1
|
Sayed AEDH, Emeish WFA, Bakry KA, Al-Amgad Z, Lee JS, Mansour S. Polystyrene nanoplastic and engine oil synergistically intensify toxicity in Nile tilapia, Oreochromis niloticus : Polystyrene nanoplastic and engine oil toxicity in Nile tilapia. BMC Vet Res 2024; 20:143. [PMID: 38622626 PMCID: PMC11020678 DOI: 10.1186/s12917-024-03987-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/23/2024] [Indexed: 04/17/2024] Open
Abstract
Polystyrene nanoplastic (PS-NPs) and Engine oil (EO) pose multiple ecotoxic effects with increasing threat to fish ecosystems. The current study investigated the toxicity of 15 days exposure to PS-NPs and / or EO to explore their combined synergistic effects on Nile tilapia, Oreochromis niloticus (O. niloticus). Hematobiochemical parameters, proinflammatory cytokines, and oxidative stress biomarkers as well as histological alterations were evaluated. The experimental design contained 120 acclimated Nile tilapia distributed into four groups, control, PS-NPs (5 mg/L), EO (1%) and their combination (PS-NPs + EO). After 15-days of exposure, blood and tissue samples were collected from all fish experimental groups. Results indicated that Nile tilapia exposed to PS-NPs and / or EO revealed a significant decrease in almost all the measured hematological parameters in comparison to the control, whereas WBCs and lymphocyte counts were significantly increased in the combined group only. Results clarified that the combined PS-NPs + EO group showed the maximum decrease in RBCs, Hb, MCH and MCHC, and showed the maximum significant rise in interleukin-1β (IL-1β), and interleukin-6 (IL-6) in comparison to all other exposed groups. Meanwhile, total antioxidant capacity (TAC) showed a significant (p < 0.05) decline only in the combination group, whereas reduced glutathione (GSH) showed a significant decline in all exposed groups in comparison to the control. Both malondialdehyde (MDA) and aspartate aminotransferase (AST) showed a significant elevation only in the combination group. Uric acid showed the maximum elevation in the combination group than all other groups, whereas creatinine showed significant elevation in the EO and combination group when compared to the control. Furthermore, the present experiment proved that exposure to these toxicants either individually or in combination is accompanied by pronounced histomorpholgical damage characterized by severe necrosis and hemorrhage of the vital organs of Nile tilapia, additionally extensively inflammatory conditions with leucocytes infiltration. We concluded that combination exposure to both PS-NPs and EO caused severe anemia, extreme inflammatory response, oxidative stress, and lipid peroxidation effects, thus they can synergize with each other to intensify toxicity in fish.
Collapse
Affiliation(s)
- Alaa El-Din H Sayed
- Department of Zoology, Assiut University, Assiut, 71516, Egypt.
- Department of Biotechnology, Molecular Biology Research & Studies Institute, Assiut University, Assiut, 71516, Egypt.
| | | | - Karima A Bakry
- Fish Diseases Department, South Valley University, Qena, Egypt
| | - Zeinab Al-Amgad
- General Authority for Veterinary Services, Qena Veterinary Directorate, Qena, Egypt
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Salwa Mansour
- Zoology Department, South Valley University, Qena, Egypt
| |
Collapse
|
2
|
Alarfaj N, Al Musayeib N, Amina M, El-Tohamy M. Synthesis and characterization of polysiphonia/cerium oxide/nickel oxide nanocomposites for the removal of toxins from contaminated water and antibacterial potential. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:17064-17096. [PMID: 38334931 DOI: 10.1007/s11356-024-32199-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/22/2024] [Indexed: 02/10/2024]
Abstract
Due to massive industrial development, organic and inorganic wastes are very common in most industrial effluents from the pharmaceutical industry. Even in low concentrations, they are very dangerous and harmful to humans and other living organisms. Antibiotics are frequently detected in surface waters, in soil, in wastewater from sewage treatment plants, and even in drinking water. The major environmental threat they pose has prompted to search for effective and environmentally friendly means of eliminating these toxins. The biogenic synthesis of nanomaterials using natural herbal extracts has attracted considerable attention due to their low-cost, environmentally friendly and non-toxic nature, and as a reversal of various physical and chemical processes. The ceria nanoparticles (CeO2 NPs), nickel oxide nanoparticles (NiO NPs), and CeO2/NiO nanocomposites (CeO2/NiO NCS) were successfully prepared by simple biosynthetic routes using Polysiphonia urceolata algae extract as green surfactants and tested for toxic ofloxacin removal efficiency. The formed nanostructures were identified and characterized by various microscopic (FESEM-EDX, TEM, XRD, BET, and XPS) and spectroscopic (UV-Vis, FTIR, and TGA) methods. The adsorption/desorption of ofloxacin (OFX) on the surface of the nanomaterials was investigated under optimized conditions (initial dose 20 mg/L, agitation speed 250 rpm, pH 12, adsorbent dose 0.5 mg/L, and contact time 120 min). The removal efficiencies were 78%, 86%, and 94% for CeO2 NPs, NiO NPs and CeO2/NiO NCS, respectively, where OFX removal was found to be spontaneous, followed by Freundlich isotherm and pseudo-second order kinetic reaction model. The OFX adsorption mechanism on the nanomaterials involved the surface complexation via specific electrostatic attraction and H-bonding. The biogenic nanomaterials were also tested for their antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus epidermidis and Staphylococcus aureus. The CeO2/NiO NCS exhibited the highest antibacterial activity with zone of inhibition (31.12 ± 0.59 mm) against S. epidermidis, followed by CeO2NPs and NiONPs with zones of inhibition (25.53 ± 1.2 mm) and (21.42 ± 0.6 mm) against P. aeruginosa and S. epidermidis, respectively. This study demonstrated the efficiency of the synthesized nanomaterials in removing toxins such as OFX from contaminated water and can serve as potential antibacterial and antioxidant agents. Notably, the heterogeneous nanomaterials demonstrated remarkable stability across a broad pH range, promising reusability and indicated tremendous potential of waste biomass reduction and OFX effluent treatment.
Collapse
Affiliation(s)
- Nawal Alarfaj
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, 11495, Riyadh, Saudi Arabia
| | - Nawal Al Musayeib
- Department of Pharmacognosy, Pharmacy College, King Saud University, P.O. Box 22452, 11495, Riyadh, Saudi Arabia
| | - Musarat Amina
- Department of Pharmacognosy, Pharmacy College, King Saud University, P.O. Box 22452, 11495, Riyadh, Saudi Arabia
| | - Maha El-Tohamy
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, 11495, Riyadh, Saudi Arabia.
| |
Collapse
|
3
|
de Jesus RA, de Assis GC, Oliveira RJD, Costa JAS, da Silva CMP, Iqbal HM, Ferreira LFR. Metal/metal oxide nanoparticles: A revolution in the biosynthesis and medical applications. NANO-STRUCTURES & NANO-OBJECTS 2024; 37:101071. [DOI: 10.1016/j.nanoso.2023.101071] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
|
4
|
Zaker A, Chen Z, Lee K, Ben Hammouda S. Development of sludge-based activated char sorbent with enhanced hydrophobicity for oil spill cleanup. ENVIRONMENTAL TECHNOLOGY 2023; 44:1772-1781. [PMID: 34842051 DOI: 10.1080/09593330.2021.2012269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
Recovery of oil spilled on surface waters by the use of sorbents remains one of the primary oil spill response options available. To improve on this response measure, we have successfully fabricated an activated char (AC) sorbent material by pyrolysis of sewage sludge (SS), a readily available waste product generated across the world from wastewater treatment plants. The inherent Fe-minerals in SS texture were converted to magnetic Fe3O4 particles during the pyrolysis reaction. The AC provided a unique means to recover the sorbent after the oil sorption process with a magnetic field. Meanwhile, a superhydrophobic sorbent material with a water contact angle of 152.2° was created by the treatment of AC with myristic acid which could float on the water surface. Feasibility studies at the laboratory-scale were conducted with motor oil and light crude oil to evaluate its potential use in spill response operations. Results showed a sorption capacity of about 8.5 and 10.7 g/g for motor oil and light crude oil, respectively. Following the recovery of the test oils by ethanol stripping, the material could be recycled up to 5 times with trivial loss in sorption capacity. This research proposes a framework for the development of a highly efficient sorbent material for oil spill response operations from SS waste.
Collapse
Affiliation(s)
- Ali Zaker
- Department of Building, Civil, and Environmental Engineering, Concordia University, Montreal, Canada
| | - Zhi Chen
- Department of Building, Civil, and Environmental Engineering, Concordia University, Montreal, Canada
| | - Kenneth Lee
- Ecosystem Science, Fisheries and Oceans Canada, Ottawa, Canada
| | - Samia Ben Hammouda
- Department of Building, Civil, and Environmental Engineering, Concordia University, Montreal, Canada
| |
Collapse
|
5
|
Jakubski Ł, Dudek G, Turczyn R. Applicability of Composite Magnetic Membranes in Separation Processes of Gaseous and Liquid Mixtures-A Review. MEMBRANES 2023; 13:384. [PMID: 37103811 PMCID: PMC10142046 DOI: 10.3390/membranes13040384] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/23/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
Recent years have shown a growing interest in the application of membranes exhibiting magnetic properties in various separation processes. The aim of this review is to provide an in-depth overview of magnetic membranes that can be successfully applied for gas separation, pervaporation, ultrafiltration, nanofiltration, adsorption, electrodialysis, and reverse osmosis. Based on the comparison of the efficiency of these separation processes using magnetic and non-magnetic membranes, it has been shown that magnetic particles used as fillers in polymer composite membranes can significantly improve the efficiency of separation of both gaseous and liquid mixtures. This observed separation enhancement is due to the variation of magnetic susceptibility of different molecules and distinct interactions with dispersed magnetic fillers. For gas separation, the most effective magnetic membrane consists of polyimide filled with MQFP-B particles, for which the separation factor (αrat O2/N2) increased by 211% when compared to the non-magnetic membrane. The same MQFP powder used as a filler in alginate membranes significantly improves water/ethanol separation via pervaporation, reaching a separation factor of 12,271.0. For other separation methods, poly(ethersulfone) nanofiltration membranes filled with ZnFe2O4@SiO2 demonstrated a more than four times increase in water flux when compared to the non-magnetic membranes for water desalination. The information gathered in this article can be used to further improve the separation efficiency of individual processes and to expand the application of magnetic membranes to other branches of industry. Furthermore, this review also highlights the need for further development and theoretical explanation of the role of magnetic forces in separation processes, as well as the potential for extending the concept of magnetic channels to other separation methods, such as pervaporation and ultrafiltration. This article provides valuable insights into the application of magnetic membranes and lays the groundwork for future research and development in this area.
Collapse
Affiliation(s)
- Łukasz Jakubski
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland
| | - Gabriela Dudek
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland
| | - Roman Turczyn
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland
| |
Collapse
|
6
|
Allouche F. Synergistic Effects on the Mercury Sorption Behaviors Using Hybrid Cellulose Fiber/Chitosan Foam. ChemistrySelect 2022. [DOI: 10.1002/slct.202202600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Fella‐Naouel Allouche
- Division Bioénergie et Environnement Centre de Développement des Energies Renouvelables (CDER) BP. 62 Route de l'Observatoire Bouzaréah 16340 Algiers Algeria
| |
Collapse
|
7
|
Kim S, Nam SN, Jang A, Jang M, Park CM, Son A, Her N, Heo J, Yoon Y. Review of adsorption-membrane hybrid systems for water and wastewater treatment. CHEMOSPHERE 2022; 286:131916. [PMID: 34416582 DOI: 10.1016/j.chemosphere.2021.131916] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
Adsorption is an effective method for the removal of inorganic and organic contaminants and has been commonly used as a pretreatment method to improve contaminant removal and control flux during membrane filtration. Over the last two decades, many researchers have reported the use of hybrid systems comprising various adsorbents and different types of membranes, such as nanofiltration (NF), ultrafiltration (UF), and microfiltration (MF) membranes, to remove contaminants from water. However, a comprehensive evaluation of the removal mechanisms and effects of the operating conditions on the transport of contaminants through hybrid systems comprising various adsorbents and NF, UF, or MF membranes has not been performed to date. Therefore, a systematic review of contaminant removal using adsorption-membrane hybrid systems is critical, because the transport of inorganic and organic contaminants via the hybrid systems is considerably affected by the contaminant properties, water quality parameters, and adsorbent/membrane physicochemical properties. Herein, we provide a comprehensive summary of the most recent studies on adsorption-NF/UF/MF membrane systems using various adsorbents and membranes for contaminant removal from water and wastewater and highlight the future research directions to address the current knowledge gap.
Collapse
Affiliation(s)
- Sewoon Kim
- Department of Civil and Environmental Engineering, University of South Carolina, Columbia, 300 Main Street, SC, 29208, USA
| | - Seong-Nam Nam
- Department of Civil and Environmental Engineering, Korea Army Academy at Yeong-Cheon, 495 Hogook-ro, Kokyungmeon, Yeong-Cheon, Gyeongbuk, 38900, South Korea
| | - Am Jang
- School of Civil and Architecture Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-16 Gu, Suwon, Gyeonggi-do, 440-746, Republic of Korea
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, 447-1, Wolgye-Dong Nowon-Gu, Seoul, Republic of Korea
| | - Chang Min Park
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Ahjeong Son
- Department of Environmental Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Namguk Her
- Department of Civil and Environmental Engineering, Korea Army Academy at Yeong-Cheon, 495 Hogook-ro, Kokyungmeon, Yeong-Cheon, Gyeongbuk, 38900, South Korea
| | - Jiyong Heo
- Department of Civil and Environmental Engineering, Korea Army Academy at Yeong-Cheon, 495 Hogook-ro, Kokyungmeon, Yeong-Cheon, Gyeongbuk, 38900, South Korea.
| | - Yeomin Yoon
- Department of Civil and Environmental Engineering, University of South Carolina, Columbia, 300 Main Street, SC, 29208, USA.
| |
Collapse
|
8
|
Hamidi S, Banaee M, Pourkhabbaz HR, Sureda A, Khodadoust S, Pourkhabbaz AR. Effect of petroleum wastewater treated with gravity separation and magnetite nanoparticles adsorption methods on the blood biochemical response of mrigal fish (Cirrhinus cirrhosus). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:3718-3732. [PMID: 34389959 DOI: 10.1007/s11356-021-15106-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 06/21/2021] [Indexed: 04/16/2023]
Abstract
Drainage of treated wastewater to surface water is a severe threat to the health of aquatic organisms. This study aimed to evaluate the effects of 0.5 and 1% water-soluble fractions of crude oil (WSFO), WSFO treated with magnetic nanoparticles of Fe3O4 (TWSFO-Fe3O4) and with the gravity separation method (TWSFO-GSM) on Cirrhinus cirrhosis for 21 days. The rate of erythrocyte hemolysis in fish exposed to untreated 0.5 and 1% WSFO were significantly high. The activities of alanine aminotransferase (ALT), gamma-glutamyl transferase (GGT), alkaline phosphatase (ALP) were significantly increased in the groups exposed to TWSFO-GSM compared to the control group, while lactate dehydrogenase (LDH) was reduced. No significant differences in LDH, ALT, ALP, and GGT activities were observed in the fish treated with TWSFO-Fe3O4. The aspartate aminotransferase activity was significantly increased after exposure to TWSFO-Fe3O4 (1%) and TWSFO-GSM. The levels of triglyceride were decreased, whereas glucose, cholesterol, and cholinesterase activity increased in fish after both treatments. The total protein and albumin contents significantly decreased in fish under exposure to both doses of TWSFO-Fe3O4 and TWSFO-GSM. The globulin level decreased in fish exposed to TWSFO-Fe3O4 (1%) and TWSFO-GSM. Glutathione peroxidase, catalase, glucose-6-phosphate dehydrogenase activities, and total antioxidant levels were significantly reduced in the hepatocytes of fish exposed to TWSFO-Fe3O4, TWSFO-GSM, and WSFO, while superoxide dismutase activity and malondialdehyde content were increased. This study showed that despite removing oil drips from the WSFO, the xenobiotics present in the effluent treated by gravitational or nano-magnetite methods caused changes in biochemical parameters and induced oxidative stress. Therefore, it is recommended to prevent the discharge of treated effluent from the oil and petrochemical industries to aquatic ecosystems.
Collapse
Affiliation(s)
- Sakineh Hamidi
- Environmental Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Mahdi Banaee
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran.
| | - Hamid Reza Pourkhabbaz
- Environmental Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, the Balearic Islands Health Research Institute (IdISBa), and CIBEROBN Physiopathology of Obesity and Nutrition, University of Balearic Islands, 07122, Palma de Mallorca, Spain
| | - Saeid Khodadoust
- Chemistry Department, Faculty of Basic Science, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Ali Reza Pourkhabbaz
- Department of Environmental Sciences, Faculty of Natural Resources and Environment, University of Birjand, Birjand, Iran
| |
Collapse
|
9
|
Kim H, Zhang G, Wu M, Guo J, Nam C. Highly efficient and recyclable polyolefin-based magnetic sorbent for oils and organic solvents spill cleanup. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126485. [PMID: 34323724 DOI: 10.1016/j.jhazmat.2021.126485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/07/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
The oil dispersants have been applied in a broad oil pollution area, but the dispersed oil caused environmental problems during sedimentation. Unlike oil dispersants, flake type polyolefin-based oil absorbent (PA) is not emulsified and shows excellent swelling characteristic for oil removal. However, the sprayed PA flakes cannot be fully collected due to its tiny architectures, the uncollected flakes can cause unintentional secondary pollution. In this study, we develop a kind of flake type polyolefin-based magnetic absorbent (PMA) hybridized with magnetic nanoparticle, to facilitate the collection process. The magnetic nanoparticle is uniformly dispersed in PMA due to the hydrophobic functionalization of iron oxide nanoparticle. This enables the convenient collection of isolated sorbent flakes even when they were placed in the marine system and show a desirable oil recovery performance up to about 37 times for organic solvent. Moreover, oil-soaked PMA flakes can be fully converted into refined oil via a pyrolysis process. After pyrolysis, the thermally undecomposed compounds, which comprise of carbon residue and magnetic nanoparticle, can be also separated by a magnet. The as-prepared flake type PMA possesses good oil recovery performance, fast magnetic response, and efficient oil recycling, thus representing an environmentally promising method for oil spill cleanup.
Collapse
Affiliation(s)
- Hyeongoo Kim
- Organic Materials and Fiber Engineering, Jeonbuk National University, 567 Baekje-daero, Deogjin-dong, Deokjin-gu, Jeonju, Jeollabuk-do 54896, Republic of Korea
| | - Gang Zhang
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, United States
| | - Min Wu
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jinshan Guo
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Changwoo Nam
- Organic Materials and Fiber Engineering, Jeonbuk National University, 567 Baekje-daero, Deogjin-dong, Deokjin-gu, Jeonju, Jeollabuk-do 54896, Republic of Korea.
| |
Collapse
|
10
|
Huang Z, Zhang J, Li S, Yuan G, Li F, Zeng Y, Han L, Jia Q, Zhang H, Zhang S. Joule-heatable bird-nest-bioinspired/carbon nanotubes-modified sepiolite porous ceramics: An efficient, sturdy, and continuous strategy for oil recovery. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:125979. [PMID: 34015716 DOI: 10.1016/j.jhazmat.2021.125979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/15/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Oil-spill accident is a severe globally concerned environmental issue. In this work, a Joule-heatable bird-nest-bioinspired/carbon nanotubes-modified sepiolite porous ceramic (JBN/CM-SC) was developed, using inexpensive sepiolite porous ceramics as the substrate and carbon nanotubes (CNTs) derived from waste plastics as the modifier. The former exhibited outstanding mechanical property (1.7 MPa of compressive strength), gas permeability (9.1 × 10-11 m2), thermal conductivity (0.215 W·m-1·K-1) and thermal/chemical stability. As expected, the deposited CNTs not only conferred a hydrophobic surface, but also resulted in a Joule-heating ability of intrinsically non-conductive ceramics. As-prepared JBN/CM-SC demonstrated a separation rate as high as 120-200 kg·s-1·m-2 for oil recovery and a high selectivity of over 95%. The Joule heat generated by the heated JBN/CM-SC could in-situ reduce the oil-viscosity, remarkably increasing the oil-diffusion. The separation rate was enhanced by ~12 times with respect to that of the non-heated counterpart. In addition, the idea of modular design was proposed. By simply combining JBN/CM-SC components with pipes and a pump, a continuous in-situ collection of oil from an oil/water mixture was realized, providing an efficient, sturdy, and continuous approach to recover the spilled oil in an oil-spill accident.
Collapse
Affiliation(s)
- Zhong Huang
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, No. 947 Heping Rd, Wuhan 430081, China
| | - Jun Zhang
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, No. 947 Heping Rd, Wuhan 430081, China
| | - Saisai Li
- Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials (Anhui University of Technology), Ministry of Education, Ma'anshan 243002, China
| | - Gaoqian Yuan
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, No. 947 Heping Rd, Wuhan 430081, China
| | - Faliang Li
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, No. 947 Heping Rd, Wuhan 430081, China
| | - Yuan Zeng
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, No. 947 Heping Rd, Wuhan 430081, China
| | - Lei Han
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, No. 947 Heping Rd, Wuhan 430081, China
| | - Quanli Jia
- Henan Key Laboratory of High Temperature Functional Ceramics, Zhengzhou University, Zhengzhou 450052, China
| | - Haijun Zhang
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, No. 947 Heping Rd, Wuhan 430081, China.
| | - Shaowei Zhang
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Stocker Rd, Exeter EX4 4QF, UK.
| |
Collapse
|
11
|
Hoang AT, Nguyen XP, Duong XQ, Huynh TT. Sorbent-based devices for the removal of spilled oil from water: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:28876-28910. [PMID: 33846913 DOI: 10.1007/s11356-021-13775-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Always, oil spills do cause serious and dire consequences for the environment, nature, and society that it consumes much time and socio-economic resources to overcome such consequences. Oil spills, hence, posed a big challenge in searching the advanced technologies and devices to recover spilled oil rapidly and efficiently. Indeed, sorbents have been found to play an extremely critical role in the spilled-oil remediation processes. Recently, a large number of various advanced sorbents and sorbent-based oil-collecting devices/technologies have been developed to enhance the oil-recovery capacity. Therefore, it is necessary to have a comprehensive assessment of the application of sorbent-based oil-collecting devices/technologies in recovering spilled oil. Due to this reason, this paper aims to provide a comprehensive review of the advanced technologies of the combination of sorbents and oil-collecting devices in the oil cleanup strategies. Two main oil-collecting devices such as booms and skimmers that could conjunct with sorbents were critically evaluated on the basis of the applicability and technological features, indicating that the capacity of oil spill recovery could achieve 90%. Moreover, oil-storage and oil-collecting devices were also completely mentioned. Last but not least, technical directions, concerns over the application of sorbents in oil recovery, and existing challenges relating to storage, transport, and disposal of used sorbents were discussed in detail. In the future, the automatic process of spilled oil recovery with the conjunction between advanced devices and environmentally friendly high-efficiency sorbents should be further investigated to minimize the environmental impacts, reduce the cost, as well as maximize the collected oil spill.
Collapse
Affiliation(s)
- Anh Tuan Hoang
- Institute of Engineering, Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City, Vietnam.
| | - Xuan Phuong Nguyen
- Institute of Maritime, Ho Chi Minh City University of Transport, Ho Chi Minh City, Vietnam.
| | - Xuan Quang Duong
- Institute of Mechanical Engineering, Vietnam Maritime University, Haiphong, Vietnam
| | - Thanh Tung Huynh
- Institute of Engineering, Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City, Vietnam
| |
Collapse
|
12
|
Inorganic–Organic Hybrid Materials of Zirconium and Aluminum and Their Usage in the Removal of Methylene Blue. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-01961-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Nano-Intermediate of Magnetite Nanoparticles Supported on Activated Carbon from Spent Coffee Grounds for Treatment of Wastewater from Oil Industry and Energy Production. Processes (Basel) 2020. [DOI: 10.3390/pr9010063] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
This work focused on evaluating the adsorptive removal of crude oil using a nano-intermediate based on magnetite nanoparticles supported on activated carbon synthesized from spent coffee grounds and the subsequent catalytic oil decomposition to recover by-products and regenerate the support material. The magnetite nanoparticles were synthesized by the co-precipitation method and were used as active phases on prepared activated carbon. The amount of crude oil adsorbed was determined by adsorption isotherms. In addition, dynamic tests were performed on a packed bed to evaluate the efficiency of the removal process. Thermogravimetric analysis and mass spectrometry were used to evaluate the catalytic powder and the quantification of by-products. Contrasting the results with commercial carbon, the one synthesized from the coffee residue showed a greater affinity for the oil. Likewise, the adsorption capacity increased by doping activated carbon with magnetite nanoparticles, obtaining an efficiency greater than 10%. The crude oil decomposition was carried out successfully by thermal cracking, obtaining a 100% removal. The gas produced after decomposition contains light hydrocarbons such as C2H4 and CH4 and shows a decrease in polluting species such as CO and CO2, leading to greater environmental sustainability of the process.
Collapse
|
14
|
Wu H, Hao L, Chen C, Zhou J. Superhydrophobic Fe 3O 4/OA Magnetorheological Fluid for Removing Oil Slick from Water Surfaces Effectively and Quickly. ACS OMEGA 2020; 5:27425-27432. [PMID: 33134705 PMCID: PMC7594155 DOI: 10.1021/acsomega.0c03857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
Considering the severe impacts on the economic losses caused by oil spills, it is of great significance to develop an oil-absorbent material for removing the oil slick from the water surface effectively. As a new oil-absorbent material, magnetorheological fluid (MRF) has unsinkability, hydrophobicity, and lipophilicity, which could effectively remove the oil slick on the water surface while repelling water. Particularly, the prepared MRF shows a good response to external magnetic field. MRFs show high oil removal capacity in fresh water, deionized water, and salt water with efficiencies up to 94.39, 93.65, and 92.71%, respectively. Besides, Fe3O4/OA magnetic nanoparticles (MPs) could be reprepared into MRF by simple treatments. After the fifth cycle, the MRF prepared by the recovered Fe3O4/OA MPs still has high oil removal efficiency, and that means the Fe3O4/OA MPs has excellent reusability and stability. The method for preparing MRFs provided in this work is simple and effective, and the MRFs have a promising potential for cleaning oil slick.
Collapse
|
15
|
Akhayere E, Kavaz D. Nano-silica and nano-zeolite synthesized from barley grass straw for effective removal of gasoline from aqueous solution: a comparative study. CHEM ENG COMMUN 2020. [DOI: 10.1080/00986445.2020.1786373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Evidence Akhayere
- Department of Environmental Science, Cyprus International University, Nicosia, Turkey
- Environmental Research Centre, Cyprus International University, Nicosia, Nicosia, Turkey
| | - Doga Kavaz
- Environmental Research Centre, Cyprus International University, Nicosia, Nicosia, Turkey
- Department of Bioengineering, Cyprus International University, Nicosia, Turkey
| |
Collapse
|
16
|
Wang Y, Zeng J, Wang L, Yuan Y, Li Q, He J, Lin L, He N. Eco-friendly and durable PCPS nanoparticles for the effective separation of oil-water emulsions. NANOSCALE 2020; 12:11489-11496. [PMID: 32426772 DOI: 10.1039/c9nr10758d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Oil pollution is one of the main environmental problems that is attracting increasing attention from people. In this study, a new composite, namely a PNIPAm-Clay-γPGA-SiO2 (PCPS) nanomaterial, was prepared through chemical modification. The material exhibited excellent separation efficiencies for both oil-in-water (O/W) and water-in-oil (W/O) emulsions. The maximum separation efficiency of the W/O emulsion reached 98.70%, while that of the O/W emulsion was 99.23%, and the average separation fluxes were 107.44 L m-2 h-1 and 1529.34 L m-2 h-1, respectively. The superhydrophobicity of the PCPS nanoparticles could be maintained under strong acid/alkali conditions for over 30 days. The high separation efficiency could be maintained even after 7 cycles, indicating the long-term availability of the material. Furthermore, the PCPS nanoparticles showed excellent biocompatibility due to the presence of γ-polyglutamic acid (γPGA) and poly(N-isopropylacrylamide) (PNIPAm). The properties of strong acid/alkali and thermal stabilities, recyclability, and biocompatibility gave the material great potential for applications.
Collapse
Affiliation(s)
- Yiming Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Machałowski T, Wysokowski M, Petrenko I, Fursov A, Rahimi-Nasrabadi M, Amro MM, Meissner H, Joseph Y, Fazilov B, Ehrlich H, Jesionowski T. Naturally pre-designed biomaterials: Spider molting cuticle as a functional crude oil sorbent. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 261:110218. [PMID: 32148288 DOI: 10.1016/j.jenvman.2020.110218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/19/2020] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
Diverse fields of modern environmental technology are nowadays focused on the discovery and development of new sources for oil spill removal. An especially interesting type of sorbents is those of natural origin-biosorbents-as ready-to-use constructs with biodegradable, nontoxic, renewable and cost-efficient properties. Moreover, the growing problem of microplastic-related contamination in the oceans further encourages the use of biosorbents. Here, for the first time, naturally pre-designed molting cuticles of the Theraphosidae spider Avicularia sp. "Peru purple", as part of constituting a large-scale spider origin waste material, were used for efficient sorption of crude oil. Compared with currently used materials, the proposed biosorbent of spider cuticular origin demonstrates excellent ability to remain on the water surface for a long time. In this study the morphology and hydrophobic features of Theraphosidae cuticle are investigated for the first time. The unique surface morphology and very low surface free energy (4.47 ± 0.08 mN/m) give the cuticle-based, tube-like, porous biosorbent excellent oleophilic-hydrophobic properties. The crude oil sorption capacities of A. sp. "Peru purple" molt structures in sea water, distilled water and fresh water were measured at 12.6 g/g, 15.8 g/g and 16.6 g/g respectively. These results indicate that this biomaterial is more efficient than such currently used fibrous sorbents as human hairs or chicken feathers. Four cycles of desorption were performed and confirmed the reusability of the proposed biosorbent. We suggest that the oil adsorption mechanism is related to the brush-like and microporous structure of the tubular spider molting cuticles and may also involve interaction between the cuticular wax layers and crude oil.
Collapse
Affiliation(s)
- Tomasz Machałowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965, Poznan, Poland; Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav Zeuner Str. 3, 09599, Freiberg, Germany
| | - Marcin Wysokowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965, Poznan, Poland; Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav Zeuner Str. 3, 09599, Freiberg, Germany.
| | - Iaroslav Petrenko
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav Zeuner Str. 3, 09599, Freiberg, Germany
| | - Andriy Fursov
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav Zeuner Str. 3, 09599, Freiberg, Germany
| | - Mehdi Rahimi-Nasrabadi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, P94V+47, Tehran, Iran; Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, P94R+9X, Tehran, Iran
| | - Moh'd M Amro
- Institute of Drilling Technology and Fluid Mining, TU Bergakademie Freiberg, Agricolastraße 22, 09599, Freiberg, Germany
| | - Heike Meissner
- Department of Prosthetic Dentistry, Faculty of Medicine and University Hospital Carl Gustav Carus of Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Yvonne Joseph
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav Zeuner Str. 3, 09599, Freiberg, Germany
| | | | - Hermann Ehrlich
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav Zeuner Str. 3, 09599, Freiberg, Germany; Wielkopolska Center for Advanced Technologies (WCAT), Poznan, Poland
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965, Poznan, Poland.
| |
Collapse
|
18
|
Costa JAS, Sarmento VH, Romão LP, Paranhos CM. Removal of polycyclic aromatic hydrocarbons from aqueous media with polysulfone/MCM-41 mixed matrix membranes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117912] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Adsorption Properties of Calcium Alginate-Silica Dioxide Hybrid Adsorbent to Methylene Blue. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-019-01357-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Vintu M, Unnikrishnan G. Indolocarbazole based polymer coated super adsorbent polyurethane sponges for oil/organic solvent removal. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 248:109344. [PMID: 31466186 DOI: 10.1016/j.jenvman.2019.109344] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 07/13/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
The synthesis of an indolocarbazole-fluorene based conjugated polymer (ICZP6), by Sonogashira coupling reaction, has been presented. The ICZP6 has then been integrated with a nano iron oxide embedded polyurethane foam (ICZP6PUF) to develop a promising adsorbent for oil/organic contaminants in aqueous systems. The anchoring ability of ICZP6 on to iron oxide PU sponge switches on significant hydrophobicity within the whole molecular assembly. The cooperative effects of ICZP6-iron oxide- PU sponge system have been highlighted in terms of structural, microscopic and wettability characteristics. The heterogeneity and hierarchical porous structure of the system offer a high adsorption capability for different types of oils and organic contaminants in water, typically in the range of 100-240 gg-1. The performance of ICZP6PUF has been confirmed by the fast (within 5-10s) and choosy removal of selected oils and organic solvents from polluted water with the aid of an external magnetic field. The adsorbed materials (oil/organic solvents) can be separated from the adsorbent by simple mechanical squeezing without causing any structural deformation or performance deterioration; with a reusability of the system over 50 cycles. The adsorption isotherm has been found to fit well with the Langmuir model with R2 = 0.9484. To extent the scope of the ICZP6PUF hybrid, an integrative logic gate has been designed.
Collapse
Affiliation(s)
- M Vintu
- Department of Chemistry, Polymer Science and Technology Research Laboratory, National Institute of Technology Calicut, NIT Campus, Calicut, 673601, Kerala, India
| | - G Unnikrishnan
- Department of Chemistry, Polymer Science and Technology Research Laboratory, National Institute of Technology Calicut, NIT Campus, Calicut, 673601, Kerala, India.
| |
Collapse
|