1
|
Scott AM, Gilbert JH, Pauli JN. Population and Community Responses of Small Mammals to Single-tree Selection Harvest in Laurentian Hardwood Forests. AMERICAN MIDLAND NATURALIST 2022. [DOI: 10.1674/0003-0031-188.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Allison M. Scott
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison 53706
| | - Jonathan H. Gilbert
- Biological Services Division, Great Lakes Indian Fish and Wildlife Commission, Odanah, Wisconsin 54861
| | - Jonathan N. Pauli
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison 53706
| |
Collapse
|
2
|
Environmental Factors at Different Canopy Heights Had Significant Effects on Leaf Water-Use Efficiency in Cold-Temperate Larch Forest. SUSTAINABILITY 2022. [DOI: 10.3390/su14095126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
It is of great significance to study short-term water-use efficiency (WUEs) at different canopy heights for accurately evaluating the adaptability of cold-temperate larch (Larix gmelinii) forest to climate change. The stable isotope method combining data of gradient meteorology, photosynthetic properties and leaf structure were used to assess the influence of different canopy heights on short-term water-use efficiency (WUEs) in larch forests in the northern Da Hinggan Mountains. The results show that: (1) The rank of leaf WUEs at different canopy heights was upper canopy > middle canopy > lower canopy. The leaf WUEs in upper canopy was significantly higher than those in the middle and lower canopy (p < 0.01), and no significant difference was found between the middle and lower canopy (p > 0.05). (2) The environmental factors, the photosynthetic characteristics, the specific leaf weight (LMA) and stomatal density (SD) had significant impact (p < 0.05) on leaf WUEs at different canopy heights of larch forest. (3) The results of the weighted random forest analysis show that the main factor affecting WUEs in larch forests at different canopy heights was vapor pressure deficit (VPD), followed by relative humidity (RH) and net photosynthetic rate (Pn), while LMA and SD made relatively small contributions. This indicates that the variation of leaf WUEs at different canopy heights is mainly due to environmental factors. Our results highlight that the difference of environmental factors at different canopy heights should be considered in the future study of leaf WUE. Our results contribute to a better understanding of water utilization strategies and carbohydrate relations in the boreal forest ecosystems, which is of great significance for improving the sustainable management measures and strategies of boreal forest resources.
Collapse
|
3
|
Burakowski EA, Contosta AR, Grogan D, Nelson SJ, Garlick S, Casson N. Future of Winter in Northeastern North America: Climate Indicators Portray Warming and Snow Loss That Will Impact Ecosystems and Communities. Northeast Nat (Steuben) 2022. [DOI: 10.1656/045.028.s1112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Elizabeth A. Burakowski
- Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH 03824
| | - Alexandra R. Contosta
- Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH 03824
| | - Danielle Grogan
- Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH 03824
| | | | - Sarah Garlick
- Hubbard Brook Research Foundation, North Woodstock, NH 03262
| | - Nora Casson
- University of Winnipeg, Department of Geography, Winnipeg, MB R3B2E9, Canada
| |
Collapse
|
4
|
Evaluation of Seasonal, Drought, and Wet Condition Effects on Performance of Satellite-Based Precipitation Data over Different Climatic Conditions in Iran. REMOTE SENSING 2021. [DOI: 10.3390/rs14010076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Mission (GPM) are the most important and widely used data sources in several applications—e.g., forecasting drought and flood, and managing water resources—especially in the areas with sparse or no other robust sources. This study explored the accuracy and precision of satellite data products over a span of 18 years (2000–2017) using synoptic ground station data for three regions in Iran with different climates, namely (a) humid and high rainfall, (b) semi-arid, and (c) arid. The results show that the monthly precipitation products of GPM and TRMM overestimate the rainfall. On average, they overestimated the precipitation amount by 11% in humid, by 50% in semi-arid, and by 43% in arid climate conditions compared to the ground-based data. This study also evaluated the satellite data accuracy in drought and wet conditions based on the standardized precipitation index (SPI) and different seasons. The results showed that the accuracy of satellite data varies significantly under drought, wet, and normal conditions and different timescales, being lowest under drought conditions, especially in arid regions. The highest accuracy was obtained on the 12-month timescale and the lowest on the 3-month timescale. Although the accuracy of the data is dependent on the season, the seasonal effects depend on climatic conditions.
Collapse
|
5
|
Studd EK, Bates AE, Bramburger AJ, Fernandes T, Hayden B, Henry HAL, Humphries MM, Martin R, McMeans BC, Moise ERD, O'Sullivan AM, Sharma S, Sinclair BJ, Sutton AO, Templer PH, Cooke SJ. Nine Maxims for the Ecology of Cold-Climate Winters. Bioscience 2021. [DOI: 10.1093/biosci/biab032] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Frozen winters define life at high latitudes and altitudes. However, recent, rapid changes in winter conditions have highlighted our relatively poor understanding of ecosystem function in winter relative to other seasons. Winter ecological processes can affect reproduction, growth, survival, and fitness, whereas processes that occur during other seasons, such as summer production, mediate how organisms fare in winter. As interest grows in winter ecology, there is a need to clearly provide a thought-provoking framework for defining winter and the pathways through which it affects organisms. In the present article, we present nine maxims (concise expressions of a fundamentally held principle or truth) for winter ecology, drawing from the perspectives of scientists with diverse expertise. We describe winter as being frozen, cold, dark, snowy, less productive, variable, and deadly. Therefore, the implications of winter impacts on wildlife are striking for resource managers and conservation practitioners. Our final, overarching maxim, “winter is changing,” is a call to action to address the need for immediate study of the ecological implications of rapidly changing winters.
Collapse
Affiliation(s)
- Emily K Studd
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Amanda E Bates
- Department of Ocean Sciences at Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Andrew J Bramburger
- Department of Ocean Sciences at Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Timothy Fernandes
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Brian Hayden
- Canadian Rivers Institute, Biology Department, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Hugh A L Henry
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Murray M Humphries
- Department of Natural Resource Sciences, Macdonald Campus, McGill University, Ste-Anne-de-Bellevue, Québec, Canada
| | - Rosemary Martin
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Bailey C McMeans
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Eric R D Moise
- Natural Resources Canada's Canadian Forest Service, Corner Brook, Newfoundland, Canada
| | - Antóin M O'Sullivan
- Canadian Rivers Institute, Biology Department, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Sapna Sharma
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Brent J Sinclair
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Alex O Sutton
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Pamela H Templer
- Department of Biology, Boston University, Boston, Massachusetts, United States
| | - Steven J Cooke
- Department of Biology and the Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
6
|
Rut Depth Evaluation of a Triple-Bogie System for Forwarders—Field Trials with TLS Data Support. SUSTAINABILITY 2020. [DOI: 10.3390/su12166412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In 2019, the machine manufacturer HSM presented a forwarder prototype for timber hauling in cut-to-length processes fitted with a new 10-wheel triple-bogie (TB) setup approach aimed at promoting sustainable forest management by reducing the ecological impact of forest operations, especially under soft-soil working conditions. The purpose of our study was to assess the resulting soil-protection effect emerging from additional wheel-contact surface area. For this, the rut development under known cumulative weight, related to the soil conditions of shear strength and moisture content, was recorded for later comparison. Additional terrestrial laser scanning (TLS) was used to generate a multi-temporal digital terrain model (DTM) in order to enhance the data sample, assess data quality, and facilitate visualization of the impact of local disturbance factors. In all TB configurations, a rut depth of 10 cm (5.8–7.2 cm) was not exceeded after the hauling of a reference amount of 90 m3 of timber (average soil shear strength reference of 67 kPa, volumetric water content (VMC) 43%). Compared to a reference dataset, all observed configurations ranked in the lowest-impact machine categories on related soil stability classes, and the configuration without bogie tracks revealed the highest machine weight to weight distribution trade-off potential.
Collapse
|
7
|
Impacts of Global Climate Change on Duration of Logging Season in Siberian Boreal Forests. FORESTS 2020. [DOI: 10.3390/f11070756] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In Siberia, most boreal forests are located in an area with relatively moist forest soils, which makes logging activities possible exclusively during the frost period with a permanent snow cover and stable sub-zero temperatures. As the global climate is experiencing a trend towards warming, it is reasonable to suppose that the duration of the logging season might shorten over time, influencing the economic potential of Siberian forests. To test this hypothesis, we created a concept for calculating the duration of the logging season, taking into account the economic and climatic peculiarities of doing forest business in these territories. Using the long-run daily-observed climatic data, we calculated the duration of the logging season for eight representative stations in Krasnoyarsk Krai (Yeniseysk, Boguchany, Achinsk, and Minusinsk) and Irkutsk Oblast (Bratsk, Kirensk, Tulun, and Yerbogachen) in 1966–2018. We found strong evidence of logging season duration shortening for almost all considered stations, with an uneven effect on the start and end boundaries of the season. Climate warming has almost no effect on the start date of the season in winter, but it significantly shifts the boundaries of the season end in spring. Using the autoregressive-integrated-moving average modeling (ARIMA) models, we demonstrated that, in the near future, the trends of the gradual shortening of the logging season will hold for the most part of the considered stations. The most pronounced effect is observed for the Achinsk station, where the logging season will shorten from 148.4 ± 17.3 days during the historical sample (1966–2018) to 136.2 ± 30 days in 2028, which reflects global warming trend patterns. From an economic perspective, a shorter duration of the logging season means fewer wood stocks available for cutting, which would impact the ability of companies to enact their logging plans and lead them to suffer losses in the future. To avoid losses, Siberian forest firms will have to adapt to these changes by redefining their economic strategies in terms of intensifying logging operations.
Collapse
|
8
|
Contosta AR, Casson NJ, Garlick S, Nelson SJ, Ayres MP, Burakowski EA, Campbell J, Creed I, Eimers C, Evans C, Fernandez I, Fuss C, Huntington T, Patel K, Sanders‐DeMott R, Son K, Templer P, Thornbrugh C. Northern forest winters have lost cold, snowy conditions that are important for ecosystems and human communities. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2019; 29:e01974. [PMID: 31310674 PMCID: PMC6851584 DOI: 10.1002/eap.1974] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 05/09/2019] [Accepted: 05/29/2019] [Indexed: 06/01/2023]
Abstract
Winter is an understudied but key period for the socioecological systems of northeastern North American forests. A growing awareness of the importance of the winter season to forest ecosystems and surrounding communities has inspired several decades of research, both across the northern forest and at other mid- and high-latitude ecosystems around the globe. Despite these efforts, we lack a synthetic understanding of how winter climate change may impact hydrological and biogeochemical processes and the social and economic activities they support. Here, we take advantage of 100 years of meteorological observations across the northern forest region of the northeastern United States and eastern Canada to develop a suite of indicators that enable a cross-cutting understanding of (1) how winter temperatures and snow cover have been changing and (2) how these shifts may impact both ecosystems and surrounding human communities. We show that cold and snow covered conditions have generally decreased over the past 100 years. These trends suggest positive outcomes for tree health as related to reduced fine root mortality and nutrient loss associated with winter frost but negative outcomes as related to the northward advancement and proliferation of forest insect pests. In addition to effects on vegetation, reductions in cold temperatures and snow cover are likely to have negative impacts on the ecology of the northern forest through impacts on water, soils, and wildlife. The overall loss of coldness and snow cover may also have negative consequences for logging and forest products, vector-borne diseases, and human health, recreation, and tourism, and cultural practices, which together represent important social and economic dimensions for the northern forest region. These findings advance our understanding of how our changing winters may transform the socioecological system of a region that has been defined by the contrasting rhythm of the seasons. Our research also identifies a trajectory of change that informs our expectations for the future as the climate continues to warm.
Collapse
Affiliation(s)
- Alexandra R. Contosta
- Earth Systems Research CenterInstitute for the Study of Earth, Oceans, and SpaceUniversity of New Hampshire8 College RoadDurhamNew Hampshire03824 USA
| | - Nora J. Casson
- Department of GeographyUniversity of Winnipeg515 Portage AvenueWinnipegManitobaR3B 2E9Canada
| | - Sarah Garlick
- Hubbard Brook Research Foundation30 Pleasant StreetWoodstockVermont05091 USA
| | - Sarah J. Nelson
- School of Forest ResourcesUniversity of Maine5755 Nutting HallOronoMaine04469USA
| | - Matthew P. Ayres
- Department of Biological SciencesDartmouth College78 College StreetHanoverNew Hampshire03755USA
| | - Elizabeth A. Burakowski
- Earth Systems Research CenterInstitute for the Study of Earth, Oceans, and SpaceUniversity of New Hampshire8 College RoadDurhamNew Hampshire03824 USA
| | - John Campbell
- USDA Forest Service, Northern Research Station271 Mast RoadDurhamNew Hampshire03824USA
| | - Irena Creed
- School of Environment and SustainabilityUniversity of Saskatchewan117 Science PlaceSaskatoonSaskatchewanS7N 5C8Canada
| | - Catherine Eimers
- School of the EnvironmentTrent University1600 West Bank DrivePeterboroughOntarioK9L 0G2Canada
| | - Celia Evans
- Department of Natural SciencePaul Smith's CollegeFreer Science Building, 7833 New York 30Paul SmithsNew York12970USA
| | - Ivan Fernandez
- Climate Change Institute and School of Forest ResourcesUniversity of MaineDeering HallOronoMaine04469USA
| | - Colin Fuss
- Cary Institute of Ecosystem Studies2801 Sharon TurnpikeMillbrookNew York12545USA
| | - Thomas Huntington
- New England Water Science CenterUnited States Geological Survey196 Whitten RoadAugustaMaine04330USA
| | - Kaizad Patel
- School of Forest ResourcesUniversity of Maine5755 Nutting HallOronoMaine04469USA
- Pacific Northwest National LaboratoryBiological Sciences DivisionP.O. Box 999RichlandWashington99352USA
| | - Rebecca Sanders‐DeMott
- Earth Systems Research CenterInstitute for the Study of Earth, Oceans, and SpaceUniversity of New Hampshire8 College RoadDurhamNew Hampshire03824 USA
| | - Kyongho Son
- Research Foundation of the City University of New York230 West 41st StreetNew YorkNew York10036 USA
| | - Pamela Templer
- Department of BiologyBoston University5 Cummington MallBostonMassachusetts02215 USA
| | - Casey Thornbrugh
- United South and Eastern Tribes, Inc.711 Stewarts Ferry Pike # 100NashvilleTennessee37214USA
- DOI Northeast & Southeast Climate Adaptation Science CentersMorrill Science CenterUniversity of Massachusetts, Amherst611 North Pleasant StreetAmherstMassachusetts01003USA
| |
Collapse
|
9
|
Abstract
A significant portion of the forest harvesting in the cooler regions of North America occurs in the winter when the ground is frozen and can support machine traffic. Climate change may influence the cost of forestry operations by reducing the period of winter access in those cold regions. In this study, we examined the impact of a shortened period of frozen ground conditions on logging operation and costs. To adapt to shorter period of frozen soil conditions, logging contractors might need to provide more machines and labor to complete logging in a shorter period of frozen conditions. The objectives were to calculate the costs of logging operations of a hypothetical forestry company in Alberta, Canada under two conditions: first, when the wood was hauled to the mill directly; and second, when part of the wood was hauled to satellite yards close to the logging area, thereby minimizing the annual number of idle hauling trucks. General Circulation Models were used to predict future winter weather conditions. Using the current type of harvesting machines and hauling directly to the mill, the unit cost of logging operations ($/m3) was projected to increase by an average of 1.6% to 2.5% in 2030s, 2.8% to 5.3% in the 2050s and 4.8% to 10.9% in the 2080s compared to the base year of 2015–2016. With use of satellite yards during the winter logging, the total logging cost will increase over direct haul, by 1.8% to 2.8% in the 2030s, 3.1% to 5.7% in the 2050s and 5.2% to 11.4% in the 2080s. Using satellite yards, however, will provide year-around employment for hauling truckers and more consistent and reliable hauling operations.
Collapse
|
10
|
Mattila U, Tokola T. Terrain mobility estimation using TWI and airborne gamma-ray data. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 232:531-536. [PMID: 30503899 DOI: 10.1016/j.jenvman.2018.11.081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/06/2018] [Accepted: 11/18/2018] [Indexed: 06/09/2023]
Abstract
Since one purpose of forestry laws and certification standards is to guide loggers to minimize the damage caused by forest operations, information regarding internal variations in site trafficability is needed for both economic and ecological reasons. The aim of this work was to test the prediction of terrain mobility from open data sources in Finland. New Lidar-based data sources were available for calculating terrain features and a gamma-ray-based soil wetness parameter. Rut depths were measured and can bus data were collected from a forwarder in two logging areas. Net power at the forwarder's drive shaft, total resistance and rolling resistance were calculated from the can bus data and augmented by means of a digital elevation model (DEM), soil data, aerogeophysical gamma-ray radiation data and a topographic wetness index (TWI). The rut depth was explained best either by TWI calculated from a 2 m grid DEM or the combination of a 16 m grid TWI, gamma radiation from thorium and engine net power (r2 = 0.20-0.33). In the areas concerned here the gamma-ray results may have detected the soil type more precisely than the soil type class, and the gamma radiation from thorium may also have detected wet places inside the site type, labelled as sandy till, and will therefore have explained the variation in rut depth.
Collapse
Affiliation(s)
- U Mattila
- University of Eastern Finland, School of Forest Sciences, Yliopistokatu 7, FIN-80100 Joensuu, Finland.
| | - T Tokola
- University of Eastern Finland, School of Forest Sciences, Yliopistokatu 7, FIN-80100 Joensuu, Finland.
| |
Collapse
|
11
|
Liu X, Zhao L, Voelker S, Xu G, Zeng X, Zhang X, Zhang L, Sun W, Zhang Q, Wu G, Li X. Warming and CO2 enrichment modified the ecophysiological responses of Dahurian larch and Mongolia pine during the past century in the permafrost of northeastern China. TREE PHYSIOLOGY 2019; 39:88-103. [PMID: 29920609 DOI: 10.1093/treephys/tpy060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/03/2018] [Indexed: 06/08/2023]
Abstract
Tree-ring δ13C and δ18O of dominant Dahurian larch and Mongolia pine in the permafrost region of the northern Great Higgnan Mountains, China were used to elucidate species-specific ecophysiological responses to warming temperatures and increasing CO2 over the past century. Larch and pine stable carbon discrimination (Δ13C) 13C and δ18O in tree rings both showed synchronous changes during the investigated period (1901-2010), but with species-specific isotopic responses to atmospheric enriched CO2 and warming. Tree-ring Δ13C and δ18O were controlled by both maximum temperature and moisture conditions (precipitation, relative humidity and vapor pressure deficit), but with different growth periods (Δ13C in June-July and δ18O in July-August, respectively). In addition, stable isotopes of larch showed relatively greater sensitivity to moisture deficits than pine. Climatic conditions from 1920 to 1960 strongly and coherently regulated tree-ring Δ13C and δ18O through stomatal conductance. However, climatic-sensitivities of tree-ring Δ13C and δ18O recently diverged, implying substantial adjustments of stomatal conductance, photosynthetic rate and altered water sources over recent decades, which reveal the varied impacts of each factor on tree-ring Δ13C and δ18O over time. Based on expected changes in leaf gas-exchange, we isolated the impacts of atmospheric CO2 and climate change on intrinsic water-use efficiency (iWUE) over the past century. Higher intracellular CO2 in pine than larch from 1960 onwards suggests this species may be more resilient to severe droughts in the future. Our data also illustrated no weakening of the iWUE response to increasing CO2 in trees from this permafrost region. The overall pattern of CO2 enrichment and climate impacts on iWUE of pine and larch were similar, but warming increased iWUE of larch to a greater extent than that of pine over recent two decades. Taken together, our findings highlight the importance of considering how leaf gas-exchange responses to atmospheric CO2 concentration influence species-specific responses to climate and the alteration of the hydrological environment in forests growing in regions historically dominated by permafrost that will be changing rapidly in response to future warming and increased CO2.
Collapse
Affiliation(s)
- Xiaohong Liu
- School of Geography and Tourism, Shaanxi Normal University, Xi'an, China
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Liangju Zhao
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, China
| | - Steven Voelker
- Department of Forest Ecosystems & Society, Oregon State University, Corvallis, USA
| | - Guobao Xu
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Xiaomin Zeng
- School of Geography and Tourism, Shaanxi Normal University, Xi'an, China
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Xuanwen Zhang
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Lingnan Zhang
- School of Geography and Tourism, Shaanxi Normal University, Xi'an, China
| | - Weizhen Sun
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Qiuliang Zhang
- Forest College of Inner Mongolia Agricultural University, Huhhot, China
| | - Guoju Wu
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Xiaoqin Li
- School of Geography and Tourism, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
12
|
Marchi E, Chung W, Visser R, Abbas D, Nordfjell T, Mederski PS, McEwan A, Brink M, Laschi A. Sustainable Forest Operations (SFO): A new paradigm in a changing world and climate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 634:1385-1397. [PMID: 29710638 DOI: 10.1016/j.scitotenv.2018.04.084] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/05/2018] [Accepted: 04/05/2018] [Indexed: 06/08/2023]
Abstract
The effective implementation of sustainable forest management depends largely on carrying out forest operations in a sustainable manner. Climate change, as well as the increasing demand for forest products, requires a re-thinking of forest operations in terms of sustainability. In this context, it is important to understand the major driving factors for the future development of forest operations that promote economic, environmental and social well-being. The main objective of this paper is to identify important issues concerning forest operations and to propose a new paradigm towards sustainability in a changing climate, work and environmental conditions. Previously developed concepts of forest operations are reviewed, and a newly developed concept - Sustainable Forest Operations (SFO), is presented. Five key performance areas to ensure the sustainability of forest operations include: (i) environment; (ii) ergonomics; (iii) economics; (iv) quality optimization of products and production; and (v) people and society. Practical field examples are presented to demonstrate how these five interconnected principles are relevant to achieving sustainability, namely profit and wood quality maximization, ecological benefits, climate change mitigation, carbon sequestration, and forest workers' health and safety. The new concept of SFO provides integrated perspectives and approaches to effectively address ongoing and foreseeable challenges the global forest communities face, while balancing forest operations performance across economic, environmental and social sustainability. In this new concept, we emphasize the role of wood as a renewable and environmentally friendly material, and forest workers' safety and utilization efficiency and waste management as additional key elements of sustainability.
Collapse
Affiliation(s)
- Enrico Marchi
- Department of Agriculture, Food and Forestry Systems, University of Florence, Via S. Bonaventura 13, 50145 Firenze, Italy.
| | - Woodam Chung
- Department of Forest Engineering, Resources and Management, Oregon State University, Corvallis, OR, USA.
| | - Rien Visser
- School of Forestry, University of Canterbury, New Zealand.
| | - Dalia Abbas
- Department of Environmental Science, American University, Washington, DC, USA.
| | - Tomas Nordfjell
- Department of Forest Biomaterials and Technology, Swedish University of Agricultural Sciences, Umeå, Sweden.
| | - Piotr S Mederski
- Department of Forest Utilisation, Poznań University of Life Sciences, ul. Wojska Polskiego 71A, 60-625 Poznań, Poland.
| | - Andrew McEwan
- Nelson Mandela University, Port Elizabeth, South Africa.
| | | | - Andrea Laschi
- Department of Agriculture, Food and Forestry Systems, University of Florence, Via S. Bonaventura 13, 50145 Firenze, Italy.
| |
Collapse
|
13
|
Zuckerberg B, Pauli JN. Conserving and managing the subnivium. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2018; 32:774-781. [PMID: 29420843 DOI: 10.1111/cobi.13091] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 02/02/2018] [Indexed: 06/08/2023]
Abstract
In regions where snowfall historically has been a defining seasonal characteristic of the landscape, warming winters have reduced the depth, duration, and extent of snowpack. However, most management and conservation has focused on how aboveground wildlife will be affected by altered snow conditions, even though the majority of species that persist through the winter do so under the snowpack in a thermally stable refugium: the subnivium. Shortened winters, forest management practices, and winter recreation can alter subnivium conditions by increasing snow compaction and compromising thermal stability at the soil-snow interface. To help slow the loss of the subnivium in the face of rapidly changing winter conditions, we suggest managers adopt regional conservation plans for identifying threatened snow-covered environments; measure and predict the effects land cover and habitat management has on local subnivium conditions; and control the timing and distribution of activities that disturb and compact snow cover (e.g., silvicultural practices, snow recreation, and road and trail maintenance). As a case study, we developed a spatially explicit model of subnivium presence in a working landscape of the Chequamegon National Forest, Wisconsin. We identified landscapes where winter recreation and management practices could threaten potentially important areas for subnivium persistence. Similar modeling approaches could inform management decisions related to subnivium conservation. Current climate projections predict that snow seasons will change rapidly in many regions, and as result, we advocate for the immediate recognition, conservation, and management of the subnivium and its dependent species.
Collapse
Affiliation(s)
- Benjamin Zuckerberg
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, U.S.A
| | - Jonathan N Pauli
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, U.S.A
| |
Collapse
|