Ironman Frankfurt in Germany. Pacing and slipstream were provided by a cyclist in front of the runner. Kinematic data of the trunk and leg joints, step length, and step rate were obtained using the MVN Link inertial motion capture system by Xsens. Statistical parametric mapping was used to compare the active leg (AL) and passive leg (PL) phases of the WR and TR. In the TR, more spinal extension (~0.5–1°; p = 0.001) and rotation (~0.2–0.5°; p = 0.001–0.004), increases in hip flexion (~3°; ~65% AL−~55% PL; p = 0.001–0.004), internal hip rotation (~2.5°; AL + ~0–30% PL; p = 0.001–0.024), more knee adduction (~1°; ~80–95% AL; p = 0.001), and complex altered knee flexion patterns (~2–4°; AL + PL; p = 0.001–0.01) occurred. Complex kinematic differences between a WR and a TR were detected. This contributes to a better understanding of the incoordination in transition running.
Collapse
|
42
|
Baldwin KM, Badenhorst CE, Cripps AJ, Landers GJ, Merrells RJ, Bulsara MK, Hoyne GF. Strength Training for Long-Distance Triathletes. Strength Cond J 2021. [DOI: 10.1519/ssc.0000000000000660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
43
|
Jongerius N, Wainwright B, Wheat J, Bissas A. Prevalence and functional implications of Soleus and Tibialis anterior activation strategies during cycling. J Sports Sci 2021; 39:2485-2492. [PMID: 34134607 DOI: 10.1080/02640414.2021.1939981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Key areas of sports science research investigate the functional role of muscle activations within human movement. Even within relatively constrained movements like cycling, significant variability is observed in muscle activation strategies. Particular attention has been given to particular muscles, despite Soleus and Tibialis anterior muscles presenting a potentially functionally relevant split between monomodal and bimodal activation strategies. The current study (N = 54) investigated the prevalence and functional implications of these different strategies and identified, in addition to monomodal [Soleus: N = 24, Tibialis anterior: N = 7] and bimodal [Soleus: N = 12, Tibialis anterior: N = 31] strategies, a third group switching between strategies [Soleus: N = 16, Tibialis anterior: N = 13]. The combined Soleus group showed significantly higher Index of Force Effectiveness, lower negative work and lower radial forces than the bimodal group. Furthermore, bimodal Soleus strategies produced a period of significantly greater plantar flexion during the upstroke. No differences were found between the Tibialis anterior groups. These data show an identifiable group of cyclists utilising a combination of monomodal and bimodal strategies potentially benefiting mechanical effectiveness. Awareness of such functional implications can aid researchers and practitioners when interpreting cycling biomechanics data or intervention responses. Further research should investigate the factors that mediate transitions between activation strategies within the combined groups.
Collapse
Affiliation(s)
- Nils Jongerius
- Carnegie School of Sport, Leeds Beckett University, Leeds, UK
| | | | - Jonathan Wheat
- College of Health, Wellbeing and Life Sciences, Sheffield Hallam University, Sheffield, UK
| | - Athanassios Bissas
- School of Sport and Exercise, University of Gloucestershire, Gloucester, UK.,Athletics Biomechanics, Leeds, UK
| |
Collapse
|
44
|
Frazão M, Silva PE, Cacau LDAP, Petrucci TR, Assis MC, Santos ADC, Brasileiro-Santos MDS. EMG breakpoints for detecting anaerobic threshold and respiratory compensation point in recovered COVID-19 patients. J Electromyogr Kinesiol 2021; 59:102567. [PMID: 34174508 PMCID: PMC8186128 DOI: 10.1016/j.jelekin.2021.102567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/06/2021] [Accepted: 06/03/2021] [Indexed: 11/29/2022] Open
Abstract
Introduction A huge number of COVID-19 patients should be referred to rehabilitation programmes. Individualizing the exercise intensity by metabolic response provide good physiological results. The aim of this study was to investigate the validity of EMG as a non-invasive determinant of the anaerobic threshold and respiratory compensation point, for more precise exercise intensity prescription. Methods An observational cross-sectional study with 66 recovered COVID-19 patients was carried out. The patients underwent a cardiopulmonary exercise test with simultaneous assessment of muscle electromyography in vastus lateralis. EMG breakpoints were analyzed during the ramp-up protocol. The first and second EMG breakpoints were used for anaerobic threshold and respiratory compensation point determination. Results EMG and gas exchange analysis presented strong correlation in anaerobic threshold (r = 0.97, p < 0.0001) and respiratory compensation point detection (r = 0.99, p < 0.0001) detection. Bland-Altman analysis demonstrated a bias = −4.7 W (SD = 6.2 W, limits of agreement = −16.9 to 7.6) for anaerobic threshold detection in EMG compared to gas exchange analysis. In respiratory compensation point detection, Bland-Altman analysis demonstrated a bias = -2.1 W (SD = 4.5 W, limits of agreement = −10.9 to 6.6) in EMG compared to gas exchange analysis. EMG demonstrated a small effect size compared to gas exchange analysis in oxygen uptake and power output at anaerobic threshold and respiratory compensation point detection. Conclusions EMG analysis detects anaerobic threshold and respiratory compensation point without clinical significant difference than gas exchange analysis (gold standard method) in recovered COVID-19 patients.
Collapse
Affiliation(s)
- Murillo Frazão
- Laboratory of Physical Training Studies Applied to Health, Physical Education Department, Universidade Federal da Paraíba (UFPB), João Pessoa, PB, Brazil; Associate Graduate Programme in Physical Education UPE/UFPB, PB, Brazil; Lauro Wanderley University Hospital, UFPB, PB, Brazil; CLINAR - Exercise Physiology, João Pessoa, PB, Brazil.
| | - Paulo Eugênio Silva
- Clinical Physiology and Technological Innovation FICTI-CNPq, Brasília, DF, Brazil
| | | | | | - Mariela Cometki Assis
- Intervent - Infectology and Phyiotherapy, Aracaju, SE, Brazil; Unimed, Aracaju, SE, Brazil
| | - Amilton da Cruz Santos
- Laboratory of Physical Training Studies Applied to Health, Physical Education Department, Universidade Federal da Paraíba (UFPB), João Pessoa, PB, Brazil; Associate Graduate Programme in Physical Education UPE/UFPB, PB, Brazil
| | - Maria do Socorro Brasileiro-Santos
- Laboratory of Physical Training Studies Applied to Health, Physical Education Department, Universidade Federal da Paraíba (UFPB), João Pessoa, PB, Brazil; Associate Graduate Programme in Physical Education UPE/UFPB, PB, Brazil
| |
Collapse
|
45
|
Guilleron C, Beaune B, Durand S, Pouliquen C, Henni S, Abraham P. Gait alterations in patient with intermittent claudication: Effect of unilateral vs bilateral ischemia. Clin Physiol Funct Imaging 2021; 41:292-301. [PMID: 33675152 DOI: 10.1111/cpf.12698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 02/23/2021] [Accepted: 03/02/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND We seek to evaluate whether ischemia extent (unilateral or bilateral) impacts spatiotemporal and neuromuscular gait parameters differently in patients with peripheral arterial disease and presenting intermittent claudication (PAD-IC). METHODS Two groups of PAD-IC patients: unilateral (Unilat-IC; n = 15), bilateral (Bilat-IC; n = 15) and a group of control subjects with similar risk factors (n = 15) were evaluated during a constant load treadmill walking test. Spatiotemporal parameters and neuromuscular activation in tibialis anterior and gastrocnemius medialis were recorded. Patients were instructed to describe their pain during walking test, and three phases were analysed: pain-free, onset of pain and maximum pain in PAD-IC patients. FINDINGS Single leg stance in the asymptomatic leg of Unilat-IC increases and becomes higher than the symptomatic leg and the Bilat-IC legs at maximum pain. Step time is higher and cadence is lower in PAC-IC than in controls. Tibialis anterior activation peak in Unilat-IC continuously decreases between phases and becomes lower than in Bilat-IC during maximum pain. Tibialis anterior activation time is higher in Bilat-IC and in the asymptomatic leg than in the symptomatic of Unilat-IC during all the phases. Gastrocnemius medialis activation peak in Bilat-IC decreases with pain. Gastrocnemius medialis activation time in the symptomatic leg of Unilat-IC presents a significant decrease between pain-free and maximum pain phases. INTERPRETATION Ischemia impacts gait in PAD-IC patients differently according to its extent between legs compared to controls. Imbalance between legs in Unilat-IC induces compensatory mechanism and an asymmetrical pattern. Bilat-IC should not be simply considered as a 'double' Unilat-IC when evaluating gait.
Collapse
Affiliation(s)
- Céline Guilleron
- Le Mans Université, Movement - Interactions - Performance, MIP, Le Mans, France.,UMR CNRS 6015 INSERM 1083, University of Angers, Angers, France.,Department of Vascular Medicine, University hospital of Angers, Angers, France
| | - Bruno Beaune
- Le Mans Université, Movement - Interactions - Performance, MIP, Le Mans, France
| | - Sylvain Durand
- Le Mans Université, Movement - Interactions - Performance, MIP, Le Mans, France
| | - Camille Pouliquen
- Le Mans Université, Movement - Interactions - Performance, MIP, Le Mans, France
| | - Samir Henni
- UMR CNRS 6015 INSERM 1083, University of Angers, Angers, France.,Department of Vascular Medicine, University hospital of Angers, Angers, France
| | - Pierre Abraham
- UMR CNRS 6015 INSERM 1083, University of Angers, Angers, France.,Sports Medicine, University Hospital of Angers, Angers, France
| |
Collapse
|
46
|
Pouliquen C, Nicolas G, Bideau B, Bideau N. Impact of Power Output on Muscle Activation and 3D Kinematics During an Incremental Test to Exhaustion in Professional Cyclists. Front Sports Act Living 2021; 2:516911. [PMID: 33778484 PMCID: PMC7988189 DOI: 10.3389/fspor.2020.516911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 12/21/2020] [Indexed: 11/29/2022] Open
Abstract
This study aimed to quantify the influence of an increase in power output (PO) on joint kinematics and electromyographic (EMG) activity during an incremental test to exhaustion for a population of professional cyclists. The hip flexion/extension and internal/external rotation as well as knee abduction/adduction ranges of motion were significantly decreased at 100% of the maximal aerobic power (MAP). EMG analysis revealed a significant increase in the root mean square (RMS) for all muscles from 70% of the MAP. Gastrocnemius muscles [lateralis gastrocnemius (GasL) and medialis gastrocnemius (GasM)] were the less affected by the increase of PO. Cross-correlation method showed a significant increase in the lag angle values for VM in the last stage compared to the first stage, meaning that the onset of the activation started earlier during the pedaling cycle. Statistical Parametric Mapping (SPM) demonstrated that from 70% MAP, biceps femoris (BF), tibialis anterior (TA), gluteus maximus (GM), and rectus femoris (RF) yielded larger ranges of the crank cycle on which the level of recruitment was significantly increased. This study revealed specific muscular and kinematic coordination for professional cyclists in response to PO increase.
Collapse
Affiliation(s)
- Camille Pouliquen
- M2S Laboratory (Movement, Sports & Health), University Rennes 2, ENS Rennes, Bruz, France.,MIMETIC - Analysis-Synthesis Approach for Virtual Human Simulation, INRIA Rennes - Bretagne Atlantique, Rennes, France
| | - Guillaume Nicolas
- M2S Laboratory (Movement, Sports & Health), University Rennes 2, ENS Rennes, Bruz, France.,MIMETIC - Analysis-Synthesis Approach for Virtual Human Simulation, INRIA Rennes - Bretagne Atlantique, Rennes, France
| | - Benoit Bideau
- M2S Laboratory (Movement, Sports & Health), University Rennes 2, ENS Rennes, Bruz, France.,MIMETIC - Analysis-Synthesis Approach for Virtual Human Simulation, INRIA Rennes - Bretagne Atlantique, Rennes, France
| | - Nicolas Bideau
- M2S Laboratory (Movement, Sports & Health), University Rennes 2, ENS Rennes, Bruz, France.,MIMETIC - Analysis-Synthesis Approach for Virtual Human Simulation, INRIA Rennes - Bretagne Atlantique, Rennes, France
| |
Collapse
|
47
|
Lee HJ, Lee KW, Takeshi K, Lee YW, Kim HJ. Correlation analysis between lower limb muscle architectures and cycling power via ultrasonography. Sci Rep 2021; 11:5362. [PMID: 33686180 PMCID: PMC7940634 DOI: 10.1038/s41598-021-84870-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 02/16/2021] [Indexed: 11/17/2022] Open
Abstract
The primary purpose was to examine the relationship between the muscle architectural characteristics of short and long-distance cyclist—including muscle thickness, fascicle angle, and fascicle length—of the anterior thigh and posterior leg and its impact in 20-s cycling power. The secondary purpose was to clarify the muscle variables that predict the cycling power by using ultrasonography to measure the muscle architectural characteristics. Twenty-four varsity cyclists participated in this study, of whom 12 were short-distance cyclists and 12 were long-distance cyclists. B-mode ultrasonography was used to measure muscle architecture parameters. A cycle ergometer was used to measure the cycling power. The rectus femoris, vastus medialis, and medial head of gastrocnemius were significantly thicker in short-distance cyclists than in long-distance cyclists at every site (p < 0.05). Our analysis revealed that the rectus femoris fascicle length at the 30% level of the thigh was a significant independent predictor of the 20-s cycling power in short-distance cyclists, while the rectus femoris fascicle angle at the 50% level was that of the 20-s cycling power in long-distance cyclists. These findings highlight the significance of rectus femoris muscle architecture to cycling power.
Collapse
Affiliation(s)
- Hyung-Jin Lee
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Human Identification Research Institute, BK21 PLUS Project, Yonsei University College of Dentistry, Room 6 01, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Kang-Woo Lee
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Human Identification Research Institute, BK21 PLUS Project, Yonsei University College of Dentistry, Room 6 01, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Kurokawa Takeshi
- National Institute of Fitness & Sports in KANOYA (Coaching of Sports and Budo), 1, Shiromizucho, Kanoya City, Kagoshima Pre., 891-2311, Japan
| | - Yong-Woo Lee
- Department of Physical Education, College of Sports Science, Korea National Sport University, Yangjaedaero 1239, Songpa-gu, Seoul, 05541, Republic of Korea
| | - Hee-Jin Kim
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Human Identification Research Institute, BK21 PLUS Project, Yonsei University College of Dentistry, Room 6 01, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
48
|
Botzheim L, Laczko J, Torricelli D, Mravcsik M, Pons JL, Oliveira Barroso F. Effects of gravity and kinematic constraints on muscle synergies in arm cycling. J Neurophysiol 2021; 125:1367-1381. [PMID: 33534650 DOI: 10.1152/jn.00415.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Arm cycling is a bimanual motor task used in medical rehabilitation and in sports training. Understanding how muscle coordination changes across different biomechanical constraints in arm cycling is a step toward improved rehabilitation approaches. This exploratory study aims to get new insights on motor control during arm cycling. To achieve our main goal, we used the muscle synergies analysis to test three hypotheses: 1) body position with respect to gravity (sitting and supine) has an effect on muscle synergies; 2) the movement size (crank length) has an effect on the synergistic behavior; 3) the bimanual cranking mode (asynchronous and synchronous) requires different synergistic control. Thirteen able-bodied volunteers performed arm cranking on a custom-made device with unconnected cranks, which allowed testing three different conditions: body position (sitting vs. supine), crank length (10 cm vs. 15 cm), and cranking mode (synchronous vs. asynchronous). For each of the eight possible combinations, subjects cycled for 30 s while electromyography of eight muscles (four from each arm) were recorded: biceps brachii, triceps brachii, anterior deltoid, and posterior deltoid. Muscle synergies in this eight-dimensional muscle space were extracted by nonnegative matrix factorization. Four synergies accounted for over 90% of muscle activation variances in all conditions. Results showed that synergies were affected by body position and cranking mode but practically unaffected by movement size. These results suggest that the central nervous system may employ different motor control strategies in response to external constraints such as cranking mode and body position during arm cycling.NEW & NOTEWORTHY Recent studies analyzed muscle synergies in lower limb cycling. Here, we examine upper limb cycling and specifically the effect of body position with respect to gravity, movement size, and cranking mode on muscle coordination during arm cranking tasks. We show that altered body position and cranking mode affects modular organization of muscle activities. To our knowledge, this is the first study assessing motor control through muscle synergies framework during upper limb cycling with different constraints.
Collapse
Affiliation(s)
- Lilla Botzheim
- Department of Information Technology and Biorobotics, Institute of Mathematics and Informatics, Faculty of Sciences, University of Pecs, Pecs, Hungary.,Neurorehabilitation and Motor Control Research Group, Department of Computational Sciences, Wigner Research Centre for Physics, Budapest, Hungary
| | - Jozsef Laczko
- Department of Information Technology and Biorobotics, Institute of Mathematics and Informatics, Faculty of Sciences, University of Pecs, Pecs, Hungary.,Neurorehabilitation and Motor Control Research Group, Department of Computational Sciences, Wigner Research Centre for Physics, Budapest, Hungary.,Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Diego Torricelli
- Neural Rehabilitation Group, Cajal Institute, Spanish National Research Council, Madrid, Spain
| | - Mariann Mravcsik
- Department of Information Technology and Biorobotics, Institute of Mathematics and Informatics, Faculty of Sciences, University of Pecs, Pecs, Hungary.,Neurorehabilitation and Motor Control Research Group, Department of Computational Sciences, Wigner Research Centre for Physics, Budapest, Hungary
| | - Jose L Pons
- Neural Rehabilitation Group, Cajal Institute, Spanish National Research Council, Madrid, Spain.,Legs & Walking AbilityLab, Shirley Ryan AbilityLab, Chicago, Illinois.,Department of Biomedical Engineering and Mechanical Engineering, McCormick School of Engineering, Northwestern University, Chicago, Illinois.,Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Filipe Oliveira Barroso
- Neural Rehabilitation Group, Cajal Institute, Spanish National Research Council, Madrid, Spain
| |
Collapse
|
49
|
Lai AKM, Dick TJM, Brown NAT, Biewener AA, Wakeling JM. Lower-limb muscle function is influenced by changing mechanical demands in cycling. J Exp Biol 2021; 224:jeb228221. [PMID: 33376144 PMCID: PMC7875501 DOI: 10.1242/jeb.228221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 12/20/2020] [Indexed: 12/26/2022]
Abstract
Although cycling is a seemingly simple, reciprocal task, muscles must adapt their function to satisfy changes in mechanical demands induced by higher crank torques and faster pedalling cadences. We examined whether muscle function was sensitive to these changes in mechanical demands across a wide range of pedalling conditions. We collected experimental data of cycling where crank torque and pedalling cadence were independently varied from 13 to 44 N m and 60 to 140 rpm. These data were used in conjunction with musculoskeletal simulations and a recently developed functional index-based approach to characterise the role of human lower-limb muscles. We found that in muscles that generate most of the mechanical power and work during cycling, greater crank torque induced shifts towards greater muscle activation, greater positive muscle-tendon unit (MTU) work and a more motor-like function, particularly in the limb extensors. Conversely, with faster pedalling cadence, the same muscles exhibited a phase advance in muscle activity prior to crank top dead centre, which led to greater negative MTU power and work and shifted the muscles to contract with more spring-like behaviour. Our results illustrate the capacity for muscles to adapt their function to satisfy the mechanical demands of the task, even during highly constrained reciprocal tasks such as cycling. Understanding how muscles shift their contractile performance under varied mechanical and environmental demands may inform decisions on how to optimise pedalling performance and to design targeted cycling rehabilitation therapies for muscle-specific injuries or deficits.
Collapse
Affiliation(s)
- Adrian K M Lai
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6
| | - Taylor J M Dick
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Nicholas A T Brown
- Faculty of Health, University of Canberra, Canberra, ACT 2617, Australia
| | | | - James M Wakeling
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6
| |
Collapse
|
50
|
Park S, Caldwell GE. Muscular activity patterns in 1-legged vs. 2-legged pedaling. JOURNAL OF SPORT AND HEALTH SCIENCE 2021; 10:99-106. [PMID: 33518019 PMCID: PMC7858030 DOI: 10.1016/j.jshs.2020.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/16/2019] [Accepted: 12/12/2019] [Indexed: 06/11/2023]
Abstract
BACKGROUND One-legged pedaling is of interest to elite cyclists and clinicians. However, muscular usage in 1-legged vs. 2-legged pedaling is not fully understood. Thus, the study was aimed to examine changes in leg muscle activation patterns between 2-legged and 1-legged pedaling. METHODS Fifteen healthy young recreational cyclists performed both 1-legged and 2-legged pedaling trials at about 30 Watt per leg. Surface electromyography electrodes were placed on 10 major muscles of the left leg. Linear envelope electromyography data were integrated to quantify muscle activities for each crank cycle quadrant to evaluate muscle activation changes. RESULTS Overall, the prescribed constant power requirements led to reduced downstroke crank torque and extension-related muscle activities (vastus lateralis, vastus medialis, and soleus) in 1-legged pedaling. Flexion-related muscle activities (biceps femoris long head, semitendinosus, lateral gastrocnemius, medial gastrocnemius, tensor fasciae latae, and tibialis anterior) in the upstroke phase increased to compensate for the absence of contralateral leg crank torque. During the upstroke, simultaneous increases were seen in the hamstrings and uni-articular knee extensors, and in the ankle plantarflexors and dorsiflexors. At the top of the crank cycle, greater hip flexor activity stabilized the pelvis. CONCLUSION The observed changes in muscle activities are due to a variety of changes in mechanical aspects of the pedaling motion when pedaling with only 1 leg, including altered crank torque patterns without the contralateral leg, reduced pelvis stability, and increased knee and ankle stiffness during the upstroke.
Collapse
Affiliation(s)
- Sangsoo Park
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| | - Graham E Caldwell
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|