1
|
Wang Q, Zhang C, Tian B, Han L, Liu D, Li G, Gui S, Smagghe G, Chen X, Wu X. Consortia of Bacillus sp. LY05 and Bacillus cereus LGY06 immobilized on coconut shell charcoal remediates pendimethalin and cadmium contaminated sites in-situ and alleviates peanut's continuous cropping obstacles. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138168. [PMID: 40199080 DOI: 10.1016/j.jhazmat.2025.138168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/30/2025] [Accepted: 04/02/2025] [Indexed: 04/10/2025]
Abstract
The use of artificial addition of microbial consortia into soils is a key strategy to simultaneously alleviate the common contamination and continuous cropping obstacles. This study established the coconut shell charcoal (CSC) LY05 +LGY06 by immobilizing Bacillus sp. LY05 and B. cereus LGY06 on CSC particles, which effectively accelerated the removal of pendimethalin as a possible human carcinogen (91.68 %) and Cd2 + (80.02 %) from the culture-solution, and displayed the prominent re-usability and stability compared with their free coculture consortium. This consortium could detoxify pendimethalin via serial nitro-reduction, oxidation, cyclization, carboxylation and hydroxylation reactions. CSC LY05 +LGY06 could rapidly degrade pendimethalin in sterile (90.01 %) and non-sterile (99.03 %) soils. Moreover, it notably reduced pendimethalin and Cd2+ residuals in pod kernels, pod shells, and plants of peanut growing in continuous cropping soil by 99.19 % and 94.02 %, 99.16 % and 93.94 %, and 98.94 % and 91.85 %, respectively, contrasted to the control. Meanwhile, it significantly promoted the pod yield (>1.28-fold) and quality of continuous cropping peanut by improving the plant agronomic trait, photosynthetic capacity, intracellular water metabolism, nutrient transport capacity, and metabolic activity. This study provides a novel insight into the safe production of agri-products in continuous cropping soils con-contaminated by pesticides and heavy metals.
Collapse
Affiliation(s)
- Qiuping Wang
- Guizhou Key Laboratory of Agricultural Biosecurity, Ministry of Education Key Laboratory of Karst Georesources and Environment, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, China; Department of Food and Medicine, Guizhou Vocational College of Agriculture, Guiyang 551400, China
| | - Cheng Zhang
- Key Laboratory of Environmental Pollution Monitoring and Disease of Ministry of Education, School of Public Health, Guizhou Medical University, Guian 561113, China
| | - Bing Tian
- Key Laboratory of Environmental Pollution Monitoring and Disease of Ministry of Education, School of Public Health, Guizhou Medical University, Guian 561113, China; Guizhou Agricultural Ecology and Resource Protection Station, Agriculture and Rural Affairs Department of Guizhou Province, Guiyang 550001, China
| | - Lei Han
- Guizhou Key Laboratory of Agricultural Biosecurity, Ministry of Education Key Laboratory of Karst Georesources and Environment, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Dongdong Liu
- Guizhou Key Laboratory of Agricultural Biosecurity, Ministry of Education Key Laboratory of Karst Georesources and Environment, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Gang Li
- Guizhou Key Laboratory of Agricultural Biosecurity, Ministry of Education Key Laboratory of Karst Georesources and Environment, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Shunhua Gui
- Guizhou Key Laboratory of Agricultural Biosecurity, Ministry of Education Key Laboratory of Karst Georesources and Environment, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Guy Smagghe
- Guizhou Key Laboratory of Agricultural Biosecurity, Ministry of Education Key Laboratory of Karst Georesources and Environment, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Xiangsheng Chen
- Guizhou Key Laboratory of Agricultural Biosecurity, Ministry of Education Key Laboratory of Karst Georesources and Environment, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, China.
| | - Xiaomao Wu
- Guizhou Key Laboratory of Agricultural Biosecurity, Ministry of Education Key Laboratory of Karst Georesources and Environment, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
2
|
Borisova G, Maleva M, Tripti, Voropaeva O, Chukina N, Tugbaeva A, Kumar A. Amalgamation of Metal Tolerant PGPR Buttiauxella sp. EA20 with Birch Wood Biochar Enhanced Growth and Biofortification of Rapeseed under Copper Action. Front Biosci (Elite Ed) 2024; 16:34. [PMID: 39736007 DOI: 10.31083/j.fbe1604034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/18/2024] [Accepted: 07/23/2024] [Indexed: 12/31/2024]
Abstract
BACKGROUND Amalgamation of metal-tolerant plant growth promoting rhizobacteria (PGPR) with biochar is a promising direction for the development of chemical-free biofertilizers that can mitigate environmental risks, enhance crop productivity and their biological value. The main objective of the work includes the evaluation of the influence of prepared bacterial biofertilizer (BF) on biometric growth parameters as well as physiological and biochemical characteristics of rapeseed (Brassica napus L.) at copper action. METHODS The prepared BF was based on novel metal tolerant strain of PGPR Buttiauxella sp. EA20 isolated from the rhizosphere of orchid Epipactis atrorubens and birch wood biochar (BC). The pot-scale experiments included six treatments: peat-containing control substrate (CS); CS + 200Cu (200 mg Cu/kg of soil); CS + 5% BC (v/v); CS + 5% BC + 200Cu; CS + 5% BF (v/v); CS + 5% BF + 200Cu. RESULTS Single Cu treatment caused the decrease in rapeseed leaf area, shoot and root length, fresh and dry biomass, as well as an increase in water saturation deficit, possibly due to damage of cell membranes by lipid peroxidation. Addition of BF or BC alone mitigated these harmful effects of copper. Application of BF, regardless of Cu addition, increased the rapeseed leaf area (1.6 times on average), plant fresh and dry biomass (2.5 times on average), and photosynthetic pigment content (1.8 times on average). In addition, BF treatment along with Cu enhanced the antioxidant activity of B. napus due to the accumulation of non-enzymatic antioxidants such as carotenoids, free proline and soluble phenolic compounds, including flavonoids. Moreover, plant enrichment with copper and essential macronutrients such as nitrogen, phosphorus and potassium was observed. CONCLUSIONS The study concludes that application of complex biofertilizer based on metal tolerant PGPR strain Buttiauxella sp. EA20 and birch wood biochar mitigated the harmful effects of copper, enhanced the rapeseed growth and increased its biological value. Future perspective includes evaluation of the potential for using the resulting biofertilizer to improve the growth and biofortification of other crop species.
Collapse
Affiliation(s)
- Galina Borisova
- Department of Experimental Biology and Biotechnology, Institute of Natural Sciences and Mathematics, Ural Federal University Named after the First President of Russia B.N. Yeltsin, 620002 Ekaterinburg, Russia
| | - Maria Maleva
- Department of Experimental Biology and Biotechnology, Institute of Natural Sciences and Mathematics, Ural Federal University Named after the First President of Russia B.N. Yeltsin, 620002 Ekaterinburg, Russia
| | - Tripti
- Laboratory of Biotechnology, Institute of Natural Sciences and Mathematics, Ural Federal University Named after the First President of Russia B.N. Yeltsin, 620002 Ekaterinburg, Russia
| | - Olga Voropaeva
- Department of Experimental Biology and Biotechnology, Institute of Natural Sciences and Mathematics, Ural Federal University Named after the First President of Russia B.N. Yeltsin, 620002 Ekaterinburg, Russia
| | - Nadezhda Chukina
- Department of Experimental Biology and Biotechnology, Institute of Natural Sciences and Mathematics, Ural Federal University Named after the First President of Russia B.N. Yeltsin, 620002 Ekaterinburg, Russia
| | - Anastasia Tugbaeva
- Department of Experimental Biology and Biotechnology, Institute of Natural Sciences and Mathematics, Ural Federal University Named after the First President of Russia B.N. Yeltsin, 620002 Ekaterinburg, Russia
| | - Adarsh Kumar
- Department of Life Sciences, GITAM School of Science, Gandhi Institute of Technology and Management, 530045 Visakhapatnam, Andhra Pradesh, India
| |
Collapse
|
3
|
Lentini M, Ciriello M, Rouphael Y, Carillo P, Fusco GM, Pagliaro L, Vaccari FP, De Pascale S. Mitigating Salt Stress with Biochar: Effects on Yield and Quality of Dwarf Tomato Irrigated with Brackish Water. PLANTS (BASEL, SWITZERLAND) 2024; 13:2801. [PMID: 39409671 PMCID: PMC11478744 DOI: 10.3390/plants13192801] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024]
Abstract
The increase in the frequency and magnitude of environmental stresses poses a significant risk to the stability of food supplies. In coastal areas of the Mediterranean, brackish water has long been considered a limitation on horticultural production. In this scenario, the use of biochar in agriculture could be considered a valuable tool to cope with the deleterious effects of salt stress. This work aimed to investigate, in a protected environment, the effects of different concentrations of biochar (0, 1, and 2% v/v) obtained from poplar (Populus L.) biomass on the yield and quality of dwarf San Marzano ecotype tomatoes irrigated with saline water at different concentrations of NaCl (0, 40 and 80 mM). The increase in salt concentration from 0 to 80 mM NaCl reduced the total yield (-63%) and the number of fruits (-25%), but improved the main quality parameters such as dry matter (+75%), total soluble solids (+56%), and polyphenol content (+43%). Compared to control conditions, biochar supplementation improved the total yield (+23%) and number of fruits (+26%) without altering the functional and organoleptic characteristics of the fruits. The promising results underscore the potential of biochar as a sustainable solution to amend soils in order to improve tomato production under unfavorable conditions such as high salinity. However, there is a need to clarify which adaptation mechanisms triggered by biochar amending improve production responses even and especially under suboptimal growing conditions.
Collapse
Affiliation(s)
- Matteo Lentini
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (M.L.); (M.C.)
| | - Michele Ciriello
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (M.L.); (M.C.)
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (M.L.); (M.C.)
| | - Petronia Carillo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (P.C.); (G.M.F.); (L.P.)
| | - Giovanna Marta Fusco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (P.C.); (G.M.F.); (L.P.)
| | - Letizia Pagliaro
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (P.C.); (G.M.F.); (L.P.)
| | - Francesco Primo Vaccari
- Institute of BioEconomy—Biology, Agriculture and Food Sciences Department, National Research Council of Italy, Via Caproni 8, 50144 Firenze, Italy;
| | - Stefania De Pascale
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (M.L.); (M.C.)
| |
Collapse
|
4
|
Gul-Lalay, Ullah S, Shah S, Jamal A, Saeed MF, Mihoub A, Zia A, Ahmed I, Seleiman MF, Mancinelli R, Radicetti E. Combined Effect of Biochar and Plant Growth-Promoting Rhizbacteria on Physiological Responses of Canola (Brassica napus L.) Subjected to Drought Stress. JOURNAL OF PLANT GROWTH REGULATION 2024; 43:1814-1832. [DOI: 10.1007/s00344-023-11219-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/07/2023] [Indexed: 02/07/2024]
Abstract
AbstractBiochar (BC) and plant growth-promoting microbes (PGPR) could represent a suitable agronomical strategy to mitigate the impacts of drought in arid agro-environmental conditions. However, there is currently little understanding of the synergistic benefit of combining BC and PGPR to increase drought tolerance in oilseeds. In this study, the physiological response of two water-stressed canola (Brassica napus L.) plants subjected to the application of BC obtained from waste wood of Morus alba applied solely or in combination with PGPR strains (Pseudomonas sp.) was evaluated. The experiment consists of two genotypes and nine treatments [(C-Control, T1-15 days drought (15DD), T2-30 days drought (30DD), T3-15 days of drought + PG (15DD + PG), T4-30 days of drought + PG (30DD + PG), T5-15 days drought + biochar (15DD + BC), T6-30 days drought + biochar (30DD + BC), T7-15 days drought + biochar + PG (15DD + BC + PG), T8-30 days drought + biochar + PG (30DD + BC + PG)]. Drought stress decreased emergence energy (EE), leaf area index (LAI), leaf area ratio (LAR), root shoot ratio (RSR), moisture content of leaves (MCL), percent moisture content (%MC), moisture content of shoot (MCS) and moisture content of root (MCR), and relative water content (RWC) in both varieties of Brassica napus L., which in contrast, it is increased by the collective application of both biochar and PGPR. In both varieties, N, P, K, Mg, and Ca concentrations were highest in all the biochar and PGPRs separate and combined treatments, while lowest in 15 and 30 days drought treatments. Osmolyte contents like Glycine betaine (GB) and sugar remarkably increased in the stress condition and then reduced due to the synergistic application of biochar and PGPR. Drought stress has a repressive effect on the antioxidant enzymatic system like Peroxidase (POD), Superoxide dismutase (SOD), and glutathione reductase (GR) as well as total flavonoids, phenolics, and protein content. The antioxidant enzymes and phenolic compounds were dramatically increased by the combined action of biochar and PGPRs. A significant increase in EE, LAR, RSR, and RWC under 15 and 30 days drought conditions, evidently highlighting the synergistic effect of BC and PGPR. The results conclude a substantial and positive effect of the combined use of BC and PGPR strains on canola's response to induced drought stress, by regulating the physiological, biochemical, and agronomic traits of the plants.
Graphical Abstract
Collapse
|
5
|
Shabir R, Li Y, Megharaj M, Chen C. Biopolymer as an additive for effective biochar-based rhizobial inoculant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169263. [PMID: 38092216 DOI: 10.1016/j.scitotenv.2023.169263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/19/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Biochar is an efficient and inexpensive carrier for bacteria that stimulate plant development and growth. In this study, different biopolymer additives (cellulose, xanthan gum, chitin and tryptone) were tested with different addition ratios (1:0.1, 1:0.5 and 1:1) on further enhancing biochar capacity for supporting the growth and activity of Bradyrhizobium japonicum (CB1809). We utilized pine wood biochar (PWBC) pyrolyzed at 400 °C as the base inoculum carrier. The shelf life and survival rate of CB1809 were counted using the colony-forming unit (CFU) method for up to 120 days. Peat served as a standard reference material against which all treatments were compared. Subsequent experiments evaluated the ability of carrier inoculants to promote Glycine max L. (soybean) plant growth and nodulation under different watering regimes, i.e., 55 % water holding capacity (WHC) (D0), 30 % WHC (D1) and, 15 % WHC (D2) using sandy loam soil. Results revealed that among different additives; xanthan gum with 1:0.5 to PWBC [PWBC-xanthan gum(1:0.5)] was observed as a superior formulation in supporting rhizobial shelf life and survival rate of CB1809. In pot experiments, plants with PWBC-xanthan gum(1:0.5) formulation showed significant increase in various physiological characteristics (nitrogenase activity, chlorophyll pigments, membrane stability index, and relative water content), root architecture (root surface area, root average diameter, root volume, root tips, root forks and root crossings), and plant growth attributes (shoot/root dry biomass, shoot/root length, and number of nodules). Additionally, a reduced enrichment of isotopic signatures (δ13C, δ15N) was observed in plants treated with PWBC-xanthan gum(1:0.5), less enrichment of δ15N indicates an inverse link to nodulation and nitrogenase activity, while lower δ13C values indicates effective water use efficiency by plants during drought stress. These results suggest that biopolymers supplementation of the PWBC is useful in promoting shelf life or survival rate of CB1809.
Collapse
Affiliation(s)
- Rahat Shabir
- Australian Rivers Institute, School of Environment and Science, Griffith University, Nathan, Campus, 4111, Queensland, Australia; Cooperative Research Centre for High Performance Soils, Callaghan, NSW, Australia
| | - Yantao Li
- Australian Rivers Institute, School of Environment and Science, Griffith University, Nathan, Campus, 4111, Queensland, Australia; Cooperative Research Centre for High Performance Soils, Callaghan, NSW, Australia; College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Mallavarapu Megharaj
- Cooperative Research Centre for High Performance Soils, Callaghan, NSW, Australia; Global Centre for Environmental Remediation, College of Engineering, Science and Environment, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Chengrong Chen
- Australian Rivers Institute, School of Environment and Science, Griffith University, Nathan, Campus, 4111, Queensland, Australia; Cooperative Research Centre for High Performance Soils, Callaghan, NSW, Australia.
| |
Collapse
|
6
|
Ahmed T, Noman M, Qi Y, Shahid M, Hussain S, Masood HA, Xu L, Ali HM, Negm S, El-Kott AF, Yao Y, Qi X, Li B. Fertilization of Microbial Composts: A Technology for Improving Stress Resilience in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:3550. [PMID: 37896014 PMCID: PMC10609736 DOI: 10.3390/plants12203550] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023]
Abstract
Microbial compost plays a crucial role in improving soil health, soil fertility, and plant biomass. These biofertilizers, based on microorganisms, offer numerous benefits such as enhanced nutrient acquisition (N, P, and K), production of hydrogen cyanide (HCN), and control of pathogens through induced systematic resistance. Additionally, they promote the production of phytohormones, siderophore, vitamins, protective enzymes, and antibiotics, further contributing to soil sustainability and optimal agricultural productivity. The escalating generation of organic waste from farm operations poses significant threats to the environment and soil fertility. Simultaneously, the excessive utilization of chemical fertilizers to achieve high crop yields results in detrimental impacts on soil structure and fertility. To address these challenges, a sustainable agriculture system that ensures enhanced soil fertility and minimal ecological impact is imperative. Microbial composts, developed by incorporating characterized plant-growth-promoting bacteria or fungal strains into compost derived from agricultural waste, offer a promising solution. These biofertilizers, with selected microbial strains capable of thriving in compost, offer an eco-friendly, cost-effective, and sustainable alternative for agricultural practices. In this review article, we explore the potential of microbial composts as a viable strategy for improving plant growth and environmental safety. By harnessing the benefits of microorganisms in compost, we can pave the way for sustainable agriculture and foster a healthier relationship between soil, plants, and the environment.
Collapse
Affiliation(s)
- Temoor Ahmed
- Xianghu Laboratory, Hangzhou 311231, China; (T.A.)
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Muhammad Noman
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Yetong Qi
- Xianghu Laboratory, Hangzhou 311231, China; (T.A.)
| | - Muhammad Shahid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan;
| | - Sabir Hussain
- Department of Environmental Sciences, Government College University, Faisalabad 38040, Pakistan;
| | - Hafiza Ayesha Masood
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38000, Pakistan
- MEU Research Unit, Middle East University, Amman 11831, Jordan
| | - Lihui Xu
- Institute of Eco-Environmental Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China;
| | - Hayssam M. Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Sally Negm
- Department of Life Sciences, College of Science and Art Mahyel Aseer, King Khalid University, Abha 62529, Saudi Arabia;
| | - Attalla F. El-Kott
- Department of Biology, College of Science, King Khalid University, Abha 61421, Saudi Arabia
| | - Yanlai Yao
- Xianghu Laboratory, Hangzhou 311231, China; (T.A.)
| | - Xingjiang Qi
- Xianghu Laboratory, Hangzhou 311231, China; (T.A.)
| | - Bin Li
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
| |
Collapse
|
7
|
Kaur R, Kaur S, Dwibedi V, Kaur C, Akhtar N, Alzahrani A. Development and characterization of rice bran-gum Arabic based encapsulated biofertilizer for enhanced shelf life and controlled bacterial release. Front Microbiol 2023; 14:1267730. [PMID: 37822736 PMCID: PMC10563852 DOI: 10.3389/fmicb.2023.1267730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/05/2023] [Indexed: 10/13/2023] Open
Abstract
Introduction Currently, microbe-based approaches are being tested to address nutrient deficiencies and enhance nutrient use efficiency in crops. However, these bioinoculants have been unsuccessful at the commercial level due to differences in field and in-vivo conditions. Thus, to enhance bacterial stability, microbial formulations are considered, which will provide an appropriate microenvironment and protection to the bacteria ensuring better rhizospheric-colonization. Methods The present study aimed to develop a phosphobacterium-based encapsulated biofertilizer using the ion-chelation method, wherein a bacterial strain, Myroid gitamensis was mixed with a composite solution containing rice bran (RB), gum Arabic (GA), tricalcium phosphate, and alginate to develop low-cost and slow-release microbeads. The developed microbead was studied for encapsulation efficiency, shape, size, external morphology, shelf-life, soil release behavior, and biodegradability and characterized using SEM, FTIR, and XRD. Further, the wheat growth-promoting potential of microbeads was studied. Results The developed microbeads showed an encapsulation efficiency of 94.11%. The air-dried beads stored at 4°C were favorable for bacterial survival for upto 6 months. Microbeads showed 99.75% degradation within 110 days of incubation showing the bio-sustainable nature of the beads. The application of dried formulations to the pot-grown wheat seedlings resulted in a higher germination rate, shoot length, root length, fresh weight, dry weight of the seedlings, and higher potassium and phosphorus uptake in wheat. Discussion This study, for the first time, provides evidence that compared to liquid biofertilizers, the RB-GA encapsulated bacteria have better potential of enhancing wheat growth and can be foreseen as a future fertilizer option for wheat.
Collapse
Affiliation(s)
- Rajinder Kaur
- Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, Mohali, India
| | - Sukhminderjit Kaur
- Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, Mohali, India
| | - Vagish Dwibedi
- Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, Mohali, India
| | - Charanjit Kaur
- Department of Microbiology, Bhojia Institute of Life Sciences, Baddi, India
| | - Nadeem Akhtar
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Abdulhakeem Alzahrani
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Bolan S, Hou D, Wang L, Hale L, Egamberdieva D, Tammeorg P, Li R, Wang B, Xu J, Wang T, Sun H, Padhye LP, Wang H, Siddique KHM, Rinklebe J, Kirkham MB, Bolan N. The potential of biochar as a microbial carrier for agricultural and environmental applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 886:163968. [PMID: 37164068 DOI: 10.1016/j.scitotenv.2023.163968] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/06/2023] [Accepted: 05/02/2023] [Indexed: 05/12/2023]
Abstract
Biochar can be an effective carrier for microbial inoculants because of its favourable properties promoting microbial life. In this review, we assess the effectiveness of biochar as a microbial carrier for agricultural and environmental applications. Biochar is enriched with organic carbon, contains nitrogen, phosphorus, and potassium as nutrients, and has a high porosity and moisture-holding capacity. The large number of active hydroxyl, carboxyl, sulfonic acid group, amino, imino, and acylamino hydroxyl and carboxyl functional groups are effective for microbial cell adhesion and proliferation. The use of biochar as a carrier of microbial inoculum has been shown to enhance the persistence, survival and colonization of inoculated microbes in soil and plant roots, which play a crucial role in soil biochemical processes, nutrient and carbon cycling, and soil contamination remediation. Moreover, biochar-based microbial inoculants including probiotics effectively promote plant growth and remediate soil contaminated with organic pollutants. These findings suggest that biochar can serve as a promising substitute for non-renewable substrates, such as peat, to formulate and deliver microbial inoculants. The future research directions in relation to improving the carrier material performance and expanding the potential applications of this emerging biochar-based microbial immobilization technology have been proposed.
Collapse
Affiliation(s)
- Shiv Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia; Healthy Environments and Lives (HEAL) National Research Network, Australia
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Liuwei Wang
- School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Lauren Hale
- USDA, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Avenue, Parlier, CA 93648-9757, United States
| | - Dilfuza Egamberdieva
- Institute of Fundamental and Applied Research, National Research University (TIIAME), Tashkent 100000, Uzbekistan; Leibniz Centre for Agricultural Landscape Research, Müncheberg, Germany
| | - Priit Tammeorg
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Rui Li
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Bing Wang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou 550025, People's Republic of China
| | - Jiaping Xu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, People's Republic of China
| | - Ting Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, People's Republic of China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, People's Republic of China
| | - Lokesh P Padhye
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland, 1010, New Zealand
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, People's Republic of China
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia; UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - M B Kirkham
- Department of Agronomy, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, United States
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia; Healthy Environments and Lives (HEAL) National Research Network, Australia.
| |
Collapse
|
9
|
Chromkaew Y, Kaeomuangmoon T, Mawan N, Mukjang N, Khongdee N. Is coconut coir dust an efficient biofertilizer carrier for promoting coffee seedling growth and nutrient uptake? PeerJ 2023; 11:e15530. [PMID: 37334129 PMCID: PMC10276558 DOI: 10.7717/peerj.15530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/19/2023] [Indexed: 06/20/2023] Open
Abstract
Background As a method for sustainable agriculture, biofertilizers containing plant growth-promoting bacteria (PGPB) have been recommended as an alternative to chemical fertilizers. However, the short shelf-life of inoculants remains a limiting factor in the development of biofertilizer technology. The present study aimed to (i) evaluate the effectiveness of four different carriers (perlite, vermiculite, diatomite and coconut coir dust) on the shelf-life of S2-4a1 and R2-3b1 isolates over 60 days after inoculation and (ii) evaluate isolated bacteria as growth-promoting agents for coffee seedlings. Methods The rhizosphere soil-isolated S2-4a1 and plant-tissue-isolated R2-3b1 were chosen based on their P and K-solubilizing capacities and their ability to produce IAA. To evaluate the alternative carriers, two selected isolates were inoculated with the four different carriers and incubated at 25 °C for 60 days. The bacterial survival, pH, and EC in each carrier were investigated. In addition, coconut coir dust inoculated with the selected isolates was applied to the soil in pots planted with coffee (Coffea arabica). At 90 days following application, variables such as biomass and total N, P, K, Ca, and Mg uptakes of coffee seedlings were examined. Results The results showed that after 60 days of inoculation at 25 °C, the population of S2-4a1 and R2-3b1 in coconut coir dust carriers was 1.3 and 2.15 × 108 CFU g-1, respectively. However, there were no significant differences among carriers (P > 0.05). The results of the present study suggested that coconut coir dust can be used as an alternative carrier for S2-4a1 and R2-3b1 isolates. The significant differences in pH and EC were observed by different carriers (P < 0.01) after inoculation with both bacterial isolates. However, pH and EC declined significantly only with coconut coir dust during the incubation period. In addition, coconut coir dust-based bioformulations of both S2-4a1 and R2-3b1 enhanced plant growth and nutrient uptake (P, K, Ca, Mg), providing evidence that isolated bacteria possess additional growth-promoting properties.
Collapse
Affiliation(s)
- Yupa Chromkaew
- Department of Plant and Soil Science, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Thewin Kaeomuangmoon
- Department of Plant and Soil Science, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Mawan
- Department of Highland Agriculture and Natural Resources, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Nilita Mukjang
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Nuttapon Khongdee
- Department of Highland Agriculture and Natural Resources, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
10
|
Zhang C, Zhang Q, Luo M, Wang Q, Wu X. Bacillus cereus WL08 immobilized on tobacco stem charcoal eliminates butylated hydroxytoluene in soils and alleviates the continuous cropping obstacle of Pinellia ternata. JOURNAL OF HAZARDOUS MATERIALS 2023; 450:131091. [PMID: 36870095 DOI: 10.1016/j.jhazmat.2023.131091] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/31/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Butylated hydroxytoluene (BHT), as an emerging contaminant in ecosystems, has potential influences on animals, aquatic organisms, and public health, and has been proven to be a major allelochemical of Pinellia ternata. In this study, Bacillus cereus WL08 was used to rapidly degrade BHT in liquid culture. Strain WL08 immobilized on tobacco stem charcoal (TSC) particles notably accelerated BHT removal in contract to its free cells, and exhibited excellent reutilization and storage capacities. The optimal removal parameters of TSC WL08 were ascertained to be pH 7.0, 30 °C, 50 mg L-1 BHT and 0.14 mg L-1 TSC WL08. Moreover, TSC WL08 significantly accelerated the degradation of 50 mg L-1 BHT in sterile and non-sterile soils compared to that of free WL08 or natural dissipation, and notably shortened their half-lives by 2.47- or 362.14- fold, and 2.20- or 14.99- fold, respectively. Simultaneously, TSC WL08 was introduced into the continuous cropping soils of P. ternata, which accelerated the elimination of allelochemical BHT, and notably enhanced the photosynthesis, growth, yield, and quality of P. ternata. This study provides new insights and strategies for the rapid in situ remediation of BHT-polluted soils and effective alleviation of P. ternata cropping obstacles.
Collapse
Affiliation(s)
- Cheng Zhang
- Key Laboratory of Environmental Pollution Monitoring and Disease of Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China; Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang, Guizhou 550025, China
| | - Qinghai Zhang
- Key Laboratory of Environmental Pollution Monitoring and Disease of Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Ming Luo
- Institute of Modern Chinese Herbal Medicines, Institute of Crop Germplasm Resources, Guizhou Academy of Agricultural Sciences, Guiyang 550025, China
| | - Qiuping Wang
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang, Guizhou 550025, China; Department of Food and Medicine, Guizhou Vocational College of Agriculture, Qingzhen, Guizhou 551400, China
| | - Xiaomao Wu
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang, Guizhou 550025, China.
| |
Collapse
|
11
|
Tripti, Kumar A, Maleva M, Borisova G, Rajkumar M. Amaranthus Biochar-Based Microbial Cell Composites for Alleviation of Drought and Cadmium Stress: A Novel Bioremediation Approach. PLANTS (BASEL, SWITZERLAND) 2023; 12:1973. [PMID: 37653890 PMCID: PMC10222574 DOI: 10.3390/plants12101973] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/01/2023] [Accepted: 05/10/2023] [Indexed: 09/02/2023]
Abstract
Metal contamination coupled with aridity is a major challenge for remediation of abiotic stressed soils throughout the world. Both biochar and beneficial bacteria showed a significant effect in bioremediation; however, their conjugate study needs more exploration. Two rhizobacteria strains Serratia sp. FV34b and Pseudomonas sp. ASe42b isolated from multi-metal and drought stressed sites showed multiple plant-growth-promoting attributes (phosphate solubilization, indole-3-acetic acid, siderophore, and ammonia production). Both strains were able to tolerate a high concentration of Cd along with being resistant to drought (-0.05 to -0.73 MPa). The seldom studied biomass of Amaranthus caudatus L. was used for biochar preparation by pyrolyzing it at 470 °C for 160 min under limited oxygen and then using it for the preparation of biochar-based microbial cell composites (BMC)s. To check the efficiency of BMC under Cd stress (21 mg kg-1 soil) and drought, a pot-scale study was conducted using Brassica napus L. for 47 days. Both the BMC5 (Biochar + Serratia sp. FV43b) and BMC9 (Biochar + Pseudomonas sp. ASe42b) improved the seed germination, plant biometrical (shoot and root biomass, length of organs) and physiological (photosynthetic pigments, proline, malondialdehyde, and relative water content) parameters under drought (exerted until it reaches up to 50% of field capacity) and Cd-spiked soil. However, for most of them, no or few significant differences were observed for BMC9 before and after drought. Moreover, BMC9 maximized the Cd accumulation in root and meager transfer to shoot, making it a best bioformulation for sustainable bioremediation of Cd and drought stressed soils using rapeseed plant.
Collapse
Affiliation(s)
- Tripti
- Laboratory of Biotechnology, Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Ekaterinburg, Russia;
| | - Adarsh Kumar
- Laboratory of Biotechnology, Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Ekaterinburg, Russia;
| | - Maria Maleva
- Laboratory of Biotechnology, Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Ekaterinburg, Russia;
- Department of Experimental Biology and Biotechnology, Ural Federal University, 620002 Ekaterinburg, Russia;
| | - Galina Borisova
- Department of Experimental Biology and Biotechnology, Ural Federal University, 620002 Ekaterinburg, Russia;
| | - Mani Rajkumar
- Department of Environmental Sciences, Bharathiar University, Coimbatore 641046, India;
| |
Collapse
|
12
|
Parveen N, Mishra R, Singh DV, Kumar P, Singh RP. Assessment of different carrier materials for the preparation of microbial formulations to enhance the shelf life and its efficacy on the growth of spinach (Spinacia oleracea L.). World J Microbiol Biotechnol 2023; 39:180. [PMID: 37140809 DOI: 10.1007/s11274-023-03594-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 03/25/2023] [Indexed: 05/05/2023]
Abstract
The current study was undertaken to determine the ability of different carrier materials for sustaining the viability of microbial consortium during storage. Different bioformulations consisting of carrier material and microbial consortium were prepared and examined for viability and stability for one year stored at 4 °C and ambient temperature. Total 8 bio-formulations were prepared consisting five economically viable carriers (gluten, talc, charcoal, bentonite, broth medium) and a microbial consortium. In present study, maximum enhanced shelf-life of consortium based on colony forming unit count were recorded for talc + gluten based (B4) bioformulation (9.03 log10 cfu/g) over other bio-formulations stored for 360 days. Furthermore, the pot experiments was conducted to evaluate the efficacy of B4 formulation on growth of spinach in comparison with recommended dose of chemical fertilizer, uninoculated and no amendment control. The results depicted that B4 formulation increased biomass (176-666%), leaf area (33-123%), chlorophyll content (131-789%) and protein content (68.4-94.4%) of spinach over controls. Further B4 application significantly increased the nutrients like available nitrogen (131-475%), phosphorus (75-178%) and potassium (31-191%) of pot soil along with noteworthy improvement in root colonization as evident from scanning electron microscope analysis in comparison to controls at 60 days after sowing. Therefore, exploiting B4 formulation can serve as the environmentally sound approach to enhance the productivity, biomass and nutritional value of spinach. Thus, Plant growth promoting microbes-based formulation can be the novel paradigm to improve the soil health and eventually the crop productivity in economical and sustainable manner.
Collapse
Affiliation(s)
- Nazia Parveen
- Department of Environmental Sciences, Babasaheb Bhimrao Ambedkar University Lucknow, Lucknow, 226025, India
| | - Roli Mishra
- Department of Environmental Sciences, Babasaheb Bhimrao Ambedkar University Lucknow, Lucknow, 226025, India
| | - Dig Vijay Singh
- Department of Environmental Sciences, Babasaheb Bhimrao Ambedkar University Lucknow, Lucknow, 226025, India
| | - Pawan Kumar
- Department of Environmental Sciences, Babasaheb Bhimrao Ambedkar University Lucknow, Lucknow, 226025, India
| | - Rana Pratap Singh
- Department of Environmental Sciences, Babasaheb Bhimrao Ambedkar University Lucknow, Lucknow, 226025, India.
| |
Collapse
|
13
|
Rani N, Kaur G, Kaur S, Upadhyay SK, Tripathi M. Development of Zn biofertilizer microbeads encapsulating Enterobacter ludwigii-PS10 mediated alginate, starch, poultry waste and its efficacy in Solanum lycopersicum growth enhancement. Int J Biol Macromol 2023; 240:124381. [PMID: 37044325 DOI: 10.1016/j.ijbiomac.2023.124381] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/26/2023] [Accepted: 04/05/2023] [Indexed: 04/14/2023]
Abstract
In the present farming era, rhizobacteria as beneficial biofertilizers can decrease the negative effects of Zinc (Zn) agrochemicals. However, their commercial viability and utility are constrained by their instability under field conditions. Thus, to enhance their stability, microbial formulations are considered, which will not only offer an appropriate microenvironment, and protection but also ensure a high rate of rhizospheric-colonization. The goal of this study was to create a new formulation for the Zn-solubilizing bacteria E. ludwigii-PS10. The studied formulation was prepared using the extrusion technique, wherein a composite solution containing alginate, starch, zinc oxide, and poultry waste was uniformly mixed with the bacterial strain PS10 to develop low-cost, eco-friendly, and slow-release microbeads. The produced microbead was spherical, and characterized by SEM, FTIR, and XRD. Further, the microbeads were analyzed for their survival stability over 3 months of storage at room temperature and 4 °C. The effect of the microbead on the vegetative growth of tomato plants was investigated. Results showed that 94 % of the encapsulated microbial beads (EMB) matrix was able to encapsulate the bacterial strain PS10. The dried EMB demonstrated a moisture content of 2.87 % and was able to preserve E. ludwigii-PS10 survival at room temperature at the rate of 85.6 %. The application of the microbead to the tomato plants significantly increased plant biomass and Zn content. As a result, our findings support the use of this novel EMB prepared using an alginate/poultry waste/starch mixture to increase bacterial cell viability and plant growth.
Collapse
Affiliation(s)
- Nitu Rani
- Department of Biotechnology, Chandigarh University, Mohali, Punjab 140413, India
| | - Gurparteek Kaur
- Laboratory Analyst, Bureau Veritas, 6740, Campobello Road, Mississauga, Ontario, L5N 2LB, Canada
| | - Sukhminderjit Kaur
- Department of Biotechnology, Chandigarh University, Mohali, Punjab 140413, India.
| | - Sudhir K Upadhyay
- Department of Environmental Science, Veer Bahadur Singh Purvanchal University, Jaunpur 222003, Uttar Pradesh, India
| | - Manikant Tripathi
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya, Uttar Pradesh 224001, India
| |
Collapse
|
14
|
Shabir R, Li Y, Zhang L, Chen C. Biochar surface properties and chemical composition determine the rhizobial survival rate. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116594. [PMID: 36347218 DOI: 10.1016/j.jenvman.2022.116594] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/15/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Biochar may be potentially used as a rhizobial carrier due to its specific chemical compositions and surface properties, but the relationship between these properties and rhizobial survival rate is largely unknown. Here, we analysed the physicochemical characteristics and carrier potential of six types of biochars made from various feedstocks at 600 °C using slow pyrolysis method, and results were compared with conventional carrier material peat. Liquid suspension of Bradyrhziobium japonicum CB1809 was used to inoculate all the carrier materials. Shelf life and survival rate was determined via colony forming unit (CFU) method for up to 90 days under two storage temperature conditions (28 °C and 38 °C). The determined physicochemical characteristics of biochars were categorized into major elements, trace elements, relative ratios, surface morphology, functional groups, and key basic properties; and their interaction to shelf life was analysed using hypothesis-oriented structure equation modelling (path analysis). Results revealed that different types of biochars had different capacity to impact on shelf life due to their different physicochemical properties. Among all biochars pine wood BC was the most suitable carrier with the highest counts of 10.11 Log 10 CFU g-1 and 9.76 Log 10 CFU g-1 at the end of 90 days at 28 °C and 38 °C storage, respectively. Path analysis revealed that rhizobial shelf life was largely explained by total carbon (TC), manganese (Mn), specific surface area (SSA), pore size, CO (ketonic carbon), and O-CO (carboxyl carbon) functional groups, and all these indicators exhibited positive direct impact on shelf life. Pinewood BC showed the highest values of Mn, SSA, pore size and functional groups (CO and O-CO), contributing to its highest rhizobial shelf life and survival rate among other biochars and peat tested.
Collapse
Affiliation(s)
- Rahat Shabir
- Australian Rivers Institute and School of Environment and Science, Griffith University, Nathan Campus, 4111, Queensland, Australia; Cooperative Research Centre for High Performance Soils, Callaghan, NSW, Australia
| | - Yantao Li
- Australian Rivers Institute and School of Environment and Science, Griffith University, Nathan Campus, 4111, Queensland, Australia; Cooperative Research Centre for High Performance Soils, Callaghan, NSW, Australia; College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Leiyi Zhang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Chengrong Chen
- Australian Rivers Institute and School of Environment and Science, Griffith University, Nathan Campus, 4111, Queensland, Australia; Cooperative Research Centre for High Performance Soils, Callaghan, NSW, Australia.
| |
Collapse
|
15
|
Jain S, Tembhurkar AR. Utilization of isolated microbe and treated wastewater for enhanced growth of Jatropha curcas for bioremediation of fly ash amended soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120523. [PMID: 36326558 DOI: 10.1016/j.envpol.2022.120523] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
The generation of Fly Ash (FA) waste is continuously piling up with the increasing energy demand. Recent research is focused towards reutilizing this fly ash waste through bioremediation practices. But fly ash retards the growth of plants and holds back to support the bioremediation process due to a deficiency of essential main nutrients. The present research envisages overcoming this problem by providing a novel concept of inducing isolated microbes and treated wastewater which provides necessary nutrients and promotes better plant growth and metal extraction. A pot experimental study was executed with treatments T1 (FA amended soil), T2 (FA with isolated microbe), and T3 (FA with microbes and treated wastewater). As an outcome of the present research, T3 gained relatively higher morphological characteristics viz. Leaf area (29.8%), absolute growth rate (61.7%), plastochron index (18.6%), biomass yield (47.3%) and enhanced metal extraction for Fe (34.4%), Al (27.1%), Mn (72.0%), Zn (17.5%) in comparison to the control. Treatment T3 also gained higher Remediation Efficiency (RE) and Bio-Concentration Factor (BCF) values for Al, Fe, and Mn. The involvement of nutrients via treated wastewater energizes the process mechanism and increases the working zone for the microbes thereby, enhancing the bioremediation.
Collapse
Affiliation(s)
- Sandeep Jain
- Civil Engineering Department, Visvesvaraya National Institute of Technology, Nagpur, 440010, India.
| | - Ajay R Tembhurkar
- Civil Engineering Department, Visvesvaraya National Institute of Technology, Nagpur, 440010, India.
| |
Collapse
|
16
|
Kumar A, Borisova G, Maleva M, Tripti, Shiryaev G, Tugbaeva A, Sobenin A, Kiseleva I. Biofertilizer Based on Biochar and Metal-Tolerant Plant Growth Promoting Rhizobacteria Alleviates Copper Impact on Morphophysiological Traits in Brassica napus L. Microorganisms 2022; 10:2164. [PMID: 36363756 PMCID: PMC9695043 DOI: 10.3390/microorganisms10112164] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 09/02/2023] Open
Abstract
Metal tolerant plant growth-promoting (PGP) rhizobacteria are promising for enhancing plant productivity under copper (Cu) stress. Present pot scale experiment was conducted on Brassica napus L. to check the efficiency of rhizobacteria isolated from the rhizosphere of Tussilago farfara L. growing on Cu-contaminated soils. Out of fifty Cu tolerant strains, three isolates which showed multiple PGP traits such as indole-3-acetic acid (IAA) synthesis, phosphate (PS) solubilization, siderophore and ammonia production were identified preliminarily by morphological and physiological characteristics followed by 16S rRNA gene sequencing. The best Bacillus altitudinis strain TF16a which showed IAA: 15.5 mg L-1, PS: 215 mg L-1, siderophore halo zone ratio of 3.0 with high ammonia production was selected to prepare a biochar-based biofertilizer (BF). Seedling test showed maximum growth of B. napus shoot and root in presence of 5% of BF and this concentration was selected for further experiment. The pot experiment included four treatments: control (soil), 100Cu (100 mg Cu kg-1 soil), 5%BF (v/v), and 5%BF+100Cu, which were carried out for 30 days, after which the morphological, physiological, and biochemical parameters of B. napus were studied. The Cu treatment caused its accumulation in shoot and root up to 16.9 and 30.4 mg kg-1 DW, respectively, and increased malondialdehyde (MDA) content by 20%. Application of BF with copper led to the decrease in the Cu accumulation by 20% for shoot and 28% for root while MDA content was the same as in the control. Both treatments of BF with and without Cu increased chlorophyll a and b content by 1.3 times on average as well as non-enzymatic antioxidants such as soluble phenolic compounds (1.3 times) and free proline (1.6 times). Moreover, BF + Cu led to the increase in the biomass of shoot and root by 30 and 60%, respectively, while there was no significant effect on the growth characteristics of plants after the addition of BF without Cu. The study elucidates that BF based on B.altitudinis strain TF16a and biochar can be a promising bioformulation which could increase rapeseed growth under the moderate Cu concentration in soil.
Collapse
Affiliation(s)
- Adarsh Kumar
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Yekaterinburg, Russia
| | - Galina Borisova
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Yekaterinburg, Russia
| | - Maria Maleva
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Yekaterinburg, Russia
| | - Tripti
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Yekaterinburg, Russia
| | - Grigory Shiryaev
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Yekaterinburg, Russia
| | - Anastasia Tugbaeva
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Yekaterinburg, Russia
| | - Artem Sobenin
- Institute of Mining of the Ural Branch of RAS, 620075 Yekaterinburg, Russia
| | - Irina Kiseleva
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Yekaterinburg, Russia
| |
Collapse
|
17
|
Zhang K, Khan Z, Yu Q, Qu Z, Liu J, Luo T, Zhu K, Bi J, Hu L, Luo L. Biochar Coating Is a Sustainable and Economical Approach to Promote Seed Coating Technology, Seed Germination, Plant Performance, and Soil Health. PLANTS (BASEL, SWITZERLAND) 2022; 11:2864. [PMID: 36365318 PMCID: PMC9657824 DOI: 10.3390/plants11212864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/14/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Seed germination and stand establishment are the first steps of crop growth and development. However, low seed vigor, improper seedbed preparation, unfavorable climate, and the occurrence of pests and diseases reduces the germination rate and seedling quality, resulting in insufficient crop populations and undesirable plant growth. Seed coating is an effective method that is being developed and applied in modern agriculture. It has many functions, such as improving seed vigor, promoting seedling growth, and reducing the occurrence of pests and diseases. Yet, during seed coating procedures, several factors, such as difficulty in biodegradation of coating materials and hindrance in the application of chemical ingredients to seeds, force us to explore reliable and efficient coating formulations. Biochar, as a novel material, may be expected to enhance seed germination and seedling establishment, simultaneously ensuring agricultural sustainability, environment, and food safety. Recently, biochar-based seed coating has gained much interest due to biochar possessing high porosity and water holding capacity, as well as wealthy nutrients, and has been proven to be a beneficial agent in seed coating formulations. This review presents an extensive overview on the history, methods, and coating agents of seed coating. Additionally, biochar, as a promising seed coating agent, is also synthesized on its physico-chemical properties. Combining seed coating with biochar, we discussed in detail the agricultural applications of biochar-based seed coating, such as the promotion of seed germination and stand establishment, the improvement of plant growth and nutrition, suitable carriers for microbial inoculants, and increase in herbicide selectivity. Therefore, this paper could be a good source of information on the current advance and future perspectives of biochar-based seed coating for modern agriculture.
Collapse
Affiliation(s)
- Kangkang Zhang
- MARA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Shanghai Agrobiological Gene Center, No. 2901 Beidi Road, Shanghai 201106, China
| | - Zaid Khan
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Qing Yu
- MARA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Shanghai Agrobiological Gene Center, No. 2901 Beidi Road, Shanghai 201106, China
| | - Zhaojie Qu
- MARA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiahuan Liu
- MARA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Luo
- MARA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kunmiao Zhu
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-products, Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Wuhan 430072, China
| | - Junguo Bi
- Shanghai Agrobiological Gene Center, No. 2901 Beidi Road, Shanghai 201106, China
| | - Liyong Hu
- MARA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lijun Luo
- Shanghai Agrobiological Gene Center, No. 2901 Beidi Road, Shanghai 201106, China
| |
Collapse
|
18
|
Lignocellulosic-Based Materials from Bean and Pistachio Pod Wastes for Dye-Contaminated Water Treatment: Optimization and Modeling of Indigo Carmine Sorption. Polymers (Basel) 2022; 14:polym14183776. [PMID: 36145920 PMCID: PMC9504809 DOI: 10.3390/polym14183776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
In this work, biomass lignocellulosic materials extracted via chemical and physical treatments from bean and pistachio pod waste were used for the optimized elimination of Indigo Carmine (IC) from aqueous medium, using a design of experiments methodology. The physicochemical properties of the studied materials (raw and treated counterparts) used for the sorption of IC were investigated by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) coupled with EDX, and thermal analysis. Key variables influencing the adsorption of IC, namely the initial IC concentration, the pH of the solution, the stirring time and the mass of adsorbents, were optimized by the central composite design (CCD) with three center points, the measured response being the amount of IC adsorbed. The optimal conditions obtained from the statistical analysis for the removal of IC were as follows: maximum adsorbed amounts of IC: 1.81 mg/g, 2.05 mg/g, 3.56 mg/g; 7.42 mg/g, 8.95 mg/g, 15.35 mg/g, for raw bean pods (RBS), BST1 and BST2 (bean pods chemically treated), and for raw pistachio pods (RPS), PST1 and PST2 (pistachio pods chemically treated), respectively. The pseudo-second-order nonlinear kinetics model well described the IC adsorption kinetics for RBS, BST1 and BST2, while the Elovich model was properly fitted by RPS, PST1, and PST2 biomaterials data. The Freundlich isotherm best described the shrinkage of IC on different sorbents. The good correlation of the experimental data of the IC with respect to the Freundlich isotherm indicated a multilayer adsorption with heterogeneous adsorption sites and different energies. The interest of this work consisted in developing analytical methods for the treatment of water polluted by dyes by using biosorbents, local biological materials widely available and inexpensive. The results collected in this work highlighted the interesting structural, morphological, and physico-chemical properties of the agro-waste used in the study, which properties allowed an important fixation of the target dye in solution. The research showed that the agro-waste used in the study are possible precursors to locally manufacture adsorbents at low cost, thus allowing the efficient removal of waste and dyes in liquid effluents.
Collapse
|
19
|
Malik L, Sanaullah M, Mahmood F, Hussain S, Siddique MH, Anwar F, Shahzad T. Unlocking the potential of co-applied biochar and plant growth-promoting rhizobacteria (PGPR) for sustainable agriculture under stress conditions. CHEMICAL AND BIOLOGICAL TECHNOLOGIES IN AGRICULTURE 2022; 9:58. [PMID: 37520585 PMCID: PMC9395882 DOI: 10.1186/s40538-022-00327-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/06/2022] [Indexed: 05/14/2023]
Abstract
Sustainable food security is a major challenge in today's world, particularly in developing countries. Among many factors, environmental stressors, i.e., drought, salinity and heavy metals are major impediments in achieving sustainable food security. This calls for finding environment-friendly and cheap solutions to address these stressors. Plant growth-promoting rhizobacteria (PGPR) have long been established as an environment-friendly means to enhance agricultural productivity in normal and stressed soils and are being applied at field scale. Similarly, pyrolyzing agro-wastes into biochar with the aim to amend soils is being proposed as a cheap additive for enhancement of soil quality and crop productivity. Many pot and some field-scale experiments have confirmed the potential of biochar for sustainable increase in agricultural productivity. Recently, many studies have combined the PGPR and biochar for improving soil quality and agricultural productivity, under normal and stressed conditions, with the assumption that both of these additives complement each other. Most of these studies have reported a significant increase in agricultural productivity in co-applied treatments than sole application of PGPR or biochar. This review presents synthesis of these studies in addition to providing insights into the mechanistic basis of the interaction of the PGPR and biochar. Moreover, this review highlights the future perspectives of the research in order to realize the potential of co-application of the PGPR and biochar at field scale. Graphical Abstract
Collapse
Affiliation(s)
- Laraib Malik
- Department of Environmental Sciences, Government College University Faisalabad, Allama Iqbal Road, Faisalabad, 38000 Pakistan
| | - Muhammad Sanaullah
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Faisal Mahmood
- Department of Environmental Sciences, Government College University Faisalabad, Allama Iqbal Road, Faisalabad, 38000 Pakistan
| | - Sabir Hussain
- Department of Environmental Sciences, Government College University Faisalabad, Allama Iqbal Road, Faisalabad, 38000 Pakistan
| | - Muhammad Hussnain Siddique
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Allama Iqbal road, Faisalabad, Pakistan
| | - Faiza Anwar
- Department of Environmental Sciences, Government College University Faisalabad, Allama Iqbal Road, Faisalabad, 38000 Pakistan
| | - Tanvir Shahzad
- Department of Environmental Sciences, Government College University Faisalabad, Allama Iqbal Road, Faisalabad, 38000 Pakistan
| |
Collapse
|
20
|
Effect of the Co-Application of Eucalyptus Wood Biochar and Chemical Fertilizer for the Remediation of Multimetal (Cr, Zn, Ni, and Co) Contaminated Soil. SUSTAINABILITY 2022. [DOI: 10.3390/su14127266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Contamination of soil with heavy metals is a worldwide problem, which causes heavy metals to release into the environment. Remediation of such contaminated soil is essential to protect the environment. The aims of this study are: first, to compare the effect of biochar and the joint application of biochar with fertilizer for the phytoremediation of heavy metals-contaminated soil using Acacia auriculiformis; second, to study the effect of the application rate of biochar in improving the physicochemical properties of the soil. The soil samples were collected from an active coal mine dump and assessed for their physicochemical properties and heavy metals toxicity. Initial results indicated that the soil has poor physicochemical properties and was contaminated with the presence of heavy metals such as Zn, Ni, Cu, Cr, and Co. Later, the heavy metals-contaminated soil was mixed with the 400 and 600 °C biochar, as well as the respective biochar–fertilizer combination in varying mixing ratios from 0.5 to 5% (w/w) and subjected to a pot-culture study. The results showed that the application of both varieties of biochar in combination with fertilizer substantially improved the physicochemical properties and reduced the heavy metals toxicity in the soil. The biochar and fertilizer joint application also substantially improved the soil physiochemical properties by increasing the application rate of both varieties of biochar from 0.5 to 5%. The soil fertility index (SFI) of the biochar and biochar–fertilizer amended soil increased by 49.46 and 52.22%, respectively. The plant’s physiological analysis results indicated a substantial increase in the plant’s shoot and root biomass through the application of biochar and biochar–fertilizer compared to the control. On the other hand, it significantly reduced the heavy metals accumulation and, hence, the secretion of proline and glutathione hormones in the plant cells. Therefore, it can be concluded that the joint application of biochar with the application rate varying between 2.5 to 5% (w/w) with the fertilizer significantly improved the physicochemical properties of the soil and reduced the heavy metals toxicity compared to the controlled study.
Collapse
|
21
|
Synergism of Industrial and Agricultural Waste as a Suitable Carrier Material for Developing Potential Biofertilizer for Sustainable Agricultural Production of Eggplant. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050444] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The study investigates biochar from agriculture waste and flyash from coal power station as possible carrier materials for two plant growth-promoting (PGP) bacterial strains Burkholderia sp. L2 and Bacillus sp. A30 for enhanced eggplant growth and yield. Biochar-based biofertilizers with/without flyash showed higher viability up to 270 days of storage period. The maximum percentage of seed germination was observed in L2-based biochar and flyash + biochar (1:1) bifertilizer. Moreover, the L2 + biochar+flyash produced a maximum percentage increase in fruit yield with significant (p < 0.05) improvement in plant growth parameters. Post-harvest soil status also showed enhanced physical (water holding capacity, moisture content), chemical (pH, electrical conductivity, NPK), and dehydrogenase activity. The study suggests that biofertilizer of L2 strain with agriculture waste generated biochar and flyash as carrier materials can tremendously enhance the productivity of eggplant and could act as a substitute for chemical fertilizer thus solving their disposal problem by sustainable waste management.
Collapse
|
22
|
Immobilization-Based Bio-formulation of Aspergillus awamori S29 and Evaluation of Its Shelf Life and Re-usability in the Soil-Plant Experiment. Curr Microbiol 2022; 79:163. [PMID: 35435528 DOI: 10.1007/s00284-022-02854-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 03/24/2022] [Indexed: 11/03/2022]
Abstract
The present study was an attempt to evaluate the bio-formulations of phosphate-solubilizing fungus Aspergillus awamori S29 using two economically viable carriers (calcium alginate and agar) in repeated batch fermentation. Further, the viable cell count under storage and response of these stored bio-formulations on the growth of wheat plants were studied at the end of 2, 4, and 6 months of incubation. Also, the response of these formulations in next season on pearl millet (bajra) was studied without further inoculation. In repeated batch fermentation assay, immobilized form performed significantly better than free form. The viability of fungal inoculant was 88.2% in calcium alginate-based bio-formulation after six months of storage. These bio-formulations showed not only a statistically significant increase in the growth of wheat crop in first season but also of pearl millet in next season. This work strengthens the re-usability potential of immobilized bio-formulations for next season crop.
Collapse
|
23
|
Kumar S, Diksha, Sindhu SS, Kumar R. Biofertilizers: An ecofriendly technology for nutrient recycling and environmental sustainability. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 3:100094. [PMID: 35024641 PMCID: PMC8724949 DOI: 10.1016/j.crmicr.2021.100094] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 01/02/2023] Open
Abstract
Modern intensive agricultural practices face numerous challenges that pose major threats to global food security. In order to address the nutritional requirements of the ever-increasing world population, chemical fertilizers and pesticides are applied on large scale to increase crop production. However, the injudicious use of agrochemicals has resulted in environmental pollution leading to public health hazards. Moreover, agriculture soils are continuously losing their quality and physical properties as well as their chemical (imbalance of nutrients) and biological health. Plant-associated microbes with their plant growth- promoting traits have enormous potential to solve these challenges and play a crucial role in enhancing plant biomass and crop yield. The beneficial mechanisms of plant growth improvement include enhanced nutrient availability, phytohormone modulation, biocontrol of phytopathogens and amelioration of biotic and abiotic stresses. Solid-based or liquid bioinoculant formulation comprises inoculum preparation, addition of cell protectants such as glycerol, lactose, starch, a good carrier material, proper packaging and best delivery methods. Recent developments of formulation include entrapment/microencapsulation, nano-immobilization of microbial bioinoculants and biofilm-based biofertilizers. This review critically examines the current state-of-art on use of microbial strains as biofertilizers and the important roles performed by these beneficial microbes in maintaining soil fertility and enhancing crop productivity.
Collapse
Key Words
- ABA, Abscisic acid
- ACC, 1-aminocyclopropane-1-carboxylic acid
- AM, Arbuscular mycorrhiza
- APX, Ascorbate peroxidase
- BGA, Blue green algae
- BNF, Biological nitrogen fixation
- Beneficial microorganisms
- Biofertilizers
- CAT, Catalase
- Crop production
- DAPG, 2, 4-diacetyl phloroglucinol
- DRB, Deleterious rhizospheric bacteria
- GA, Gibberellic acid
- GPX, Glutathione/thioredoxin peroxidase
- HCN, Hydrogen cyanide
- IAA, Indole acetic acid
- IAR, Intrinsic antibiotic resistance
- ISR, Induced systemic resistance
- KMB, Potassium mobilizing bacteria
- KSMs, Potassium-solubilizing microbes
- MAMPs, Microbes associated molecular patterns
- PAMPs, Pathogen associated molecular patterns
- PCA, Phenazine-1-carboxylic acid
- PGP, Plant growth-promoting
- PGPR, Plant growth-promoting rhizobacteria
- POD, Peroxidase
- PSB, Phosphate-solubilizing bacteria
- Rhizosphere
- SAR, Systemic acquired resistance
- SOB, Sulphur oxidizing bacteria
- Soil fertility
- Sustainable agriculture
Collapse
Affiliation(s)
- Satish Kumar
- Department of Microbiology, CCS Haryana Agricultural University, Hisar 125004, India
| | - Diksha
- Department of Microbiology, CCS Haryana Agricultural University, Hisar 125004, India
| | - Satyavir S. Sindhu
- Department of Microbiology, CCS Haryana Agricultural University, Hisar 125004, India
| | - Rakesh Kumar
- Department of Microbiology, CCS Haryana Agricultural University, Hisar 125004, India
| |
Collapse
|
24
|
Ndoung OCN, Figueiredo CCD, Ramos MLG. A scoping review on biochar-based fertilizers: enrichment techniques and agro-environmental application. Heliyon 2021; 7:e08473. [PMID: 34917792 PMCID: PMC8646155 DOI: 10.1016/j.heliyon.2021.e08473] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/15/2021] [Accepted: 11/22/2021] [Indexed: 12/28/2022] Open
Abstract
Biochar is a carbonized biomass that can be used as a soil amendment. However, the exclusive use of biochar may present some limitations, such as the lack of nutrients. Thus, biochar enrichment techniques have made it possible to obtain biochar-based fertilizers (BCFs), with great potential to improve soil fertility. Nevertheless, there is still a lack of information about the description, advantages, and limitations of the methods used for biochar enrichment. This review provides a comprehensive overview of the production methods of enriched biochar and its performance in agriculture as a soil amendment. Studies demonstrate that the application of BCF is more effective in improving soil properties and crop yields than the exclusive application of pure biochar or other fertilizers. The post-pyrolysis method is the most used technique for enriching biochar. Future studies should focus on understanding the mechanisms of the long-term application of BCFs.
Collapse
|
25
|
Escobar Diaz PA, Dos Santos RM, Baron NC, Gil OJA, Rigobelo EC. Effect of Aspergillus and Bacillus Concentration on Cotton Growth Promotion. Front Microbiol 2021; 12:737385. [PMID: 34721334 PMCID: PMC8548773 DOI: 10.3389/fmicb.2021.737385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/27/2021] [Indexed: 11/28/2022] Open
Abstract
There are no studies in literature on the effect of inoculant concentrations on plant growth promotion. Therefore, in the present study, two experiments were carried out, one under pot conditions and the other in the field with cotton crop, in order to verify the effect of Aspergillus and Bacillus concentrations on the biometric and nutritional parameters of plant and soil, in addition to yield. The pot experiment evaluated the effect of different concentrations, ranging from 1 × 104 to 1 × 1010 colony-forming units per milliliter (CFU mL–1) of microorganisms Bacillus velezensis (Bv188), Bacillus subtilis (Bs248), B. subtilis (Bs290), Aspergillus brasiliensis (F111), Aspergillus sydowii (F112), and Aspergillus sp. versicolor section (F113) on parameters plant growth promotion and physicochemical and microbiological of characteristics soil. Results indicated that the different parameters analyzed are influenced by the isolate and microbial concentrations in a different way and allowed the selection of four microorganisms (Bs248, Bv188, F112, and F113) and two concentrations (1 × 104 and 1 × 1010 CFU mL–1), which were evaluated in the field to determine their effect on yield. The results show that, regardless of isolate, inoculant concentrations promoted the same fiber and seed cotton yield. These results suggest that lower inoculant concentrations may be able to increase cotton yield, eliminating the need to use concentrated inoculants with high production cost.
Collapse
Affiliation(s)
- Paola Andrea Escobar Diaz
- Laboratory of Soil Microbiology, Faculty of Agricultural and Veterinary Sciences, Department of Agricultural Production Sciences, São Paulo State University, São Paulo, Brazil
| | - Roberta Mendes Dos Santos
- Laboratory of Soil Microbiology, Faculty of Agricultural and Veterinary Sciences, Department of Agricultural Production Sciences, São Paulo State University, São Paulo, Brazil
| | - Noemi Carla Baron
- Laboratory of Soil Microbiology, Faculty of Agricultural and Veterinary Sciences, Department of Agricultural Production Sciences, São Paulo State University, São Paulo, Brazil
| | - Oniel Jeremias Aguirre Gil
- Laboratory of Soil Microbiology, Faculty of Agricultural and Veterinary Sciences, Department of Agricultural Production Sciences, São Paulo State University, São Paulo, Brazil
| | - Everlon Cid Rigobelo
- Laboratory of Soil Microbiology, Faculty of Agricultural and Veterinary Sciences, Department of Agricultural Production Sciences, São Paulo State University, São Paulo, Brazil
| |
Collapse
|
26
|
Mandpe A, Tyagi L, Paliya S, Chaudhry S, Motghare A, Kumar S. Rapid-in-house composting of organic solid wastes with fly ash supplementation: Performance evaluation at thermophilic exposures. BIORESOURCE TECHNOLOGY 2021; 337:125386. [PMID: 34139558 DOI: 10.1016/j.biortech.2021.125386] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 06/12/2023]
Abstract
The present work was envisaged to design, fabricate, and evaluate the performance of rapid in-house composters (RICs) for composting of organic wastes comprising kitchen waste and brown waste with fly ash supplementation in the fixed combination. The prime objective of the present study was to evaluate the ideal operating temperature suitable for rapid action of pro-composting microorganisms in indigenously developed RIC. Four identical RICs were exposed to temperatures of 40 ℃, 45 ℃, 55 ℃, and 65 ℃, respectively. The factors governing the composting process were regulated through specifically designed components. Qualitative parameters like pH, moisture content (MC), C/N ratio and heavy metals were analyzed at regular intervals. Principal component analysis was used to evaluate the relationship between the obtained results. The RIC with 55 ℃ temperature exposure, 70% MC for nine days and aeration at 4 L per minute exhibited the best results with 15.13C/N ratios of compost.
Collapse
Affiliation(s)
- Ashootosh Mandpe
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 2010 02, India; CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 4400 20, India
| | - Lakshay Tyagi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 2010 02, India; CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 4400 20, India
| | - Sonam Paliya
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 2010 02, India; CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 4400 20, India
| | - Smita Chaudhry
- Institute of Environmental Studies, Kurukshetra University, Kurukshetra, Haryana 1361 19, India
| | - Ankit Motghare
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 4400 20, India
| | - Sunil Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 2010 02, India; CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 4400 20, India.
| |
Collapse
|
27
|
Hu D, Li S, Li Y, Peng J, Wei X, Ma J, Zhang C, Jia N, Wang E, Wang Z. Streptomyces sp. strain TOR3209: a rhizosphere bacterium promoting growth of tomato by affecting the rhizosphere microbial community. Sci Rep 2020; 10:20132. [PMID: 33208762 PMCID: PMC7675979 DOI: 10.1038/s41598-020-76887-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 10/30/2020] [Indexed: 12/29/2022] Open
Abstract
Aiming at revealing the possible mechanism of its growth promoting effect on tomato, the correlations among Streptomyces sp. TOR3209 inoculation, rhizobacteriome, and tomato growth/production traits were investigated in this study. By analyses of Illumina sequencing and plate coating, differences in rhizosphere microbial communities were found in different growth stages and distinct inoculation treatments. The plant biomass/fruit yields and relative abundances of families Flavobacteriaceae, Sphingobacteriaceae, Polyangiaceae and Enterobacteriaceae in treatments T (tomato inoculated with TOR3209) and TF (tomato inoculated with TOR3209 + organic fertilizer) were higher than that in the controls (CK and CK+ organic fertilizer), respectively. The analysis of Metastats and LEfSe revealed that the genera Flavobacterium and Sorangium in seedling stage, Klebsiella in flowering stage, Collimonas in early fruit setting stage, and genera Micrococcaceae, Pontibacte and Adhaeribacter in late fruit setting stage were the most representative rhizobacteria that positively responded to TOR3209 inoculation. By cultivation method, five bacterial strains positively correlated to TOR3209 inoculation were isolated from rhizosphere and root endosphere, which were identified as tomato growth promoters affiliated to Enterobacter sp., Arthrobacter sp., Bacillus subtilis, Rhizobium sp. and Bacillus velezensis. In pot experiment, TOR3209 and B. velezensis WSW007 showed joint promotion to tomato production, while the abundance of inoculated TOR3209 was dramatically decreased in rhizosphere along the growth of tomato. Conclusively, TOR3209 might promote the tomato production via changing of microbial community in rhizosphere. These findings provide a better understanding of the interactions among PGPR in plant promotion.
Collapse
Affiliation(s)
- Dong Hu
- Key Laboratory of Plants Genetic Engineering Center, Institute of Genetics and Physiology (Hebei Agricultural Products Quality and Safety Research Center), Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Shuhong Li
- Key Laboratory of Plants Genetic Engineering Center, Institute of Genetics and Physiology (Hebei Agricultural Products Quality and Safety Research Center), Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Ying Li
- Key Laboratory of Plants Genetic Engineering Center, Institute of Genetics and Physiology (Hebei Agricultural Products Quality and Safety Research Center), Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Jieli Peng
- Key Laboratory of Plants Genetic Engineering Center, Institute of Genetics and Physiology (Hebei Agricultural Products Quality and Safety Research Center), Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Xiaoyan Wei
- Key Laboratory of Plants Genetic Engineering Center, Institute of Genetics and Physiology (Hebei Agricultural Products Quality and Safety Research Center), Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Jia Ma
- Key Laboratory of Plants Genetic Engineering Center, Institute of Genetics and Physiology (Hebei Agricultural Products Quality and Safety Research Center), Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Cuimian Zhang
- Key Laboratory of Plants Genetic Engineering Center, Institute of Genetics and Physiology (Hebei Agricultural Products Quality and Safety Research Center), Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Nan Jia
- Key Laboratory of Plants Genetic Engineering Center, Institute of Genetics and Physiology (Hebei Agricultural Products Quality and Safety Research Center), Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Entao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, C.P. 11340, Mexico City, Mexico
| | - Zhanwu Wang
- Key Laboratory of Plants Genetic Engineering Center, Institute of Genetics and Physiology (Hebei Agricultural Products Quality and Safety Research Center), Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, 050000, People's Republic of China.
| |
Collapse
|
28
|
Response of Soybean to Hydrochar-Based Rhizobium Inoculation in Loamy Sandy Soil. Microorganisms 2020; 8:microorganisms8111674. [PMID: 33126699 PMCID: PMC7693707 DOI: 10.3390/microorganisms8111674] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/24/2020] [Accepted: 10/25/2020] [Indexed: 11/16/2022] Open
Abstract
Hydrochar is rich in nutrients and may provide a favorable habitat or shelter for bacterial proliferation and survival. Therefore, in this study, we investigate the efficiency of a hydrochar-based rhizobial inoculant (Bradyrhizobium japonicum) on the symbiotic performance of soybean under both greenhouse and field conditions. There were positive and significant effects of hydrochar-based inoculation on the root and shoot growth of soybean as compared to uninoculated plants grown under irrigated and drought conditions. The drought stress significantly inhibited the symbiotic performance of rhizobia with soybean. Soybean inoculated with hydrochar-based B. japonicum produced twofold more nodules under drought stress conditions as compared to plants inoculated with a commercial preparation/inoculant carrier B. japonicum (HISTICK). The N concentration of inoculated plants with hydrochar-based B. japonicum was by 31% higher than that of un-inoculated plants grown in pots and by 22% for HISTICK. Furthermore, the soybean treated with hydrochar-based B. japonicum showed higher grain yield of 29% under irrigated conditions and 40% higher under rainfed condition compared to un-inoculated plants. In conclusion, the obtained results proved the potential of hydrochar-based B. japonicum inoculant for soybean in terms of increased symbiotic performance and agronomic traits, especially under rainfed conditions.
Collapse
|
29
|
Combined use of municipal solid waste biochar and bacterial biosorbent synergistically decreases Cd(II) and Pb(II) concentration in edible tissue of forage maize irrigated with heavy metal-spiked water. Heliyon 2020; 6:e04688. [PMID: 32817901 PMCID: PMC7424215 DOI: 10.1016/j.heliyon.2020.e04688] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 06/02/2020] [Accepted: 08/07/2020] [Indexed: 01/12/2023] Open
Abstract
A pot experiment was carried out to evaluate the effect of a municipal solid waste (MSW) biochar and a bacterial strain on the forage maize growth and the concentration of lead (Pb) and cadmium (Cd) in the edible tissue of maize irrigated with water contaminated with Cd (5 mg L−1) and Pb (100 mg L−1). Experimental treatments included (i) bacterial strain at two levels: no bacterial strain and Enterobacter cloacae R7; (ii) MSW biochar at three levels: 0, 1, and 3% (w/w); and (iii) irrigation water quality at five levels: plants irrigated with 100% freshwater (FW), plants irrigated with 75%FW + 25% contaminated water (CW), plants irrigated with 50%FW + 50% CW, plants irrigated with 25%FW + 75% CW, and plants irrigated with 100% CW. The effect of various treatments on maize growth indices and concentration of Pb(II) and Cd(II) in the plant was significant at 5% level. The concentration of these metals in the shoot of plants irrigated with 75 and 100% CW was higher than the permissible limits for Cd(II) and Pb(II) in livestock feed. However, the concentration of these metals in the shoot of the plants irrigated with 25 and 50% CW was lower than the permissible limit for this use. In this study, the combined application of 3%biochar and E. cloacae R7 had a significant effect on increased root dry weight (ranging from 29 to 33%), shoot dry weight (ranging from 32 to 43%) and bacterial root colonization (ranging from 33 to 53%) and on reduced concentration of Pb (ranging from 78 to 80%) and Cd (ranging from 72 to 76%) of the shoot of maize plant (edible tissues used by livestock), which was below the permissible limits for livestock feed, compared to corresponding controls. According to the results of this study, to reduce the concentration of the heavy metals in forage maize shoot (below the permissible limits for livestock feed), it is suggested using heavy metal–contaminated water either in combination with freshwater (50 or 75% FW) or in combination with biochar and bacterial biosorbent, averting human/animal health risk.
Collapse
|
30
|
Sashidhar P, Kochar M, Singh B, Gupta M, Cahill D, Adholeya A, Dubey M. Biochar for delivery of agri-inputs: Current status and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:134892. [PMID: 31767299 DOI: 10.1016/j.scitotenv.2019.134892] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/20/2019] [Accepted: 10/07/2019] [Indexed: 05/14/2023]
Abstract
Biochar, a carbonaceous porous material produced from the pyrolysis of agricultural residues and solid wastes has been widely used as a soil amendment. Recent publications on biochar are primarily focussed with its application in climatic aspects, contaminant immobilization, soil amendment strategies, nutrient recovery, engineered material production and waste-water treatment. Numerous studies have reported the positive attribute of biochar's nutrient value that helps in improving plant growth and fertilizer use efficiency. The renewability, low-cost, high porosity, high surface area and customizable surface chemistry of biochar offers ample prospect in several engineering applications, some of which needs significant attention. This review aims at systematically assessing the uses of biochar as a potential carrier material for delivery of agrochemicals and microbes. The key parameters of biochar that are crucial to assess the potential of any material to be used for delivery purposes are discussed. The parameters such as the physicochemical properties of biochar, the mechanistic aspects of adsorption and release of agrochemicals and microbes from biochar, comparative assessment of biochar over other carrier materials, long-term effects of biochar and the economic and environmental benefits of biochar are discussed in detail. At the end, a brief perspective has also been laid out to discuss how nano-interventions could further be helpful to tailor biochar properties useful for delivery applications.
Collapse
Affiliation(s)
- Poonam Sashidhar
- TERI Deakin Nanobiotechnology Centre, The Energy and Resources Institute, TERI Gram, Gwal Pahari, Gurugram, Haryana 122003, India; Deakin University, School of Life and Environmental Sciences, Waurn Ponds Campus, Geelong, Victoria 3216, Australia
| | - Mandira Kochar
- TERI Deakin Nanobiotechnology Centre, The Energy and Resources Institute, TERI Gram, Gwal Pahari, Gurugram, Haryana 122003, India
| | - Brajraj Singh
- TERI Deakin Nanobiotechnology Centre, The Energy and Resources Institute, TERI Gram, Gwal Pahari, Gurugram, Haryana 122003, India
| | - Manish Gupta
- TERI Deakin Nanobiotechnology Centre, The Energy and Resources Institute, TERI Gram, Gwal Pahari, Gurugram, Haryana 122003, India
| | - David Cahill
- Deakin University, School of Life and Environmental Sciences, Waurn Ponds Campus, Geelong, Victoria 3216, Australia
| | - Alok Adholeya
- TERI Deakin Nanobiotechnology Centre, The Energy and Resources Institute, TERI Gram, Gwal Pahari, Gurugram, Haryana 122003, India
| | - Mukul Dubey
- TERI Deakin Nanobiotechnology Centre, The Energy and Resources Institute, TERI Gram, Gwal Pahari, Gurugram, Haryana 122003, India.
| |
Collapse
|
31
|
Feng F, Chen X, Wang Q, Xu W, Long L, Nabil El-Masry G, Wan Q, Yan H, Cheng J, Yu X. Use of Bacillus-siamensis-inoculated biochar to decrease uptake of dibutyl phthalate in leafy vegetables. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 253:109636. [PMID: 31678688 DOI: 10.1016/j.jenvman.2019.109636] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/06/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
Dibutyl phthalate (DBP) is a frequently detected farmland contaminant that is harmful to the environment and human health. In this study, a DBP-degrading endophytic Bacillus siamensis strain T7 was immobilized in rice husk-derived biochar for bioremediation of DBP-polluted agricultural soils. The effects of this microbe-biochar composite on the soil prokaryotic community and the mechanism by which it regulates DBP degradation, were also investigated. A supplement of T7-biochar composite not only significantly boosted DBP biodegradation in soil by raising the DBP degradation rate constant and half-life from 0.1979 d-1 and 2.3131 d to 0.2434 d-1 and 2.1062 d, respectively, but also impeded DBP uptake by leafy vegetables. The general bioremediation effect of T7-biochar alliance excelled pure T7 suspensions and biochar, by trapping more DBP and boosting its complete degradation in soil. Besides, the combination of strain T7 and biochar can increase the proportion of some beneficial bacteria and boost the functional diversity of soil prokaryotic community, then to a certain extent may reverse the negative effect of DBP pollution on the agricultural soils. These results indicate that the rice-husk-derived biochar is a proper media when utilizing functional microbes into environmental treatment. Overall, T7-biochar composite is a promising soil modifier for soil bioremediation and the production of DBP-free crops.
Collapse
Affiliation(s)
- Fayun Feng
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, 210014, China; Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, PR China, Nanjing, 210014, China; Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Xiaolong Chen
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Qiong Wang
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Wenjun Xu
- Department of Biotechnology, Qingdao University of Science &Technology, Qingdao, 266042, China
| | - Ling Long
- College of Agriculture, Guangxi University, Nanning, 530005, China
| | | | - Qun Wan
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, 210014, China; Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, PR China, Nanjing, 210014, China; Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Haijuan Yan
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Jinjin Cheng
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Xiangyang Yu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, 210014, China; Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, PR China, Nanjing, 210014, China; Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| |
Collapse
|
32
|
Paungfoo-Lonhienne C, Redding M, Pratt C, Wang W. Plant growth promoting rhizobacteria increase the efficiency of fertilisers while reducing nitrogen loss. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 233:337-341. [PMID: 30590263 DOI: 10.1016/j.jenvman.2018.12.052] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 12/15/2018] [Accepted: 12/17/2018] [Indexed: 06/09/2023]
Abstract
More than half of the applied conventional fertiliser nitrogen (N) in cropping systems can be lost to the environment, resulting in water and air pollution. Farming systems that ensure efficient fertiliser use are crucial to sustain crop productivity without harming the environment. One avenue to achieve this is the use of bio-fertilisers with recognised benefits for plant nutrition and soil heath. Within this area, plant growth promoting rhizobacteria (PGPR) are increasingly applied to enhance plant nutrient acquisition and assimilation. Here, we investigated if PGPR can improve fertiliser performance. We show that the addition of PGPR to soils amended with 50% organic and 50% conventional N fertilisers increased the growth of kikuyu grass (Pennisetum clandestinum), producing yields similar to those obtained using 100% conventional N fertiliser. Encouragingly, this combination also reduced mineral N leaching by 95% relative to the all conventional fertiliser treatment. These findings suggest that using organic and synthetic fertilisers together in the presence of PGPR is a promising approach for sustaining plant growth while reducing potential pollution from inefficient use of conventional N fertilisers.
Collapse
Affiliation(s)
| | - Matthew Redding
- Department of Agriculture and Fisheries, Toowoomba, QLD, 4350, Australia
| | - Chris Pratt
- School of Environment and Science/Australian Rivers Institute, Griffith University, Nathan, QLD, 4111, Australia
| | - Weijin Wang
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia; Environmental Futures Research Institute, Griffith University, Nathan, QLD, 4111, Australia
| |
Collapse
|
33
|
Tao S, Wu Z, Wei M, Liu X, He Y, Ye BC. Bacillus subtilis SL-13 biochar formulation promotes pepper plant growth and soil improvement. Can J Microbiol 2019; 65:333-342. [PMID: 30702930 DOI: 10.1139/cjm-2018-0333] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The use of microbial fertilizers can help to avoid the harmful effects of traditional agricultural fertilizers and pesticides; however, there are many constraints on the practical application of such fertilizers. In this study, microbial biochar formulations (MBFs) were obtained by loading biochar, created from agricultural waste, with Bacillus subtilis SL-13. The effects of the MBF on pepper plant growth and soil fertility were studied in pot experiments. The MBF improved the soil texture and environment and favored plant growth. Compared with B. subtilis SL-13-only and biochar-only treatments, the MBF treatments exhibited a significant increase in pepper plant growth and physiological indices and a significant improvement in the physical-chemical properties and activities of several enzymes in the soil. Therefore, the present study demonstrated that MBFs not only retain the beneficial effect of biochar in improving the soil properties but also improve the performance of B. subtilis SL-13 in promoting plant growth.
Collapse
Affiliation(s)
- Siyuan Tao
- a School of Chemistry and Chemical Engineering, The Key Lab for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, P.R. China
| | - Zhansheng Wu
- a School of Chemistry and Chemical Engineering, The Key Lab for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, P.R. China.,b School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an 832000, P.R. China
| | - Mengmeng Wei
- a School of Chemistry and Chemical Engineering, The Key Lab for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, P.R. China
| | - Xiaochen Liu
- b School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an 832000, P.R. China
| | - Yanhui He
- a School of Chemistry and Chemical Engineering, The Key Lab for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, P.R. China
| | - Bang-Ce Ye
- a School of Chemistry and Chemical Engineering, The Key Lab for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, P.R. China
| |
Collapse
|
34
|
Li Y, Shi H, Zhang H, Chen S. Amelioration of drought effects in wheat and cucumber by the combined application of super absorbent polymer and potential biofertilizer. PeerJ 2019; 7:e6073. [PMID: 30643688 PMCID: PMC6330032 DOI: 10.7717/peerj.6073] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/06/2018] [Indexed: 11/20/2022] Open
Abstract
Biofertilizer is a good substitute for chemical fertilizer in sustainable agriculture, but its effects are often hindered by drought stress. Super absorbent polymer (SAP), showing good capacity of water absorption and retention, can increase soil moisture. However, limited information is available about the efficiency of biofertilizer amended with SAP. This study was conducted to investigate the effects of synergistic application of SAP and biofertilizers (Paenibacillus beijingensis BJ-18 and Bacillus sp. L-56) on plant growth, including wheat and cucumber. Potted soil was treated with different fertilizer combinations (SAP, BJ-18 biofertilizer, L-56 biofertilizer, BJ-18 + SAP, L-56 + SAP), and pot experiment was carried out to explore its effects on viability of inoculants, seed germination rate, plant physiological and biochemical parameters, and expression pattern of stress-related genes under drought condition. At day 29 after sowing, the highest viability of strain P. beijingensis BJ-18 (264 copies ng-1 gDNA) was observed in BJ-18 + SAP treatment group of wheat rhizosphere soil, while that of strain Bacillus sp. L-56 (331 copies ng-1 gDNA) was observed in the L-56 + SAP treatment group of cucumber rhizosphere soil. In addition, both biofertilizers amended with SAP could promote germination rate of seeds (wheat and cucumber), plant growth, soil fertility (urease, sucrose, and dehydrogenase activities). Quantitative real-time PCR analysis showed that biofertilizer + SAP significantly down-regulated the expression levels of genes involved in ROS scavenging (TaCAT, CsCAT, TaAPX, and CsAPX2), ethylene biosynthesis (TaACO2, CsACO1, and CsACS1), stress response (TaDHN3, TaLEA, and CsLEA11), salicylic acid (TaPR1-1a and CsPR1-1a), and transcription activation (TaNAC2D and CsNAC35) in plants under drought stress. These results suggest that SAP addition in biofertilizer is a good tactic for enhancing the efficiency of biofertilizer, which is beneficial for plants in response to drought stress. To the best of our knowledge, this is the first report about the effect of synergistic use of biofertilizer and SAP on plant growth under drought stress.
Collapse
Affiliation(s)
- Yongbin Li
- State Key Laboratory of Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Haowen Shi
- State Key Laboratory of Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Haowei Zhang
- State Key Laboratory of Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Sanfeng Chen
- State Key Laboratory of Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
35
|
Baron NC, Costa NTA, Mochi DA, Rigobelo EC. First report of Aspergillus sydowii and Aspergillus brasiliensis as phosphorus solubilizers in maize. ANN MICROBIOL 2018. [DOI: 10.1007/s13213-018-1392-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
36
|
Lobo CB, Juárez Tomás MS, Viruel E, Ferrero MA, Lucca ME. Development of low-cost formulations of plant growth-promoting bacteria to be used as inoculants in beneficial agricultural technologies. Microbiol Res 2018; 219:12-25. [PMID: 30642462 DOI: 10.1016/j.micres.2018.10.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/23/2018] [Accepted: 10/31/2018] [Indexed: 01/10/2023]
Abstract
Phosphorus is one of the main macronutrients for plant development. Despite its large deposits in soils, it is scarcely available for plants. Phosphate-solubilizing bacteria, belonging to the group of plant growth-promoting rhizobacteria (PGPR), are capable of mobilizing deposits of insoluble phosphates in the soil. The use of PGPR as inoculants provides an environmentally sustainable approach to increase crop production. The effectiveness of inoculants depends on their proper production, formulation and storage in order to ensure the application of the required number of viable microbial cells. In order to develop inexpensive technology, low-cost compounds for biomass production and protection should be used. After the biomass production process, the product should be formulated in a liquid or a solid form, taking into account required storage time, use of protectors/carriers, storage conditions (temperature, humidity, etc.), ease of application and maintenance of beneficial effects on crops. Careful determination of these optimal conditions would ensure a low-cost efficient inoculant that would promote the growth and yield of various crops.
Collapse
Affiliation(s)
- Constanza Belén Lobo
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI)-CONICET, Avenida Belgrano y Pasaje Caseros, San Miguel de Tucumán T4001MVB, Tucumán, Argentina.
| | - María Silvina Juárez Tomás
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI)-CONICET, Avenida Belgrano y Pasaje Caseros, San Miguel de Tucumán T4001MVB, Tucumán, Argentina.
| | - Emilce Viruel
- Instituto de Investigación Animal del Chaco Semiárido (IIACS), Centro de Investigaciones Agropecuarias (CIAP), Instituto Nacional de Tecnología Agropecuaria (INTA), Leales, Tucumán, Argentina.
| | - Marcela Alejandra Ferrero
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI)-CONICET, Avenida Belgrano y Pasaje Caseros, San Miguel de Tucumán T4001MVB, Tucumán, Argentina; Microbiología Superior, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán (UNT), Ayacucho 471, San Miguel de Tucumán T4000INI, Tucumán, Argentina.
| | - María Ester Lucca
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI)-CONICET, Avenida Belgrano y Pasaje Caseros, San Miguel de Tucumán T4001MVB, Tucumán, Argentina; Microbiología Superior, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán (UNT), Ayacucho 471, San Miguel de Tucumán T4000INI, Tucumán, Argentina.
| |
Collapse
|
37
|
Characterization of rhizobacterial isolates from Brassica juncea for multitrait plant growth promotion and their viability studies on carriers. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s42398-018-0026-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
38
|
Egamberdieva D, Hua M, Reckling M, Wirth S, Bellingrath-Kimura SD. Potential effects of biochar-based microbial inoculants in agriculture. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s42398-018-0010-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Bitterlich M, Franken P, Graefe J. Arbuscular Mycorrhiza Improves Substrate Hydraulic Conductivity in the Plant Available Moisture Range Under Root Growth Exclusion. FRONTIERS IN PLANT SCIENCE 2018; 9:301. [PMID: 29563923 PMCID: PMC5845879 DOI: 10.3389/fpls.2018.00301] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/21/2018] [Indexed: 05/20/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) proliferate in soils and are known to affect soil structure. Although their contribution to structure is extensively investigated, the consequences of those processes for soil water extractability and transport has, so far, gained surprisingly little attention. Therefore we asked, whether AMF can affect water retention and unsaturated hydraulic conductivity under exclusion of root ingrowth, in order to minimize plant driven effects. We carried out experiments with tomato inoculated with Rhizoglomus irregulare in a soil substrate with sand and vermiculite that created variation in colonization by mixed pots with wild type (WT) plants and mycorrhiza resistant (RMC) mutants. Sampling cores were introduced and used to assess substrate moisture retention dynamics and modeling of substrate water retention and hydraulic conductivity. AMF reduced the saturated water content and total porosity, but maintained air filled porosity in soil spheres that excluded root ingrowth. The water content between field capacity and the permanent wilting point (6-1500 kPa) was only reduced in mycorrhizal substrates that contained at least one RMC mutant. Plant available water contents correlated positively with soil protein contents. Soil protein contents were highest in pots that possessed the strongest hyphal colonization, but not significantly affected. Substrate conductivity increased up to 50% in colonized substrates in the physiologically important water potential range between 6 and 10 kPa. The improvements in hydraulic conductivity are restricted to substrates where at least one WT plant was available for the fungus, indicating a necessity of a functional symbiosis for this effect. We conclude that functional mycorrhiza alleviates the resistance to water movement through the substrate in substrate areas outside of the root zone.
Collapse
Affiliation(s)
- Michael Bitterlich
- Leibniz Institute of Vegetable and Ornamental Crops, Großbeeren, Germany
| | - Philipp Franken
- Leibniz Institute of Vegetable and Ornamental Crops, Großbeeren, Germany
- The Department of Plant Physiology, Humboldt University of Berlin, Berlin, Germany
| | - Jan Graefe
- Leibniz Institute of Vegetable and Ornamental Crops, Großbeeren, Germany
| |
Collapse
|