1
|
Roy IRW, Raj AS, Viaroli S. Microplastic removal, identification and characterization in Chennai sewage treatment plants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:125120. [PMID: 40147407 DOI: 10.1016/j.jenvman.2025.125120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 03/13/2025] [Accepted: 03/22/2025] [Indexed: 03/29/2025]
Abstract
Sewage treatment plants (STPs) act as either sinks or sources of microplastic (MP) contamination in the environment. This study examined and assessed the occurrence, removal efficiencies, abundance and characteristics of MPs in two STPs in Chennai, India. Large volumes of influent and effluent water were collected and filtered on site via a filter in a series system. The samples were later treated in the laboratory to isolate the MPs from other organic and inorganic particles. The MPs were analysed via Fourier Transform Infra-Red (FTIR) spectroscopy and Raman spectroscopy to analyse the chemical composition of the isolated microplastics. Pollution load index (PLI) and EU classification, labelling and packaging (CLP) standard was incorporated to assess the pollution risk of MPs in STP. According to the results obtained from this research work, the MP concentrations in the influent waters were high for both STPs (5443 MPs/L and 4800 MPs/L). Although the MP removal efficiency of the STPs were quite high (~96 % and ~93 %), the pollution load indices at Kodungaiyur and Koyambedu STPs were observed to be 0.272 and 0.208 respectively, which were moderately contaminated. PORI scores revealed that Kodungaiyur Plant is in danger level I with the hazard score of 9.25 and Koyambedu plant is in danger level II with the hazard score of 12.78. The estimated quantity of the MPs discharged from the monitored STPs was approximately 28.4 & 28.2 billion MPs/day.
Collapse
Affiliation(s)
- I Ronald Win Roy
- Department of Physics, Loyola College, Chennai, Tamil Nadu, India.
| | - A Stanley Raj
- Department of Physics, Loyola College, Chennai, Tamil Nadu, India
| | | |
Collapse
|
2
|
Kumar L, Gupta B, Kumar Purkait M. Photo-induced degradation of toxic recalcitrant compounds from surface water: Insights into advanced nanomaterials, hybrid photocatalytic systems, and real applications. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 377:124610. [PMID: 39999753 DOI: 10.1016/j.jenvman.2025.124610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 02/02/2025] [Accepted: 02/16/2025] [Indexed: 02/27/2025]
Abstract
The rapid increase in toxic recalcitrant organic compounds (ROCs) from various industrial, residential, and agricultural sources poses a significant public health concern and threatens environmental preservation. The presence of these toxic ROCs weakens the effectiveness of conventional water and wastewater treatment systems. As a result, numerous physicochemical and biological treatment processes have been explored, each demonstrating varying removal efficiencies depending on experimental conditions. Given the limitations of existing treatment methods, research has increasingly focused on advanced oxidation processes, particularly photocatalysis. Photocatalysis is a prominent treatment technique due to its low sludge production, non-toxic nature, reusable characteristics, and ability to harness visible light. This review comprehensively examines the ecotoxicological effects of ROCs, existing biological and physicochemical treatment methods, advancements in photocatalyst synthesis, the transition from conventional to advanced photocatalysts, and hybrid treatment systems. In the context of photocatalytic removal of ROCs, the review also addresses several influencing parameters, including initial pollutant concentration, solution pH, light intensity, catalyst dose, and catalyst type. Global case studies focusing on the mechanisms of photocatalytic degradation of ROCs are highlighted. The documented photocatalysts for removing ROCs from water and wastewater have shown promising results. Moreover, integrating photocatalysis with advanced physicochemical and biological processes has effectively removed various dissolved (e.g., ROCs) and suspended impurities, showcasing its practical applications. Thus, this study could serve as a valuable resource for researchers and engineers working on the treatment of various micropollutants, such as ROCs, in real wastewater.
Collapse
Affiliation(s)
- Lokesh Kumar
- Centre for Sustainable Water Research, Indian Institute of Technology Guwahati, Assam, 781039, India.
| | - Bramha Gupta
- Centre for Sustainable Water Research, Indian Institute of Technology Guwahati, Assam, 781039, India.
| | - Mihir Kumar Purkait
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam, 781039, India.
| |
Collapse
|
3
|
Yan M, Shao D. Application of different lights in solving the marine biofouling problem of uranium extraction from seawater. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2025; 264:113114. [PMID: 39879700 DOI: 10.1016/j.jphotobiol.2025.113114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/17/2025] [Accepted: 01/22/2025] [Indexed: 01/31/2025]
Abstract
Marine biofouling remains a big problem of uranium (U(VI)) extraction from seawater. To better utilize sunlight in future, the anti-biofouling properties of typical light sources were evaluated, and ultraviolet (UV) light shows best anti-biofouling capability among studied lights. UV light can damage the cellular structure and intercept the proliferation of marine microorganisms (such as V. alginolyticus), and further control its extracellular polymeric substances (EPS). Microorganism community results clarify that UV light well represses the reproduction and survival of marine microorganisms under different conditions (such as temperature and region), which is in favor of U(VI) extraction. The adsorption capacity of classical U(VI) extraction material poly(amidoxime) (PAO) for U(VI) outstandingly recycled from 47.5 mg/g to 68.5 mg/g after UV irradiated for 12 h at pH 8.2 and 25 °C. UV light can well solve the marine biofouling problem of U(VI) extraction from seawater.
Collapse
Affiliation(s)
- Meng Yan
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Dadong Shao
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China.
| |
Collapse
|
4
|
Jha S, Mishra BK. An overview of deploying different treatment processes with membrane bioreactor for enhanced treatment of wastewaters: synergistic performances and reduced fouling of membrane. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:63603-63634. [PMID: 39538077 DOI: 10.1007/s11356-024-35459-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
The membrane bioreactor (MBR) process synergistically combines biological treatment with membrane filtration, offering a compact design and enhanced operational flexibility. However, membrane fouling remains a critical bottleneck, limiting its widespread application, particularly in treating high-strength wastewater. Recent advances have demonstrated that integrating MBR systems with auxiliary processes such as adsorption, electrochemical treatments, algal-assisted systems, and others can significantly mitigate fouling and enhance treatment efficacy. This paper critically reviews various MBR hybrid configurations, examining their mechanisms, advantages, and limitations in terms of treatment performance and fouling control, while highlighting their potential to extend conventional MBR's applicability to challenging wastewaters and addressing operational challenges like economic viability and sustainability. Elaborated tables incorporating a wide variety of research studies within the realm of synchronization have been meticulously compiled to generate a comprehensive literature review.
Collapse
Affiliation(s)
- Shikha Jha
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, India
| | - Brijesh Kumar Mishra
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, India.
| |
Collapse
|
5
|
Wang Y, Wang J, Long Z, Sun Z, Lv L, Liang J, Zhang G, Wang P, Gao W. MnCe-based catalysts for removal of organic pollutants in urban wastewater by advanced oxidation processes - A critical review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122773. [PMID: 39388818 DOI: 10.1016/j.jenvman.2024.122773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/11/2024] [Accepted: 09/29/2024] [Indexed: 10/12/2024]
Abstract
With Advanced oxidation processes (AOPs) widely promoted, MnCe-based catalysts have received extensive attention under the advantages of high efficiency, stability and economy for refractory organic pollutants present in urban wastewater. Driven by multiple factors such as environmental pollution, technological development, and policy promotion, a systematic review of MnCe-based catalysts is urgently needed in the current research situation. This research provides a critical review of MnCe-based catalysts for removal of organic pollutants in urban wastewater by AOPs. It is found that co-precipitation and sol-gel methods are more appropriate methods for catalyst preparation. Among a host of influence factors, catalyst composition and pH are crucial in the catalytic oxidation processes. The synergistic effect of the free radical pathway and surface catalysis results in better pollutants degradation. It is more valuable to utilize multiple systems for oxidation (e.g., photo-Fenton technology) to improve the catalytic efficiency. This review provides theoretical guidance for MnCe-based catalysts and offers a reference direction for future research in the AOPs of organic pollutants removal from urban wastewater.
Collapse
Affiliation(s)
- Yuting Wang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Jiaqing Wang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Zeqing Long
- Department of Public Health and Preventive Medicine, Changzhi Medical College, Changzhi, China
| | - Zhi Sun
- National Key Laboratory of Biochemical Engineering, Beijing Engineering Research Centre of Process Pollution Control, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing, 100190, China
| | - Longyi Lv
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Jinsong Liang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Guangming Zhang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| | - Pengfei Wang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Wenfang Gao
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| |
Collapse
|
6
|
Koundle P, Nirmalkar N, Momotko M, Boczkaj G. Ozone nanobubble technology as a novel AOPs for pollutants degradation under high salinity conditions. WATER RESEARCH 2024; 263:122148. [PMID: 39098154 DOI: 10.1016/j.watres.2024.122148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/26/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024]
Abstract
Conventional water treatment systems frequently exhibit diminished efficiency at high salinity - a significant issue especially for real industrial effluents - mostly due to the creation of intricate structures between pollutants and salts. One of the primary obstacles associated with high salinity conditions is the generation of by-products that pose additional hurdles for treatment. In this work, we have investigated the novel advanced oxidation process a so-called ozone nanobubble technology for degradation of the pollutants at high salinity conditions. The mass transfer is often the rate-limiting step in gas-liquid process and the poor rate of mass transfer diminishes the overall efficacy. One of the primary disadvantages associated with ozone is its restricted solubility and instability when dissolved in an aqueous solution. These characteristics impose limitations on its potential applications and need the use of specialized systems to facilitate gas-liquid interaction. In this work, we have also suggested enhancing the ozonation process through the utilization of ozone nanobubbles. The findings of our experiment and subsequent analysis indicate that the presence of nanobubbles enhances the process of ozonation through three key mechanisms: (i) an increased mass transfer coefficient, (ii) a higher rate of reactive oxygen species (ROS) generation attributed to the charged interface, and (iii) the nanobubble interface serving as an active surface for chemical reactions. The predicted mass transfer coefficients were found to range from 3 to 3.5 min-1, a value that is notably greater than that seen for microbubbles. The study showcased the degradation of methylene blue dye through the utilization of ozone nanobubbles, which exhibited a much higher rate of dye degradation compared to ozone microbubbles. The confirmation of the radical degradation mechanism was achieved by the utilization of electron spin resonance (ESR) measurements. The developed process has high potential for application in industrial scale textile wastewater treatment.
Collapse
Affiliation(s)
- Priya Koundle
- Department of Chemical Engineering, Indian Institute of Technology Ropar, Rupnagar 140001, India
| | - Neelkanth Nirmalkar
- Department of Chemical Engineering, Indian Institute of Technology Ropar, Rupnagar 140001, India.
| | - Malwina Momotko
- Department of Sanitary Engineering, Civil and Environment Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza St. 11/12, Gdansk 80-233, Poland
| | - Grzegorz Boczkaj
- Department of Sanitary Engineering, Civil and Environment Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza St. 11/12, Gdansk 80-233, Poland; School of Civil, Environmental, and Architectural Engineering, College of Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
7
|
Qin Y, Yuan R, Wang S, Zhang X, Luo S, He X. Catalytic Ozonation Treatment of Coal Chemical Reverse Osmosis Concentrate: Water Quality Analysis, Parameter Optimization, and Catalyst Deactivation Investigation. TOXICS 2024; 12:681. [PMID: 39330609 PMCID: PMC11435963 DOI: 10.3390/toxics12090681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
Catalytic ozone oxidation, which is characterized by strong oxidizing properties and environmental friendliness, has been widely used in organic wastewater treatments. However, problems such as a low organic pollutant removal efficiency and unstable operation during the catalytic ozone treatment process for wastewater remain. To address these disadvantages, in this study, the treatment efficacy of catalytic ozone oxidation on a coal chemical reverse osmosis concentrate was investigated. The basic water quality indicators of the chemical reverse osmosis concentrate were analyzed. The effects of initial pollutant concentration, pH, ozone concentration, and catalyst concentration on the COD removal rate from the coal chemical reverse osmosis concentrate were explored. Water quality indicators of the chemical reverse osmosis concentrate before and after the catalytic ozone treatment were studied using spectroscopic analysis methods. The RO concentrate demonstrated large water quality fluctuations, and the catalytic ozonation process removed most of the pollutants from the treated wastewater. A possible deactivation mechanism of the ozone catalyst was also proposed. This study provides a theoretical reference and technical support for the long-term, efficient, and stable removal of organic pollutants from coal chemical reverse osmosis concentrate using a catalytic ozone oxidation process in practical engineering applications.
Collapse
Affiliation(s)
- Yihe Qin
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China; (Y.Q.); (R.Y.)
| | - Run Yuan
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China; (Y.Q.); (R.Y.)
| | - Shaozhou Wang
- School of Chemical and Environmental Engineering, China University of Mining & Technology, Beijing 100083, China; (S.W.); (X.Z.); (S.L.)
| | - Xuewei Zhang
- School of Chemical and Environmental Engineering, China University of Mining & Technology, Beijing 100083, China; (S.W.); (X.Z.); (S.L.)
| | - Shaojun Luo
- School of Chemical and Environmental Engineering, China University of Mining & Technology, Beijing 100083, China; (S.W.); (X.Z.); (S.L.)
| | - Xuwen He
- School of Chemical and Environmental Engineering, China University of Mining & Technology, Beijing 100083, China; (S.W.); (X.Z.); (S.L.)
| |
Collapse
|
8
|
Alam MNE, Deowan SA, Efty SS, Chowdhury F, Haque Milon A, Nurnabi M. Fabrication and performance evaluation of polyethersulfone membranes with varying compositions of polyvinylpyrrolidone and polyethylene glycol for textile wastewater treatment using MBR. Heliyon 2024; 10:e36215. [PMID: 39247311 PMCID: PMC11380171 DOI: 10.1016/j.heliyon.2024.e36215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 09/10/2024] Open
Abstract
Various industries polluting the water bodies by discharging untreated wastewater directly into the environment and conventional wastewater treatments are often insufficient for effectively treating the pollutants. However, membrane bioreactors (MBRs) offer a promising solution for wastewater treatment where membrane serving as the heart of the system. In this study, polyethersulfone (PES) was used as the membrane material and hydrophilicity of the membranes were tuned up by mixing with hydrophilic additives such as polyethylene glycol (PEG) and polyvinylpyrrolidone (PVP) and the membranes have shown promising results in treating wastewater, particularly in terms of chemical oxygen demand (COD), biochemical oxygen demand (BOD), and color removal. For example, PES-PEG membrane demonstrated COD, BOD, and color removal of 96 %, 94 %, and 92 %, respectively while those were 95 %, 94 %, and 92 %, respectively for PES-based commercial membrane. Although the performances of fabricated membranes were comparable to that of commercial membrane in COD, BOD, and color removal efficiencies, there is room for improvement in permeate yields. Notably, the average permeate efficiency for MBR modules produced with PES-3PEG and PES-5PVP membranes was recorded as 47 % (18 L/m2h) and 13 % (5 L/m2h) respectively of the commercial membrane (38 L/m2h). Despite the variance in permeate yields, the fabricated membranes also showcased significant efficacy in removing microorganisms, a crucial aspect of wastewater treatment. Their performance in this regard proved highly comparable to that of the commercial membrane, emphasizing the potential of these fabricated membranes in enhancing the wastewater treatment.
Collapse
Affiliation(s)
- Md Nur-E Alam
- Department of Applied Chemistry and Chemical Engineering, University of Dhaka, Dhaka, 1000, Bangladesh
- Leather Research Institute (LRI), Bangladesh Council of Scientific and Industrial Research (BCSIR), Savar, Dhaka, 1350, Bangladesh
| | - Shamim Ahmed Deowan
- Department of Robotics and Mechatronics Engineering, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Shakil Shahriar Efty
- Department of Applied Chemistry and Chemical Engineering, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Fariha Chowdhury
- Biomedical and Toxicological Research Institute, Bangladesh Council of Scientific and Industrial Research, (BCSIR), Dhaka, 1205, Bangladesh
| | - Ahsanul Haque Milon
- Institute of Leather Engineering and Technology, University of Dhaka, Dhaka, 1209, Bangladesh
| | - Mohammad Nurnabi
- Department of Applied Chemistry and Chemical Engineering, University of Dhaka, Dhaka, 1000, Bangladesh
| |
Collapse
|
9
|
Ni L, Wang P, Westerhoff P, Luo J, Wang K, Wang Y. Mechanisms and Strategies of Advanced Oxidation Processes for Membrane Fouling Control in MBRs: Membrane-Foulant Removal versus Mixed-Liquor Improvement. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11213-11235. [PMID: 38885125 DOI: 10.1021/acs.est.4c02659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Membrane bioreactors (MBRs) are well-established and widely utilized technologies with substantial large-scale plants around the world for municipal and industrial wastewater treatment. Despite their widespread adoption, membrane fouling presents a significant impediment to the broader application of MBRs, necessitating ongoing research and development of effective antifouling strategies. As highly promising, efficient, and environmentally friendly chemical methods for water and wastewater treatment, advanced oxidation processes (AOPs) have demonstrated exceptional competence in the degradation of pollutants and inactivation of bacteria in aqueous environments, exhibiting considerable potential in controlling membrane fouling in MBRs through direct membrane foulant removal (MFR) and indirect mixed-liquor improvement (MLI). Recent proliferation of research on AOPs-based antifouling technologies has catalyzed revolutionary advancements in traditional antifouling methods in MBRs, shedding new light on antifouling mechanisms. To keep pace with the rapid evolution of MBRs, there is an urgent need for a comprehensive summary and discussion of the antifouling advances of AOPs in MBRs, particularly with a focus on understanding the realizing pathways of MFR and MLI. In this critical review, we emphasize the superiority and feasibility of implementing AOPs-based antifouling technologies in MBRs. Moreover, we systematically overview antifouling mechanisms and strategies, such as membrane modification and cleaning for MFR, as well as pretreatment and in-situ treatment for MLI, based on specific AOPs including electrochemical oxidation, photocatalysis, Fenton, and ozonation. Furthermore, we provide recommendations for selecting antifouling strategies (MFR or MLI) in MBRs, along with proposed regulatory measures for specific AOPs-based technologies according to the operational conditions and energy consumption of MBRs. Finally, we highlight future research prospects rooted in the existing application challenges of AOPs in MBRs, including low antifouling efficiency, elevated additional costs, production of metal sludge, and potential damage to polymeric membranes. The fundamental insights presented in this review aim to elevate research interest and ignite innovative thinking regarding the design, improvement, and deployment of AOPs-based antifouling approaches in MBRs, thereby advancing the extensive utilization of membrane-separation technology in the field of wastewater treatment.
Collapse
Affiliation(s)
- Lingfeng Ni
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, P. R. China
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, P. R. China
| | - Paul Westerhoff
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287, United States
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, P. R. China
| | - Kaichong Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
| |
Collapse
|
10
|
Katibi KK, Shitu IG, Yunos KFM, Azis RS, Iwar RT, Adamu SB, Umar AM, Adebayo KR. Unlocking the potential of magnetic biochar in wastewater purification: a review on the removal of bisphenol A from aqueous solution. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:492. [PMID: 38691228 DOI: 10.1007/s10661-024-12574-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/23/2024] [Indexed: 05/03/2024]
Abstract
Bisphenol A (BPA) is an essential and extensively utilized chemical compound with significant environmental and public health risks. This review critically assesses the current water purification techniques for BPA removal, emphasizing the efficacy of adsorption technology. Within this context, we probe into the synthesis of magnetic biochar (MBC) using co-precipitation, hydrothermal carbonization, mechanical ball milling, and impregnation pyrolysis as widely applied techniques. Our analysis scrutinizes the strengths and drawbacks of these techniques, with pyrolytic temperature emerging as a critical variable influencing the physicochemical properties and performance of MBC. We explored various modification techniques including oxidation, acid and alkaline modifications, element doping, surface functional modification, nanomaterial loading, and biological alteration, to overcome the drawbacks of pristine MBC, which typically exhibits reduced adsorption performance due to its magnetic medium. These modifications enhance the physicochemical properties of MBC, enabling it to efficiently adsorb contaminants from water. MBC is efficient in the removal of BPA from water. Magnetite and maghemite iron oxides are commonly used in MBC production, with MBC demonstrating effective BPA removal fitting well with Freundlich and Langmuir models. Notably, the pseudo-second-order model accurately describes BPA removal kinetics. Key adsorption mechanisms include pore filling, electrostatic attraction, hydrophobic interactions, hydrogen bonding, π-π interactions, and electron transfer surface interactions. This review provides valuable insights into BPA removal from water using MBC and suggests future research directions for real-world water purification applications.
Collapse
Affiliation(s)
- Kamil Kayode Katibi
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Department of Agricultural and Biological Engineering, Faculty of Engineering and Technology, Kwara State University, Malete, Ilorin, 23431, Nigeria.
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Ibrahim Garba Shitu
- Department of Physics, Faculty of Natural and Applied Sciences, Sule Lamido University, Kafin Hausa, Jigawa, Nigeria
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Khairul Faezah Md Yunos
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Rabaah Syahidah Azis
- Materials Synthesis and Characterization Laboratory (MSCL), Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Raphael Terungwa Iwar
- Department of Agricultural and Environmental Engineering, College of Engineering, Joseph Sarwuan Tarka University, Makurdi, Nigeria
| | - Suleiman Bashir Adamu
- Department of Physics, Faculty of Natural and Applied Sciences, Sule Lamido University, Kafin Hausa, Jigawa, Nigeria
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Abba Mohammed Umar
- Department of Agricultural and Bioenvironmental Engineering, Federal Polytechnic Mubi, Mubi, 650221, Nigeria
| | - Kehinde Raheef Adebayo
- Department of Agricultural and Biological Engineering, Faculty of Engineering and Technology, Kwara State University, Malete, Ilorin, 23431, Nigeria
| |
Collapse
|
11
|
Shah AA, Walia S, Kazemian H. Advancements in combined electrocoagulation processes for sustainable wastewater treatment: A comprehensive review of mechanisms, performance, and emerging applications. WATER RESEARCH 2024; 252:121248. [PMID: 38335752 DOI: 10.1016/j.watres.2024.121248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
This review explores the potential and challenges of combining electrochemical, especially electrocoagulation (EC) process, with various - wastewater treatment methods such as membranes, chemical treatments, biological methods, and oxidation processes to enhance pollutant removal and reduce costs. It emphasizes the advantages of using electrochemical processes as a pretreatment step, including increased volume and improved quality of permeate water, mitigation of membrane fouling, and lower environmental impact. Pilot-scale studies are discussed to validate the effectiveness of combined EC processes, particularly for industrial wastewater. Factors such as electrode materials, coating materials, and the integration of a third process are discussed as potential avenues for improving the environmental sustainability and cost-effectiveness of the combined EC processes. This review also discusses factors for improvement and explores the EC process combined with Advanced Oxidation Processes (AOP). The conclusion highlights the need for combined EC processes, which include reducing electrode consumption, evaluating energy efficiency, and conducting pilot-scale investigations under continuous flow conditions. Furthermore, it emphasizes future research on electrode materials and technology commercialization. Overall, this review underscores the importance of combined EC processes in meeting the demand for clean water resources and emphasizes the need for further optimization and implementation in industrial applications.
Collapse
Affiliation(s)
- Aatif Ali Shah
- Materials Technology & Environmental Research (MATTER) lab, University of Northern British Columbia, Prince George, BC, Canada; Environment Science Program, Faculty of Environment, University of Northern British Columbia, Prince George, BC V2N4Z9, Canada.
| | - Sunil Walia
- Materials Technology & Environmental Research (MATTER) lab, University of Northern British Columbia, Prince George, BC, Canada
| | - Hossein Kazemian
- Materials Technology & Environmental Research (MATTER) lab, University of Northern British Columbia, Prince George, BC, Canada; Northern Analytical Lab Services (Northern BC's Environmental and Climate Solutions Innovation Hub), University of Northern British Columbia, Prince George, BC, Canada; Environment Science Program, Faculty of Environment, University of Northern British Columbia, Prince George, BC V2N4Z9, Canada.
| |
Collapse
|
12
|
Keerthana SP, Yuvakkumar R, Ravi G, Thambidurai M, Nguyen HD, Velauthapillai D. Sr doped TiO 2 photocatalyst for the removal of Janus Green B dye under visible light. RSC Adv 2023; 13:18779-18787. [PMID: 37350863 PMCID: PMC10282732 DOI: 10.1039/d3ra00567d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/08/2023] [Indexed: 06/24/2023] Open
Abstract
Hydrothermal synthesis of pristine and Sr doped TiO2 is proposed. The synthesized products were studied for their physiochemical properties. 3% Sr-TiO2 showed a narrow bandgap, which facilitate an increase in oxygen vacancies. The agglomerated morphology was tuned to a nanoball structure after doping with Sr ions. Surface area was increased for the Sr doped TiO2. The samples were used to reduce Janus Green B (JG) dye as a model pollutant. The pure TiO2 showed poor efficiency, while the prepared Sr-TiO2 photocatalyst showed enhanced efficiency with a corresponding increase in the rate constant values of the samples. Tuning of the bandgap, an improvement in the morphology and an increase in the surface area were the major positives of the Sr doped TiO2 samples compared to pure TiO2, 3% Sr-TiO2 is emerging as the best photocatalyst in reducing toxic pollutants. The 3% Sr-TiO2 is a promising candidate for water remediation in the future.
Collapse
Affiliation(s)
- S P Keerthana
- Department of Physics, Alagappa University Karaikudi 630 003 Tamil Nadu India
| | - R Yuvakkumar
- Department of Physics, Alagappa University Karaikudi 630 003 Tamil Nadu India
| | - G Ravi
- Department of Physics, Alagappa University Karaikudi 630 003 Tamil Nadu India
- Department of Physics, Chandigarh University Mohali 140 413 Punjab India
| | - M Thambidurai
- School of Electrical and Electronic Engineering, Nanyang Technological University 50 Nanyang Avenue 639798 Singapore
| | - Hung D Nguyen
- School of Electrical and Electronic Engineering, Nanyang Technological University 50 Nanyang Avenue 639798 Singapore
| | - Dhayalan Velauthapillai
- Faculty of Engineering and Science, Western Norway University of Applied Sciences Bergen 5063 Norway
| |
Collapse
|
13
|
Binazadeh M, Rasouli J, Sabbaghi S, Mousavi SM, Hashemi SA, Lai CW. An Overview of Photocatalytic Membrane Degradation Development. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16093526. [PMID: 37176408 PMCID: PMC10180107 DOI: 10.3390/ma16093526] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/09/2023] [Accepted: 03/27/2023] [Indexed: 05/15/2023]
Abstract
Environmental pollution has become a worldwide issue. Rapid industrial and agricultural practices have increased organic contaminants in water supplies. Hence, many strategies have been developed to address this concern. In order to supply clean water for various applications, high-performance treatment technology is required to effectively remove organic and inorganic contaminants. Utilizing photocatalytic membrane reactors (PMRs) has shown promise as a viable alternative process in the water and wastewater industry due to its efficiency, low cost, simplicity, and low environmental impact. PMRs are commonly categorized into two main categories: those with the photocatalyst suspended in solution and those with the photocatalyst immobilized in/on a membrane. Herein, the working and fouling mechanisms in PMRs membranes are investigated; the interplay of fouling and photocatalytic activity and the development of fouling prevention strategies are elucidated; and the significance of photocatalysis in membrane fouling mechanisms such as pore plugging and cake layering is thoroughly explored.
Collapse
Affiliation(s)
- Mojtaba Binazadeh
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz 71557-13876, Iran
| | - Jamal Rasouli
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz 71557-13876, Iran
| | - Samad Sabbaghi
- Department of Nano-Chemical Engineering, Faculty of Advanced Technologies, Shiraz University, Shiraz 71557-13876, Iran
| | - Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan
| | - Seyyed Alireza Hashemi
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Chin Wei Lai
- Nanotechnology & Catalysis Research Centre, University Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
14
|
Khan WU, Ahmed S, Dhoble Y, Madhav S. A critical review of hazardous waste generation from textile industries and associated ecological impacts. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Yuan R, Qin Y, He C, Wang Z, Bai L, Zhao H, Jiang Z, Meng L, He X. Fe-Mn-Cu-Ce/Al2O3 as an efficient catalyst for catalytic ozonation of bio-treated coking wastewater: Characteristics, efficiency, and mechanism. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
16
|
Keerthana SP, Kowsalya K, Kumar PS, Yuvakkumar R, Kungumadevi L, Ravi G, Velauthapillai D. Effect of grinding time on bismuth oxyhalides optical and morphological properties influence on photocatalytic removal of organic dye. CHEMOSPHERE 2022; 304:135272. [PMID: 35688190 DOI: 10.1016/j.chemosphere.2022.135272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/20/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
Herein, we reported the synthesis of BiOX (X = Cl, Br) with different grinding time like 15 min and 30 min to analyze the evolution of physiochemical properties and the morphological evolution. The structural, optical, vibrational properties were examined by standard characterization studies. The formation of bismuth oxyhalides were confirmed by XRD and Raman studies. The crystallite size was decreased as in 30 min grinded sample whereas there is an influence of crystal structure. BiOCl (15 and 30 min) samples expelled the nanoflake like structure with the flakes arranged to form a nanoflower morphology. On comparing BiOCl (15 min), there is high orientation of nanoflakes on BiOCl (30 min) sample. As explored in BiOBr (15 and 30 min) samples, the development of nanoplates were found. The growth of nanoplates was enhanced in the better way in BiOBr (30 min) than BiOBr (15 min). The grinding time has explored a great influence on morphology. The photocatalyst test for prepared photocatalysts was performed to reduce the RhB dye. The photocatalysts showed 74%, 97%, 98% and 99.8% for BiOCl (15 min), BiOCl (30 min), BiOBr (15 min) and BiOBr (30 min). The rate constant value obtained was 0.008, 0.011, 0.021, 0.033 and 0.068 min-1. BiOBr (30 min) sample achieved higher rate constant value. The hierarchical nanostructures and narrow bandgap has made the samples to be a potential candidate to reduce the toxic pollutants with complete efficiency.
Collapse
Affiliation(s)
- S P Keerthana
- Department of Physics, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| | - K Kowsalya
- Department of Physics, Mother Teresa Women's University, Kodaikanal, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| | - R Yuvakkumar
- Department of Physics, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India.
| | - L Kungumadevi
- Department of Physics, Mother Teresa Women's University, Kodaikanal, India
| | - G Ravi
- Department of Physics, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| | - Dhayalan Velauthapillai
- Faculty of Engineering and Science, Western Norway University of Applied Sciences, Bergen, 5063, Norway
| |
Collapse
|
17
|
Al-Hazmi HE, Shokrani H, Shokrani A, Jabbour K, Abida O, Mousavi Khadem SS, Habibzadeh S, Sonawane SH, Saeb MR, Bonilla-Petriciolet A, Badawi M. Recent advances in aqueous virus removal technologies. CHEMOSPHERE 2022; 305:135441. [PMID: 35764113 PMCID: PMC9233172 DOI: 10.1016/j.chemosphere.2022.135441] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 05/09/2023]
Abstract
The COVID-19 outbreak has triggered a massive research, but still urgent detection and treatment of this virus seems a public concern. The spread of viruses in aqueous environments underlined efficient virus treatment processes as a hot challenge. This review critically and comprehensively enables identifying and classifying advanced biochemical, membrane-based and disinfection processes for effective treatment of virus-contaminated water and wastewater. Understanding the functions of individual and combined/multi-stage processes in terms of manufacturing and economical parameters makes this contribution a different story from available review papers. Moreover, this review discusses challenges of combining biochemical, membrane and disinfection processes for synergistic treatment of viruses in order to reduce the dissemination of waterborne diseases. Certainly, the combination technologies are proactive in minimizing and restraining the outbreaks of the virus. It emphasizes the importance of health authorities to confront the outbreaks of unknown viruses in the future.
Collapse
Affiliation(s)
- Hussein E Al-Hazmi
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Ul. Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Hanieh Shokrani
- Department of Chemical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran
| | - Amirhossein Shokrani
- Department of Mechanical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran
| | - Karam Jabbour
- College of Engineering and Technology, American University of the Middle East, Kuwait
| | - Otman Abida
- College of Engineering and Technology, American University of the Middle East, Kuwait
| | | | - Sajjad Habibzadeh
- Surface Reaction and Advanced Energy Materials Laboratory, Chemical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
| | - Shirish H Sonawane
- Department of Chemical Engineering, National Institute of Technology Warangal, Warangal, 506004, Telangana, India
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12 80-233, Gdańsk, Poland
| | | | - Michael Badawi
- Université de Lorraine, Laboratoire de Physique et Chimie Théoriques LPCT UMR CNRS, 7019, Nancy, France.
| |
Collapse
|
18
|
Kusworo TD, Kumoro AC, Utomo DP. Photocatalytic nanohybrid membranes for highly efficient wastewater treatment: A comprehensive review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115357. [PMID: 35617864 DOI: 10.1016/j.jenvman.2022.115357] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/29/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Wastewater is inevitably generated from human activities as part of the life cycle chain that potentially damages the environment. The integration of photocatalytic reaction and membrane separation for wastewater treatment has gained great attention in recent studies. However, there are still many technical limitations for its application such as toxic metal release, catalyst deactivation, fouling/biofouling, polymer disintegration, and separation performance decline. Different types, combinations, and modifications of photocatalysts material combined with membranes such as semiconductor metal oxides, binary/ternary hybrid metal oxides, elemental doped semiconductors, and metal-organic frameworks (MOFs) for improving the performance and compatibility are presented and discussed. The strategies of incorporating photocatalysts into membrane matrix for pursuing the most stable membrane integrity, high photocatalytic efficiency, and excellent perm-selectivity performance in the very recent studies were discussed. This review also outlines the performance enhancement of photocatalytic membranes (PMs) in wastewater treatment and its potential for water reclamation. Photocatalysts enhanced membrane separation by inducing anti-fouling and self-cleaning properties as well as antibacterial activity. Based on the reviewed study, PMs are possible to achieve complete removal of emerging contaminants and ∼99% reduction of bacterial colony that leading on the zero liquid discharge (ZLD). However, the intensive exposure of photo-induced radicals potentially damages the polymeric membrane. Therefore, future studies should be focused on fabricating chemically stable host-membrane material. Moreover, the light source and the membrane module design for the practical application by considering the hydrodynamic and cost-efficiency should be a concern for technology diffusion to the industrial-scale application.
Collapse
Affiliation(s)
- Tutuk Djoko Kusworo
- Department of Chemical Engineering, Faculty of Engineering, University of Diponegoro, Semarang, 50275, Indonesia.
| | - Andri Cahyo Kumoro
- Department of Chemical Engineering, Faculty of Engineering, University of Diponegoro, Semarang, 50275, Indonesia
| | - Dani Puji Utomo
- Department of Chemical Engineering, Faculty of Engineering, University of Diponegoro, Semarang, 50275, Indonesia
| |
Collapse
|
19
|
Zhang M, Wang F, Shi X, Wei J, Yan W, Dong Y, Hu H, Wei K. Preparation and Photodegradation Properties of Carbon-Nanofiber-Based Catalysts. Polymers (Basel) 2022; 14:polym14173584. [PMID: 36080659 PMCID: PMC9460344 DOI: 10.3390/polym14173584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, an iron oxide/carbon nanofibers (Fe2O3/CNFs) composite was prepared by a combination of electrospinning and hydrothermal methods. The characterization of Fe2O3/CNFs was achieved via scanning electron microscopy (SEM), infrared spectroscopy (IR), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). It is shown that when the hydrothermal reaction time was 180 °C and the reaction time was 1 h, the Fe2O3 nanoparticle size was about 90 nm with uniform distribution. The photodegradation performance applied to decolorize methyl orange (MO) was investigated by forming a heterogeneous Fenton catalytic system with hydrogen peroxide. The reaction conditions for the degradation of MO were optimized with the decolorization rate up to more than 99% within 1 h, which can decompose the dyes in water effectively. The degradation process of MO by Fenton oxidation was analyzed by a UV-visible NIR spectrophotometer, and the reaction mechanism was speculated as well.
Collapse
Affiliation(s)
- Mingpan Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Fuli Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Xinran Shi
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Jing Wei
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Weixia Yan
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Yihang Dong
- Suzhou Best Color Nanotechnology Co., Ltd., Suzhou 215000, China
| | - Huiqiang Hu
- Guangzhou Inspection Testing and Certification Group Co., Ltd., Guangzhou 511447, China
- Correspondence: (H.H.); (K.W.)
| | - Kai Wei
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
- Correspondence: (H.H.); (K.W.)
| |
Collapse
|
20
|
Toxicity Assessment and Treatment Options of Diclofenac and Triclosan Dissolved in Water. TOXICS 2022; 10:toxics10080422. [PMID: 36006101 PMCID: PMC9415529 DOI: 10.3390/toxics10080422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022]
Abstract
The presence of pharmaceutical and personal care products in water is increasing tremendously nowadays. Typical representatives are diclofenac (DCF) and triclosan (TCS). Acute toxicity of these substances was experimentally assessed using the freshwater algae Raphidocelis subcapitata (living, immobilized). The IC50 achieved for R. subcapitata was 177.7–189.1 mg·L−1 for DCF and 5.4–17.2 µg·L−1 for TCS, whereas, regarding DCF, the results corresponded to the values observed by other authors. Concerning TCS, the results were lower than predicted and indicated TCSs’ higher toxicity. The immobilized R. subcapitata showed comparable results with its living culture for DCF only. Regarding K2Cr2O7 and TCS, the immobilized alga was more sensitive. The DCF and TCF removal from water was tested by sorption, photocatalytic and photolytic processes. TiO2 was used as a photocatalyst. Norit and SuperSorbon were used as sorbents based on activated charcoal. The DCF decomposition achieved by both photo-processes was very fast. The starting concentration fell below the detection limit in less than one minute, while bioluminescence on Aliivibrio fischeri showed no toxic intermediates formed only in the case of photocatalysis. DCF and TCS removals by sorption were significantly faster on Norit than SuperSorbon, while the bioluminescence inhibition remained insignificant.
Collapse
|
21
|
|
22
|
Performance Evaluation of a Hybrid Enhanced Membrane Bioreactor (eMBR) System Treating Synthetic Textile Effluent. WATER 2022. [DOI: 10.3390/w14111708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The textile industry produces a high volume of wastewater rich in toxic and harmful chemicals. Therefore, it is necessary to apply wastewater treatment methods such as membrane bioreactor (MBR) to achieve high efficiency, process stability, small footprint, and low maintenance costs. This work performed a study on a synthetic textile wastewater treatment using an enhanced membrane bioreactor (eMBR) equipped with two anoxic and one aerobic reactor and a UV disinfection unit. The results showed 100% removal of total suspended solids, 81.8% removal of chemical oxygen demand, and 96% removal of color. The SEM analysis indicated that the pores of the membrane were blocked by a compact and dense gel layer, as observed by the presence of the fouling layer. According to these results, an eMBR hybrid system is a suitable option for treating synthetic textile wastewater. Opportunities to increase the efficiencies in the removal of some pollutants, as well as stabilizing and standardizing the process are the improvements which require further investigations.
Collapse
|
23
|
Mahmoudabadi ZS, Rashidi A, Maklavany DM. Optimizing treatment of alcohol vinasse using a combination of advanced oxidation with porous α-Fe 2O 3 nanoparticles and coagulation-flocculation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113354. [PMID: 35247711 DOI: 10.1016/j.ecoenv.2022.113354] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
This study utilizes a novel method, namely the combination of advanced oxidation processes with synthesized highly porous α-Fe2O3 nanoparticles and coagulation-flocculation with polyacrylamide, to investigate the effects on COD removal in alcohol vinasse. Highly porous α-Fe2O3 nanoparticles were prepared via a chemical precipitation technique. The characteristic of the synthesized α-Fe2O3 nanoparticles were determined by FT-IR, Raman spectroscopy, XRD, SEM, and N2 adsorption-desorption isotherms. The effect of different α-Fe2O3 nanoparticles loading for chemical oxygen demand (COD) removal efficiency was investigated. The results revealed that at α-Fe2O3 nanoparticle dose of 3000 ppm had the highest COD removal for vinasse. Then, central composite design (CCD) was used to optimize the operating variables such as pH, time, oxidant dosage, and coagulant dosage, and their optimum values were determined to be pH:7.36, 90 min, 17.89 wt% oxidant dosage, and 1.6 wt% coagulant dosage, to achieve a high COD removal efficiency in 70 ℃ for alcohol vinasse (98.64%). Based on optimal conditions, the porous α-Fe2O3 nanoparticles possess superior catalytic activity in the advanced oxidation process compared to other treating methods. Also, the mechanism of the catalytic oxidation reaction is evaluated.
Collapse
Affiliation(s)
- Zohal Safaei Mahmoudabadi
- Carbon & Nanotechnology Research Center, RIPI, Tehran, Iran; School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | | | | |
Collapse
|
24
|
Meena M, Yadav G, Sonigra P, Shah MP. A comprehensive review on application of bioreactor for industrial wastewater treatment. Lett Appl Microbiol 2022; 74:131-158. [PMID: 34469596 DOI: 10.1111/lam.13557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/19/2021] [Accepted: 08/30/2021] [Indexed: 12/24/2022]
Abstract
In the recent past, wastewater treatment processes performed a pivotal role in accordance with maintaining the sustainable environment and health of mankind at a proper hygiene level. It has been proved indispensable by government regulations throughout the world on account of the importance of preserving freshwater bodies. Human activities, predominantly from industrial sectors, generate an immeasurable amount of industrial wastewater loaded with toxic chemicals, which not only cause dreadful environmental problems, but also leave harmful impacts on public health. Hence, industrial wastewater effluent must be treated before being released into the environment to restrain the problems related to industrial wastewater discharged to the environment. Nowadays, biological wastewater treatment methods have been considered an excellent approach for industrial wastewater treatment process because of their cost-effectiveness in the treatment, high efficiency and their potential to counteract the drawbacks of conventional wastewater treatment methods. Recently, the treatment of industrial effluent through bioreactor has been proved as one of the best methods from the presently available methods. Reactors are the principal part of any biotechnology-based method for microbial or enzymatic biodegradation, biotransformation and bioremediation. This review aims to explore and compile the assessment of the most appropriate reactors such as packed bed reactor, membrane bioreactor, rotating biological contactor, up-flow anaerobic sludge blanket reactor, photobioreactor, biological fluidized bed reactor and continuous stirred tank bioreactor that are extensively used for distinct industrial wastewater treatment.
Collapse
Affiliation(s)
- M Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - G Yadav
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - P Sonigra
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - M P Shah
- Environmental Technology Lab, Bharuch, Gujarat, India
| |
Collapse
|
25
|
Tang P, Shi M, Li X, Zhang Y, Lin D, Li T, Zhang W, Tiraferri A, Liu B. Can pre-ozonation be combined with gravity-driven membrane filtration to treat shale gas wastewater? THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149181. [PMID: 34311379 DOI: 10.1016/j.scitotenv.2021.149181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/10/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
Low-cost gravity-driven membrane (GDM) filtration has the potential to efficiently manage highly decentralized shale gas wastewater (SGW). In this work, the feasibility of combining low dosage pre-ozonation with the GDM process was evaluated in the treatment of SGW. The results showed that pre-ozonation significantly increased the stable flux (372%) of GDM filtration, while slightly deteriorating the quality of the effluent water in terms of organic content (-14%). These results were mainly attributed to the conversion of macromolecular organics to low-molecular weight fractions by pre-ozonation. Interestingly, pre-ozonation markedly increased the flux (198%) in the first month of operation also for a GDM process added with granular activated carbon (GGDM). Nevertheless, the flux of O3-GGDM systems dropped sharply around the 25th day of operation, which might be due to the rapid accumulation of pollutants in the high flux stage and the formation of a dense fouling layer. Pre-ozonation remarkably influenced the microbial community structure. And O3-GDM systems were characterized by distinct core microorganisms, which might degrade specific organics in SGW. Furthermore, O3-GDM outperformed simple GDM as a pretreatment for RO. These findings can provide valuable references for combining oxidation technologies with the GDM process in treating refractory wastewater.
Collapse
Affiliation(s)
- Peng Tang
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University, Yibin Park, Section 2, Lingang Ave., Cuiping District, Yibin, Sichuan 644000, PR China
| | - Mengchao Shi
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University, Yibin Park, Section 2, Lingang Ave., Cuiping District, Yibin, Sichuan 644000, PR China
| | - Xin Li
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University, Yibin Park, Section 2, Lingang Ave., Cuiping District, Yibin, Sichuan 644000, PR China
| | - Yongli Zhang
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, Sichuan 610207, PR China
| | - Dong Lin
- PetroChina Southwest Oil and Gas field Company, No.5 Fuqing Rd., Chengdu, Sichuan 610051, PR China
| | - Tong Li
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, 100083, PR China.
| | - Weiming Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Alberto Tiraferri
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Baicang Liu
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University, Yibin Park, Section 2, Lingang Ave., Cuiping District, Yibin, Sichuan 644000, PR China.
| |
Collapse
|
26
|
Magnetic cobalt ferrite biochar composite as peroxymonosulfate activator for removal of lomefloxacin hydrochloride. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118889] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
27
|
Güneş E, Gönder ZB. Evaluation of the hybrid system combining electrocoagulation, nanofiltration and reverse osmosis for biologically treated textile effluent: Treatment efficiency and membrane fouling. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 294:113042. [PMID: 34126531 DOI: 10.1016/j.jenvman.2021.113042] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/14/2021] [Accepted: 06/06/2021] [Indexed: 06/12/2023]
Abstract
The efficiency of the hybrid electrocoagulation-nanofiltration-reverse osmosis (EC-NF-RO) system for the treatment of biologically treated textile effluent was investigated. The treatment performances and membrane fouling behaviours of nanofiltration (NF) and hybrid EC-NF systems were compared. EC process was evaluated concerning mitigate the membrane fouling and increasing the removal efficiencies. Besides, the treated wastewater with the hybrid EC-NF process was finally processed using RO process for reuse purpose in the textile industry. The EC treatment was applied using Fe and Al electrodes at various conditions; pH:4-10, current density:0.5-17 mA/cm2 and operating time:30-180 min. Fe electrode showed better performance in terms of higher removal efficiencies (76% COD, 96% DFZ436), lower energy (21.1 kWh/m3) and electrode consumptions (3.7 kg/m3) for the optimum conditions. Scanning Electron Microscopy-Energy Dispersive Index (ESEM-EDX) and Fourier-Transform Infrared Spectroscopy (FTIR) analyses were carried out for EC sludge samples obtained with Fe and Al electrodes. Desal 5 DL and NF 270 membranes were tested in terms of removal efficiency and membrane fouling for NF and hybrid EC-NF process of textile wastewater. Membrane fouling was evaluated with flux values, resistance-in-series model results as well as Atomic Force Microscopy (AFM), FTIR and contact angle measurements. NF 270 membrane achieved better chloride (28%) and conductivity (41%) removal efficiencies for NF treatment. EC pretreatment did not result in any noticeable improvement in rejections except for chloride (48%) and conductivity (59%) for the hybrid EC-NF process with NF 270. The ratios of Rc decreased to 40% for NF 270 and 42% for Desal 5DL after EC pretreatment. NF270 membrane indicated high permeate flux and low membrane fouling considering cake resistance distribution, surface roughness, hydrophilicity and chemical structure variation. >93% COD, 99% conductivity, 97% chloride, and 91% TDS removal efficiencies were obtained with the hybrid EC-NF-RO process. Finally, the obtained high quality water by RO after the EC + NF 270 hybrid process could be used for all textile finishing process.
Collapse
Affiliation(s)
- Eda Güneş
- Istanbul University-Cerrahpaşa, Faculty of Engineering, Department of Environmental Engineering, Avcilar Campus, Avcilar, 34320, Istanbul, Turkey
| | - Z Beril Gönder
- Istanbul University-Cerrahpaşa, Faculty of Engineering, Department of Environmental Engineering, Avcilar Campus, Avcilar, 34320, Istanbul, Turkey.
| |
Collapse
|
28
|
Advanced Oxidation Processes Based on Sulfate Radicals for Wastewater Treatment: Research Trends. WATER 2021. [DOI: 10.3390/w13172445] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this work, the recent trends in the application of the sulfate radical-based advanced oxidation processes (SR-AOPs) for the treatment of wastewater polluted with emerging contaminants (ECs) and pathogenic load were systematically studied due to the high oxidizing power ascribed to these technologies. Additionally, because of the economic benefits and the synergies presented in terms of efficiency in ECs degradation and pathogen inactivation, the combination of the referred to AOPs and conventional treatments, including biological processes, was covered. Finally, the barriers and limitations related to the implementation of SR-AOPs were described, highlighting the still scarce full-scale implementation and the high operating-costs associated, especially when solar energy cannot be used in the oxidation systems.
Collapse
|
29
|
Evaluation of textile wastewater treatment in sequential anaerobic moving bed bioreactor - aerobic membrane bioreactor. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
30
|
Fabrication of iron nanoparticles using Parthenium: A combinatorial eco-innovative approach to eradicate crystal violet dye and phosphate from the aqueous environment. ACTA ACUST UNITED AC 2021. [DOI: 10.1016/j.enmm.2021.100426] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
31
|
Granzoto MR, Seabra I, Malvestiti JA, Cristale J, Dantas RF. Integration of ozone, UV/H 2O 2 and GAC in a multi-barrier treatment for secondary effluent polishing: Reuse parameters and micropollutants removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:143498. [PMID: 33218803 DOI: 10.1016/j.scitotenv.2020.143498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/13/2020] [Accepted: 10/25/2020] [Indexed: 06/11/2023]
Abstract
Current studies tend to combine different advanced treatment technologies to reduce costs and increase efficiency. The objective of this work was to assess the combination of ozonation and UV/H2O2 with activated carbon adsorption for the removal of effluent quality parameters and micropollutants from secondary effluent samples. The experiments were carried out using the following configurations: O3 + GAC + O3 (1); O3 + GAC + UV/H2O2 (2); UV/H2O2 + GAC + O3 (3); UV/H2O2 + GAC + UV/H2O2 (4). Configurations 1, 3 and 4 were the most efficient for organic matter removal, while configuration 1 had the lowest cost on laboratory scale. An additional ultra-filtration membrane unit (UF) was tested at the end of configuration 1, which was optimized in terms of ozone doses for the removal of three organophosphate micropollutants in ultrapure water (TNBP, TCIPP and TPHP at 10 μgL-1). The best cost-effective configuration of this treatment train was the one using 1 mg L-1 of ozone before and after GAC, which achieved around 100% of micropollutants abatement. The role of each treatment to the final micropollutant removal was also discussed, being the first ozone treatment responsible for about 15% removal of the mixture of contaminants, while GAC was responsible for an additional 80% removal. The complete treatment train reached almost 100% of contaminants removal (under detection limit of the method), as well as added security to the system. The achieved results were also compared to international reuse legislations, proving that the combination of O3 and GAC was an interesting option to achieve enough quality for some reuse purposes.
Collapse
Affiliation(s)
- Mariana R Granzoto
- School of Technology, University of Campinas - UNICAMP, Paschoal Marmo 1888, 13484332 Limeira, SP, Brazil
| | - Ivna Seabra
- School of Technology, University of Campinas - UNICAMP, Paschoal Marmo 1888, 13484332 Limeira, SP, Brazil
| | - Jacqueline A Malvestiti
- School of Technology, University of Campinas - UNICAMP, Paschoal Marmo 1888, 13484332 Limeira, SP, Brazil
| | - Joyce Cristale
- School of Technology, University of Campinas - UNICAMP, Paschoal Marmo 1888, 13484332 Limeira, SP, Brazil
| | - Renato F Dantas
- School of Technology, University of Campinas - UNICAMP, Paschoal Marmo 1888, 13484332 Limeira, SP, Brazil.
| |
Collapse
|
32
|
Al-Amshawee SKA, Yunus MYBM, Lynam JG. Non-catalytic ozonation of palm oil mill effluent (POME). Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.01.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
Synthesis of magnetized nitrogen-doped biochar and its high efficiency for elimination of ciprofloxacin hydrochloride by activation of peroxymonosulfate. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117977] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Ledakowicz S, Paździor K. Recent Achievements in Dyes Removal Focused on Advanced Oxidation Processes Integrated with Biological Methods. Molecules 2021; 26:molecules26040870. [PMID: 33562176 PMCID: PMC7914684 DOI: 10.3390/molecules26040870] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 01/16/2023] Open
Abstract
In the last 3 years alone, over 10,000 publications have appeared on the topic of dye removal, including over 300 reviews. Thus, the topic is very relevant, although there are few articles on the practical applications on an industrial scale of the results obtained in research laboratories. Therefore, in this review, we focus on advanced oxidation methods integrated with biological methods, widely recognized as highly efficient treatments for recalcitrant wastewater, that have the best chance of industrial application. It is extremely important to know all the phenomena and mechanisms that occur during the process of removing dyestuffs and the products of their degradation from wastewater to prevent their penetration into drinking water sources. Therefore, particular attention is paid to understanding the mechanisms of both chemical and biological degradation of dyes, and the kinetics of these processes, which are important from a design point of view, as well as the performance and implementation of these operations on a larger scale.
Collapse
|
35
|
Haspulat Taymaz B, Eskizeybek V, Kamış H. A novel polyaniline/NiO nanocomposite as a UV and visible-light photocatalyst for complete degradation of the model dyes and the real textile wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:6700-6718. [PMID: 33006103 DOI: 10.1007/s11356-020-10956-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
The textile processing industry utilizes enormous amounts of water. After the dying process, the wastewater discharged to the environment contains carcinogens, non-biodegradable, toxic, and colored organic materials. This study aimed to develop a nanocomposite material with improved photocatalytic activity to degrade textile dyes and without a need for a post-separation process after the use. For this, nickel oxide nanoparticles (NiO NPs) were synthesized by a simple method in aqueous media. Then, NiO-doped polyaniline (PANI/NiO) with efficient absorption in the visible region (optical band gap of 2.08 eV) synthesized on a stainless steel substrate with electropolymerization of aniline in the aqueous media. The photocatalytic activity of PANI/NiO film was also investigated by the degradation of model dyes. Under UV and visible light irradiation, the PANI/NiO film degraded methylene blue and rhodamine B dyes entirely in 30 min. Moreover, the PANI/NiO film was also utilized to degrade real textile wastewater (RTW) without applying any pre-process; it was entirely decomposed by the nanocomposite film in only 45 min under UV light irradiation. The photocatalytic reaction rate of the pure PANI film is increased as 2.5 and 1.5 times with the addition of NiO NPs under UV and visible light irradiations for degradation RTW, respectively. The photocatalytic efficiency was attributed to reduced electron-hole pair recombination on the photocatalyst surface. Furthermore, the photocatalytic stability is discussed based on re-use experiments. The photocatalytic performance remains nearly unchanged, and the degradation of dyes is kept 94% after five cycles.
Collapse
Affiliation(s)
| | - Volkan Eskizeybek
- Department of Materials Science and Engineering, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Handan Kamış
- Department of Chemical Engineering, Konya Technical University, Konya, Turkey.
| |
Collapse
|
36
|
Zuo W, Zhang L, Zhang Z, Tang S, Sun Y, Huang H, Yu Y. Degradation of organic pollutants by intimately coupling photocatalytic materials with microbes: a review. Crit Rev Biotechnol 2021; 41:273-299. [PMID: 33525937 DOI: 10.1080/07388551.2020.1869689] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
With the rapid development of industry and agriculture, large amounts of organic pollutants have been released into the environment. Consequently, the degradation of refractory organic pollutants has become one of the toughest challenges in remediation. To solve this problem, intimate coupling of photocatalysis and biodegradation (ICPB) technology, which allows the simultaneous action of photocatalysis and biodegradation and thus integrates the advantages of photocatalytic reactions and biological treatments, was developed recently. ICPB consists mainly of porous carriers, photocatalysts, biofilms, and an illuminated reactor. Under illumination, photocatalysts on the surface of the carriers convert refractory pollutants into biodegradable products through photocatalytic reactions, after which these products are completely degraded by the biofilms cultivated in the carriers. Additionally, the biofilms are protected by the carriers from the harmful light and free radicals generated by the photocatalyst. Compared with traditional technologies, ICPB remarkably improves the degradation efficiency and reduces the cost of bioremediation. In this review, we introduce the origin and mechanisms of ICPB, discuss the development of reactors, carriers, photocatalysts, and biofilms used in ICPB, and summarize the applications of ICPB to treat organic pollutants. Finally, gaps in this research as well as future perspectives are discussed.
Collapse
Affiliation(s)
- Wenlu Zuo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, PR China.,School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, PR China
| | - Lei Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, PR China
| | - Zhidong Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, PR China.,Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Xinjiang Uigur Autonomous Region, Urumqi, PR China
| | - Susu Tang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, PR China
| | - Yongjun Sun
- College of Urban Construction, Nanjing Tech University, Nanjing, PR China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, PR China
| | - Yadong Yu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, PR China.,School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, PR China
| |
Collapse
|
37
|
Sustainable Evaluation of Using Nano Zero-Valent Iron and Activated Carbon for Real Textile Effluent Remediation. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-021-05349-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
38
|
Samuchiwal S, Gola D, Malik A. Decolourization of textile effluent using native microbial consortium enriched from textile industry effluent. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123835. [PMID: 33254813 DOI: 10.1016/j.jhazmat.2020.123835] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/01/2020] [Accepted: 08/28/2020] [Indexed: 06/12/2023]
Abstract
A robust and efficient treatment process is required to address the problem of residual colour and avoid expensive post-treatment steps while dealing with textile effluents. In the present work, a novel microbial consortium enriched from textile effluent was used to optimize the process of decolourization under extreme conditions with minimum inputs. With PreTreatment Range (PTR) effluent as a carbon source and only 0.5 g/L yeast extract as external input, the process enabled 70-73% colour reduction (from 1910-1930 to 516-555 hazen) in dyeing unit wastewater. Unhindered performance at higher temperatures (30 °C-50 °C) and wide pH range (7-12) makes this process highly suitable for the treatment of warm and extremely alkaline textile effluents. No significant difference was observed in the decolourization efficiency for effluents from different batches (Colour: 1647-4307 hazen; pH-11.5-12.0) despite wide variation in nature and concentration of dyes employed. Long term (60 days) continuous mode performance monitoring at hydraulic retention time of 48 h in lab-scale bioreactor showed consistent colour (from 1734-1980 to 545-723 hazen) and chemical oxygen demand (1720-2170 to 669-844 mg/L) removal and consistently neutral pH of the treated water. Present study thus makes a significant contribution by uncovering the ability of native microbial consortium to reliably treat dye laden textile wastewater without any dilution or pre-treatment and with minimum external inputs. The results ensure easy applicability of this indigenously developed process at the industrial scale.
Collapse
Affiliation(s)
- Saurabh Samuchiwal
- Applied Microbiology Lab, Centre for Rural Development and Technology, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, 110016, India
| | - Deepak Gola
- Applied Microbiology Lab, Centre for Rural Development and Technology, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, 110016, India; Department of Biotechnology, Noida Institute of Engineering and Technology, Uttar Pradesh, India
| | - Anushree Malik
- Applied Microbiology Lab, Centre for Rural Development and Technology, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
39
|
Huang C, Liu H, Meng S, Liang D. Effect of PAC on the Behavior of Dynamic Membrane Bioreactor Filtration Layer Based on the Analysis of Mixed Liquid Properties and Model Fitting. MEMBRANES 2020; 10:E420. [PMID: 33327617 PMCID: PMC7765143 DOI: 10.3390/membranes10120420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 01/04/2023]
Abstract
Recently, dynamic membrane bioreactor (DMBR) has gradually gained the interest of researchers for the development of membrane technology. In this paper, we set up parallel experiments to investigate the effect of powder activated carbon (PAC) on organic matter removal, transmembrane pressure, and filter cake layer characterization to make an overall performance assessment of DMBR. The results showed that DMBR has a good removal effect on organic matter removal, and with a chemical oxygen demand removal rate over 85%. Protein was found to be the main membrane fouling substance. Due to the electric double-layer effect, membrane fouling tended to be alleviated when the PN/PS value was low. Using a filtration model under constant current conditions, the filtration process through the cake layer was observed to be consistent with cake-intermediate model.
Collapse
Affiliation(s)
| | | | | | - Dawei Liang
- School of Space and Environment, Beihang University, Beijing 100191, China; (C.H.); (H.L.); (S.M.)
| |
Collapse
|
40
|
Implementation of Floating Treatment Wetlands for Textile Wastewater Management: A Review. SUSTAINABILITY 2020. [DOI: 10.3390/su12145801] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The textile industry is one of the most chemically intensive industries, and its wastewater is comprised of harmful dyes, pigments, dissolved/suspended solids, and heavy metals. The treatment of textile wastewater has become a necessary task before discharge into the environment. The textile effluent can be treated by conventional methods, however, the limitations of these techniques are high cost, incomplete removal, and production of concentrated sludge. This review illustrates recent knowledge about the application of floating treatment wetlands (FTWs) for remediation of textile wastewater. The FTWs system is a potential alternative technology for textile wastewater treatment. FTWs efficiently removed the dyes, pigments, organic matter, nutrients, heavy metals, and other pollutants from the textile effluent. Plants and bacteria are essential components of FTWs, which contribute to the pollutant removal process through their physical effects and metabolic process. Plants species with extensive roots structure and large biomass are recommended for vegetation on floating mats. The pollutant removal efficiency can be enhanced by the right selection of plants, managing plant coverage, improving aeration, and inoculation by specific bacterial strains. The proper installation and maintenance practices can further enhance the efficiency, sustainability, and aesthetic value of the FTWs. Further research is suggested to develop guidelines for the selection of right plants and bacterial strains for the efficient remediation of textile effluent by FTWs at large scales.
Collapse
|
41
|
Fabrication and characterisation of fine-tuned Polyetherimide (PEI)/WO3 composite ultrafiltration membranes for antifouling studies. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137201] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
42
|
González T, Dominguez JR, Cuerda-Correa EM, Correia SE, Donoso G. Selecting and improving activated homogeneous catalytic processes for pollutant removal. Kinetics, mineralization and optimization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 256:109972. [PMID: 31989988 DOI: 10.1016/j.jenvman.2019.109972] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/25/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
The degradation of a model pollutant, tartrazine, very used in food industry and usually present in WWTPs effluents and surface waters, was investigated by nine activated homogeneous catalytic processes, namely, Fe3+/H2O2, Fe2+/H2O2, UV/H2O2, UV/S2O82-, UV/Fe2+/H2O2, UV/Fe3+/H2O2, UV, VIS/Fe3+/H2O2, and VIS/Fe3+/H2O2/C2O42-. In order to compare the mineralization and oxidation ability of each process, the removal of dye, chemical oxygen demand (COD) and total organic carbon (TOC) were analyzed, as well as the overall kinetic rate constant. Also, the different oxidation path-ways (direct photolysis and/or oxidation by free radicals) were estimated for each system. After the comparison, the Fenton process, which had the highest mineralization values, was tested in luminous and dark phases using designed experiments, and the influences of all operating variables were studied by RSM.
Collapse
Affiliation(s)
- T González
- Dept. Chemical Engineering and Physical Chemistry, University of Extremadura, Avda. Elvas, 06006, Badajoz, Spain.
| | - J R Dominguez
- Dept. Chemical Engineering and Physical Chemistry, University of Extremadura, Avda. Elvas, 06006, Badajoz, Spain
| | - E M Cuerda-Correa
- Dept. Organic and Inorganic Chemistry, University of Extremadura, Avda. Elvas, 06006, Badajoz, Spain
| | - S E Correia
- Dept. Chemical Engineering and Physical Chemistry, University of Extremadura, Avda. Elvas, 06006, Badajoz, Spain
| | - G Donoso
- Dept. Chemical Engineering and Physical Chemistry, University of Extremadura, Avda. Elvas, 06006, Badajoz, Spain
| |
Collapse
|