1
|
Ahmad Zahra M, Tasnim Toma T, Nasreen S, Zarin ZTR, Khan ZTSE, Haque FKM. Characterizing the co-existence of metallo-β-lactamase-producing and extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae isolates in community wastewater samples of Dhaka, Bangladesh. JOURNAL OF WATER AND HEALTH 2025; 23:461-476. [PMID: 40298266 DOI: 10.2166/wh.2025.286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 03/27/2025] [Indexed: 04/30/2025]
Abstract
Escherichia coli and Klebsiella pneumoniae isolates with multiple antibiotic-resistance genes in wastewater pose serious public health risks, as they can potentially contaminate the food and water supply. The main aim of this study was to isolate and identify E. coli and K. pneumoniae from community wastewater samples, and determine their antibiotic-resistance profiles and their antibiotic-resistant genes. From the northern part of Dhaka, Bangladesh, 36 wastewater samples were collected across 11 different areas, which were then serially diluted, and cultured using selective media. Isolates were identified via polymerase chain reaction. Out of the 197 isolates identified, E. coli and K. pneumoniae accounted for 55.8% (n = 110) and 44.2% (n = 87), respectively. Antibiotic susceptibility tests revealed multidrug resistance (MDR) in 30% of E. coli and 35.56% of K. pneumoniae isolates. Among E. coli, the prevalence of antibiotic-resistance genes included blaNDM-1 (8.9%), blaSHV (13.9%), and blaCTX-M (7.6%). In K. pneumoniae, the percentages were blaNDM-1 (12.8%), blaSHV (4.3%), and blaCTX-M (5.0%). Co-existence of multiple antibiotic-resistance genes was observed in 4.54% of E. coli isolates (n = 5) and 5.74% of K. pneumoniae isolates (n = 5). This suggests the escalating issue of infectious species becoming increasingly resistant to antibiotics in wastewater systems.
Collapse
Affiliation(s)
- Maftuha Ahmad Zahra
- Microbiology Program, Department of Mathematics and Natural Sciences, BRAC University, Kha-224 Bir Uttam Islam Avenue, Merul Badda, Dhaka 1212, Bangladesh; These authors contributed equally to this work
| | - Tasfia Tasnim Toma
- Microbiology Program, Department of Mathematics and Natural Sciences, BRAC University, Kha-224 Bir Uttam Islam Avenue, Merul Badda, Dhaka 1212, Bangladesh; London Metropolitan University, 166-220 Holloway Road, London N7 8DB, England; These authors contributed equally to this work
| | - Shamima Nasreen
- Microbiology Program, Department of Mathematics and Natural Sciences, BRAC University, Kha-224 Bir Uttam Islam Avenue, Merul Badda, Dhaka 1212, Bangladesh; These authors contributed equally to this work
| | - Zarin Tasnim Rafia Zarin
- Microbiology Program, Department of Mathematics and Natural Sciences, BRAC University, Kha-224 Bir Uttam Islam Avenue, Merul Badda, Dhaka 1212, Bangladesh
| | - Zerin Tasnim Siddiqa Elma Khan
- Microbiology Program, Department of Mathematics and Natural Sciences, BRAC University, Kha-224 Bir Uttam Islam Avenue, Merul Badda, Dhaka 1212, Bangladesh; Royal Melbourne Institute of Technology Melbourne, 124 La Trobe St, Melbourne, VIC 3000, Australia; These authors contributed equally to this work
| | - Fahim Kabir Monjurul Haque
- Microbiology Program, Department of Mathematics and Natural Sciences, BRAC University, Kha-224 Bir Uttam Islam Avenue, Merul Badda, Dhaka 1212, Bangladesh E-mail:
| |
Collapse
|
2
|
La Rosa MC, Maugeri A, Favara G, La Mastra C, Magnano San Lio R, Barchitta M, Agodi A. The Impact of Wastewater on Antimicrobial Resistance: A Scoping Review of Transmission Pathways and Contributing Factors. Antibiotics (Basel) 2025; 14:131. [PMID: 40001375 PMCID: PMC11851908 DOI: 10.3390/antibiotics14020131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/16/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Antimicrobial resistance (AMR) is a global issue driven by the overuse of antibiotics in healthcare, agriculture, and veterinary settings. Wastewater and treatment plants (WWTPs) act as reservoirs for antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs). The One Health approach emphasizes the interconnectedness of human, animal, and environmental health in addressing AMR. This scoping review analyzes wastewater's role in the AMR spread, identifies influencing factors, and highlights research gaps to guide interventions. METHODS This scoping review followed the PRISMA-ScR guidelines. A comprehensive literature search was conducted across the PubMed and Web of Science databases for articles published up to June 2024, supplemented by manual reference checks. The review focused on wastewater as a source of AMR, including hospital effluents, industrial and urban sewage, and agricultural runoff. Screening and selection were independently performed by two reviewers, with conflicts resolved by a third. RESULTS Of 3367 studies identified, 70 met the inclusion criteria. The findings indicated that antibiotic residues, heavy metals, and microbial interactions in wastewater are key drivers of AMR development. Although WWTPs aim to reduce contaminants, they often create conditions conducive to horizontal gene transfer, amplifying resistance. Promising interventions, such as advanced treatment methods and regulatory measures, exist but require further research and implementation. CONCLUSIONS Wastewater plays a pivotal role in AMR dissemination. Targeted interventions in wastewater management are essential to mitigate AMR risks. Future studies should prioritize understanding AMR dynamics in wastewater ecosystems and evaluating scalable mitigation strategies to support global health efforts.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Antonella Agodi
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, 95123 Catania, Italy; (M.C.L.R.); (A.M.); (G.F.); (C.L.M.); (R.M.S.L.); (M.B.)
| |
Collapse
|
3
|
Silva VFDA, Wolff DB. Removal of antibiotics in constructed wetlands: a review and bibliometric analysis. AN ACAD BRAS CIENC 2024; 96:e20240275. [PMID: 39570174 DOI: 10.1590/0001-3765202420240275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/07/2024] [Indexed: 11/22/2024] Open
Abstract
This study offers a comprehensive systematic review on the removal of antibiotics in Constructed Wetlands (CWs), evaluating their efficacy as an alternative to conventional wastewater treatment methods. Data from 82 articles were analyzed, focusing on removal rates, antibiotic types, and system configurations, including scale, vegetation, sediment, flow, hydraulic retention time (HRT), and hydraulic loading rate (HLR). The findings indicate that full-scale CWs, particularly those utilizing vegetation like Cyperus alternifolius L. and materials such as shells, zeolites, medicinal stone, and ceramics, achieved removal rates exceeding 90% for various antibiotics. The study underscores the importance of optimizing both anaerobic and aerobic conditions to enhance removal efficiency, noting that aerobic environments promote oxidative processes effective for β-lactams, while anaerobic environments facilitate reduction processes beneficial for sulfonamides. Hybrid systems combining these zones demonstrated maximal removal efficiency. This review advances the understanding of antibiotic removal in CWs, presenting them as a viable, sustainable solution to mitigate environmental impacts, preserve water quality, and protect public health. Further research is recommended to explore the impact of root types and bed configurations on removal efficiency.
Collapse
Affiliation(s)
- Valdemir F DA Silva
- Universidade Federal de Santa Maria, Programa de Pós-Graduação em Engenharia Ambiental, Centro de Tecnologia, Av. Roraima, 1000, Cidade Universitária, Bairro Camobi, 97105-900 Santa Maria, RS, Brazil
| | - Delmira Beatriz Wolff
- Universidade Federal de Santa Maria, Departamento de Engenharia Sanitária Ambiental, Avenida Roraima, 1000, Cidade Universitária, Bairro Camobi, 97105-900 Santa Maria, RS, Brazil
| |
Collapse
|
4
|
Mendoza-Guido B, Barrantes K, Rodríguez C, Rojas-Jimenez K, Arias-Andres M. The Impact of Urban Pollution on Plasmid-Mediated Resistance Acquisition in Enterobacteria from a Tropical River. Antibiotics (Basel) 2024; 13:1089. [PMID: 39596782 PMCID: PMC11591392 DOI: 10.3390/antibiotics13111089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
Background: The exposure of environmental bacteria to contaminants in aquatic ecosystems accelerates the dissemination of antibiotic-resistance genes (ARGs) through horizontal gene transfer (HGT). Methods: In this study, we sampled three locations along a contamination gradient of a polluted river, focusing on isolating Enterobacteria from the surface waters to investigate the relationship between urban pollution and antibiotic resistance. The genomes of 15 isolates (5 per site) were sequenced to identify plasmid-borne ARGs and their association with resistance phenotypes. Results: Isolates from the site with the highest contamination (Site 3) showeda larger number of ARGs, plasmids, and resistance phenotypes. Notably, one of the isolates analyzed, E. coli A231-12, exhibited phenotypic resistance to seven antibiotics, presumably conferred by a single plasmid carrying 12 ARGs. Comparative analysis of this plasmid revealed its close evolutionary relationship with another IncH plasmid hosted by Salmonella enterica, underscoring its high ARG burden in the aquatic environment. Other plasmids identified in our isolates carried sul and dfrA genes, conferring resistance to trimethoprim/sulfamethoxazole, a commonly prescribed antibiotic combination in clinical settings. Conclusions: These results highlight the critical need to expand research on the link between pollution and plasmid-mediated antimicrobial resistance in aquatic ecosystems, which can act as reservoirs of ARGs.
Collapse
Affiliation(s)
- Bradd Mendoza-Guido
- Instituto de Investigaciones en Salud, Universidad de Costa Rica, San José P.O. Box 11501-2060, Costa Rica; (B.M.-G.); (K.B.)
| | - Kenia Barrantes
- Instituto de Investigaciones en Salud, Universidad de Costa Rica, San José P.O. Box 11501-2060, Costa Rica; (B.M.-G.); (K.B.)
- Programa de Doctorado en Ciencias Naturales para el Desarrollo, Universidad Estatal a Distancia, San José P.O. Box 474-2050, Costa Rica
| | - César Rodríguez
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José P.O. Box 11501-2060, Costa Rica;
| | - Keilor Rojas-Jimenez
- Escuela de Biología, Universidad de Costa Rica, San José P.O. Box 11501-2060, Costa Rica
| | - Maria Arias-Andres
- Instituto Regional de Estudios en Sustancias Tóxicas, Universidad Nacional de Costa Rica, Heredia P.O. Box 86-3000, Costa Rica
| |
Collapse
|
5
|
Heida A, Maal-Bared R, Veillette M, Duchaine C, Reynolds KA, Ashraf A, Ogunseye OO, Jung Y, Shulman L, Ikner L, Betancourt W, Hamilton KA, Wilson AM. Quantitative microbial risk assessment (QMRA) tool for modelling pathogen infection risk to wastewater treatment plant workers. WATER RESEARCH 2024; 260:121858. [PMID: 38936269 PMCID: PMC11657630 DOI: 10.1016/j.watres.2024.121858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/29/2024]
Abstract
Wastewater treatment plants (WWTPs) provide vital services to the public by removing contaminants from wastewater prior to environmental discharge or reuse for beneficial purposes. WWTP workers occupationally exposed to wastewater can be at risk of respiratory or gastrointestinal diseases. The study objectives were to: (1) quantify pathogens and pathogen indicators in wastewater aerosols near different WWTP processes/unit operations, (2) develop a QMRA model for multi-pathogen and multi-exposure pathway risks, and (3) create a web-based application to perform and communicate risk calculations for wastewater workers. Case studies for seven different WWTP job tasks were performed investigating infection risk across nine different enteric and respiratory pathogens. It was observed that the ingestion risk among job tasks was highest for "walking the WWTP," which involved exposure from splashing, bioaerosols, and hand-to-mouth contact from touching contaminated surfaces. There was also a notable difference in exposure risk during peak (5:00am-9:00am) and non-peak hours (9:00am- 5:00am), with risks during the peak flow hours of the early morning assumed to be 5 times greater than non-peak hours. N95 respirator usage reduced median respiratory risks by 77 %. The developed tool performs multiple QMRA calculations to estimate WWTP workers' infection risks from accidental ingestion or inhalation of wastewater from multiple pathogens and exposure scenarios, which can inform risk management strategies to protect occupational health. However, more data are needed to reduce uncertainty in model estimates, including comparative data for pathogen concentrations in wastewater during peak and non-peak hours. QMRA tools will increase accessibility of risk models for utilization in decision-making.
Collapse
Affiliation(s)
- Ashley Heida
- School for Engineering of Matter, Transport and Energy, Arizona State University, 502 E Tyler Mall, Tempe, AZ 85287, USA; The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85281, USA
| | - Rasha Maal-Bared
- Bellevue Research and Testing Laboratory, CDM Smith, 14432 SE Eastgate Way Suite 100, Bellevue, WA 98007, USA
| | - Marc Veillette
- Department of biochemistry, microbiology and bioinformatics, Université Laval, Canada Research Chair on Bioaerosols, Quebec City, Canada
| | - Caroline Duchaine
- Department of biochemistry, microbiology and bioinformatics, Université Laval, Canada Research Chair on Bioaerosols, Quebec City, Canada
| | - Kelly A Reynolds
- Department of Community, Environment, & Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Ahamed Ashraf
- Department of Community, Environment, & Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Olusola O Ogunseye
- Department of Community, Environment, & Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Yoonhee Jung
- Department of Community, Environment, & Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Lester Shulman
- Central Virology Laboratory, Sheba Medical Center, Tel Hashomer, Ramat Gan 52621, Israel; School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Luisa Ikner
- Department of Environmental Science, College of Agricultre, Life & Environmental Sciences, University of Arizona, Tucson, AZ, USA
| | - Walter Betancourt
- Department of Environmental Science, College of Agricultre, Life & Environmental Sciences, University of Arizona, Tucson, AZ, USA
| | - Kerry A Hamilton
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85281, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85281, USA
| | - Amanda M Wilson
- Department of Community, Environment, & Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
6
|
Soni K, Jyoti K, Kumar A, Chandra R. Coexistence of multidrug resistance and ESBL encoding genes - bla TEM, bla SHV, and bla CTX-M; its amplification and dispersion in the environment via municipal wastewater treatment plant. CHEMOSPHERE 2024; 362:142829. [PMID: 38992444 DOI: 10.1016/j.chemosphere.2024.142829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 03/07/2024] [Accepted: 07/09/2024] [Indexed: 07/13/2024]
Abstract
Municipal wastewater treatment plants (MWWTPs) are a global source of antibiotic resistance genes (ARGs), collecting wastewater from a variety of sources, including hospital wastewater, domestic wastewater, runoff from agricultural and livestock farms, etc. These sources are contaminated with organic and inorganic pollutants, ARGs and antibiotic-resistant bacteria (ARB). Such pollutants aided eutrophication and encouraged bacterial growth. During bacterial growth horizontal gene transfer (HGT) and vertical gene transfer (VGT) of ARGs and extended-spectrum β-lactamase (ESBL) encoding genes may facilitate, resulting in the spread of antibiotic resistance exponentially. The current study investigated the prevalence of multidrug resistance (MDR) and ESBL encoding genes in various treatment units of MWWTP and their spread in the environment. A total of three sampling sites (BUT, BRO, and BFB) were chosen, and 33 morphologically distinct bacterial colonies were isolated. 14 of the 33 isolates tested positive for antibiotic resistance and were further tested for the coexistence of MDR and ESBL production. The selected 14 isolates showed the highest resistance to trimethoprim (85.71%), followed by ciprofloxacin, azithromycin, and ampicillin (71.42%), tetracycline (57.14%), and vancomycin, gentamicin, and colistin sulphate (50%). A total of 9 isolates (64.28%) were phenotypically positive for ESBL production (BUT2, BUT3, BUT5, BRO1, BRO2, BRO3, BRO4, BRO5 and BFB1). The molecular detection of ESBL encoding genes, i.e. blaTEM, blaSHV, and blaCTX-M was carried out. The most prevalent gene was blaTEM (69.23%), followed by blaSHV (46.15%), and blaCTX-M (23.07%). In this study, 9 isolates (64.28%) out of 14 showed the coexistence of MDR and ESBL encoding genes, namely BUT3, BUT4, BUT5, BUT6, BUT7, BRO1, BRO2, BRO4, and BFB1. The coexistence of ESBL encoding genes and resistance to other antibiotic classes exacerbates human health and the environment.
Collapse
Affiliation(s)
- Kuldeep Soni
- Department of Environmental Microbiology, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, 226025, Uttar Pradesh, India
| | - Km Jyoti
- Department of Environmental Microbiology, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, 226025, Uttar Pradesh, India
| | - Anil Kumar
- State Level Water Analysis Laboratory, UP Jal Nigam (Urban) 6, Rana Pratap Marg, Lucknow, 226001, India
| | - Ram Chandra
- Department of Environmental Microbiology, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, 226025, Uttar Pradesh, India.
| |
Collapse
|
7
|
Li Y, Hu Z, Liu X, Dong Y, Wang Y, Zhang S, Xu Z, Yang Q. Characteristics of bioaerosol emissions from a municipal wastewater treatment plant: Health risk assessment and microbial composition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173096. [PMID: 38729365 DOI: 10.1016/j.scitotenv.2024.173096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/14/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
Bioaerosols released from municipal wastewater treatment plants (MWWTPs) contain pathogenic microorganisms, if dispersed into the atmosphere, which pose potential health risks to humans. In this study, the concentrations and size distribution of bioaerosol, factors on the bioaerosol emission, exposure risk, and microbial composition in different treatment units of a MWWTP were investigated. The results showed that bioaerosol was released to different degrees in each treatment unit, with the concentrations of bioaerosol varied widely, ranging from 978 to 3710 CFU/m3. FG and PST were primary bioaerosol emission sources in MWWTP. COD concentration, wind speed (WS) and relative humidity (RH) significantly influenced bioaerosol concentrations. The proportion of inhalable particles (< 4.7 μm) ranged from 51.35 % to 83.33 %, and bioaerosol emitted from WWTP caused a non-carcinogenic risk to children by the exposure risk assessment (HI > 1), which need to be paid more attention. Bacterial, fungal and actinomycete aerosols were detected in each treatment unit of MWWTP. Among these bioaerosols, bacterial aerosol was dominant. Importantly, several pathogenic bacteria including Sphingobium, Brevundimonas, Romboutsia, Arcobacter, Acinetobacter, and Mycobacterium were identified within the airborne bacteria population, most of which originated from wastewater or sludge, particularly in the ambient air of AeT. Pathogenic bacteria from MWWTP should be studied further to determine their long-term behavior and possible health risks.
Collapse
Affiliation(s)
- Yuanjin Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Zhanhong Hu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Xiuhong Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Yufan Dong
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Yaxin Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Shiyong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.
| | - Zongze Xu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Qing Yang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
8
|
Xu H, Zhang Y, Wu M, Gong T, Hu Y, Zhou H. Efficient degradation of sulfonamides by introducing sulfur to magnetic Prussian blue analog in photo-assisted persulfate oxidation system. CHEMOSPHERE 2024; 357:141938. [PMID: 38631498 DOI: 10.1016/j.chemosphere.2024.141938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/20/2024] [Accepted: 04/05/2024] [Indexed: 04/19/2024]
Abstract
The peroxynitrite photocatalytic degradation system was considered a green, convenient, and efficient water treatment process, but not satisfying against some antibiotics, e.g. sulfonamides (SAs). To improve the photocatalytic degradation efficiency of SAs, sulfur was introduced to a magnetic Fe-MOF (Fe-metal organic framework) Prussian blue analog to achieve a heteroatomic material CuFeO@S, which was applied in heterogeneous visible light photo-assisted catalytic process with persulfate (PS) as an oxidant. The characterization results of CuFeO@S by XRD and XPS confirmed the presence of Fe3O4 (for magnetic separation), Cu+ (for activation of PS) and S2- (for narrowing the energy band and prolonging the lifetime of photo-generated electronics). Through systematic optimization of reaction conditions in CuFeO@S + PS + hv system, efficient degradation of four tested SAs was achieved in 30 min (removal rate of 97-100% for the tested 4 SAs). Moreover, the material could be magnetically recycled and reused for over 7 cycles with a removal rate of >90% for sulfamerazine. Furthermore, the removal rate of sulfamerazine in pond water reached 99% at a mineralization rate of about 34% (decrease in total organic matter), demonstrating its potential in the treatment of antibiotic-containing wastewater.
Collapse
Affiliation(s)
- Hao Xu
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China
| | - Yiwen Zhang
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China
| | - Minghuo Wu
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China.
| | - Tingyue Gong
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China
| | - Yufeng Hu
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China
| | - Hao Zhou
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China.
| |
Collapse
|
9
|
Conforti S, Holschneider A, Sylvestre É, Julian TR. Monitoring ESBL- Escherichia coli in Swiss wastewater between November 2021 and November 2022: insights into population carriage. mSphere 2024; 9:e0076023. [PMID: 38606968 PMCID: PMC11328990 DOI: 10.1128/msphere.00760-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/19/2024] [Indexed: 04/13/2024] Open
Abstract
Antimicrobial resistance (AMR) poses a global health threat, causing millions of deaths annually, with expectations of increased impact in the future. Wastewater surveillance offers a cost-effective, non-invasive tool to understand AMR carriage trends within a population. We monitored extended-spectrum β-lactamase producing Escherichia coli (ESBL-E. coli) weekly in influent wastewater from six wastewater treatment plants (WWTPs) in Switzerland (November 2021 to November 2022) to investigate spatio-temporal variations, explore correlations with environmental variables, develop a predictive model for ESBL-E. coli carriage in the community, and detect the most prevalent ESBL-genes. We cultured total and ESBL-E. coli in 300 wastewater samples to quantify daily loads and percentage of ESBL-E. coli. Additionally, we screened 234 ESBL-E. coli isolates using molecular methods for the presence of 18 ESBL-gene families. We found a population-weighted mean percentage of ESBL-E. coli of 1.9% (95% confidence interval: 1.8-2%) across all sites and weeks, which can inform ESBL-E. coli carriage. Concentrations of ESBL-E. coli varied across WWTPs and time, with higher values observed in WWTPs serving larger populations. Recent precipitations (previous 24/96 h) showed no significant association with ESBL-E. coli, while temperature occasionally had a moderate impact (P < 0.05, correlation coefficients approximately 0.40) in some locations. We identified blaCTX-M-1, blaCTX-M-9, and blaTEM as the predominant ESBL-gene families. Our study demonstrates that wastewater-based surveillance of culturable ESBL-E. coli provides insights into AMR trends in Switzerland and may also inform resistance. These findings establish a foundation for long term, nationally established monitoring protocols and provide information that may help inform targeted public health interventions. IMPORTANCE Antimicrobial resistance (AMR) is a global health threat and is commonly monitored in clinical settings, given its association with the risk of antimicrobial-resistant infections. Nevertheless, tracking AMR within a community proves challenging due to the substantial sample size required for a representative population, along with high associated costs and privacy concerns. By investigating high resolution temporal and geographic trends in extended-spectrum beta-lactamase producing Escherichia coli in wastewater, we provide an alternative approach to monitor AMR dynamics, distinct from the conventional clinical settings focus. Through this approach, we develop a mechanistic model, shedding light on the relationship between wastewater indicators and AMR carriage in the population. This perspective contributes valuable insights into trends of AMR carriage, emphasizing the importance of wastewater surveillance in informing effective public health interventions.
Collapse
Affiliation(s)
- Sheena Conforti
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Swiss Institute of Bioinformatics (SIB), Basel, Switzerland
| | - Aurélie Holschneider
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Émile Sylvestre
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Timothy R Julian
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
10
|
Soni K, Kothamasi D, Chandra R. Municipal wastewater treatment plant showing a potential reservoir for clinically relevant MDR bacterial strains co-occurrence of ESBL genes and integron-integrase genes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119938. [PMID: 38171124 DOI: 10.1016/j.jenvman.2023.119938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/22/2023] [Accepted: 12/23/2023] [Indexed: 01/05/2024]
Abstract
Municipal wastewater treatment plants (MWWTPs) are a milieu for co-occurrence of multiple antibiotic resistance genes (ARGs). This facilitates mixing and genetic exchange; and promotes dissemination of multidrug resistance (MDR) to wastewater bacterial communities which is hazardous for the effluent receiving environment. This study investigated the co-occurrence of extended-spectrum beta-lactamase (ESBL) genes (blaTEM, blaCTX-M, blaSHV, blaOXA), and integron-integrase genes (intI1, intI2, intI3) in MDR bacteria isolated from the Bharwara MWWTP in Lucknow, India. Thirty-one MDR bacterial colonies resistant to three or more antibiotics were isolated from three treatment stages of this MWWTP. Six of these: Staphylococcus aureus, Serratia marcescens, Salmonella enterica, Shigella sonnei, Escherichia coli, and Bacillus sp. Had co-occurrence of ESBL and integron-integrase genes. These six isolates were examined for the occurrence of MDR efflux genes (qacA, acrB) and ARGs (aac(3)-1, qnrA1, tetA, vanA) and tested for resistance against 12 different antibiotics. The highest resistance was against penicillin-G (100%) and lowest for chloramphenicol (16.66%). Bacillus sp. Isolate BWKRC6 had the highest co-occurrence of antibiotic resistance-determining genes and was resistant to all the 12 antibiotics tested. The co-occurrence of ESBL, integron-integrase, antibiotic resistance-determining and MDR efflux genes in bacteria isolated from the Bharwara MWWTP indicates that the wastewaters of this treatment plant may have become a hotspot for MDR bacteria and may present human and environmental health hazards. Therefore, there is need for a rapid action to limit the spread of this threat. Public regulatory authorities must urgently implement measures to prevent MWWTPs becoming reservoirs for evolution of antibiotic resistance genes and development of antibiotic resistance.
Collapse
Affiliation(s)
- Kuldeep Soni
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, 226025, Uttar Pradesh, India
| | - David Kothamasi
- Laboratory of Soil Biology and Microbial Ecology, Department of Environmental Studies, University of Delhi, Delhi, 110007, India; Strathclyde Centre for Environmental Law and Governance, University of Strathclyde, Glasgow, G4 0LT, United Kingdom
| | - Ram Chandra
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, 226025, Uttar Pradesh, India.
| |
Collapse
|
11
|
Rahman Z, Liu W, Stapleton L, Kenters N, Rasmika Dewi DAP, Gudes O, Ziochos H, Khan SJ, Power K, McLaws ML, Thomas T. Wastewater-based monitoring reveals geospatial-temporal trends for antibiotic-resistant pathogens in a large urban community. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 325:121403. [PMID: 36914152 DOI: 10.1016/j.envpol.2023.121403] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Antimicrobial resistance (AMR) is one of the top ten global health threats, and current surveillance programs rarely monitor it outside healthcare settings. This limits our ability to understand and manage the spread of AMR. Wastewater testing has the potential to simply, reliably and continuously survey trends in AMR outside the healthcare settings, as it captures biological material from the entire community. To establish and evaluate such a surveillance, we monitored wastewater for four clinically significant pathogens across the urban area of Greater Sydney, Australia. Untreated wastewater from 25 wastewater treatment plants (WWTPs) covering distinct catchment regions of 5.2 million residents was sampled between 2017 and 2019. Isolates for extended-spectrum β-lactamases-producing Enterobacteriaceae (ESBL-E) were consistently detected, suggesting its endemicity in the community. Isolates for carbapenem-resistant Enterobacteriaceae (CRE), vancomycin-resistant enterococci (VRE), and methicillin-resistant Staphylococcus aureus (MRSA) were only occasionally detected. The flow normalized relative (FNR) ESBL-E load was positively correlated with the proportion of the population between 19 and 50 years of age, completion of vocational education and the average length of hospital stay. Collectively, these variables explained only a third of the variance of the FNR ESBL-E load, indicating further, yet-unidentified factors as a contributor to the distribution. About half of the variation in the FNR CRE load was explained by the average length of hospital stay, showing healthcare-related drivers. Interestingly, variation in the FNR VRE load was not correlated to healthcare-related parameters but to the number of schools per 10,000 population. Our study provides insight into how routine wastewater surveillance can be used to understand the factors driving the distribution of AMR in an urban community. Such information can help to manage and mitigate the emergence and spread of AMR in important human pathogens.
Collapse
Affiliation(s)
- Zillur Rahman
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Australia
| | - Weijia Liu
- School of Population Health, UNSW Sydney, Australia
| | | | | | - Dewa A P Rasmika Dewi
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Australia
| | - Ori Gudes
- School of Population Health, UNSW Sydney, Australia; School of Built Environment, UNSW Sydney, Australia
| | - Helen Ziochos
- Department of Microbiology and Infectious Diseases, NSW Health Pathology, Liverpool, NSW, Australia
| | - Stuart J Khan
- UNSW Global Water Institute, UNSW Sydney, Australia; School of Civil and Environmental Engineering, UNSW Sydney, Australia
| | - Kaye Power
- Sydney Water, Parramatta, NSW, Australia
| | - Mary-Louise McLaws
- School of Population Health, UNSW Sydney, Australia; UNSW Global Water Institute, UNSW Sydney, Australia
| | - Torsten Thomas
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Australia.
| |
Collapse
|
12
|
Waśko I, Kozińska A, Kotlarska E, Baraniak A. Clinically Relevant β-Lactam Resistance Genes in Wastewater Treatment Plants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192113829. [PMID: 36360709 PMCID: PMC9657204 DOI: 10.3390/ijerph192113829] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 05/17/2023]
Abstract
Antimicrobial resistance (AMR) is one of the largest global concerns due to its influence in multiple areas, which is consistent with One Health's concept of close interconnections between people, animals, plants, and their shared environments. Antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARGs) circulate constantly in various niches, sediments, water sources, soil, and wastes of the animal and plant sectors, and is linked to human activities. Sewage of different origins gets to the wastewater treatment plants (WWTPs), where ARB and ARG removal efficiency is still insufficient, leading to their transmission to discharge points and further dissemination. Thus, WWTPs are believed to be reservoirs of ARGs and the source of spreading AMR. According to a World Health Organization report, the most critical pathogens for public health include Gram-negative bacteria resistant to third-generation cephalosporins and carbapenems (last-choice drugs), which represent β-lactams, the most widely used antibiotics. Therefore, this paper aimed to present the available research data for ARGs in WWTPs that confer resistance to β-lactam antibiotics, with a particular emphasis on clinically important life-threatening mechanisms of resistance, including extended-spectrum β-lactamases (ESBLs) and carbapenemases (KPC, NDM).
Collapse
Affiliation(s)
- Izabela Waśko
- Department of Biomedical Research, National Medicines Institute, Chelmska 30/34, 00-725 Warsaw, Poland
- Correspondence: ; Tel.: +48-228-410-623
| | - Aleksandra Kozińska
- Department of Biomedical Research, National Medicines Institute, Chelmska 30/34, 00-725 Warsaw, Poland
| | - Ewa Kotlarska
- Genetics and Marine Biotechnology Department, Institute of Oceanology of the Polish Academy of Sciences, Powstancow Warszawy 55, 81-712 Sopot, Poland
| | - Anna Baraniak
- Department of Biomedical Research, National Medicines Institute, Chelmska 30/34, 00-725 Warsaw, Poland
| |
Collapse
|
13
|
Czatzkowska M, Wolak I, Harnisz M, Korzeniewska E. Impact of Anthropogenic Activities on the Dissemination of ARGs in the Environment-A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191912853. [PMID: 36232152 PMCID: PMC9564893 DOI: 10.3390/ijerph191912853] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 05/07/2023]
Abstract
Over the past few decades, due to the excessive consumption of drugs in human and veterinary medicine, the antimicrobial resistance (AR) of microorganisms has risen considerably across the world, and this trend is predicted to intensify. Many worrying research results indicate the occurrence of pools of AR, both directly related to human activity and environmental factors. The increase of AR in the natural environment is mainly associated with the anthropogenic activity. The dissemination of AR is significantly stimulated by the operation of municipal facilities, such as wastewater treatment plants (WWTPs) or landfills, as well as biogas plants, agriculture and farming practices, including animal production and land application of manure. These activities entail a risk to public health by spreading bacteria resistant to antimicrobial products (ARB) and antibiotic resistance genes (ARGs). Furthermore, subinhibitory concentrations of antimicrobial substances additionally predispose microbial consortia and resistomes to changes in particular environments that are permeated by these micropollutants. The current state of knowledge on the fate of ARGs, their dissemination and the complexity of the AR phenomenon in relation to anthropogenic activity is inadequate. This review summarizes the state-of-the-art knowledge on AR in the environment, in particular focusing on AR spread in an anthropogenically altered environment and related environmental consequences.
Collapse
|
14
|
Burgess SA, Moinet M, Brightwell G, Cookson AL. Whole genome sequence analysis of ESBL-producing Escherichia coli recovered from New Zealand freshwater sites. Microb Genom 2022; 8. [PMID: 36200854 DOI: 10.1099/mgen.0.000893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Extended-spectrum beta lactamase (ESBL)-producing Escherichia coli are often isolated from humans with urinary tract infections and may display a multidrug-resistant phenotype. These pathogens represent a target for a One Health surveillance approach to investigate transmission between humans, animals and the environment. This study examines the multidrug-resistant phenotype and whole genome sequence data of four ESBL-producing E. coli isolated from freshwater in New Zealand. All four isolates were obtained from a catchment with a mixed urban and pastoral farming land-use. Three isolates were sequence type (ST) 131 (CTX-M-27-positive) and the other ST69 (CTX-M-15-positive); a phylogenetic comparison with other locally isolated strains demonstrated a close relationship with New Zealand clinical isolates. Genes associated with resistance to antifolates, tetracyclines, aminoglycosides and macrolides were identified in all four isolates, together with fluoroquinolone resistance in two isolates. The ST69 isolate harboured the bla CTX-M-15 gene on a IncHI2A plasmid, and two of the three ST131 isolates harboured the bla CTX-M-27 genes on IncF plasmids. The last ST131 isolate harboured bla CTX-M-27 on the chromosome in a unique site between gspC and gspD. These data highlight a probable human origin of the isolates with subsequent transmission from urban centres through wastewater to the wider environment.
Collapse
Affiliation(s)
- Sara A Burgess
- mEpiLab, School of Veterinary Science, Massey University, Palmerston North 4410, New Zealand
| | - Marie Moinet
- AgResearch Ltd, Hopkirk Research Institute, Massey University, Palmerston North 4410, New Zealand
| | - Gale Brightwell
- AgResearch Ltd, Hopkirk Research Institute, Massey University, Palmerston North 4410, New Zealand.,New Zealand Food Safety Science and Research Centre, Massey University, Palmerston North, New Zealand
| | - Adrian L Cookson
- mEpiLab, School of Veterinary Science, Massey University, Palmerston North 4410, New Zealand.,AgResearch Ltd, Hopkirk Research Institute, Massey University, Palmerston North 4410, New Zealand
| |
Collapse
|
15
|
Azuma T, Uchiyama T, Zhang D, Usui M, Hayashi T. Distribution and characteristics of carbapenem-resistant and extended-spectrum β-lactamase (ESBL) producing Escherichia coli in hospital effluents, sewage treatment plants, and river water in an urban area of Japan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156232. [PMID: 35623520 DOI: 10.1016/j.scitotenv.2022.156232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/21/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
Occurrence of profiles of the carbapenem-resistant Escherichia coli (CRE-E) and extended-spectrum β-lactamase (ESBL)-producing Escherichia coli (ESBL-E) in an urban river in a sub-catchment of the Yodo River Basin, one of the representative water systems of Japan was investigated. We conducted seasonal and year-round surveys for the antimicrobial-resistant bacteria (AMRB) and antimicrobial-resistance genes (AMRGs) in hospital effluents, sewage treatment plant (STP) wastewater, and river water; subsequently, contributions to wastewater discharge into the rivers were estimated by analyses based on the mass flux. Furthermore, the characteristics of AMRB in the water samples were evaluated on the basis of antimicrobial susceptibility tests. CRE-E and ESBL-E were detected in all water samples with mean values 11 and 1900 CFU/mL in the hospital effluent, 58 and 4550 CFU/mL in the STP influent, not detected to 1 CFU/mL in the STP effluent, and 1 and 1 CFU/mL in the STP discharge into the river, respectively. Contributions of the pollution load derived from the STP effluent discharged into the river water were 1 to 21%. The resistome profiles for blaIMP, blaTEM, and blaCTX-M genes in each water sample showed that AMRGs were not completely removed in the wastewater treatment process in the STP, and the relative abundances of blaIMP, blaTEM, and blaCTX-M genes were almost similar (P<0.05). Susceptibility testing of antimicrobial-resistant E. coli isolates showed that CRE-E and ESBL-E detected in wastewaters and river water were linked to the prevalence of AMRB in clinical settings. These results suggest the importance of conducting environmental risk management of AMRB and AMRGs in the river environment. To our knowledge, this is the first detailed study that links the medical environment to CRE-E and ESBL-E for evaluating the AMRB and AMRGs in hospital effluents, STP wastewater, and river water at the basin scale on the basis of mass flux as well as the contributions of CRE-E and ESBL-E to wastewater discharge into the river.
Collapse
Affiliation(s)
- Takashi Azuma
- Department of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Tomoharu Uchiyama
- Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, 582 Midorimachi, Bunkyodai, Ebetsu, Hokkaido 069-8501, Japan
| | - Dongsheng Zhang
- Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, 582 Midorimachi, Bunkyodai, Ebetsu, Hokkaido 069-8501, Japan
| | - Masaru Usui
- Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, 582 Midorimachi, Bunkyodai, Ebetsu, Hokkaido 069-8501, Japan
| | - Tetsuya Hayashi
- Department of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan; Faculty of Human Development, Department of Food and Nutrition Management Studies, Soai University, 4-4-1 Nankonaka, Osaka Suminoeku, Osaka 559-0033, Japan
| |
Collapse
|
16
|
Zieliński W, Hubeny J, Buta-Hubeny M, Rolbiecki D, Harnisz M, Paukszto Ł, Korzeniewska E. Metagenomics analysis of probable transmission of determinants of antibiotic resistance from wastewater to the environment - A case study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154354. [PMID: 35259375 DOI: 10.1016/j.scitotenv.2022.154354] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/02/2022] [Accepted: 03/02/2022] [Indexed: 05/23/2023]
Abstract
During mechanical-biological treatment, wastewater droplets reach the air with bioaerosols and pose a health threat to wastewater treatment plant (WWTP) employees and nearby residents. Microbiological pollutants and antimicrobial resistance determinants are discharged to water bodies with treated wastewater (TWW), which poses a potential global epidemiological risk. In the present study, the taxonomic composition of microorganisms was analyzed, and the resistome profile and mobility of genes were determined by metagenomic next-generation sequencing in samples of untreated wastewater (UWW), wastewater collected from an activated sludge (AS) bioreactor, TWW, river water collected upstream and downstream from the wastewater discharge point, and in upper respiratory tract swabs collected from WWTP employees. Wastewater and the emitted bioaerosols near WWTP's facilities presumably contributed to the transmission of microorganisms, in particular bacteria of the phylum Actinobacteria and the associated antibiotic resistance genes (ARGs) (including ermB, ant(2″)-I, tetM, penA and cfxA2) to the upper respiratory tract of WWTP employees. The discharged wastewater increased the taxonomic diversity of microorganisms and the concentrations of various ARGs (including bacA, emrE, sul1, sul2 and tetQ) in river water. This study fills in the knowledge gap on the health risks faced by WWTP employees. The study has shown that microbiological pollutants and antimicrobial resistance determinants are also in huge quantities discharged to rivers with TWW, posing a potential global epidemiological threat.
Collapse
Affiliation(s)
- Wiktor Zieliński
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-719 Olsztyn, Poland
| | - Jakub Hubeny
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-719 Olsztyn, Poland
| | - Martyna Buta-Hubeny
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-719 Olsztyn, Poland
| | - Damian Rolbiecki
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-719 Olsztyn, Poland
| | - Monika Harnisz
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-719 Olsztyn, Poland
| | - Łukasz Paukszto
- Department of Botany and Nature Protection, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn Plac Łódzki 1, 10-721 Olsztyn, Poland
| | - Ewa Korzeniewska
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-719 Olsztyn, Poland.
| |
Collapse
|
17
|
Kusunur AB, Kuraganti GK, Mogilipuri SS, Vaiyapuri M, Narayanan SV, Badireddy MR. Multidrug resistance of
Escherichia coli
in fish supply chain: A preliminary investigation. J Food Saf 2022. [DOI: 10.1111/jfs.12972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ahamed Basha Kusunur
- ICAR‐Central Institute of Fisheries Technology Visakhapatnam Research Centre Visakhapatnam India
| | - George Kamal Kuraganti
- Department of Biotechnology, College of Science and Technology Andhra University Visakhapatnam India
| | - Shanmukha Sai Mogilipuri
- Department of Biotechnology, College of Science and Technology Andhra University Visakhapatnam India
| | - Murugadas Vaiyapuri
- ICAR‐Central Institute of Fisheries Technology Microbiology, Fermentation & Biotechnology Kochi India
| | | | | |
Collapse
|
18
|
Gwenzi W, Shamsizadeh Z, Gholipour S, Nikaeen M. The air-borne antibiotic resistome: Occurrence, health risks, and future directions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150154. [PMID: 34798728 DOI: 10.1016/j.scitotenv.2021.150154] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/27/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Antibiotic resistance comprising of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) is an emerging problem causing global human health risks. Several reviews exist on antibiotic resistance in various environmental compartments excluding the air-borne resistome. An increasing body of recent evidence exists on the air-borne resistome comprising of antibiotic resistance in air-borne bioaerosols from various environmental compartments. However, a comprehensive review on the sources, dissemination, behavior, fate, and human exposure and health risks of the air-borne resistome is still lacking. Therefore, the current review uses the source-pathway-receptor-impact-mitigation framework to investigate the air-borne resistome. The nature and sources of antibiotic resistance in the air-borne resistome are discussed. The dissemination pathways, and environmental and anthropogenic drivers accounting for the transfer of antibiotic resistance from sources to the receptors are highlighted. The human exposure and health risks posed by air-borne resistome are presented. A health risk assessment and mitigation strategy is discussed. Finally, future research directions including key knowledge gaps are summarized.
Collapse
Affiliation(s)
- Willis Gwenzi
- Biosystems and Environmental Engineering Research Group, Department of Agricultural and Biosystems Engineering, Faculty of Agriculture, University of Zimbabwe, P.O. Box MP 167, Mount Pleasant, Harare, Zimbabwe.
| | - Zahra Shamsizadeh
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Environmental Health Engineering, Environmental Science and Technology Research Center, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sahar Gholipour
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Environmental Health Engineering, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahnaz Nikaeen
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
19
|
Kataki S, Patowary R, Chatterjee S, Vairale MG, Sharma S, Dwivedi SK, Kamboj DV. Bioaerosolization and pathogen transmission in wastewater treatment plants: Microbial composition, emission rate, factors affecting and control measures. CHEMOSPHERE 2022; 287:132180. [PMID: 34560498 DOI: 10.1016/j.chemosphere.2021.132180] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 07/19/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Environmental consequences during wastewater management are vital and getting increased attention to interrupt any possible disease transmission pathways. Evidence of bioaerosolization of pathogen from wastewater to atmosphere during wastewater treatment have been highlighted previously. Understanding aerosol-based transmission in wastewater treatment plant (WWTP) is important because of the hazard it presents to the workers involved or to the population around and appears to be very significant during pandemic occurrences. This work aims to evaluate the possibility of pathogenic content of wastewater getting aerosolized during treatment by synthesizing the evidence on the potential aerosol generating treatment phases of WWTP, bioaerosol microbial composition, emission load and the factors affecting the bioaerosol formation. We also present some potential control strategies to take up in WWTP which may be useful to avoid such occurrences. Implementation of Aeration based strategies (use of diffused, submerged aeration, reduction in aeration rate), Improved ventilation based strategies (effective ventilation with adequate supply of clean air, minimizing air recirculation, supplementation with infection control measures such as filtration, irradiation), Improved protection based strategy (periodic monitoring of disinfection efficiency, pathogenic load of wastewater, improved operation policy) and other strategies (provision of buffer zone, wind shielding, water spraying on aerosol, screened surface of treatment units) could be very much relevant and significant in case of disease outbreak through aerosol formation in wastewater environment. Recent progress in sensor-based data collection, analysis, cloud-based storage, and early warning techniques in WWTP may help to reduce the risk of infectious transmission, especially during a pandemic situation.
Collapse
Affiliation(s)
- Sampriti Kataki
- Biodegradation Technology Division, Defence Research Laboratory, DRDO, Tezpur, Assam, India
| | - Rupam Patowary
- Foundation for Environmental and Economic Development Services, Manipur, India
| | - Soumya Chatterjee
- Biodegradation Technology Division, Defence Research Laboratory, DRDO, Tezpur, Assam, India.
| | - Mohan G Vairale
- Biodegradation Technology Division, Defence Research Laboratory, DRDO, Tezpur, Assam, India
| | - Sonika Sharma
- Biodegradation Technology Division, Defence Research Laboratory, DRDO, Tezpur, Assam, India
| | - Sanjai K Dwivedi
- Biodegradation Technology Division, Defence Research Laboratory, DRDO, Tezpur, Assam, India
| | - Dev Vrat Kamboj
- Biodegradation Technology Division, Defence Research Laboratory, DRDO, Tezpur, Assam, India
| |
Collapse
|
20
|
Rodríguez-Molina D, Berglund F, Blaak H, Flach CF, Kemper M, Marutescu L, Gradisteanu GP, Popa M, Spießberger B, Weinmann T, Wengenroth L, Chifiriuc MC, Larsson DGJ, Nowak D, Radon K, de Roda Husman AM, Wieser A, Schmitt H. Carriage of ESBL-producing Enterobacterales in wastewater treatment plant workers and surrounding residents - the AWARE Study. Eur J Clin Microbiol Infect Dis 2021:10.1007/s10096-021-04387-z. [PMID: 34902088 PMCID: PMC8667530 DOI: 10.1007/s10096-021-04387-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/29/2021] [Indexed: 12/19/2022]
Abstract
To investigate whether wastewater treatment plant (WWTP) workers and residents living in close proximity to a WWTP have elevated carriage rates of ESBL-producing Enterobacterales, as compared to the general population. From 2018 to 2020, we carried out a cross-sectional study in Germany, the Netherlands, and Romania among WWTP workers (N = 344), nearby residents (living ≤ 300 m away from WWTPs; N = 431) and distant residents (living ≥ 1000 m away = reference group; N = 1165). We collected information on potential confounders via questionnaire. Culture of participants' stool samples was performed with ChromID®-ESBL agar plates and species identification with MALDI-TOF-MS. We used logistic regression to estimate the odds ratio (OR) for carrying ESBL-producing E. coli (ESBL-EC). Sensitivity analyses included stratification by country and interaction models using country as secondary exposure. Prevalence of ESBL-EC was 11% (workers), 29% (nearby residents), and 7% (distant residents), and higher in Romania (28%) than in Germany (7%) and the Netherlands (6%). Models stratified by country showed that within the Romanian population, WWTP workers are about twice as likely (aOR = 2.34, 95% CI: 1.22-4.50) and nearby residents about three times as likely (aOR = 3.17, 95% CI: 1.80-5.59) to be ESBL-EC carriers, when compared with distant residents. In stratified analyses by country, we found an increased risk for carriage of ESBL-EC in Romanian workers and nearby residents. This effect was higher for nearby residents than for workers, which suggests that, for nearby residents, factors other than the local WWTP could contribute to the increased carriage.
Collapse
Affiliation(s)
- Daloha Rodríguez-Molina
- Occupational and Environmental Epidemiology and NetTeaching Unit, Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Ziemssenstr. 5, 80336, Munich, Germany.
- Institute for Medical Information Processing, Biometry, and Epidemiology - IBE, LMU Munich, Munich, Germany.
- Pettenkofer School of Public Health, Munich, Germany.
| | - Fanny Berglund
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Hetty Blaak
- Centre of Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Carl-Fredrik Flach
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Merel Kemper
- Centre of Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Luminita Marutescu
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest and the Academy of Romanian Scientists, Bucharest, Romania
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
| | - Gratiela Pircalabioru Gradisteanu
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest and the Academy of Romanian Scientists, Bucharest, Romania
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
| | - Marcela Popa
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest and the Academy of Romanian Scientists, Bucharest, Romania
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
| | - Beate Spießberger
- German Centre for Infection Research (DZIF) Partner Site Munich, Munich, Germany
- Max Von Pettenkofer Institute, Faculty of Medicine, LMU Munich, Munich, Germany
- Department of Infectious Diseases and Tropical Medicine, LMU University Hospital Munich, Munich, Germany
| | - Tobias Weinmann
- Occupational and Environmental Epidemiology and NetTeaching Unit, Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Ziemssenstr. 5, 80336, Munich, Germany
| | - Laura Wengenroth
- Occupational and Environmental Epidemiology and NetTeaching Unit, Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Ziemssenstr. 5, 80336, Munich, Germany
| | - Mariana Carmen Chifiriuc
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest and the Academy of Romanian Scientists, Bucharest, Romania
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
| | - D G Joakim Larsson
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Dennis Nowak
- Occupational and Environmental Epidemiology and NetTeaching Unit, Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Ziemssenstr. 5, 80336, Munich, Germany
- German Center for Lung Research (DZL), Comprehensive Pneumology Center Munich (CPC-M), Munich, Germany
| | - Katja Radon
- Occupational and Environmental Epidemiology and NetTeaching Unit, Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Ziemssenstr. 5, 80336, Munich, Germany
| | - Ana Maria de Roda Husman
- Centre of Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Andreas Wieser
- German Centre for Infection Research (DZIF) Partner Site Munich, Munich, Germany
- Max Von Pettenkofer Institute, Faculty of Medicine, LMU Munich, Munich, Germany
- Department of Infectious Diseases and Tropical Medicine, LMU University Hospital Munich, Munich, Germany
| | - Heike Schmitt
- Centre of Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| |
Collapse
|
21
|
O'Malley K, McNamara P, McDonald W. Antibiotic resistance genes in an urban stream before and after a state fair. JOURNAL OF WATER AND HEALTH 2021; 19:885-894. [PMID: 34874897 DOI: 10.2166/wh.2021.151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The global spread of antibiotic resistance genes (ARGs) concomitant with a decrease in antibiotic effectiveness is a major public health issue. While research has demonstrated the impact of various urban sources, such as wastewater treatment plant (WWTP) effluent, stormwater runoff, and industrial discharge on ARG abundance in receiving waters, the impact of short-term gatherings such as state fairs is not comprehensively understood. The objective of this research was to explore the impact of a 2-week Wisconsin State Fair gathering - over 1.1 million visitors and 7,100 farm animals - on the abundance of the ARG blaTEM, the integrase of the class 1 integron (intI1), a marker for horizontal gene transfer, and the 16S rRNA gene, a marker for total biomass, in an urban stream receiving runoff from the state fair. Stream samples downstream of the state fair were taken before and after the event and quantified via a droplet digital polymerase chain reaction. The absolute abundance of all genes was significantly higher (p<0.05) following the event. This research showcases the prevalence and persistence of ARG contamination in an urban stream before and after a state fair gathering, suggesting that short-term events can be a significant source of ARGs into the environment.
Collapse
Affiliation(s)
- Kassidy O'Malley
- Department of Civil, Construction, and Environmental Engineering, Marquette University, Milwaukee, WI 53233, USA E-mail:
| | - Patrick McNamara
- Department of Civil, Construction, and Environmental Engineering, Marquette University, Milwaukee, WI 53233, USA E-mail:
| | - Walter McDonald
- Department of Civil, Construction, and Environmental Engineering, Marquette University, Milwaukee, WI 53233, USA E-mail:
| |
Collapse
|
22
|
Gessew GT, Desta AF, Adamu E. High burden of multidrug resistant bacteria detected in Little Akaki River. Comp Immunol Microbiol Infect Dis 2021; 80:101723. [PMID: 34864291 DOI: 10.1016/j.cimid.2021.101723] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/28/2021] [Accepted: 11/09/2021] [Indexed: 11/29/2022]
Abstract
Spread of antimicrobial-resistant bacteria between humans and animals occurs when the environment is contaminated with animal and human wastes. A total of 30 samples were collected from the Akaki river to identify antimicrobial-resistant bacteria. Bacterial enumeration and characterization was done by spreading serially diluted water samples on MacConkey agar. Sixty four bacterial isolates were identified and susceptibility tested using VITEK 2. The most frequently identified bacteria were Providencia alcalifaciens 10 (15.6%), Kluyvera cryocrescens 9 (14.1%) and Citrobacter freundii 7(10.9%), respectively. Multiple drug resistant bacteria were identified, constituting 17 (28%) of the 64 identified isolates. Multiple antimicrobial resistance (MAR) index of the six sites laid in the range 0.13-0.27, being the highest score located downstream of all the sampling sites. Species MAR index varied from 0.12 to 0.40. Out of 64 isolates, 54 (84.4%) of them were resistant to Ampicillin. On the contrary, most of the isolates were sensitive to Amikacin and meropenem. In conclusion, our findings indicated E.coli count was above the WHO permissible levels. The predominant isolates were P. alcalifaciens, and C. freundii. The MAR index of major isolates was greater than two, implying the study sites were exposed to high-risk sources of human or animal contamination.
Collapse
Affiliation(s)
- Gebreab Teklebirhan Gessew
- Department of Medical Laboratory Science, College of Health Sciences, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia.
| | - Adey Feleke Desta
- Department of Microbial, Cellular, and Molecular Biology, College of Natural Sciences, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia.
| | - Etsehiwot Adamu
- Ethiopian Public Health Institute, Bacteriology and Mycology Research Team, Addis Ababa, Ethiopia.
| |
Collapse
|
23
|
Zhang Y, Xu S, Yang Y, Chou SH, He J. A 'time bomb' in the human intestine-the multiple emergence and spread of antibiotic-resistant bacteria. Environ Microbiol 2021; 24:1231-1246. [PMID: 34632679 DOI: 10.1111/1462-2920.15795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/21/2021] [Accepted: 09/28/2021] [Indexed: 11/30/2022]
Abstract
Antibiotics have a strong killing effect on bacteria and are the first choice for the prevention and treatment of bacterial infectious diseases. Therefore, they have been widely used in the medical field, animal husbandry and planting industry. However, with the massive use of antibiotics, more and more antibiotic-resistant bacteria (ARB) have emerged. Because human intestines are rich in nutrients, have suitable temperature, and are high in bacterial abundance, they can easily become a hotbed for the spread of ARB and antibiotic-resistant genes (ARGs). When opportunistic pathogenic bacteria in the intestine acquire ARGs, the infectious diseases caused by such opportunistic pathogens will become more difficult to treat, or even impossible to cure. Therefore, ARB in the human intestine are like a 'time bomb'. In this review, we discuss the sources of intestinal ARB and the transmission routes of ARGs in the human intestine from the perspective of One Health. Further, we describe various methods to prevent the emergence of ARB and inhibit the spread of ARGs in the human intestine. Finally, we may be able to overcome ARB in the human intestine using an interdisciplinary 'One Health' approach.
Collapse
Affiliation(s)
- Yuling Zhang
- State Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Siyang Xu
- State Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yijun Yang
- State Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Shan-Ho Chou
- State Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jin He
- State Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| |
Collapse
|
24
|
Li L, Ma J, Yang K, Chai F, Liu J, Guo X. Microbial aerosol particles in four seasons of sanitary landfill site: Molecular approaches, traceability and risk assessment. J Environ Sci (China) 2021; 108:120-133. [PMID: 34465426 DOI: 10.1016/j.jes.2021.01.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 06/13/2023]
Abstract
Landfill sites are regarded as prominent sources of bioaerosols for the surrounding atmosphere. The present study focused on the emission of airborne bacteria and fungi in four seasons of a sanitary landfill site. The main species found in bioaerosols were assayed using high-throughput sequencing. The SourceTracker method was utilized to identify the sources of the bioaerosols present at the boundary of the landfill site. Furthermore, the health consequences of the exposure to bioaerosols were evaluated based on the average daily dose rates. Results showed that the concentrations of airborne bacteria in the operation area (OPA) and the leakage treatment area (LTA) were in the range of (4684 ± 477)-(10883 ± 1395) CFU/m3 and (3179 ± 453)-(9051 ± 738) CFU/m3, respectively. The average emission levels of fungal aerosols were 4026 CFU/m3 for OPA and 1295 CFU/m3 for LTA. The landfill site received the maximum bioaerosol load during summer and the minimum during winter. Approximately 41.39%- 86.24% of the airborne bacteria had a particle size of 1.1 to 4.7 µm, whereas 48.27%- 66.45% of the airborne fungi had a particle size of more than 4.7 µm. Bacillus sp., Brevibacillus sp., and Paenibacillus sp. were abundant in the bacterial population, whereas Penicillium sp. and Aspergillus sp. dominated the fungal population. Bioaerosols released from the working area and treatment of leachate were the two main sources that emerged in the surrounding air of the landfill site boundary. The exposure risks during summer and autumn were higher than those in spring and winter.
Collapse
Affiliation(s)
- Lin Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Jiawei Ma
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Kaixiong Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Fengguang Chai
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Junxin Liu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuesong Guo
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
25
|
Zaatout N, Bouras S, Slimani N. Prevalence of extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae in wastewater: a systematic review and meta-analysis. JOURNAL OF WATER AND HEALTH 2021; 19:705-723. [PMID: 34665765 DOI: 10.2166/wh.2021.112] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Wastewater is considered a hotspot niche of multi-drug and pathogenic bacteria such as Enterobacteriaceae-producing extended-spectrum beta-lactamases (ESBL-E). Thus, the aim of this meta-analysis was to evaluate the prevalence of ESBL-E in different wastewater sources. Different databases (Medline, EMBASE, and Cochrane Library) were searched from inception to March 2021. Data were analyzed using random-effects modeling, and subgroup and meta-regression analyses were used to ascertain heterogeneity among the subgroups. Fifty-seven observational studies were selected, and the pooled prevalence of ESBL-E in wastewater was 24.81% (95% CI, 19.28-30.77). Escherichia coli had the highest ESBL prevalence. The blaCTX-M genes were the most prevalent in the selected studies (66.56%). The pooled prevalence of ESBL was significantly higher in reports from America (39.91%, 95% CI, 21.82-59.51) and reports studying hospital and untreated wastewaters (33.98%, 95% CI, 23.82-44.91 and 27.36%, 95% CI, 19.12-36.42). Overall, this meta-analysis showed that the prevalence of ESBL-E in wastewater is increasing over time and that hospital wastewater is the most important repository of ESBL-E. Therefore, there is a need for developing new sewage treatment systems that decrease the introduction of resistant bacteria and antibiotic residues.
Collapse
Affiliation(s)
- Nawel Zaatout
- Faculty of Natural and Life Sciences, University of Batna 2, Batna, Algeria
| | - Samia Bouras
- Faculty of Natural and Life Sciences, University of Setif, Setif, Algeria
| | - Nouria Slimani
- Faculty of Natural and Life Sciences, University of Setif, Setif, Algeria
| |
Collapse
|
26
|
Lin X, Ruan J, Huang L, Zhao J, Xu Y. Comparison of the elimination effectiveness of tetracycline and AmpC β-lactamase resistance genes in a municipal wastewater treatment plant using four parallel processes. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1586-1597. [PMID: 33245461 PMCID: PMC7692429 DOI: 10.1007/s10646-020-02306-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/27/2020] [Indexed: 05/05/2023]
Abstract
Municipal wastewater treatment plants (mWWTPs), considered reservoirs of antibiotic resistance genes (ARGs), are selected to compare the contributions of technology and process to ARG removal. Fifteen ARGs (tetA, tetB, tetC, tetE, tetG, tetL, tetM, tetO, tetQ, tetS, tetX, MOX, CIT, EBC, and FOX) and two integron genes (intI1, intI2) were tracked and detected in wastewater samples from a large-scale mWWTP with four parallel processes, including three biological technologies of AAO (anaerobic-anoxic-oxic), AB (adsorption-biodegradation), and UNITANK, two different disinfection technologies, and two primary sedimentation steps. The results showed that ARGs were widely detected, among which tetA and tetM had the highest detection rate at 100%. AAO was the most effective process in removing ARGs, followed by the AB and UNITANK processes, where the separation step was critical: 37.5% AmpC β-lactamase genes were reduced by the secondary clarifier. UV disinfection was more efficient than chlorination disinfection by 47.0% in ARG removal. Both disinfection and primary sedimentation processes could effectively remove integrons, and the swirling flow grit chamber was a more effective primary settling facility in total ARG removal than the aerated grit chamber. The tet genes and AmpC β-lactamase genes were significantly correlated with the water quality indexes of BOD5, CODCr, SS, TP, TOC, pH and NH4+-N (p < 0.05). In addition, the correlation between efflux pump genes and AmpC β-lactamase genes was strongly significant (r2 = 0.717, p < 0.01). This study provides a more powerful guide for selecting and designing treatment processes in mWWTPs with additional consideration of ARG removal.
Collapse
Affiliation(s)
- Xiaojun Lin
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jingjing Ruan
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Lu Huang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jianbin Zhao
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yanbin Xu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
27
|
Zhou Z, Berglund B, Liu J, Zhao L, Xia H, Zou H, Zhao Q, Li X. Emergence of IncX3 Plasmid-Harboring blaNDM-5 in a Citrobacter sedlakii Isolated from Outdoor Aerosol in Wastewater Treatment Plant. Microb Drug Resist 2021; 28:199-204. [PMID: 34520266 DOI: 10.1089/mdr.2021.0057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A carbapenem-resistant Citrobacter sedlakii strain AA2CS carrying blaNDM-5 was detected in outdoor aerosols of a wastewater treatment plant (WWTP) in China and the whole genome was sequenced subsequently. AA2CS was captured in an aerobic tank with aerosol particles of sizes ranging from 4.7 to 7.0 μm. Besides blaNDM-5, AA2CS also harbored 21 other antibiotic resistance genes and displayed a high level of resistance to ampicillin, cefotaxime, ceftazidime, tetracycline, and meropenem. BlaNDM-5 was located on the IncX3 plasmid (pCSNDM-5) with an IS3000-IS5-blaNDM-5-bleMBL-trpF-dsbD-IS26 structure. pCSNDM-5 was highly homologous to other blaNDM-5-carrying IncX3 plasmids in China and can be transferred to the Escherichia coli recipient J53. To our knowledge, this is the first report of carbapenem-resistant Enterobacteriaceae in outdoor aerosols in WWTPs.
Collapse
Affiliation(s)
- Ziyu Zhou
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Björn Berglund
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Jiaqi Liu
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ling Zhao
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Huiyu Xia
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Huiyun Zou
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qian Zhao
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xuewen Li
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
28
|
Analysis of Wastewater Reveals the Spread of Diverse Extended-Spectrum β-Lactamase-Producing E. coli Strains in uMgungundlovu District, South Africa. Antibiotics (Basel) 2021; 10:antibiotics10070860. [PMID: 34356780 PMCID: PMC8300763 DOI: 10.3390/antibiotics10070860] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 11/27/2022] Open
Abstract
Wastewater treatment plants (WWTPs) are major reservoirs of antibiotic-resistant bacteria (ARB), favouring antibiotic resistance genes (ARGs) interchange among bacteria and they can provide valuable information on ARB circulating in a community. This study characterised extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli from the influent and effluent of four WWTPs in uMgungundlovu District, KwaZulu-Natal, South Africa. E. coli was enumerated using the membrane filtration method and confirmed using the API 20E test and real-time polymerase chain reaction. ESBL-producers were phenotypically identified by their susceptibility to the third-generation cephalosporins using the disc diffusion and the double-disc synergy methods against cefotaxime (30 µg) with and without 10 µg clavulanic acid. Genotypic verification was by PCR of the TEM, SHV, and CTX-M genes. The clonality of isolates was assessed by ERIC-PCR. The highest E. coli count ranged between 1.1 × 105 (influent) and 4.3 × 103 CFU/mL (effluent). Eighty pure isolates were randomly selected, ten from the influent and effluent of each of the four WWTP. ESBLs were phenotypically confirmed in 49% (n = 39) of the isolates, of which 77% (n = 30) were genotypically confirmed. Seventy-three percent of the total isolates were multidrug-resistant (MDR). Only two isolates were susceptible to all antibiotics. Overall, resistance to first and second-generation cephalosporins was higher than to third and fourth generation cephalosporins. Also, 15% of the isolates were resistant to carbapenems. The CTX-M-type ESBL (67%; n = 20) was the most common ESBL antibiotic resistance gene (ARG) followed by TEM (57%; n = 17) and SHV-types (27%; n = 8). Also, a substantial number of isolates simultaneously carried all three ESBL genes. ERIC-PCR revealed a high diversity of isolates. The diversity of the isolates observed in the influent samples suggest the potential circulation of different ESBL-producing strains within the studied district, requiring a more comprehensive epidemiological study to prevent the spread of ESBL-producing bacteria within impoverished communities.
Collapse
|
29
|
Comparison of Antimicrobial-Resistant Escherichia coli Isolates from Urban Raccoons and Domestic Dogs. Appl Environ Microbiol 2021; 87:e0048421. [PMID: 33990315 DOI: 10.1128/aem.00484-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Wildlife can be exposed to antimicrobial-resistant bacteria (ARB) via multiple pathways. Spatial overlap with domestic animals is a prominent exposure pathway. However, most studies of wildlife-domestic animal interfaces have focused on livestock and little is known about the wildlife-companion animal interface. Here, we investigated the prevalence and phylogenetic relatedness of extended-spectrum cephalosporin-resistant (ESC-R) Escherichia coli from raccoons (Procyon lotor) and domestic dogs (Canis lupus familiaris) in the metropolitan area of Chicago, IL, USA. To assess the potential importance of spatial overlap with dogs, we explored whether raccoons sampled at public parks (i.e., parks where people and dogs could enter) differed in prevalence and phylogenetic relatedness of ESC-R E. coli to raccoons sampled at private parks (i.e., parks where people and dogs could not enter). Raccoons had a significantly higher prevalence of ESC-R E. coli (56.9%) than dogs (16.5%). However, the richness of ESC-R E. coli did not vary by host species. Further, core single-nucleotide polymorphism (SNP)-based phylogenetic analyses revealed that isolates did not cluster by host species, and in some cases displayed a high degree of similarity (i.e., differed by less than 20 core SNPs). Spatial overlap analyses revealed that ESC-R E. coli were more likely to be isolated from raccoons at public parks than raccoons at private parks, but only for parks located in suburban areas of Chicago, not urban areas. That said, ESC-R E. coli isolated from raccoons did not genetically cluster by park of origin. Our findings suggest that domestic dogs and urban/suburban raccoons can have a diverse range of ARB, some of which display a high degree of genetic relatedness (i.e., differ by less than 20 core SNPs). Given the differences in prevalence, domestic dogs are unlikely to be an important source of exposure for mesocarnivores in urbanized areas. IMPORTANCE Antimicrobial-resistant bacteria (ARB) have been detected in numerous wildlife species across the globe, which may have important implications for human and animal health. Wildlife can be exposed to ARB via numerous pathways, including via spatial overlap with domestic animals. However, the interface with domestic animals has mostly been explored for livestock and little is known about the interface between wild animals and companion animals. Our work suggests that urban and suburban wildlife can have similar ARB to local domestic dogs, but local dogs are unlikely to be a direct source of exposure for urban-adapted wildlife. This finding is important because it underscores the need to incorporate wildlife into antimicrobial resistance surveillance efforts, and to investigate whether certain urban wildlife species could act as additional epidemiological pathways of exposure for companion animals, and indirectly for humans.
Collapse
|
30
|
Hubeny J, Harnisz M, Korzeniewska E, Buta M, Zieliński W, Rolbiecki D, Giebułtowicz J, Nałęcz-Jawecki G, Płaza G. Industrialization as a source of heavy metals and antibiotics which can enhance the antibiotic resistance in wastewater, sewage sludge and river water. PLoS One 2021; 16:e0252691. [PMID: 34086804 PMCID: PMC8177550 DOI: 10.1371/journal.pone.0252691] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/19/2021] [Indexed: 11/22/2022] Open
Abstract
The spread of antibiotic resistance is closely related with selective pressure in the environment. Wastewater from industrialized regions is characterized by higher concentrations of these pollutants than sewage from less industrialized areas. The aim of this study was to compare the concentrations of contaminants such as antibiotics and heavy metals (HMs), and to evaluate their impact on the spread of genes encoding resistance to antimicrobial drugs in samples of wastewater, sewage sludge and river water in two regions with different levels of industrialization. The factors exerting selective pressure, which significantly contributed to the occurrence of the examined antibiotic resistance genes (ARGs), were identified. The concentrations of selected gene copy numbers conferring resistance to four groups of antibiotics as well as class 1 and 2 integron-integrase genes were determined in the analyzed samples. The concentrations of six HMs and antibiotics corresponding to genes mediated resistance from 3 classes were determined. Based on network analysis, only some of the analyzed antibiotics correlated with ARGs, while HM levels were correlated with ARG concentrations, which can confirm the important role of HMs in promoting drug resistance. The samples from a wastewater treatment plant (WWTP) located an industrialized region were characterized by higher HM contamination and a higher number of significant correlations between the analyzed variables than the samples collected from a WWTP located in a less industrialized region. These results indicated that treated wastewater released into the natural environment can pose a continuous threat to human health by transferring ARGs, antibiotics and HMs to the environment. These findings shed light on the impact of industrialization on antibiotic resistance dissemination.
Collapse
Affiliation(s)
- Jakub Hubeny
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Monika Harnisz
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
- * E-mail: ,
| | - Ewa Korzeniewska
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Martyna Buta
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Wiktor Zieliński
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Damian Rolbiecki
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Joanna Giebułtowicz
- Department of Bioanalysis and Drug Analysis, Faculty of Pharmacy, Medical University of Warsaw, Warszawa, Poland
| | - Grzegorz Nałęcz-Jawecki
- Department of Environmental Health Sciences, Faculty of Pharmacy, Medical University of Warsaw, Warszawa, Poland
| | - Grażyna Płaza
- Faculty of Organization and Management, Silesian University of Technology, Zabrze, Poland
| |
Collapse
|
31
|
Siller P, Daehre K, Rosen K, Münch S, Bartel A, Funk R, Nübel U, Amon T, Roesler U. Low airborne tenacity and spread of ESBL-/AmpC-producing Escherichia coli from fertilized soil by wind erosion. Environ Microbiol 2021; 23:7497-7511. [PMID: 33655697 DOI: 10.1111/1462-2920.15437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/12/2021] [Indexed: 01/18/2023]
Abstract
ESBL-/AmpC-producing Escherichia coli from organic fertilizers were previously detected on soil surfaces of arable land and might be emitted by wind erosion. To investigate this potential environmental transmission path, we exposed ESBL-/AmpC-positive chicken litter, incorporated in agricultural soils, to different wind velocities in a wind tunnel and took air samples for microbiological analysis. No data exist concerning the airborne tenacity of ESBL-/AmpC-producing E. coli. Therefore, we explored the tenacity of two ESBL/AmpC E. coli strains and E. coli K12 in aerosol chamber experiments at different environmental conditions. In the wind tunnel, ESBL/AmpC-producing E. coli were detected in none of the air samples (n = 66). Non-resistant E. coli were qualitatively detected in 40.7% of air samples taken at wind velocities exceeding 7.3 m s-1 . Significantly increased emission of total viable bacteria with increasing wind velocity was observed. In the aerosol chamber trials, recovery rates of airborne E. coli ranged from 0.003% to 2.8%, indicating a low airborne tenacity. Concluding, an emission of ESBL/AmpC E. coli by wind erosion in relevant concentrations appears unlikely because of the low concentration in chicken litter compared with non-resistant E. coli and their low airborne tenacity, proven in the aerosol chamber trials.
Collapse
Affiliation(s)
- Paul Siller
- Institute for Animal Hygiene and Environmental Health, Freie Universität Berlin, Berlin, Germany
| | - Katrin Daehre
- Institute for Animal Hygiene and Environmental Health, Freie Universität Berlin, Berlin, Germany
| | - Kerstin Rosen
- Institute for Animal Hygiene and Environmental Health, Freie Universität Berlin, Berlin, Germany
| | - Steffen Münch
- Leibniz Centre for Agricultural Landscape Research (ZALF), Working Group Landscape Pedology, Müncheberg, Germany
| | - Alexander Bartel
- Institute for Veterinary Epidemiology and Biostatistics, Freie Universität Berlin, Berlin, Germany
| | - Roger Funk
- Leibniz Centre for Agricultural Landscape Research (ZALF), Working Group Landscape Pedology, Müncheberg, Germany
| | - Ulrich Nübel
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.,Braunschweig Integrated Center of Systems Biology (BRICS), Technical University, Braunschweig, Germany.,German Center for Infection Research (DZIF), Partner site Hannover-Braunschweig, Braunschweig, Germany
| | - Thomas Amon
- Institute for Animal Hygiene and Environmental Health, Freie Universität Berlin, Berlin, Germany.,Department of Engineering for Livestock Management, Leibniz Institute for Agricultural Engineering and Bioeconomy e.V. (ATB), Potsdam, Germany
| | - Uwe Roesler
- Institute for Animal Hygiene and Environmental Health, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
32
|
Yuan W, Zhang Y, Riaz L, Yang Q, Du B, Wang R. Multiple antibiotic resistance and DNA methylation in Enterobacteriaceae isolates from different environments. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123822. [PMID: 33254807 DOI: 10.1016/j.jhazmat.2020.123822] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/26/2020] [Accepted: 08/24/2020] [Indexed: 05/21/2023]
Abstract
Antibiotic resistant bacteria with diverse resistance phenotypes and genotypes are ubiquitous in the environments that have become a global health concern. The role of DNA methylation in the dissemination of antibiotic resistance among different environments is currently unclear. We recovered 646 Enterobacteriaceae (Eb) isolates from hospital, livestock manure, municipal wastewater-treatment plants, river sediment and soil for comprehensive analysis of resistance phenotypes, β-lactamase genes, integrons, integron-associated gene cassettes and the levels of DNA methylation. Antibiotic susceptibility testing revealed that approximately 87.31 % isolates were multidrug resistant Eb. The β-lactamase genes were positively detected in 473 isolates with greater diversity in human or animal sourced Eb, while its prevalence was found to be highest in the Eb isolates from the natural environments. Forty-three gene cassettes (28 different types mediated by intI1) were detected in 53 (19.63 %) isolates, with greater diversity in Eb isolates from hospital and livestock manure. The multiple antibiotic resistance index of single strain was positively correlated with the 5-methylcytosine and showed a negative correlation with 6-methylademine. We conclude that the development of antibiotic resistance could possibly be coupled with DNA methylation, which might enhance the antimicrobial resistance and survival capacity of Eb.
Collapse
Affiliation(s)
- Wei Yuan
- School of Environment, Henan Normal University, Xinxiang 453007, China; School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, Henan, China
| | - Yongli Zhang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Luqman Riaz
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Qingxiang Yang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang 453007, China.
| | - Bingbing Du
- School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Ruifei Wang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
33
|
Reinke RA, Quach-Cu J, Allison N, Lynch B, Crisostomo C, Padilla M. A method to quantify viable carbapenem resistant gram-negative bacteria in treated and untreated wastewater. J Microbiol Methods 2020; 179:106070. [DOI: 10.1016/j.mimet.2020.106070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/09/2020] [Accepted: 09/24/2020] [Indexed: 12/18/2022]
|
34
|
Sib E, Lenz-Plet F, Barabasch V, Klanke U, Savin M, Hembach N, Schallenberg A, Kehl K, Albert C, Gajdiss M, Zacharias N, Müller H, Schmithausen RM, Exner M, Kreyenschmidt J, Schreiber C, Schwartz T, Parčina M, Bierbaum G. Bacteria isolated from hospital, municipal and slaughterhouse wastewaters show characteristic, different resistance profiles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 746:140894. [PMID: 32763594 DOI: 10.1016/j.scitotenv.2020.140894] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
Multidrug-resistant bacteria cause difficult-to-treat infections and pose a risk for modern medicine. Sources of multidrug-resistant bacteria include hospital, municipal and slaughterhouse wastewaters. In this study, bacteria with resistance to 3rd generation cephalosporins were isolated from all three wastewater biotopes, including a maximum care hospital, municipal wastewaters collected separately from a city and small rural towns and the wastewaters of two pig and two poultry slaughterhouses. The resistance profiles of all isolates against clinically relevant antibiotics (including β-lactams like carbapenems, the quinolone ciprofloxacin, colistin, and trimethoprim/sulfamethoxazole) were determined at the same laboratory. The bacteria were classified according to their risk to human health using clinical criteria, with an emphasis on producers of carbapenemases, since carbapenems are prescribed for hospitalized patients with infections with multi-drug resistant bacteria. The results showed that bacteria that pose the highest risk, i. e., bacteria resistant to all β-lactams including carbapenems and ciprofloxacin, were mainly disseminated by hospitals and were present only in low amounts in municipal wastewater. The isolates from hospital wastewater also showed the highest rates of resistance against antibiotics used for treatment of carbapenemase producers and some isolates were susceptible to only one antibiotic substance. In accordance with these results, qPCR of resistance genes showed that 90% of the daily load of carbapenemase genes entering the municipal wastewater treatment plant was supplied by the clinically influenced wastewater, which constituted approximately 6% of the wastewater at this sampling point. Likewise, the signature of the clinical wastewater was still visible in the resistance profiles of the bacteria isolated at the entry into the wastewater treatment plant. Carbapenemase producers were not detected in slaughterhouse wastewater, but strains harboring the colistin resistance gene mcr-1 could be isolated. Resistances against orally available antibiotics like ciprofloxacin and trimethoprim/sulfamethoxazole were widespread in strains from all three wastewaters.
Collapse
Affiliation(s)
- Esther Sib
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany; Institute for Hygiene and Public Health, University Hospital Bonn, Bonn, Germany
| | - Franziska Lenz-Plet
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Vanessa Barabasch
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Ursula Klanke
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Mykhailo Savin
- Institute of Animal Sciences, University of Bonn, Bonn, Germany
| | - Norman Hembach
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces (IFG), Microbiology/Molecular Biology Department, Karlsruhe, Germany
| | - Anna Schallenberg
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Katja Kehl
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Cathrin Albert
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Mike Gajdiss
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Nicole Zacharias
- Institute for Hygiene and Public Health, University Hospital Bonn, Bonn, Germany
| | - Heike Müller
- Institute for Hygiene and Public Health, University Hospital Bonn, Bonn, Germany
| | | | - Martin Exner
- Institute for Hygiene and Public Health, University Hospital Bonn, Bonn, Germany
| | - Judith Kreyenschmidt
- Institute of Animal Sciences, University of Bonn, Bonn, Germany; Department of Fresh Produce Logistics, Hochschule Geisenheim University, Geisenheim, Germany
| | - Christiane Schreiber
- Institute for Hygiene and Public Health, University Hospital Bonn, Bonn, Germany
| | - Thomas Schwartz
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces (IFG), Microbiology/Molecular Biology Department, Karlsruhe, Germany
| | - Marijo Parčina
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Gabriele Bierbaum
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
35
|
Urase T, Okazaki M, Tsutsui H. Prevalence of ESBL-producing Escherichia coli and carbapenem-resistant Enterobacteriaceae in treated wastewater: a comparison with nosocomial infection surveillance. JOURNAL OF WATER AND HEALTH 2020; 18:899-910. [PMID: 33328362 DOI: 10.2166/wh.2020.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The increasing prevalence of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli and carbapenem-resistant Enterobacteriaceae (CRE) is a worldwide health threat. Monitoring of these resistant bacteria in the environment can provide regional prevalence reflecting both healthy and infected populations, although the quantitative monitoring of those resistant bacteria, especially CRE, is difficult due to their low proportion in the total Enterobacteriaceae population and the possible interference by autochthonous species with intrinsic resistance. In this study, these resistant bacteria in treated wastewater were quantified at 12 different treatment plants. The proportions of cefotaxime-resistant and ESBL-producing E. coli in the total E. coli population in the chlorinated effluents in Tokyo were 5.7 and 5.3%, respectively. The estimated proportion of CRE was 0.007% with the constituting species of Klebsiella spp. and Enterobacter spp., although the conditions during the first incubation may have affected the estimation even after the correction by the proportion of resistant population in the isolates. The observed resistant proportions in this study were lower than those in the surveillance on nosocomial infection not only for inpatients but also for outpatients, and higher than those in the veterinary monitoring.
Collapse
Affiliation(s)
- Taro Urase
- School of Bioscience and Biotechnology, Tokyo University of Technology, Tokyo, Japan E-mail:
| | - Mitsuhiro Okazaki
- School of Health Sciences, Tokyo University of Technology, Tokyo, Japan
| | - Hirofumi Tsutsui
- Division of Architectural, Civil, and Environmental Engineering, School of Science and Engineering, Tokyo Denki University, Saitama, Japan
| |
Collapse
|
36
|
Redhead S, Nieuwland J, Esteves S, Lee DH, Kim DW, Mathias J, Cha CJ, Toleman M, Dinsdale R, Guwy A, Hayhurst E. Fate of antibiotic resistant E. coli and antibiotic resistance genes during full scale conventional and advanced anaerobic digestion of sewage sludge. PLoS One 2020; 15:e0237283. [PMID: 33259486 PMCID: PMC7707479 DOI: 10.1371/journal.pone.0237283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/10/2020] [Indexed: 11/19/2022] Open
Abstract
Antibiotic resistant bacteria (ARB) and their genes (ARGs) have become recognised as significant emerging environmental pollutants. ARB and ARGs in sewage sludge can be transmitted back to humans via the food chain when sludge is recycled to agricultural land, making sludge treatment key to control the release of ARB and ARGs to the environment. This study investigated the fate of antibiotic resistant Escherichia coli and a large set of antibiotic resistance genes (ARGs) during full scale anaerobic digestion (AD) of sewage sludge at two U.K. wastewater treatment plants and evaluated the impact of thermal hydrolysis (TH) pre-treatment on their abundance and diversity. Absolute abundance of 13 ARGs and the Class I integron gene intI1 was calculated using single gene quantitative (q) PCR. High through-put qPCR analysis was also used to determine the relative abundance of 370 ARGs and mobile genetic elements (MGEs). Results revealed that TH reduced the absolute abundance of all ARGs tested and intI1 by 10-12,000 fold. After subsequent AD, a rebound effect was seen in many ARGs. The fate of ARGs during AD without pre-treatment was variable. Relative abundance of most ARGs and MGEs decreased or fluctuated, with the exception of macrolide resistance genes, which were enriched at both plants, and tetracyline and glycopeptide resistance genes which were enriched in the plant employing TH. Diversity of ARGs and MGEs decreased in both plants during sludge treatment. Principal coordinates analysis revealed that ARGs are clearly distinguished according to treatment step, whereas MGEs in digested sludge cluster according to site. This study provides a comprehensive within-digestor analysis of the fate of ARGs, MGEs and antibiotic resistant E. coli and highlights the effectiveness of AD, particularly when TH is used as a pre-treatment, at reducing the abundance of most ARGs and MGEs in sludgeand preventing their release into the environment.
Collapse
Affiliation(s)
- Sky Redhead
- Faculty of Computing, Engineering and Science, University of South Wales, Pontypridd, United Kingdom
| | - Jeroen Nieuwland
- Faculty of Computing, Engineering and Science, University of South Wales, Pontypridd, United Kingdom
| | - Sandra Esteves
- Faculty of Computing, Engineering and Science, University of South Wales, Pontypridd, United Kingdom
| | - Do-Hoon Lee
- Department of Systems Biotechnology and Centre for Antibiotic Resistome, College of Biotechnology & Natural Resources, Chung-Ang University, Anseong, Republic of Korea
| | - Dae-Wi Kim
- Department of Systems Biotechnology and Centre for Antibiotic Resistome, College of Biotechnology & Natural Resources, Chung-Ang University, Anseong, Republic of Korea
| | - Jordan Mathias
- School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Chang-Jun Cha
- Department of Systems Biotechnology and Centre for Antibiotic Resistome, College of Biotechnology & Natural Resources, Chung-Ang University, Anseong, Republic of Korea
| | - Mark Toleman
- School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Richard Dinsdale
- Faculty of Computing, Engineering and Science, University of South Wales, Pontypridd, United Kingdom
| | - Alan Guwy
- Faculty of Computing, Engineering and Science, University of South Wales, Pontypridd, United Kingdom
| | - Emma Hayhurst
- Faculty of Computing, Engineering and Science, University of South Wales, Pontypridd, United Kingdom
- * E-mail:
| |
Collapse
|
37
|
Grehs BWN, Linton MAO, Clasen B, de Oliveira Silveira A, Carissimi E. Antibiotic resistance in wastewater treatment plants: understanding the problem and future perspectives. Arch Microbiol 2020; 203:1009-1020. [PMID: 33112995 DOI: 10.1007/s00203-020-02093-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/02/2020] [Accepted: 10/13/2020] [Indexed: 11/26/2022]
Abstract
Antibiotics residues (AR), antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG) are a new class of water contaminants, due to their adverse effects on aquatic ecosystems and human health. Contamination of water bodies occurs mainly by the excretion of antibiotics incompletely metabolized by humans and animals and is considered the main source of contamination of antibiotics in the environment. Given the imminent threat, the World Health Organization (WHO) has categorized the spread of antibiotics as one of the top three threats to public health in the twenty-first century. The Urban Wastewater Treatment Plants (UWWTP) bring together AR, ARB, ARG, making the understanding of this peculiar environment fundamental for the investigation of technologies aimed at combating the spread of bacterial resistance. Several methodologies have been employed focusing on reducing the ARB and ARG loads of the effluents, however the reactivation of these microorganisms after the treatment is widely reported. This work aims to elucidate the role of UWWTPs in the spread of bacterial resistance, as well as to report the efforts that have been made so far and future perspectives to combat this important global problem.
Collapse
Affiliation(s)
- Bárbara W N Grehs
- Department of Sanitary and Environmental Engineering, Federal University of Santa Maria (UFSM), Av. Roraima 1000, CT Lab, Santa Maria, RS, 97105-900, Brazil
| | - Maria A O Linton
- Department of Biology, Federal University of Santa Maria (UFSM), Av. Roraima 1000, CE, Santa Maria, RS, 97105-900, Brazil
| | - Barbara Clasen
- Department of Sanitary and Environmental Engineering, Federal University of Santa Maria (UFSM), Av. Roraima 1000, CT Lab, Santa Maria, RS, 97105-900, Brazil.
- Department of Environmental Science, State University of Rio Grande Do Sul (UERGS), R. Cipriano Barata, 211, Três Passos, RS, 98600-000, Brazil.
| | - Andressa de Oliveira Silveira
- Department of Sanitary and Environmental Engineering, Federal University of Santa Maria (UFSM), Av. Roraima 1000, CT Lab, Santa Maria, RS, 97105-900, Brazil
| | - Elvis Carissimi
- Department of Sanitary and Environmental Engineering, Federal University of Santa Maria (UFSM), Av. Roraima 1000, CT Lab, Santa Maria, RS, 97105-900, Brazil
| |
Collapse
|
38
|
Niestępski S, Harnisz M, Ciesielski S, Korzeniewska E, Osińska A. Environmental fate of Bacteroidetes, with particular emphasis on Bacteroides fragilis group bacteria and their specific antibiotic resistance genes, in activated sludge wastewater treatment plants. JOURNAL OF HAZARDOUS MATERIALS 2020; 394:122544. [PMID: 32224375 DOI: 10.1016/j.jhazmat.2020.122544] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 03/13/2020] [Accepted: 03/14/2020] [Indexed: 06/10/2023]
Abstract
The aim of this study was to determine the effect of the activated sludge process on the abundance of anaerobic bacteria of the phylum Bacteroidetes, with special emphasis on Bacteroides fragilis group (BFG) bacteria, in twelve full-scale wastewater treatment plants. The composition of bacterial phyla and classes in wastewater samples were analyzed by next-generation sequencing. The presence of specific to BFG bacteria genes and the abundance of ARGs and genes encoding class 1 integrase in wastewater samples were determined by qPCR. Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes were dominant bacterial phyla in wastewater samples. Next-generation sequencing revealed similar proportions of Bacteroidia (<1.0-8.2 % of all bacteria) in wastewater influents and effluents, which suggest that these microorganisms are not completely eliminated in the activated sludge process. The average copy numbers of specific to BFG bacteria gene, were 106, and 104 copies in 1 mL of wastewater influents and effluents, respectively. The results revealed a correlation between the abundance of BFG bacteria and BFG-specific genes encoding resistance to antibiotics. The observed changes in the prevalence of BFG-specific genes and ARGs in untreated and treated wastewater indicate that the activated sludge process decreases the number of gene copies in the effluent evacuated to the environment.
Collapse
Affiliation(s)
- Sebastian Niestępski
- Department of Environmental Microbiology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720, Olsztyn, Poland.
| | - Monika Harnisz
- Department of Environmental Microbiology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720, Olsztyn, Poland.
| | - Sławomir Ciesielski
- Department of Environmental Biotechnology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, Słoneczna 45G, 10-719, Olsztyn, Poland.
| | - Ewa Korzeniewska
- Department of Environmental Microbiology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720, Olsztyn, Poland.
| | - Adriana Osińska
- Department of Environmental Microbiology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720, Olsztyn, Poland.
| |
Collapse
|
39
|
Antimicrobial Drug-Resistant Gram-Negative Saprophytic Bacteria Isolated from Ambient, Near-Shore Sediments of an Urbanized Estuary: Absence of β-Lactamase Drug-Resistance Genes. Antibiotics (Basel) 2020; 9:antibiotics9070400. [PMID: 32664302 PMCID: PMC7400359 DOI: 10.3390/antibiotics9070400] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/05/2020] [Accepted: 07/07/2020] [Indexed: 01/21/2023] Open
Abstract
We assessed the prevalence of antimicrobial resistance and screened for clinically relevant β-lactamase resistance determinants in Gram-negative bacteria from a large urbanized estuary. In contrast to the broad literature documenting potentially hazardous resistance determinants near wastewater treatment discharge points and other local sources of aquatic pollution, we employed a probabilistic survey design to examine ambient, near-shore sediments. We plated environmental samples from 40 intertidal and shallow subtidal areas around San Francisco Bay (California, USA) on drug-supplemented MacConkey agar, and we tested isolates for antimicrobial resistance and presence of clinically relevant β-lactamase resistance determinants. Of the 74 isolates identified, the most frequently recovered taxa were Vibrio spp. (40%), Shewanella spp. (36%), Pseudomonas spp. (11%), and Aeromonas spp. (4%). Of the 55 isolates tested for antimicrobial resistance, the Vibrio spp. showed the most notable resistance profiles. Most (96%) were resistant to ampicillin, and two isolates showed multidrug-resistant phenotypes: V. alginolyticus (cefotaxime, ampicillin, gentamicin, cefoxitin) and V. fluvialis (cefotaxime, ampicillin, cefoxitin). Targeted testing for class 1 integrons and presence of β-lactam-resistance gene variants TEM, SHV, OXA, CTX-M, and Klebsiella pneumonia carbapenemase (KPC) did not reveal any isolates harboring these resistance determinants. Thus, while drug-resistant, Gram-negative bacteria were recovered from ambient sediments, neither clinically relevant strains nor mobile β-lactam resistance determinants were found. This suggests that Gram-negative bacteria in this well-managed, urbanized estuary are unlikely to constitute a major human exposure hazard at this time.
Collapse
|
40
|
Adator EH, Narvaez-Bravo C, Zaheer R, Cook SR, Tymensen L, Hannon SJ, Booker CW, Church D, Read RR, McAllister TA. A One Health Comparative Assessment of Antimicrobial Resistance in Generic and Extended-Spectrum Cephalosporin-Resistant Escherichia coli from Beef Production, Sewage and Clinical Settings. Microorganisms 2020; 8:microorganisms8060885. [PMID: 32545206 PMCID: PMC7355928 DOI: 10.3390/microorganisms8060885] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/27/2020] [Accepted: 06/08/2020] [Indexed: 12/18/2022] Open
Abstract
This study aimed to compare antimicrobial resistance (AMR) in extended-spectrum cephalosporin-resistant and generic Escherichia coli from a One Health continuum of the beef production system in Alberta, Canada. A total of 705 extended-spectrum cephalosporin-resistant E. coli (ESCr) were obtained from: cattle feces (CFeces, n = 382), catch basins (CBasins, n = 137), surrounding streams (SStreams, n = 59), beef processing plants (BProcessing, n = 4), municipal sewage (MSewage; n = 98) and human clinical specimens (CHumans, n = 25). Generic isolates (663) included: CFeces (n = 142), CBasins (n = 185), SStreams (n = 81), BProcessing (n = 159) and MSewage (n = 96). All isolates were screened for antimicrobial susceptibility to 9 antimicrobials and two clavulanic acid combinations. In ESCr, oxytetracycline (87.7%), ampicillin (84.4%) and streptomycin (73.8%) resistance phenotypes were the most common, with source influencing AMR prevalence (p < 0.001). In generic E. coli, oxytetracycline (51.1%), streptomycin (22.6%), ampicillin (22.5%) and sulfisoxazole (14.3%) resistance were most common. Overall, 88.8% of ESCr, and 26.7% of generic isolates exhibited multi-drug resistance (MDR). MDR in ESCr was high from all sources: CFeces (97.1%), MSewage (96.9%), CHumans (96%), BProcessing (100%), CBasins (70.5%) and SStreams (61.4%). MDR in generic E. coli was lower with CFeces (45.1%), CBasins (34.6%), SStreams (23.5%), MSewage (13.6%) and BProcessing (10.7%). ESBL phenotypes were confirmed in 24.7% (n = 174) ESCr and 0.6% of generic E. coli. Prevalence of bla genes in ESCr were blaCTXM (30.1%), blaCTXM-1 (21.6%), blaTEM (20%), blaCTXM-9 (7.9%), blaOXA (3.0%), blaCTXM-2 (6.4%), blaSHV (1.4%) and AmpC β-lactamase blaCMY (81.3%). The lower AMR in ESCr from SStreams and BProcessing and higher AMR in CHumans and CFeces likely reflects antimicrobial use in these environments. Although MDR levels were higher in ESCr as compared to generic E. coli, AMR to the same antimicrobials ranked high in both ESCr and generic E. coli sub-populations. This suggests that both sub-populations reflect similar AMR trends and are equally useful for AMR surveillance. Considering that MDR ESCr MSewage isolates were obtained without enrichment, while those from CFeces were obtained with enrichment, MSewage may serve as a hot spot for MDR emergence and dissemination.
Collapse
Affiliation(s)
- Emelia H. Adator
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (E.H.A.); (C.N.-B.)
| | - Claudia Narvaez-Bravo
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (E.H.A.); (C.N.-B.)
| | - Rahat Zaheer
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada;
| | - Shaun R. Cook
- Irrigation and Farm Water Branch, Alberta Agriculture and Forestry, Lethbridge, AB T1J 4V6, Canada; (S.R.C.); (L.T.)
| | - Lisa Tymensen
- Irrigation and Farm Water Branch, Alberta Agriculture and Forestry, Lethbridge, AB T1J 4V6, Canada; (S.R.C.); (L.T.)
| | - Sherry J. Hannon
- Health Management Services Ltd, Okotoks, AB T1S 2A2, Canada; (S.J.H.); (C.W.B.)
| | - Calvin W. Booker
- Health Management Services Ltd, Okotoks, AB T1S 2A2, Canada; (S.J.H.); (C.W.B.)
| | - Deirdre Church
- Department of Pathology & Laboratory Medicine and Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (D.C.); (R.R.R.)
| | - Ron R. Read
- Department of Pathology & Laboratory Medicine and Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (D.C.); (R.R.R.)
| | - Tim A. McAllister
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (E.H.A.); (C.N.-B.)
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada;
- Correspondence:
| |
Collapse
|
41
|
Korzeniewska E, Harnisz M. Sources, Occurrence, and Environmental Risk Assessment of Antibiotics and Antimicrobial-Resistant Bacteria in Aquatic Environments of Poland. THE HANDBOOK OF ENVIRONMENTAL CHEMISTRY 2020. [DOI: 10.1007/978-3-030-12139-6_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
42
|
Mahon BM, Brehony C, Cahill N, McGrath E, O'Connor L, Varley A, Cormican M, Ryan S, Hickey P, Keane S, Mulligan M, Ruane B, Jolley KA, Maiden MC, Brisse S, Morris D. Detection of OXA-48-like-producing Enterobacterales in Irish recreational water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 690:1-6. [PMID: 31299565 DOI: 10.1016/j.scitotenv.2019.06.480] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/27/2019] [Accepted: 06/27/2019] [Indexed: 06/10/2023]
Abstract
The rapid dissemination of carbapenemase-producing Enterobacterales (CPE) is a major public health concern. The role that the aquatic environment plays in this dissemination is underexplored. This study aimed to examine seawater as a reservoir for CPE. Seawater sampling took place at a bathing site throughout the 2017 bathing season. Each 30 L sample (n = 6) was filtered using the CapE filtration system. Wastewater samples (200 mL) (pre-treatment (n = 3) and post-treatment (n = 3)) were obtained from a nearby secondary wastewater treatment plant, during the same time period. All samples were examined for CPE. Whole genome sequencing of confirmed CPE was carried out using Illumina sequencing. Isolate genomes were hosted in corresponding BIGSdb databases and analyses were performed using multiple web-based tools. CPE was detected in 2/6 seawater samples. It was not detected in any wastewater samples. OXA-48-like-producing ST131 Escherichia coli (Ec_BM707) was isolated from a seawater sample collected in May 2017 and OXA-48-like-producing ST101 Klebsiella pneumoniae (Kp_BM758) was isolated from a seawater sample collected in August 2017. The genomes of the environmental isolates were compared to a collection of previously described Irish clinical OXA-48-like-producing Enterobacterales (n = 105). Ec_BM707 and Kp_BM758 harboured blaOXA-48 on similar mobile genetic elements to those identified in the clinical collection (pOXA-48 fragment in Ec_BM707 and IncL(pOXA-48) plasmid in Kp_BM758). Genetic similarities were observed between Ec_BM707 and several of the clinical ST131 E. coli, with allele matches at up to 98.2% of 2513 core genome multilocus sequence type (cgMLST) loci. In contrast, Kp_BM758 and the 34 clinical K. pneumoniae were genetically distant. The source of the CPE at this site was not identified. The detection of OXA-48-like-producing ST131 E. coli and OXA-48-like-producing ST101 K. pneumoniae in Irish recreational water is a concern. The potential for contamination of the aquatic environment to contribute to dissemination of CPE in Europe warrants further study.
Collapse
Affiliation(s)
- Bláthnaid M Mahon
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland Galway, Ireland; Centre for One Health, Ryan Institute, National University of Ireland Galway, Ireland.
| | - Carina Brehony
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland Galway, Ireland
| | - Niamh Cahill
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland Galway, Ireland; Centre for One Health, Ryan Institute, National University of Ireland Galway, Ireland
| | - Elaine McGrath
- Carbapenemase-Producing Enterobacterales Reference Laboratory, Department of Medical Microbiology, University Hospital Galway, Galway, Ireland
| | - Louise O'Connor
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland Galway, Ireland; Centre for One Health, Ryan Institute, National University of Ireland Galway, Ireland
| | - Aine Varley
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland Galway, Ireland
| | - Martin Cormican
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland Galway, Ireland; Centre for One Health, Ryan Institute, National University of Ireland Galway, Ireland; Carbapenemase-Producing Enterobacterales Reference Laboratory, Department of Medical Microbiology, University Hospital Galway, Galway, Ireland
| | - Sinead Ryan
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland Galway, Ireland
| | - Paul Hickey
- Environmental Health Service, HSE West, Galway, Ireland
| | - Shane Keane
- Environmental Health Service, HSE West, Galway, Ireland
| | | | | | - Keith A Jolley
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Martin C Maiden
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Sylvain Brisse
- Biodiversity and Epidemiology of Bacterial Pathogens, Institut Pasteur, Paris, France
| | - Dearbháile Morris
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland Galway, Ireland; Centre for One Health, Ryan Institute, National University of Ireland Galway, Ireland
| |
Collapse
|
43
|
Fagerström A, Mölling P, Khan FA, Sundqvist M, Jass J, Söderquist B. Comparative distribution of extended-spectrum beta-lactamase-producing Escherichia coli from urine infections and environmental waters. PLoS One 2019; 14:e0224861. [PMID: 31697734 PMCID: PMC6837386 DOI: 10.1371/journal.pone.0224861] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/23/2019] [Indexed: 01/07/2023] Open
Abstract
Extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli have been reported in natural environments, and may be released through wastewater. In this study, the genetic relationship between ESBL-producing E. coli collected from patient urine samples (n = 45, both hospitalized patients and out-patients) and from environmental water (n = 82, from five locations), during the same time period, was investigated. Three independent water samples were collected from the municipal wastewater treatment plant, both incoming water and treated effluent water; the receiving river and lake; and a bird sanctuary near the lake, on two different occasions. The water was filtered and cultured on selective chromID ESBL agar plates in order to detect and isolate ESBL-producing E. coli. Illumina whole genome sequencing was performed on all bacterial isolates (n = 127). Phylogenetic group B2 was more common among the clinical isolates than the environmental isolates (44.4% vs. 17.1%, p < 0.01) due to a significantly higher prevalence of sequence type (ST) 131 (33.3% vs. 13.4%, p < 0.01). ST131 was, however, one of the most prevalent STs among the environmental isolates. There was no significant difference in diversity between the clinical isolates (DI 0.872 (0.790-0.953)) and the environmental isolates (DI 0.947 (0.920-0.969)). The distribution of ESBL genes was similar: blaCTX-M-15 dominated, followed by blaCTX-M-14 and blaCTX-M-27 in both the clinical (60.0%, 8.9%, and 6.7%) and the environmental isolates (62.2%, 12.2%, and 8.5%). Core genome multi-locus sequence typing showed that five environmental isolates, from incoming wastewater, treated wastewater, Svartån river and Hjälmaren lake, were indistinguishable or closely related (≤10 allele differences) to clinical isolates. Isolates of ST131, serotype O25:H4 and fimtype H30, from the environment were as closely related to the clinical isolates as the isolates from different patients were. This study confirms that ESBL-producing E. coli are common in the aquatic environment even in low-endemic regions and suggests that wastewater discharge is an important route for the release of ESBL-producing E. coli into the aquatic environment.
Collapse
Affiliation(s)
- Anna Fagerström
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- * E-mail:
| | - Paula Mölling
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Faisal Ahmad Khan
- The Life Science Centre–Biology, School of Science and Technology, Örebro University, Örebro, Sweden
| | - Martin Sundqvist
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Jana Jass
- The Life Science Centre–Biology, School of Science and Technology, Örebro University, Örebro, Sweden
| | - Bo Söderquist
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
44
|
Quintela-Baluja M, Abouelnaga M, Romalde J, Su JQ, Yu Y, Gomez-Lopez M, Smets B, Zhu YG, Graham DW. Spatial ecology of a wastewater network defines the antibiotic resistance genes in downstream receiving waters. WATER RESEARCH 2019; 162:347-357. [PMID: 31295654 PMCID: PMC6650630 DOI: 10.1016/j.watres.2019.06.075] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/03/2019] [Accepted: 06/30/2019] [Indexed: 05/19/2023]
Abstract
Wastewater treatment plants (WWTPs) are an effective barrier in the protection of human and environment health around the world, although WWTPs also are suggested to be selectors and-or reservoirs of antibiotic resistance genes (ARGs) before entering the environment. The dogma about WWTPs as "ARG selectors" presumes that biotreatment compartments (e.g., activated sludge; AS) are single densely populated ecosystems with elevated horizontal gene transfer. However, recent work has suggested WWTP biotreatment compartments may be different than previously believed relative to antibiotic resistance (AR) fate, and other process factors, such as bacterial separation and specific waste sources, may be key to ARGs released to the environment. Here we combined 16S rRNA metagenomic sequencing and high-throughput qPCR to characterise microbial communities and ARGs across a wastewater network in Spain that includes both community (i.e., non-clinical urban) and hospital sources. Contrary to expectations, ARGs found in downstream receiving waters were not dominated by AS biosolids (RAS), but more resembled raw wastewater sources. In fact, ARGs and microbial communities in liquid-phase WWTP effluents and RAS were significantly different (Bray-Curtis dissimilarity index = 0.66 ± 0.11), with a consequential fraction of influent ARGs and organisms passing directly through the WWTP with limited association with RAS. Instead, ARGs and organisms in the RAS may be more defined by biosolids separation and biophysical traits, such as flocculation, rather than ARG carriage. This explains why RAS has significantly lower ARG richness (47 ± 4 ARGs) than liquid-phase effluents (104 ± 5 ARGs), and downstream water column (135 ± 4 ARGs) and river sediments (120 ± 5 ARGs) (Tukey's test, p < 0.001). These data suggest RAS and liquid-phase WWTP effluents may reflect two parallel ecosystems with potentially limited ARG exchange. As such, ARG mitigation in WWTPs should more focus on removing bacterial hosts from the liquid phase, AR source reduction, and possibly disinfection to reduce ARG releases to the environment.
Collapse
Affiliation(s)
| | - M Abouelnaga
- Department of Analytical Chemistry, Nutrition and Food Science, School of Veterinary Sciences, University of Santiago de Compostela, Lugo, Spain
| | - Jesus Romalde
- Departamento de Microbiología y Parasitología, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Jian-Qiang Su
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Science, Xiamen, China
| | - Yongjie Yu
- School of Engineering, Newcastle University, Newcastle upon, Tyne, UK
| | | | - Barth Smets
- Department of Environmental Engineering, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Science, Xiamen, China; State Key Lab of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - David W Graham
- School of Engineering, Newcastle University, Newcastle upon, Tyne, UK.
| |
Collapse
|
45
|
Seenama C, Thamlikitkul V, Ratthawongjirakul P. Multilocus sequence typing and bla ESBL characterization of extended-spectrum beta-lactamase-producing Escherichia coli isolated from healthy humans and swine in Northern Thailand. Infect Drug Resist 2019; 12:2201-2214. [PMID: 31410039 PMCID: PMC6650452 DOI: 10.2147/idr.s209545] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/03/2019] [Indexed: 11/23/2022] Open
Abstract
Purpose Here, we investigated the genetic relationships and characteristics of extended- spectrum beta-lactamase-producing Escherichia coli (ESBL-E. coli) isolates from healthy hosts, humans in the community and swine among the livestock of Amphor Mueang, Lamphun Province, Thailand. Patients and methods Four hundred and nine rectal swabs were collected from healthy people and swine. A total of 212 ESBL-E. coli was isolated and phenotypically confirmed by a combination disk method. Putative ESBL-encoding genes, including blaCTX-M, blaTEM, and blaSHV, were examined by multiplex-PCR. Randomly selected 42 ESBL-E. coli isolates were whole genome sequenced to characterize the ESBL-encoding genes and identify additional antimicrobial resistance genes. The genetic relatedness of 212 ESBL-E. coli was investigated by multilocus sequence typing. Results Overall, blaCTX-M was the dominant ESBL-encoding gene found in 95.75% of the isolates, followed by blaTEM (60.85%) and blaSHV (2.40%). While blaCTX-M-55 was the most common blaESBL subgroup found in this study. Whole genome sequencing showed a total of 15 different antimicrobial resistance genes other than blaESBL, including sul, qnr, aph(3ʹ)-Ia, among the selected 42 ESBL-E. coli isolates. Over half of the ESBL-E. coli (56.60%) carried blaCTX-M co-existing with blaTEM. The most common sequence types (STs) identified from human isolates were ST131, ST101, and ST70 while those isolated from swine were ST10, ST48, and ST131. ST131 strains carrying blaCTX-M were the major isolated ESBL-E. coli strains, supporting a previous study that considered this strain truly pathogenic. Noticeably, 66.51% of ESBL-E. coli strains shared 19 identical STs, including a host-restricted ST131 between humans and swine, suggesting that transmission between these two hosts might be possible. Conclusion Proof of a direct transfer of ESBL-E. coli from animals to humans, or vice versa, is required for further elucidation. The ESBL-E. coli isolated from both types of healthy hosts may serve as a reservoir for community-acquired antimicrobial resistance.
Collapse
Affiliation(s)
- Chakkraphong Seenama
- Program of Molecular Sciences in Medical Microbiology and Immunology, Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand.,Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Visanu Thamlikitkul
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Panan Ratthawongjirakul
- Research Group of Innovative Diagnosis of Antimicrobial Resistance, Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
46
|
Faecal indicator bacteria and antibiotic-resistant β-lactamase producing Escherichia coli in blackwater: a pilot study. Arh Hig Rada Toksikol 2019; 70:140-148. [DOI: 10.2478/aiht-2019-70-3212] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 06/01/2019] [Indexed: 01/14/2023] Open
Abstract
Abstract
The aim of this study was to identify and quantify faecal indicator bacteria in blackwater collected from a source separation unit and determine the amount of E. coli isolates resistant to antimicrobials and their potential to produce extended spectrum β-lactamases (ESβLs) and metallo-β-lactamases (MβLs), which hydrolyse the most important antibiotics used in clinical practice. Most of the isolates were resistant to amoxicillin with clavulanic acid (36.4 %), followed by ticarcillin with clavulanic acid (22.7 %) and tetracycline (18.2 %). ESβL-producing genes bla
CTX-M and bla
TEM were found in three (13.6 %) and four (18.2 %) E. coli strains, respectively, while MβL genes were found in two (9.1 %). By separating at source, this pilot study clearly shows that gastrointestinal bacteria of healthy people can be an important source of antibiotic resistance released into the environment through wastewaters. One way to prevent that is to treat wastewater with a combination of TiO2, UV light, or ozone, as successful methods to remove resistant bacteria and prevent their spread in the environment.
Collapse
|
47
|
Azuma T, Otomo K, Kunitou M, Shimizu M, Hosomaru K, Mikata S, Ishida M, Hisamatsu K, Yunoki A, Mino Y, Hayashi T. Environmental fate of pharmaceutical compounds and antimicrobial-resistant bacteria in hospital effluents, and contributions to pollutant loads in the surface waters in Japan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 657:476-484. [PMID: 30550911 DOI: 10.1016/j.scitotenv.2018.11.433] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/28/2018] [Accepted: 11/28/2018] [Indexed: 05/07/2023]
Abstract
Environmental fate of 58 pharmaceutical compounds (PhCs) grouped into 11 therapeutic classes in the three different waters, hospital effluent, sewage treatment plant (STP) and river water, was estimated by combination of their quantitative concentration analysis and evaluation of their extent of contribution as loading sources. At the same time, distribution of six classes of antimicrobial-resistant bacteria (AMRB) in the same water samples was estimated by screening of individual PhC-resistant microbes grown on each specific chromogenic medium. The results indicate that 48 PhCs were detected ranged from 1 ng/L (losartan carboxylic acid) to 228 μg/L (acetaminophen sulfate) in hospital effluent, and contribution of the pollution load derived from hospital effluent to STP influent was estimated as 0.1% to 15%. On the other hand, contribution of STP effluent to river water was high, 32% to 60% for antibacterials, antipertensives and X-ray contrast media. In the cases for AMRB, detected numbers of colonies of AMRB in hospital effluent ranged from 29 CFU/mL to 1805 CFU/mL, and the estimated contribution of the AMRB pollution load derived from hospital effluent to STP influent was as low as 0.1% (levofloxacin and olmesartan) to 5.1% (N-desmethyl tamoxifen). Although the contribution of STPs as loading sources of PhCs and AMRB in surface waters was large, ozonation as an advanced water treatment system effectively removed a wide range of both PhCs and AMRB in water samples. These results suggest the importance of reducing environmental pollutant loads (not only at STPs but also at medical facilities) before being discharged into the surface waters, to both conserve water and keep the water environment safe. To our knowledge, this is the first report to show the distribution and contribution of AMRB from hospital effluent to the surface waters.
Collapse
Affiliation(s)
- Takashi Azuma
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Kana Otomo
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Mari Kunitou
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Mai Shimizu
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Kaori Hosomaru
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Shiori Mikata
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Mao Ishida
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Kanae Hisamatsu
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Ayami Yunoki
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Yoshiki Mino
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Tetsuya Hayashi
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| |
Collapse
|
48
|
Niestępski S, Harnisz M, Korzeniewska E, Aguilera-Arreola MG, Contreras-Rodríguez A, Filipkowska Z, Osińska A. The emergence of antimicrobial resistance in environmental strains of the Bacteroides fragilis group. ENVIRONMENT INTERNATIONAL 2019; 124:408-419. [PMID: 30682596 DOI: 10.1016/j.envint.2018.12.056] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/03/2018] [Accepted: 12/25/2018] [Indexed: 06/09/2023]
Abstract
Anaerobic bacteria of the genus Bacteroides are a large group of commensal microorganisms that colonize the human and animal digestive tract. The genus Bacteroides and the closely related genus Parabacteroides include the Bacteroides fragilis group (BFG) of potentially pathogenic bacteria which are frequently isolated from patients with anaerobic infections. The aim of this study was to assess the antimicrobial resistance of environmental strains of the Bacteroides fragilis group. Strains were isolated from human feces, hospital wastewater, influent (UWW) and effluent (TWW) wastewater from a wastewater treatment plant (WWTP), and from the feces of lab rats as a negative control to monitor the entire route of transmission of BFG strains from humans to the environment. The resistance of 123 environmental BFG strains to six antibiotic groups was analyzed with the use of culture-dependent methods. Additionally, the presence of 25 genes encoding antibiotic resistance was determined by PCR. The analyzed environmental BFG strains were highly resistant to the tested antibiotics. The percentage of resistant strains differed between the analyzed antibiotics and was determined at 97.56% for ciprofloxacin, 49.59% for erythromycin, 44.71% for ampicillin, 35.77% for tetracycline, 32.52% for amoxicillin/clavulanic acid, 26.83% for chloramphenicol, 26.01% for clindamycin, 11.38% for moxifloxacin, and 8.94% for metronidazole. The highest drug-resistance levels were observed in the strains isolated from UWW and TWW samples. The mechanisms of antibiotic-resistance were determined in phenotypically resistant strains of BFG. Research has demonstrated the widespread presence of genes encoding resistance to chloramphenicol (100% of all chloramphenicol-resistant strains), tetracyclines (97.78% of all tetracycline-resistant strains), macrolides, lincosamides and streptogramins (81.97% of all erythromycin-resistant strains). Genes encoding resistance to β-lactams and fluoroquinolones were less prevalent. None of the metronidazole-resistant strains harbored the gene encoding resistance to nitroimidazoles. BFG strains isolated from UWW and TWW samples were characterized by the highest diversity of antibiotic-resistance genes and were most often drug-resistant and multidrug-resistant. The present study examines the potential negative consequences of drug-resistant and multidrug-resistant BFG strains that are evacuated with treated wastewater into the environment. The transmission of these bacteria to surface water bodies can pose potential health threats for humans and animals; therefore, the quality of treated wastewater should be strictly monitored.
Collapse
Affiliation(s)
- Sebastian Niestępski
- Department of Environmental Microbiology, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-957 Olsztyn, Poland.
| | - Monika Harnisz
- Department of Environmental Microbiology, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-957 Olsztyn, Poland.
| | - Ewa Korzeniewska
- Department of Environmental Microbiology, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-957 Olsztyn, Poland.
| | - Ma Guadalupe Aguilera-Arreola
- Department of Microbiology, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Mexico City, Mexico
| | - Araceli Contreras-Rodríguez
- Department of Microbiology, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Mexico City, Mexico
| | - Zofia Filipkowska
- Department of Environmental Microbiology, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-957 Olsztyn, Poland.
| | - Adriana Osińska
- Department of Environmental Microbiology, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-957 Olsztyn, Poland.
| |
Collapse
|
49
|
Antimicrobial-Resistant Escherichia coli from Environmental Waters in Northern Colorado. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2019; 2019:3862949. [PMID: 30906330 PMCID: PMC6397973 DOI: 10.1155/2019/3862949] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/13/2019] [Indexed: 12/16/2022]
Abstract
Waterborne Escherichia coli are a major reservoir of antimicrobial resistance (AMR), including but not limited to extended-spectrum beta-lactamase (ESBL) and Klebsiella pneumoniae carbapenemase (KPC) mechanisms. This study quantified and described ESBL- and KPC-producing E. coli in Northern Colorado from sewer water, surface water, and influent and effluent wastewater treatment sources. Total detected bacteria and E. coli abundances, and the percentages that contain ESBL and/or KPC, were compared between water sources. Seventy E. coli isolates from the various waters had drug resistance validated with a panel of 17 antibiotics using a broth microdilution assay. The diverse drug resistance observed across E. coli isolates was further documented by polymerase chain reaction of common ESBL genes and functional relatedness by PhenePlate assay-generated dendrograms (n=70). The total E. coli abundance decreased through the water treatment process as expected, yet the percentages of E. coli harboring ESBL resistance were increased (1.70%) in surface water. Whole-genome sequencing analysis was completed for 185 AMR genes in wastewater E. coli isolates and confirmed the presence of diverse AMR gene classes (e.g., beta-lactams and efflux pumps) in isolate genomes. This study completed surveillance of AMR patterns in E. coli that reside in environmental water systems and suggests a role for integrating both phenotypic and genotypic profiling beyond ESBL and KPC mechanisms. AMR screening via multiple approaches may assist in the prevention of drug-resistant E. coli spread from waters to animals and humans.
Collapse
|
50
|
Quantitative Occurrence of Antibiotic Resistance Genes among Bacterial Populations from Wastewater Treatment Plants Using Activated Sludge. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9030387] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Wastewater treatment plants (WWTPs) are an important reservoir in the development of drug resistance phenomenon and they provide a potential route of antibiotic resistance gene (ARGs) dissemination in the environment. The aim of this study was to assess the role of WWTPs in the spread of ARGs. Untreated and treated wastewater samples that were collected from thirteen Polish WWTPs (applying four different modifications of activated sludge–based treatment technology) were analyzed. The quantitative occurrence of genes responsible for the resistance to beta-lactams and tetracyclines was determined using the real-time PCR method. Such genes in the DNA of both the total bacterial population and of the E. coli population were analyzed. Among the tested genes that are responsible for the resistance to beta-lactams and tetracyclines, blaOXA and blaTEM and tetA were dominant, respectively. This study found an insufficient reduction in the quantity of the genes that are responsible for antibiotic resistance in wastewater treatment processes. The results emphasize the need to monitor the presence of genes determining antibiotic resistance in the wastewater that is discharged from treatment plants, as they can help to identify the hazard that treated wastewater poses to public health.
Collapse
|