1
|
Nallapureddy RR, Arla SK, Ibáñez A, Pabba DP, Jung JH, Joo SW. Photosensitizer and Charge Separator Roles of g-C₃N₄ Integrated into the CuO-Fe₂O₃ p-n Heterojunction Interface for Elevating PEC Water Splitting Potential. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:551. [PMID: 40214595 PMCID: PMC11990803 DOI: 10.3390/nano15070551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/28/2025] [Accepted: 04/02/2025] [Indexed: 04/14/2025]
Abstract
In sustainable hydrogen generation, photoelectrochemical (PEC) water splitting stands as a crucial technology, offering solutions to the global energy crisis while tackling environmental challenges. PEC water splitting relies on metal oxide nanostructures due to their unique electronic and optical characteristics. This research highlights the development of a CuO-Fe2O3@g-C3N4 nanocomposite, created through the integration of three components and fabricated via a one-pot hydrothermal process, precisely engineered to enhance PEC water-splitting efficiency. The combination of CuO, Fe2O3, and g-C3N4 results in a unified heterojunction structure that efficiently mitigates issues associated with charge carrier recombination and structural stability. Additionally, the analyses of both the structure and composition confirmed the precise synthesis of the composite. The CuO-Fe2O3@g-C3N4 nanocomposite achieved a photocurrent density of 1.33 mA cm-2 vs. Ag/AgCl upon exposure to light, demonstrating superior PEC performance and outperforming the individual CuO and Fe2O3 components. The enhanced performance is attributed to g-C3N4 acting as a photoactive material, generating charge carriers, while the combination of CuO-Fe2O3 enables efficient carrier separation and mobility. This synergistic interaction significantly enhances photocurrent generation and ensures long-term stability, positioning the material as a highly promising solution for sustainable hydrogen production. These results highlight the promise of hybrid nanocomposites in driving progress in renewable energy technologies, opening new avenues for the development of more efficient and long-lasting PEC systems.
Collapse
Affiliation(s)
| | - Sai Kumar Arla
- Department of Physics, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Andrés Ibáñez
- Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Casilla 653, Santiago 8370451, Chile;
| | - Durga Prasad Pabba
- Departamento de Electricidad, Facultad de Ingeniería, Universidad Tecnológica Metropolitana (UTEM), Santiago 7800002, Chile
| | - Jae Hak Jung
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Sang Woo Joo
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
2
|
Reddy NR, Kumar AS, Reddy PM, Kakarla RR, Jung JH, Aminabhavi TM, Joo SW. Efficient synthesis of 3D ZnO nanostructures on ITO surfaces for enhanced photoelectrochemical water splitting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:120082. [PMID: 38232595 DOI: 10.1016/j.jenvman.2024.120082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/06/2024] [Accepted: 01/07/2024] [Indexed: 01/19/2024]
Abstract
New photoactive materials with uniform and well-defined morphologies were developed for efficient and sustainable photoelectrochemical (PEC) water splitting and hydrogen production. The investigation is focused on hydrothermal deposition of zinc oxide (ZnO) onto indium tin oxide (ITO) conductive surfaces and optimization of hydrothermal temperature for growing uniform sized 3D ZnO morphologies. Fine-tuning of hydrothermal temperature enhanced the scalability, efficiency, and performance of ZnO-decorated ITO electrodes used in PEC water splitting. Under UV light irradiation and using eco-friendly low-cost hydrothermal process in the presence of stable ZnO offered uniform 3D ZnO, which exhibited a high photocurrent of 0.6 mA/cm2 having stability up to 5 h under light-on and light-off conditions. The impact of hydrothermal temperature on the morphological properties of the deposited ZnO and its subsequent performance in PEC water splitting was investigated. The work contributes to advancement of scalable and efficient fabrication technique for developing energy converting photoactive materials.
Collapse
Affiliation(s)
- N Ramesh Reddy
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - A Sai Kumar
- Department of Physics, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - P Mohan Reddy
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Raghava Reddy Kakarla
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Jae Hak Jung
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, 580031, Karnataka, India; University Center for Research & Development (UCRO), Chandigarh University, Mohali, Punjab, 140 413, India.
| | - Sang Woo Joo
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
3
|
Islam F, Khan FA, Khan NM, Ahmad S, Alsaiari AA, Almehmadi M, Ahmad N, Ul-Haq Z, Jan AK, Allahyani M, Alsharif A, Falade EO. PEGylated Graphene Oxide as a Nanodrug Delivery Vehicle for Podophyllotoxin (GO/PEG/PTOX) and In Vitro α-Amylase/α-Glucosidase Inhibition Activities. ACS OMEGA 2023; 8:20550-20560. [PMID: 37323383 PMCID: PMC10268258 DOI: 10.1021/acsomega.3c00888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/10/2023] [Indexed: 06/17/2023]
Abstract
This study aims to develop a nanodrug delivery system containing podophyllotoxin (PTOX), a known anticancer drug, loaded on graphene oxide (GO). The system's ability to inhibit α-amylase and α-glucosidase enzymes was also investigated. PTOX was isolated from Podophyllum hexandrum roots with a yield of 2.3%. GO, prepared by Hummer's method, was converted into GO-COOH and surface-mobilized using polyethylene glycol (PEG) (1:1) in an aqueous medium to obtain GO-PEG. PTOX was loaded on GO-PEG in a facile manner with a 25% loading ratio. All the samples were characterized using FT-IR spectroscopy, UV/visible spectroscopy, and scanning electron microscopy (SEM). In FT-IR spectral data, GO-PEG-PTOX exhibited a reduction in acidic functionalities and there was an appearance of the ester linkage of PTOX with GO. The UV/visible measurements suggested an increase of absorbance in 290-350 nm regions for GO-PEG, suggesting the successful drug loading on its surface (25%). GO-PEG-PTOX exhibited a rough, aggregated, and scattered type of pattern in SEM with distinct edges and binding of PTOX on its surface. GO-PEG-PTOX remained potent in inhibiting both α-amylase and α-glucosidase with IC50 values of 7 and 5 mg/mL, closer to the IC50 of pure PTOX (5 and 4.5 mg/mL), respectively. Owing to the 25% loading ratio and 50% release within 48 h, our results are much more promising. Additionally, the molecular docking studies confirmed four types of interactions between the active centers of enzymes and PTOX, thus supporting the experimental results. In conclusion, the PTOX-loaded GO nanocomposites are promising α-amylase- and α-glucosidase-inhibitory agents when applied in vitro and have been reported for the first time.
Collapse
Affiliation(s)
- Fawad Islam
- Department
of Chemistry, Shaheed Benazir Bhutto University, Sheringal Dir Upper 18000, Khyber Pakhtunkhwa, Pakistan
| | - Farman Ali Khan
- Department
of Chemistry, Shaheed Benazir Bhutto University, Sheringal Dir Upper 18000, Khyber Pakhtunkhwa, Pakistan
| | - Nasir Mehmood Khan
- Department
of Agriculture, Shaheed Benazir Bhutto University, Sheringal Dir Upper 18000, Khyber Pakhtunkhwa, Pakistan
| | - Shujaat Ahmad
- Department
of Pharmacy, Shaheed Benazir Bhutto University, Sheringal Dir Upper 18000, Khyber Pakhtunkhwa, Pakistan
| | - Ahad Amer Alsaiari
- Department
of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mazen Almehmadi
- Department
of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Nadeem Ahmad
- H.
E. J. Research Institute of Chemistry, International
Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Zaheer Ul-Haq
- H.
E. J. Research Institute of Chemistry, International
Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- Dr. Panjwani
Center for Molecular Medicine and Drug Research, International Center
for Chemical and Biological Sciences, University
of Karachi, Karachi 75270, Pakistan
| | - Abdul Khaliq Jan
- Department
of Chemistry, Shaheed Benazir Bhutto University, Sheringal Dir Upper 18000, Khyber Pakhtunkhwa, Pakistan
| | - Mamdouh Allahyani
- Department
of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Abdulaziz Alsharif
- Department
of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ebenezer Ola Falade
- Institute
of Food Science and Technology, Chinese
Academy of Agriculture Sciences, Beijing 100193, China
| |
Collapse
|
4
|
Harun-Ur-Rashid M, Pal K, Imran AB. Hybrid Nanocomposite Fabrication of Nanocatalyst with Enhanced and Stable Photocatalytic Activity. Top Catal 2023. [DOI: 10.1007/s11244-023-01809-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
5
|
Ali SA, Sadiq I, Ahmad T. Oxide based Heterostructured Photocatalysts for CO
2
Reduction and Hydrogen Generation. ChemistrySelect 2023. [DOI: 10.1002/slct.202203176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Syed Asim Ali
- Nanochemistry Laboratory Department of Chemistry, Jamia Millia Islamia New Delhi 110025 India
| | - Iqra Sadiq
- Nanochemistry Laboratory Department of Chemistry, Jamia Millia Islamia New Delhi 110025 India
| | - Tokeer Ahmad
- Nanochemistry Laboratory Department of Chemistry, Jamia Millia Islamia New Delhi 110025 India
| |
Collapse
|
6
|
Moustafa HM, Mahmoud MS, Nassar MM. Kinetic analysis of p-rGO/n-TiO 2 nanocomposite generated by hydrothermal technique for simultaneous photocatalytic water splitting and degradation of methylene blue dye. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:18181-18198. [PMID: 36207630 DOI: 10.1007/s11356-022-23430-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
In this study, the nanocomposites of reduced graphene oxide/TiO2 (rGO/TiO2 with different percentages) have been synthesized using a modified Hummers' method followed by hydrothermal treatment. The morphology and bonding structure of the prepared samples have been characterized by Fourier-transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffractometry (XRD), and X-ray photoelectron spectroscopy (XPS). The photo-characteristic aspects of the prepared samples have been indicated by photoluminescence (PL) emission spectroscopy and ultraviolet-visible diffuse reflection spectroscopy (DRS). The photocatalytic performance of rGO/TiO2 demonstrated that it is an effective photocatalyst for methylene blue (MB) dye decomposition through illumination by a mercury lamp. Within 60 min of continuous irradiation, the nanocomposite-induced MB decomposition reached a rate of over 99%. Different MB concentrations and optimal percent loadings in catalysts have been investigated. Furthermore, the results showed that as the amount of catalyst increased, the decomposition of MB enhanced. Finally, the loading percentage of rGO with TiO2 has been studied, and an empirical equation relating the reaction rate constant until the mass of the photocatalyst and dye concentration has been proposed. The results showed that the prepared nanocomposites had good photocatalytic activity toward water splitting and photo-decomposition of MB.
Collapse
Affiliation(s)
- Hager M Moustafa
- Chemical Engineering Department, Minia University, El-Minia, 61516, Egypt
| | - Mohamed S Mahmoud
- Chemical Engineering Department, Minia University, El-Minia, 61516, Egypt.
- Department of Engineering, University of Technology and Applied Sciences, Suhar, 311, Sultanate of Oman.
| | - Mamdouh M Nassar
- Chemical Engineering Department, Minia University, El-Minia, 61516, Egypt
| |
Collapse
|
7
|
Eskandari P, Amarloo E, Zangeneh H, Rezakazemi M, Zamani MR, Aminabhavi TM. Photocatalytic activity of visible-light-driven L-Proline-TiO 2/BiOBr nanostructured materials for dyes degradation: The role of generated reactive species. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116691. [PMID: 36402013 DOI: 10.1016/j.jenvman.2022.116691] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
L-Proline (2%)-TiO2/BiOBr (30%) nanocomposite was synthesized to obtain high photocatalytic performance in the visible light region and infrared radiation(IR) for methylene blue (MB) and congo red (CR) removal from the contaminated wastewater. L-Proline (2%)-TiO2/BiOBr (30%) photocatalyst with strong absorption near IR wavelength and high charge separation ability was fabricated for the first time. X-ray diffraction (XRD), Fourier transform infrared (FTIR), field-emission scanning electron microscope (FESEM)/Energy Dispersive X-ray (EDX), UV-Vis diffuse reflectance spectrum (DRS), photoluminescence (PL) and Brunauer-Emmett-Teller (BET) characterization techniques show that the visible driven nanocomposite was successfully synthesized. According to the UV-DRS analysis, the estimated band gaps for the L-proline (2%)-TiO2 and L-Proline (2%)-TiO2/BiOBr (30%) nanostructures were respectively 2.3 eV and 2.1 eV.The nanoparticles exhibited enhanced photocatalytic activity (93-100%) and high mineralization efficiency (71-89% TOC removal) for both the dyes. The best photocatalytic activity was achieved by adding 2 wt% of L-Proline and 30 wt% of BiOBr into TiO2 sol. Response surface methodology (RSM) was employed to find significant parameters and their optimum values for maximum degradation, which show pH, dye concentration, irradiation time, and catalyst dosage for both the dyes are significant. The best photocatalytic degradation efficiency was achieved at the optimum conditions of pH = 7.7, catalyst dosage = 0.71 g/L, irradiation time = 142 and dye concentration = 11 mg/L for MB. Scavenger study showed that •OH radicals are responsible for the degradation process.
Collapse
Affiliation(s)
- Parisa Eskandari
- Department of Chemical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Ehsan Amarloo
- Department of Chemical Engineering, Sharif University of Technology, Tehran, Iran
| | - Hadis Zangeneh
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Mashallah Rezakazemi
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran.
| | | | - Tejraj M Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka, 580 031, India; School of Engineering, UPES, Bidholi, Uttarakhand, Dehradun, 248 007, India.
| |
Collapse
|
8
|
Reddy NR, Kumar AS, Reddy PM, Kakarla RR, Joo SW, Aminabhavi TM. Novel rhombus Co 3O 4-nanocapsule CuO heterohybrids for efficient photocatalytic water splitting and electrochemical energy storage applications. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116650. [PMID: 36419312 DOI: 10.1016/j.jenvman.2022.116650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/22/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
The most appealing and prominent approach for improving energy storage and conversion performance is the development of heterojunction interfaces with efficient and unique metal oxide nanostructures. Rhombus Co3O4, nanocapsule CuO, and their heterojunction composites were synthesized using a single-step hydrothermal process. The resulting heterojunction Co3O4-CuO nanocomposite outperformed the pristine Co3O4 and CuO nanostructures for the electrochemical supercapacitor and water splitting performances. The composite showed 2.4 and 1.3 times higher specific capacitance than the associated pristine CuO and Co3O4 nanostructures, while its capacitance was 395 F g-1 at a current density of 0.5 A g-1. In addition, long-term GCD results with more than 90% stability and significant capacity retention at higher scan rates revealed the unaffected structures interfaced during the electrochemical reactions. The composite photoelectrode demonstrated more than 20% of photocurrent response with light illumination than the dark condition in water splitting. Co3O4-CuO heterostructured composite electrode showed a 0.16 mA/cm2 photocurrent density, which is 3.2 and 1.7 times higher than the pristine CuO and Co3O4 electrodes, respectively. This performance was attributed to its unique structural composition, high reactive sites, strong ion diffusion, and fast electron accessibility. Electron microscopic and spectroscopic techniques confirmed the properties of the electrodes as well as their morphological properties. Overall, the heterojunction interface with novel rhombus and capsule structured architectures showed good electrochemical performance, suggesting their energy storage and conversion applications.
Collapse
Affiliation(s)
- N Ramesh Reddy
- School of Chemical Engineering, Yeungnam University, Gyeongsan - 38541, Republic of Korea
| | - A Sai Kumar
- Department of Physics, Yeungnam University, Gyeongsan - 38541, Republic of Korea
| | - P Mohan Reddy
- School of Chemical Engineering, Yeungnam University, Gyeongsan - 38541, Republic of Korea
| | - Raghava Reddy Kakarla
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Sang Woo Joo
- School of Mechanical Engineering, Yeungnam University, Gyeongsan - 38541, Republic of Korea.
| | - Tejraj M Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi 580 031, Karnataka, India; University Center for Research & Development (UCRO), Chandigarh University, Gharuan, Mohali - 140413, Punjab, India.
| |
Collapse
|
9
|
Mali G, Walekar L, Kolhe N, Kadam AN, Kore R, Mhamane D, Parbat H, Lee SW, Lokhande B, Patil V, Gokavi G, Mali M. Multifunctional polyoxotungstocobaltate anchored fern-leaf like BiVO4 microstructures for enhanced photocatalytic and supercapacitive performance. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.130974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
10
|
Mostafa MS, Chen L, Selim MS, Betiha MA, Gao Y, Zhang R, Zhang S, Ge G. Novel TiO2@[TiO6]/CoTi layered double hydroxide as a superior ultraviolet/infrared heterojunction for enhanced infrared-prompted water splitting to hydrogen. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Sun Y, O'Connell DW. Application of visible light active photocatalysis for water contaminants: A review. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10781. [PMID: 36195318 PMCID: PMC9828070 DOI: 10.1002/wer.10781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/19/2022] [Accepted: 08/08/2022] [Indexed: 06/16/2023]
Abstract
Organic water pollutants are ubiquitous in the natural environment arising from domestic products as well as current and legacy industrial processes. Many of these organic water pollutants are recalcitrant and only partially degraded using conventional water and wastewater treatment processes. In recent decades, visible light active photocatalyst has gained attention as a non-conventional alternative for the removal of organic pollutants during water treatment, including industrial wastewater and drinking water treatment. This paper reviews the current state of research on the use of visible light active photocatalysts, their modified methods, efficacy, and pilot-scale applications for the degradation of organic pollutants in water supplies and waste streams. Initially, the general mechanism of the visible light active photocatalyst is evaluated, followed by an overview of the major synthesis techniques. Because few of these photocatalysts are commercialized, particular attention was given to summarizing the different types of visible light active photocatalysts developed to the pilot-scale stage for practical application and commercialization. The organic pollutant degradation ability of these visible light active photocatalysts was found to be considerable and in many cases comparable with existing and commercially available advanced oxidation processes. Finally, this review concludes with a summary of current achievements and challenges as well as possible directions for further research. PRACTITIONER POINTS: Visible light active photocatalysis is a promising advanced oxidation process (AOP) for the reduction of organic water pollutants. Various mechanisms of photocatalysis using visible light active materials are identified and discussed. Many recent photocatalysts are synthesized from renewable materials that are more sustainable for applications in the 21st century. Only a small number of pilot-scale applications exist and these are outlined in this review.
Collapse
Affiliation(s)
- Yifan Sun
- Department of Civil and Environmental EngineeringTrinity College DublinDublin 2Ireland
| | - David W. O'Connell
- Department of Civil and Environmental EngineeringTrinity College DublinDublin 2Ireland
| |
Collapse
|
12
|
Environmentally-friendly carbon nanomaterials for photocatalytic hydrogen production. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63994-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Moustafa HM, Mahmoud MS, Nassar MM. Photon-induced water splitting experimental and kinetic studies with a hydrothermally prepared TiO2-doped rGO photocatalyst. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
14
|
Abd Elkodous M, El-Khawaga AM, Abdel Maksoud MIA, El-Sayyad GS, Alias N, Abdelsalam H, Ibrahim MA, Elsayed MA, Kawamura G, Lockman Z, Tan WK, Matsuda A. Enhanced photocatalytic and antimicrobial performance of a multifunctional Cu-loaded nanocomposite under UV light: theoretical and experimental study. NANOSCALE 2022; 14:8306-8317. [PMID: 35660850 DOI: 10.1039/d2nr01710e] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Due to modern industrialization and population growth, access to clean water has become a global challenge. In this study, a metal-semiconductor heterojunction was constructed between Cu NPs and the Co0.5Ni0.5Fe2O4/SiO2/TiO2 composite matrix for the photodegradation of potassium permanganate, hexavalent chromium Cr(VI) and p-nitroaniline (pNA) under UV light. In addition, the electronic and adsorption properties after Cu loading were evaluated using density functional theory (DFT) calculations. Moreover, the antimicrobial properties of the prepared samples toward pathogenic bacteria and unicellular fungi were investigated. Photocatalytic measurements show the outstanding efficiency of the Cu-loaded nanocomposite compared to that of bare Cu NPs and the composite matrix. Degradation efficiencies of 44% after 80 min, 100% after 60 min, and 65% after 90 min were obtained against potassium permanganate, Cr(VI), and pNA, respectively. Similarly, the antimicrobial evaluation showed high ZOI, lower MIC, higher protein leakage amount, and cell lysis of nearly all microbes treated with the Cu-loaded nanocomposite.
Collapse
Affiliation(s)
- M Abd Elkodous
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan.
| | - Ahmed M El-Khawaga
- Chemical Engineering Department, Military Technical College (MTC), Egyptian Armed Forces, Cairo, Egypt
- Faculty of Medicine, Galala University, Suez, Egypt
| | - M I A Abdel Maksoud
- Materials Science Lab., Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
| | - Gharieb S El-Sayyad
- Department of Microbiology & Immunology, Faculty of Pharmacy, Galala University, New Galala City, Suez, Egypt
- Drug Microbiology Lab., Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Nurhaswani Alias
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| | - Hazem Abdelsalam
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, P. R. China
- Theoretical Physics Department, National Research Centre, El-Buhouth Str., Dokki, Giza, 12622, Egypt
| | - Medhat A Ibrahim
- Nanotechnology Research Centre (NTRC), The British University in Egypt (BUE), Suez Desert Road, El-Sherouk City, Cairo, 11837, Egypt
- Molecular Spectroscopy and Modeling Unit, Spectroscopy Department, National Research Centre, 33 El-Bohouth St., Dokki, 12622, Giza, Egypt
| | - Mohamed A Elsayed
- Chemical Engineering Department, Military Technical College (MTC), Egyptian Armed Forces, Cairo, Egypt
| | - Go Kawamura
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan.
| | - Zainovia Lockman
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| | - Wai Kian Tan
- Institute of Liberal Arts and Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan
| | - Atsunori Matsuda
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan.
| |
Collapse
|
15
|
Sudheer S, Bai RG, Muthoosamy K, Tuvikene R, Gupta VK, Manickam S. Biosustainable production of nanoparticles via mycogenesis for biotechnological applications: A critical review. ENVIRONMENTAL RESEARCH 2022; 204:111963. [PMID: 34450157 DOI: 10.1016/j.envres.2021.111963] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
The demand for the green synthesis of nanoparticles has gained prominence over the conventional chemical and physical syntheses, which often entails toxic chemicals, energy consumption and ultimately lead to negative environmental impact. In the green synthesis approach, naturally available bio-compounds found in plants and fungi can be effective and have been proven to be alternative reducing agents. Fungi or mushrooms are particularly interesting due to their high content of bioactive compounds, which can serve as excellent reducing agents in the synthesis of nanoparticles. Apart from the economic and environmental benefits, such as ease of availability, low synthesis/production cost, safe and no toxicity, the nanoparticles synthesized from this green method have unique physical and chemical properties. Stabilisation of the nanoparticles in an aqueous solution is exceedingly high, even after prolonged storage with unperturbed size uniformity. Biological properties were significantly improved with higher biocompatibility, anti-microbial, anti-oxidant and anti-cancer properties. These remarkable properties allow further exploration in their applications both in the medical and agricultural fields. This review aims to explore the mushroom-mediated biosynthesis of nanomaterials, specifically the mechanism and bio-compounds involved in the synthesis and their interactions for the stabilisation of nanoparticles. Various metal and non-metal nanoparticles have been discussed along with their synthesis techniques and parameters, making them ideal for specific industrial, agricultural, and medical applications. Only recent developments have been explored in this review.
Collapse
Affiliation(s)
- Surya Sudheer
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, 51005, Estonia.
| | - Renu Geetha Bai
- School of Natural Sciences and Health, Tallinn University, Tallinn, 10120, Estonia
| | - Kasturi Muthoosamy
- Nanotechnology Research Group, Center for Nanotechnology & Advanced Materials, University of Nottingham Malaysia, Semenyih, Selangor, 43500, Malaysia.
| | - Rando Tuvikene
- School of Natural Sciences and Health, Tallinn University, Tallinn, 10120, Estonia
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; Center for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei
| |
Collapse
|
16
|
Rajabloo T, De Ceuninck W, Van Wortswinkel L, Rezakazemi M, Aminabhavi T. Environmental management of industrial decarbonization with focus on chemical sectors: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 302:114055. [PMID: 34768037 DOI: 10.1016/j.jenvman.2021.114055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/31/2021] [Accepted: 10/31/2021] [Indexed: 06/13/2023]
Abstract
A considerable portion of fossil CO2 emissions comes from the energy sector for production of heat and electricity. The industrial sector has the second order in emission in which the main parts are released from energy-intensive industries, namely metallurgy, building materials, chemicals, and manufacturing. The decarbonization of industrial wastes contemplates the classic decarbonization through optimization of conventional processes as well as utilization of renewable energy and resources. The upgrading of existing processes and integration of the methodologies with a focus on efficiency improvement and reduction of energy consumption and the environment is the main focus of this review. The implementation of renewable energy and feedstocks, green electrification, energy conversion methodologies, carbon capture, and utilization, and storage are also covered. The main objectives of this review are towards chemical industries by introducing the potential technology enhancement at different subsectors. For this purpose, state-of-the-art roadmaps and pathways from the literature findings are presented. Both common and innovative renewable attempts are needed to reach out both short- and long-term deep decarbonization targets. Even though all of the innovative solutions are not economically viable at the industrial scale, they play a crucial role during and after the energy transition interval.
Collapse
Affiliation(s)
- Talieh Rajabloo
- Hasselt University, Institute for Materials Research IMO, Wetenschapspark 1, B-3590, Diepenbeek, Belgium; IMEC vzw, Division IMOMEC, Wetenschapspark 1, B-3590, Diepenbeek, Belgium; EnergyVille, Thor park 8320, 3600, Genk, Belgium.
| | - Ward De Ceuninck
- Hasselt University, Institute for Materials Research IMO, Wetenschapspark 1, B-3590, Diepenbeek, Belgium; IMEC vzw, Division IMOMEC, Wetenschapspark 1, B-3590, Diepenbeek, Belgium; EnergyVille, Thor park 8320, 3600, Genk, Belgium
| | - Luc Van Wortswinkel
- EnergyVille, Thor park 8320, 3600, Genk, Belgium; Flemish Institute for Technology Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - Mashallah Rezakazemi
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran
| | - Tejraj Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi, 580 031, India; Department of Chemistry, Karnatak University, Dharwad, 580 003, India.
| |
Collapse
|
17
|
Swathi S, Yuvakkumar R, Kumar PS, Ravi G, Velauthapillai D. Investigation of electrochemical performance of an efficient Ti 2O 3-CeO 2 nanocomposite for enhanced pollution-free energy conversion applications. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 295:113138. [PMID: 34198173 DOI: 10.1016/j.jenvman.2021.113138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 06/13/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
The development of an economical, abundant, stable, and greatly active electrocatalyst for water oxidation is extremely important for future energy conversion system. Electrochemical water splitting is a new move toward H2 and O2 gas production. It can be used in sustainable and pollution-free energy conversion applications. In this work, Ti2O3-CeO2 nanocomposites were successfully synthesized with different molar ratios by facile hydrothermal method for electrochemical water oxidation. Mixed phase structure of Ti2O3-CeO2 nanocomposites was confirmed by X-ray diffraction spectra and well identified by highest peak of Ti2O3 in 2θ values of 33.0 and CeO2 in 2θ values of 28.5. The characteristic peaks from Raman and photoluminescence spectroscopy further confirmed Ti2O3-CeO2 nanocomposite formation. Existence of multidimensional nanostructures such as nanoparticles and small nanocubes of Ti2O3-CeO2 nanocomposites were investigated by scanning electron microscope images. Mesoporous nature of Ti2O3-CeO2 nanocomposites was further analyzed by Brunauer-Emmett-Teller analysis. The high surface area could benefit the Ti2O3-CeO2 nanocomposites with greatly improved oxygen evolution reaction (OER) performance. In three molar ratios, 1:3 M ratios of Ti2O3-CeO2 nanocomposites showed high catalytic action at overpotential of 244 mV. The best OER electrocatalyst was obtained by 1:3 M ratios of Ti2O3-CeO2 nanocomposites, which exhibited high current density and high specific capacitance values of 238 mA/g and 517 F/g, respectively. Therefore, Ti/Ce molar ratio played a crucial role in enhancing the OER performance.
Collapse
Affiliation(s)
- S Swathi
- Department of Physics, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| | - R Yuvakkumar
- Department of Physics, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India.
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, Tamil Nadu, India.
| | - G Ravi
- Department of Physics, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| | - Dhayalan Velauthapillai
- Faculty of Engineering and Science, Western Norway University of Applied Sciences, Bergen, 5063, Norway
| |
Collapse
|
18
|
Kundu A, Shetti NP, Basu S, Reddy KR, Nadagouda MN, Aminabhavi TM. Identification and removal of micro- and nano-plastics: Efficient and cost-effective methods. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2021; 421:10.1016/j.cej.2021.129816. [PMID: 34504393 PMCID: PMC8422880 DOI: 10.1016/j.cej.2021.129816] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Microplastics (MPs) and nanoplastics (NPs) have gained much attention in recent years because of their ubiquitous presence, which is the widely acknowledged threat to the environment. MPs can be <5 mm size, while NPs are <100 nm, and both can be detected in various forms and shapes in the environment to alleviate their harmful effects on aquatic species, soil organisms, birds, and humans. In efforts to address these issues, the present review discusses about sampling methods for water, sediments, and biota along with their merits and demerits. Various identification techniques such as FTIR, Raman, ToF-SIMS, MALDI TOF MS, and ICP-MS are critically discussed. The detrimental effects caused by MPs and NPs are discussed critically along with the efficient and cost-effective treatment processes including membrane technologies in order to remove plastics particles from various sources to mitigate their environmental pollution and risk assessment.
Collapse
Affiliation(s)
- Aayushi Kundu
- School of Chemistry and Biochemistry, Affiliate Faculty—TIET-Virginia Tech Center of Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Nagaraj P. Shetti
- Department of Chemistry, K.L.E. Institute of Technology, Hubballi 580 027, Karnataka, India
| | - Soumen Basu
- School of Chemistry and Biochemistry, Affiliate Faculty—TIET-Virginia Tech Center of Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Kakarla Raghava Reddy
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Mallikarjuna N. Nadagouda
- The United States Environmental Protection Agency, ORD, CESER, WID, CMTB, 26 W. Martin Luther King Drive, Cincinnati, OH 45268, USA
| | | |
Collapse
|
19
|
Navakoteswara Rao V, Ravi P, Sathish M, Vijayakumar M, Sakar M, Karthik M, Balakumar S, Reddy KR, Shetti NP, Aminabhavi TM, Shankar MV. Metal chalcogenide-based core/shell photocatalysts for solar hydrogen production: Recent advances, properties and technology challenges. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125588. [PMID: 33756202 DOI: 10.1016/j.jhazmat.2021.125588] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
Metal chalcogenides play a vital role in the conversion of solar energy into hydrogen fuel. Hydrogen fuel technology can possibly tackle the future energy crises by replacing carbon fuels such as petroleum, diesel and kerosene, owning to zero emission carbon-free gas and eco-friendliness. Metal chalcogenides are classified into narrow band gap (CdS, Cu2S, Bi2S3, MoS2, CdSe and MoSe2) materials and wide band gap materials (ZnS, ZnSe and ZnTe). Composites of these materials are fabricated with different architectures in which core-shell is one of the unique composites that drastically improve the photo-excitons separation, where chalcogenides in the core can be well protected for sustainable uses. Thus,the core-shell structures promote the design and fabrication of composites with the required characteristics. Interestingly, the metal chalcogenides as a core-shell photocatalyst can be classified into type-I, reverse type-I, type-II and S-type nanocomposites, which can effectively influence and significantly enhance the rate of hydrogen production. In this direction, this review is undertaken to provide a comprehensive overview of the advanced preparation processes, properties of metal chalcogenides, and in particular, photocatalytic performance of the metal chalcogenides as a core-shell photocatalysts for solar hydrogen production.
Collapse
Affiliation(s)
- Vempuluru Navakoteswara Rao
- Nanocatalysis and Solar Fuels Research Laboratory, Department of Materials Science & Nanotechnology, Yogi Vemana University, Kadapa 516005, Andhra Pradesh, India
| | - Parnapalle Ravi
- Electrochemical Power Sources Division, Central Electrochemical Research Institute (CSIR-CECRI), Karaikudi 630003, Tamil Nadu, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Marappan Sathish
- Electrochemical Power Sources Division, Central Electrochemical Research Institute (CSIR-CECRI), Karaikudi 630003, Tamil Nadu, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Manavalan Vijayakumar
- Global Innovative Centre for Advanced (GICAN), Nanomaterials, Collage of Science, Engineering and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Mohan Sakar
- Centre for Nano and Material Sciences, Jain University, Bangalore 562112, Karnataka, India
| | - Mani Karthik
- Centre for Nanomaterials, International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Balapur, Hyderabad 500005, India
| | - Subramanian Balakumar
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India
| | - Kakarla Raghava Reddy
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Nagaraj P Shetti
- Department of Chemistry, K. L. E. Institute of Technology, Gokul, Hubballi 580027, Karnataka, India
| | - Tejraj M Aminabhavi
- Department of Pharmaceutics, SETs' College of Pharmacy, Dharwad 580007, Karnataka, India.
| | - Muthukonda Venkatakrishnan Shankar
- Nanocatalysis and Solar Fuels Research Laboratory, Department of Materials Science & Nanotechnology, Yogi Vemana University, Kadapa 516005, Andhra Pradesh, India
| |
Collapse
|
20
|
Khan WU, Qin L, Alam A, Zhou P, Peng Y, Wang Y. Fluorescent Carbon Dots an Effective Nano-Thermometer in Vitro Applications. ACS APPLIED BIO MATERIALS 2021; 4:5786-5796. [PMID: 35006753 DOI: 10.1021/acsabm.1c00528] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fluorescent sensing of temperature in nanoscale regions has many advantages and applications in the biological field. Herein, blue emitting carbon dots (CDs) are designed and successfully developed using a one step hydrothermal method. As synthesized CDs exhibit temperature dependent photoluminescent (PL) intensity and PL decay lifetime over the physiological temperature ranging from room temperature (RT) to 70 °C. The PL intensity and PL decay lifetime of the obtained CDs correlate linearly to temperature (RT-70 °C) with correlation coefficient of 0.997 and 0.996, respectively. Additionally, dual mode thermal sensing (PL intensity/lifetime) make these CDs a promising optical nanothermometer over alternative semiconductors quantum dots and CD-based quantum dots. Moreover, the resultant aqueous CDs demonstrate excitation-independent blue emission, and the PL quantum yield (QY) is reached at 44.5%. The obtained CDs illustrate stable performance to high ionic environments and photobleaching even after keeping them for 2 h under continues UV irradiation. Furthermore, blue emitting CDs have low cytotoxicity for T-ca. cells and illuminate deep blue fluorescence under the excitation of 406 nm. As a result, high thermal sensitivity of these fluorescent CDs has potential to detect temperature in living cells in the range of 25-40 °C.
Collapse
Affiliation(s)
- Waheed Ullah Khan
- National and Local Joint Engineering Laboratory of Optical-Conversion Materials and Technology, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, P.R. China
| | - Liying Qin
- School of Stomotology, Lanzhou University, Lanzhou 730000, P.R. China
| | - Abid Alam
- National and Local Joint Engineering Laboratory of Optical-Conversion Materials and Technology, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, P.R. China
| | - Ping Zhou
- School of Stomotology, Lanzhou University, Lanzhou 730000, P.R. China
| | - Yong Peng
- Key Laboratory of Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology and Electron Microscope Center of Lanzhou University, Lanzhou 730000, P.R. China
| | - Yuhua Wang
- National and Local Joint Engineering Laboratory of Optical-Conversion Materials and Technology, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, P.R. China
| |
Collapse
|
21
|
Oh M, Kim WD, Zhang M, Kim T, Yoo D, Kim SH, Lee D. Mechanical behavior of ABS plastic-matrix nanocomposites with three different carbon-based nanofillers. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-020-03299-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Metal-free in situ carbon-nanotube-modified mesoporous graphitic carbon nitride nanocomposite with enhanced visible light photocatalytic performance. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04460-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
23
|
Wang Z, Feng J, Li X, Oh R, Shi D, Akdim O, Xia M, Zhao L, Huang X, Zhang G. Au-Pd nanoparticles immobilized on TiO 2 nanosheet as an active and durable catalyst for solvent-free selective oxidation of benzyl alcohol. J Colloid Interface Sci 2021; 588:787-794. [PMID: 33309148 DOI: 10.1016/j.jcis.2020.11.112] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 11/17/2022]
Abstract
TiO2nanocrystals with controlled facets have been extensively investigated due to their excellent photocatalytic performance in sustainable and green energy field. However, the applications in thermal catalysis without applying UV irradiation are comparably less and the identification of their intrinsic roles, especially the different catalytic behaviors of each crystal facet, remains not fully recognized. In this study, bimetallic AuPd nanoparticles supported on anatase TiO2 nanosheets exposing {001} facets or TiO2 nanospindles exposing {101} as a catalyst were prepared by sol-immobilization method and used for solvent-free benzyl alcohol oxidation. The experimental results indicated that the exposed facet of the support has a significant effect on the catalytic performance. AuPd/TiO2-001 catalyst exhibited a higher benzyl alcohol conversion than that of the AuPd/TiO2-101. Meanwhile, all the prepared AuPd/TiO2 catalysts were characterized by XRD, ICP-AES, XPS, BET, TEM, and HRTEM. The results revealed that the higher number of oxygen vacancies in TiO2-sheets with the exposed {001} facets of higher surface energy could be responsible for the observed enhancement in the catalytic performance of benzyl alcohol oxidation. The present study displays that it is plausible to enhance the catalytic performance for the benzyl alcohol oxidation by tailoring the exposed facet of the TiO2 as a catalyst support.
Collapse
Affiliation(s)
- Zhe Wang
- State Key Laboratory Breeding Base of Coal Science and Technology Co-founded by Shanxi Province and the Ministry of Science and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, PR China
| | - Jiangjiang Feng
- State Key Laboratory Breeding Base of Coal Science and Technology Co-founded by Shanxi Province and the Ministry of Science and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, PR China
| | - Xiaoliang Li
- State Key Laboratory Breeding Base of Coal Science and Technology Co-founded by Shanxi Province and the Ministry of Science and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, PR China.
| | - Rena Oh
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Dongdong Shi
- State Key Laboratory Breeding Base of Coal Science and Technology Co-founded by Shanxi Province and the Ministry of Science and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, PR China
| | - Ouardia Akdim
- Cardiff Catalysis Institute, Centre for Doctoral Training in Catalysis, School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Ming Xia
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, Shanxi, PR China
| | - Liang Zhao
- Cardiff Catalysis Institute, Centre for Doctoral Training in Catalysis, School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Xiaoyang Huang
- Cardiff Catalysis Institute, Centre for Doctoral Training in Catalysis, School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, United Kingdom.
| | - Guojie Zhang
- State Key Laboratory Breeding Base of Coal Science and Technology Co-founded by Shanxi Province and the Ministry of Science and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, PR China.
| |
Collapse
|
24
|
Davarazar M, Kamali M, Lopes I. Engineered nanomaterials for (waste)water treatment - A scientometric assessment and sustainability aspects. NANOIMPACT 2021; 22:100316. [PMID: 35559973 DOI: 10.1016/j.impact.2021.100316] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 06/15/2023]
Abstract
Application of nanomaterials for the treatment of effluents originated from various industrial and non-industrial sources, has been rapidly developed in recent decades. In this situation, there is a need for conclusive studies to identify the current status of the knowledge in this field and to promote the commercialization of such technologies by providing recommendations for future studies. In the present manuscript, a scientometric assessment on the progress made in this field has been performed and the results have been organized and discussed in terms of science statistics, research hotspots and trends, as well as the relevant sustainability aspects. Based on a set of keywords, identified through a pre-literature analysis, a total of 6539 documents were retrieved from the Web of Science (WoS) database and analyzed to achieve the main goals of this study. The results demonstrate that the studies in this field have been initiated since the beginning of the 2000s but were mainly performed in lab and pilot scales. Also, China and Iran were identified as the most contributing countries in this scientific area in terms of the number of publications. Among various types of engineered nanomaterials (ENMs), there has been especial attention for the application of iron-based nanomaterials as well as carbonaceous structures (such as graphene oxide and biochar). Besides, there are not still strong collaborations formed among researchers in this area worldwide. Regarding the research hotspots, the synthesis of green and sustainable nanomaterials (e.g., biosynthesis approaches) has received attention in recent years. The results can also demonstrate that the most widely studied pathway for the removal of pollutants from (waste)waters involves the adsorption of the pollutants using ENMs. Treatment of contaminants of emerging concern (CECs) as well as exploring the mechanisms involved in the treatment of contaminated (waste)waters using ENMs and the possible by-products are considered the current trends in the literature. Regarding the sustainability aspects of ENMs for (waste)water treatment, the results achieved in this study calls for in-depth sustainability studies, which consider parameters such as economic, environmental, and social aspects of nanomaterials utilization for (waste)water treatment purposes, besides the technical parameters, to push transferring such technologies from lab and pilot scales to large and real-scale applications.
Collapse
Affiliation(s)
- Mahsa Davarazar
- Department of Biology, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Mohammadreza Kamali
- Process and Environmental Technology Lab, Department of Chemical Engineering, KU Leuven, 2860 Sint-Katelijne-Waver, Belgium; CESAM - Center of Environmental and Marine Studies & Department of Biology, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| | - Isabel Lopes
- Department of Biology, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; CESAM - Center of Environmental and Marine Studies & Department of Biology, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
25
|
Sharma S, Basu S, Shetti NP, Nadagouda MN, Aminabhavi TM. Microplastics in the environment: Occurrence, perils, and eradication. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2021; 408:127317. [PMID: 34017217 PMCID: PMC8129922 DOI: 10.1016/j.cej.2020.127317] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Microplastics (MPs) with sizes < 5 mm are found in various compositions, shapes, morphologies, and textures that are the major sources of environmental pollution. The fraction of MPs in total weight of plastic accumulation around the world is predicted to be 13.2% by 2060. These micron-sized MPs are hazardous to marine species, birds, animals, soil creatures and humans due to their occurrence in air, water, soil, indoor dust and food items. The present review covers discussions on the damaging effects of MPs on the environment and their removal techniques including biodegradation, adsorption, catalytic, photocatalytic degradation, coagulation, filtration and electro-coagulation. The main techniques used to analyze the structural and surface changes such as cracks, holes and erosion post the degradation processes are FTIR and SEM analysis. In addition, reduction in plastic molecular weight by the microbes implies disintegration of MPs. Adsorptive removal by the magnetic adsorbent promises complete elimination while the biodegradable catalysts could remove 70-100% of MPs. Catalytic degradation via advanced oxidation assisted by S O 4 • - or O H • radicals generated by peroxymonosulfate or sodium sulfate are also adequately covered in addition to photocatalysis. The chemical methods such as sol-gel, agglomeration, and coagulation in conjunction with other physical methods are discussed concerning the drinking water/wastewater/sludge treatments. The efficacy, merits and demerits of the currently used removal approaches are reviewed that will be helpful in developing more sophisticated technologies for the complete mitigation of MPs from the environment.
Collapse
Affiliation(s)
- Surbhi Sharma
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Soumen Basu
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Nagaraj P. Shetti
- Center for Electrochemical Science and Materials, Department of Chemistry, K.L.E. Institute of Technology, Hubballi-580 027, Karnataka, India
| | - Mallikarjuna N. Nadagouda
- The United States Environmental Protection Agency, ORD, CESER, WID, CMTB, 26 W. Martin Luther King Drive, Cincinnati, OH 45268, United States
- Corresponding authors. (M.N. Nadagouda), (T.M. Aminabhavi)
| | - Tejraj M. Aminabhavi
- Pharmaceutical Engineering, SET’s College of Pharmacy, Dharwad 580 002, Karnataka, India
- Corresponding authors. (M.N. Nadagouda), (T.M. Aminabhavi)
| |
Collapse
|
26
|
Construction of Bi2WO6/MoSe2/Bi12O17ClxBr2−x heterostructures for the production of hydrogen energy and degradation of methylene blue. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-020-01640-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
27
|
Kiama N, Ponchio C. Photoelectrocatalytic reactor improvement towards oil-in-water emulsion degradation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 279:111568. [PMID: 33162233 DOI: 10.1016/j.jenvman.2020.111568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/19/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
Oil-in-water (O/W) emulsion is critical wastewater that is challenging to eliminate and requires a long treatment process, and it is necessary to develop highly effective removal methods before releasing it into natural water sources. This research has selected the photoelectrocatalytic (PEC) technique to solve this problem by developing a PEC reactor for high efficiency in O/W degradation and understanding the essential factors related to the PEC reactor's efficiency improvement. The PEC reactor has been designed on a large scale with suitable positioning of an electrode that is, designing a light source near the anode electrode to enhance light irradiation efficiency and including a circulating pump to provide continuous flow to the solution through the electrode surface. We studied the main factors of supporting the electrolyte, electrode characteristics, and catalytic process. We investigated the O/W-degradation efficiency using a UV/Vis spectrophotometer, chemical oxygen demand (COD) measurement, and GC-MS analysis. We optimized the PEC reactor using the developed BiVO4 photoanodes and placed them parallel with the zinc plates. Then, we controlled the applied potential at 1.0 V in 0.1 M Na2SO4 supporting an electrolyte under visible light irradiation. The developed PEC reactor can be degraded in the O/W emulsion up to 76% and decreased the COD value up to 78% for 7h. This PEC cell can be completely decomposed of many functional groups, such as carbonyl, ester, nitrile, amine, phosphate, chloro group, and nitro group, that were contained in the O/W substance. The highlight of this research is the designed light source and circulating pump inside of the PEC reactor to enhance the light irradiation, refresh the anode electrode, and understand the critical factor for the improvement of O/W-degradation efficiency. This PEC reactor presents a high-efficiency O/W degradation with practical use and a fast process suitable for further application in high turbidity of wastewater treatment from the oil industry.
Collapse
Affiliation(s)
- Nuanlaor Kiama
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Phathumtani, 12110, Thailand
| | - Chatchai Ponchio
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Phathumtani, 12110, Thailand; Advanced Materials Design and Development (AMDD) Research Unit, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Klong 6, Thanyaburi, Pathum Thani, 12110, Thailand.
| |
Collapse
|
28
|
Ghattavi S, Nezamzadeh-Ejhieh A. A double-Z-scheme ZnO/AgI/WO3 photocatalyst with high visible light activity: Experimental design and mechanism pathway in the degradation of methylene blue. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114563] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
Ramesh Reddy N, Mamatha Kumari M, Shankar MV, Raghava Reddy K, Woo Joo S, Aminabhavi TM. Photocatalytic hydrogen production from dye contaminated water and electrochemical supercapacitors using carbon nanohorns and TiO 2 nanoflower heterogeneous catalysts. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 277:111433. [PMID: 33070019 DOI: 10.1016/j.jenvman.2020.111433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/20/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
In this research, efficient and novel catalysts based on hierarchical carbon nanohorns-titanium nanoflowers have been prepared by one-pot solvothermal process. Hydrogen generation from dye-contaminated water and dye degradation along with electrochemical supercapacitance performance have been investigated using the synthesized hierarchical catalyst to produce 4500 μmol g-1 h-1 of hydrogen from the photocatalytically generated aqueous methylene blue and methyl orange dyes, which were degraded up to 90% under natural solar light irradiation. These results offer a new path to generate hydrogen from the aqueous dyes. The catalysts electrode showed 164.6 F g-1 supercapacitance at 5 mV s-1 scan rate, which is nearly 1.3 and 1.65-times higher than that of pristine titanium nanoflower and carbon nanohorns electrodes, respectively. Such superior results were achieved due to good crystallinity, improved optical absorption strength, strong chemical composition between the two components, and hierarchical morphology as demonstrated from XRD, UV-DRS, TEM, XPS, and Raman spectral characterizations.
Collapse
Affiliation(s)
- N Ramesh Reddy
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - M Mamatha Kumari
- Nanocatalysis and Solar Fuels Research Lab, Department of Materials Science & Nanotechnology, Yogi Vemana University, Kadapa, 516 005, Andhra Pradesh, India
| | - M V Shankar
- Nanocatalysis and Solar Fuels Research Lab, Department of Materials Science & Nanotechnology, Yogi Vemana University, Kadapa, 516 005, Andhra Pradesh, India
| | - Kakarla Raghava Reddy
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Sang Woo Joo
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | | |
Collapse
|
30
|
Farhadi R, Tavanai H, Abdolmaleki A, Shamsabadi AS. The Effect of Nitrogen and Oxygen Dopants on the Morphology and Microstructure of Zinc Oxide Nanoparticles Incorporated Electrospun Poly(acrylonitrile) Based Activated Carbon Nanofibers. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01639-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
de Melo JF, de Araújo DM, Ribeiro da Silva D, Villegas-Guzman P, Martínez-Huitle CA. Electrochemical treatment of real petrochemical effluent: current density effect and toxicological tests. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 82:2304-2315. [PMID: 33339786 DOI: 10.2166/wst.2020.471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This work aims to investigate the electrochemical treatment of petrochemical industry effluents (from the northwest region of Brazil) mediated by active chlorine species electrogenerated at ruthenium-titanium oxide supported in titanium (Ti/Ru0.3Ti0.7O2) and boron doped diamond (BDD) anodes by applying 15 and 45 mA cm-2. Chemical oxygen demand (COD) determinations and toxicity analyses were carried out in order to evaluate the process extension as well as the possible reuse of the wastewater after treatment. Toxicity was evaluated by assessing the inhibition of lettuce (Lactuca sativa) stem growth, seed germination, and the production of nitrite (NO-2) and nitrate (NO-3) species. Results clearly showed that the best COD reduction performances were reached at the BDD anode, achieving almost 100% of removal in a short time. Degradation of nitrogen-organic compounds generated NO-2 and NO-3 which act as nutrients for lettuce. Toxicity results also indicated that the electrogenerated active chlorine species are persistent in the effluent after the treatment, avoiding the stem growth, and consequently affecting the germination.
Collapse
Affiliation(s)
- Jaqueline Ferreira de Melo
- Federal University of Rio Grande do Norte, Institute of Chemistry, Lagoa Nova, 59078-970 Natal, RN, Brazil E-mail:
| | - Danyelle Medeiros de Araújo
- Federal University of Rio Grande do Norte, Institute of Chemistry, Lagoa Nova, 59078-970 Natal, RN, Brazil E-mail:
| | - Djalma Ribeiro da Silva
- Federal University of Rio Grande do Norte, Institute of Chemistry, Lagoa Nova, 59078-970 Natal, RN, Brazil E-mail:
| | - Paola Villegas-Guzman
- Federal University of Rio Grande do Norte, Institute of Chemistry, Lagoa Nova, 59078-970 Natal, RN, Brazil E-mail: ; Grupo de Investigación Navarra Ambiental, Fundación Universitaria Navarra, Calle 10 No. 6-41, Neiva, Huila, Colombia
| | | |
Collapse
|
32
|
Praveen E, Peter IJ, Kumar AM, Ramachandran K, Jayakumar K. Boosting of Power Conversion Efficiency of 2D ZnO Nanostructures-Based DSSC by the Lorentz Force with Chitosan Polymer Electrolyte. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01629-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
33
|
Hou X, Xu H, Zhen T, Wu W. Recent developments in three-dimensional graphene-based electrochemical sensors for food analysis. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.09.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
34
|
Siddiqui MA, Wahab R, Ahmad J, Farshori NN, Al-Khedhairy AA. Single and Multi-metal Oxide Nanoparticles Induced Cytotoxicity and ROS Generation in Human Breast Cancer (MCF-7) Cells. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01564-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Chand K, Cao D, Fouad DE, Shah AH, Lakhan MN, Dayo AQ, Sagar HJ, Zhu K, Mohamed AMA. Photocatalytic and antimicrobial activity of biosynthesized silver and titanium dioxide nanoparticles: A comparative study. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113821] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
36
|
Zhang S, He Z, Li X, Zhang J, Zang Q, Wang S. Building heterogeneous nanostructures for photocatalytic ammonia decomposition. NANOSCALE ADVANCES 2020; 2:3610-3623. [PMID: 36132763 PMCID: PMC9418952 DOI: 10.1039/d0na00161a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
Ammonia is an important chemical for human beings that is used in the synthesis of chemical fertilizers and products; meanwhile, it is also a hazardous compound which causes undesirable odors, several diseases, and environmental problems. Therefore, there is an urgent need to control and remove ammonia pollutants from water, air and soil. Hence, clean processes using photocatalysis to convert ammonia into H2 and N2 have been an important research topic in recent years. To date, only some metal-loaded common photocatalysts, such as TiO2, ZnO, C3N4, graphene and other carbon-based materials together with their hybrid materials, have been reported as active photocatalysts for the decomposition of aqueous ammonia solutions. In this review, we summarize the recent advances in heterogeneous nanostructures for photocatalytic ammonia decomposition. Particular emphasis is also given to metal-loading along with the resulting heterojunctions. Furthermore, the recent efforts toward the development of heterogeneous nanostructures for photocatalytic ammonia decomposition in this direction are discussed and appraised. Finally, perspectives and future opportunities regarding the challenges and future directions in the area of heterogeneous photocatalysts for ammonia decomposition are also provided.
Collapse
Affiliation(s)
- Shijie Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University Qingdao 266237 China
| | - Zuoli He
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University Qingdao 266237 China
| | - Xuan Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University Qingdao 266237 China
| | - Jing Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University Qingdao 266237 China
| | - Qianhao Zang
- School of Materials Science and Engineering, Jiangsu University of Science and Technology Zhenjiang 212003 China
| | - Shuguang Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University Qingdao 266237 China
| |
Collapse
|
37
|
Jia S, Pan H, Lin Q, Wang X, Li C, Wang M, Shi Y. Study on the preparation and mechanism of chitosan-based nano-mesoporous carbons by hydrothermal method. NANOTECHNOLOGY 2020; 31:365604. [PMID: 32438365 DOI: 10.1088/1361-6528/ab9575] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this paper, the hydrothermal method to synthesize and characterize nano-mesoporous carbons and their synthesis mechanism are reported. Using tri-block Pluronic F127 as a structuring agent and chitosan (CS) as a carbon source, the nano-mesoporous carbons were synthesized by a one-step sol polymerization and hydrothermal process, followed by carbonization at high temperature. The pore structure of the carbon materials was characterized by physical adsorption analyzer, and the morphology was characterized by SEM and TEM. Fourier-transform infrared, Raman and x-ray photoelectron spectroscopy were used to study the synthesis mechanism. The results showed that the self-assembly polymerization reaction between CS and F127 in a weakly acidic system was only implemented driven by the hydrogen bond auxiliary electrostatic interactions initiated by protonated amino groups. The nitrogen from amino groups and acetylamino groups, the oxygen in acetylamino groups, hydroxyl groups and the glycosidic bonds of CS, and the oxygen from the hydrophilic segments of F127 were the main active sites. The mesoporous material possesses a high Brunauer-Emmett-Teller surface area (163 m2/g) and large pore volume (0.462 cm3/g) with pore diameter around 2.1 nm. The nitrogen content was 1.08% and existed in the pore wall as the form of pyridine, pyrrole and quaternary nitrogen.
Collapse
Affiliation(s)
- Shuangzhu Jia
- School of Chemistry and Chemical Engineering, Guizhou University, 550025, Guiyang, People's Republic of China. School of Chemistry and Chemical Engineering, Qiannan Normal College for Nationalities, 558000, Duyun, People's Republic of China. State Key Laboratory of Efficient Utilization for Low Grade Phosphate Rock and Its Associated Resources, Wengfu Group Co. Ltd., 550016, Guiyang, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
38
|
Alassod A, Gibril M, Islam SR, Huang W, Xu G. Polypropylene/lignin blend monoliths used as sorbent in oil spill cleanup. Heliyon 2020; 6:e04591. [PMID: 32944663 PMCID: PMC7481537 DOI: 10.1016/j.heliyon.2020.e04591] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/08/2020] [Accepted: 07/28/2020] [Indexed: 10/25/2022] Open
Abstract
With increasing industrial development, frequent oil spillages in water; therefore, it is imperative and challenging to develop absorbents materials that are eco-efficiency, cost-effective, and pollution prevention. In this study, sorbents obtained from Lignin incorporated with Polypropylene in different levels loading 0, 10, 20 % wt using thermally induced phase separation Technique (TIPS). The Polypropylene/Lignin blend monoliths were fabricated and compared in terms of morphological, thermal, and wetting characterizations. The successfully blending of different lignin concentrations with preserved the chemical structure of the polymer was confirmed by FTIR analysis. Thermogravimetric tests displayed that the existence of Lignin has changed the onset temperature (Tonset) of the blending sorbents, decreasing as the loading of Lignin is increased. The contact angle measurement showed a decrease in the hydrophobicity of sorbents with increasing lignin loading, Polypropylene/Lignin blend monoliths showed better absorption toward oils (soybean - engine) as compared to Polypropylene itself. PP10L showed an improvement in the oil sorption capacity around 2 times compared to the Polypropylene. These excellent features make Polypropylene/Lignin blend monoliths more competitive promising candidates than commercial absorbent.
Collapse
Affiliation(s)
- Abeer Alassod
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Magdi Gibril
- Qilu University, Key Laboratory of Biobased Materials and Green Papermaking, China
| | | | - Wanzhen Huang
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Guangbiao Xu
- College of Textiles, Donghua University, Shanghai 201620, China
| |
Collapse
|
39
|
The influence of the rotation frequency of a planetary ball mill on the limiting value of the specific surface area of the WC and Co nanopowders. ADV POWDER TECHNOL 2020. [DOI: 10.1016/j.apt.2020.07.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
Koutavarapu R, Babu B, Reddy CV, Reddy IN, Reddy KR, Rao MC, Aminabhavi TM, Cho M, Kim D, Shim J. ZnO nanosheets-decorated Bi 2WO 6 nanolayers as efficient photocatalysts for the removal of toxic environmental pollutants and photoelectrochemical solar water oxidation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 265:110504. [PMID: 32275239 DOI: 10.1016/j.jenvman.2020.110504] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/25/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
Herein we report the fabrication of novel Bi2WO6/ZnO heterostructured hybrids for organic contaminant degradation from wastewater and photoelectrochemical (PEC) water splitting upon solar illumination. The Bi2WO6/ZnO photocatalysts were synthesized using a simple and eco-friendly hydrothermal process without the support of any surfactants. From the photocatalytic experiments, heterostructured Bi2WO6/ZnO nanohybrid catalysts exhibited considerably better photocatalytic performance for rhodamine B (RhB) degradation under solar illumination. The BWZ-20 nanocomposite demonstrated superior photodegradation of RhB dye up to 99% in about 50 min. Furthermore, BWZ-20 photoelectrode showeda lower charge-transfer resistance than other samples prepared, suggesting its suitability for PEC water splitting. The photocurrent densities of Bi2WO6/ZnO photoelectrodes were evaluated under the solar irradiation. The BWZ-20 photoelectrode exhibited a significant photocurrent density (0.45 × 10-3A/cm2) at +0.3 V vs. Ag/AgCl, which was~1036-times higher than that of pure Bi2WO6, and ~4.8-times greater than the pure ZnO. Such improved photocatalytic and PEC activities are mainly attributed to the formation of an interface between ZnO and Bi2WO6, superior light absorption ability, low charge-transfer resistance, remarkable production of charge carriers, easy migration of charges, and suppression of the recombination of photogenerated charge carriers.
Collapse
Affiliation(s)
| | - Bathula Babu
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, 712-749, Republic of Korea
| | - Ch Venkata Reddy
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, 712-749, Republic of Korea.
| | - I Neelakanta Reddy
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, 712-749, Republic of Korea
| | - Kakarla Raghava Reddy
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - M C Rao
- Department of Physics, Andhra Loyola College, Vijayawada, 520 008, Andhra Pradesh, India
| | - Tejraj M Aminabhavi
- Department of Pharmaceutics, SETs' College of Pharmacy, Dharwad, 580 007, Karnataka, India.
| | - Migyung Cho
- School of Information Engineering, Tongmyong University, Busan, 608-711, Republic of Korea
| | - Dongseob Kim
- Aircraft System Technology Group, Korea Institute of Industrial Technology, Gyeongbuk-do, 38822, Republic of Korea
| | - Jaesool Shim
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, 712-749, Republic of Korea.
| |
Collapse
|
41
|
Noor S, Shah Z, Javed A, Ali A, Hussain SB, Zafar S, Ali H, Muhammad SA. A fungal based synthesis method for copper nanoparticles with the determination of anticancer, antidiabetic and antibacterial activities. J Microbiol Methods 2020; 174:105966. [DOI: 10.1016/j.mimet.2020.105966] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 12/24/2022]
|
42
|
Du YE, Li W, Bai Y, Huangfu Z, Wang W, Chai R, Chen C, Yang X, Feng Q. Facile synthesis of TiO 2/Ag 3PO 4 composites with co-exposed high-energy facets for efficient photodegradation of rhodamine B solution under visible light irradiation. RSC Adv 2020; 10:24555-24569. [PMID: 35516206 PMCID: PMC9055145 DOI: 10.1039/d0ra04183a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 06/19/2020] [Indexed: 11/21/2022] Open
Abstract
In this study, TiO2/Ag3PO4 composites based on anatase TiO2 nanocrystals with co-exposed {101}, {010}/{100}, {001} and [111]-facets and Ag3PO4 microcrystals with irregular and cubic-like polyhedron morphologies were successfully synthesized by combining hydrothermal and ion-exchange methods. The anatase TiO2 nanocrystals with different high-energy facets were controllably prepared via hydrothermal treatment of the exfoliated [Ti4O9]2−/[Ti2O5]2− nanosheet solutions at desired pH values. The Ag3PO4 microcrystal with different morphologies was prepared via the ion-exchange method in the presence of AgNO3 and NH4H2PO4 at room temperature, which was used as a substrate to load the as-prepared anatase TiO2 nanocrystals on its surface and to form TiO2/Ag3PO4 heterostructures. The apparent rate constant of the pH 3.5-TiO2/Ag3PO4 composite was the highest at 12.0 × 10−3 min−1, which was approximately 1.1, 1.2, 1.4, 1.6, 13.3, and 24.0 fold higher than that of pH 0.5-TiO2/Ag3PO4 (10.5 × 10−3 min−1), pH 7.5-TiO2/Ag3PO4 (10.2 × 10−3 min−1), pH 11.5-TiO2 (8.8 × 10−3 min−1), Ag3PO4 (7.7 × 10−3 min−1), blank sample (0.9 × 10−3 min−1), and the commercial TiO2 (0.5 × 10−3 min−1), respectively. The pH 3.5-TiO2/Ag3PO4 composite exhibited the highest visible-light photocatalytic activity which can be attributed to the synergistic effects of its heterostructure, relatively small crystal size, large specific surface area, good crystallinity, and co-exposed high-energy {001} and [111]-facets. The as-prepared TiO2/Ag3PO4 composites still exhibited good photocatalytic activity after three successive experimental runs, indicating that they had remarkable stability. This study provides a new way for the preparation of TiO2/Ag3PO4 composite semiconductor photocatalysts with high energy crystal surfaces and high photocatalytic activity. TiO2/Ag3PO4 composites with co-exposed {101}, {010}/{100}, {001} and [111]-facets were successfully synthesized by combining hydrothermal and ion-exchange methods.![]()
Collapse
Affiliation(s)
- Yi-En Du
- School of Chemistry & Chemical Engineering, Jinzhong University Jinzhong 030619 China .,Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University Beijing 100875 China .,Department of Advanced Materials Science, Faculty of Engineering, Kagawa University 2217-20 Hayashi-cho Takamatsu-shi 761-0396 Japan
| | - Wanxi Li
- School of Chemistry & Chemical Engineering, Jinzhong University Jinzhong 030619 China
| | - Yang Bai
- School of Chemistry & Chemical Engineering, Jinzhong University Jinzhong 030619 China
| | - Zewen Huangfu
- School of Chemistry & Chemical Engineering, Jinzhong University Jinzhong 030619 China
| | - Weijin Wang
- School of Chemistry & Chemical Engineering, Jinzhong University Jinzhong 030619 China
| | - Ruidong Chai
- School of Chemistry & Chemical Engineering, Jinzhong University Jinzhong 030619 China
| | - Changdong Chen
- College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University Fushun 113001 China
| | - Xiaojing Yang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University Beijing 100875 China
| | - Qi Feng
- Department of Advanced Materials Science, Faculty of Engineering, Kagawa University 2217-20 Hayashi-cho Takamatsu-shi 761-0396 Japan
| |
Collapse
|
43
|
Fu Z, Shen Z, Fan Q, Hao S, Wang Y, Liu X, Tong X, Kong X, Yang Z. Preparation of multi-functional magnetic-plasmonic nanocomposite for adsorption and detection of thiram using SERS. JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122356. [PMID: 32109795 DOI: 10.1016/j.jhazmat.2020.122356] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/07/2019] [Accepted: 02/18/2020] [Indexed: 06/10/2023]
Abstract
Magnetic materials have been widely used for constructing substrate in surface enhanced Raman scattering (SERS) sensing due to the magnetic responsibility. Here, we reported a facile and effective approach to construct multi-functional SERS substrate based on assembling Ag nanoparticles (NPs) on porous Fe microspheres. The porous Fe microspheres were prepared through hydrogen reduction of Fe2O3 NPs with porous structure, in which the size and morphology of Fe could be well controlled. The surface of Fe was grafted with amino group, and then decorated with Ag NPs. The surface area and pore size of Fe microsphere were characterized by nitrogen adsorption and desorption. The Fe@Ag nanocomposite illustrated a good SERS activity. Furthermore, this substrate could be used for pesticide monitoring by portable Raman spectrometer. Especially, the porous Fe microsphere could adsorb analyte from target sample and the Fe@Ag could be concentrated by magnetic force to amplify the SERS signal for thiram detection.
Collapse
Affiliation(s)
- Ziwei Fu
- College of Chemistry, Chemical Engineering and Environment Engineering, Liaoning Shihua University, Fushun, Liaoning 113001, PR China
| | - Zhengdong Shen
- College of Chemistry, Chemical Engineering and Environment Engineering, Liaoning Shihua University, Fushun, Liaoning 113001, PR China
| | - Qinzhen Fan
- College of Chemical Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China; Guangdong Provincial Engineering Technology Research Center of Petrochemical Corrosion and Safety, Guangdong University of Petrochemical Technology Maoming 525000, PR China
| | - Shaoxian Hao
- College of Chemistry, Chemical Engineering and Environment Engineering, Liaoning Shihua University, Fushun, Liaoning 113001, PR China
| | - Ying Wang
- College of Chemistry, Chemical Engineering and Environment Engineering, Liaoning Shihua University, Fushun, Liaoning 113001, PR China
| | - Xinquan Liu
- College of Chemistry, Chemical Engineering and Environment Engineering, Liaoning Shihua University, Fushun, Liaoning 113001, PR China
| | - Xiaoxue Tong
- College of Chemistry, Chemical Engineering and Environment Engineering, Liaoning Shihua University, Fushun, Liaoning 113001, PR China
| | - Xianming Kong
- College of Chemistry, Chemical Engineering and Environment Engineering, Liaoning Shihua University, Fushun, Liaoning 113001, PR China.
| | - Zhanxu Yang
- College of Chemistry, Chemical Engineering and Environment Engineering, Liaoning Shihua University, Fushun, Liaoning 113001, PR China.
| |
Collapse
|
44
|
Kaushik S, Matsumoto K, Sato Y, Hagiwara R. Optimization of the Carbon Content in Copper Phosphide–Carbon Composites for High Performance Sodium Secondary Batteries Using Ionic Liquids. ChemElectroChem 2020. [DOI: 10.1002/celc.202000727] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shubham Kaushik
- Graduate School of Energy ScienceKyoto University Sakyo-ku, Kyoto 606-8501 Japan
| | - Kazuhiko Matsumoto
- Graduate School of Energy ScienceKyoto University Sakyo-ku, Kyoto 606-8501 Japan
- Unit of Elements Strategy Initiative for Catalysts & Batteries (ESICB)Kyoto University Katsura, Kyoto 615-8510 Japan
| | - Yuta Sato
- Nanomaterials Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST) Central 5, 1–1-1 Higashi Tsukuba, Ibaraki 305-8565 Japan
| | - Rika Hagiwara
- Graduate School of Energy ScienceKyoto University Sakyo-ku, Kyoto 606-8501 Japan
- Unit of Elements Strategy Initiative for Catalysts & Batteries (ESICB)Kyoto University Katsura, Kyoto 615-8510 Japan
| |
Collapse
|
45
|
Rabiee N, Bagherzadeh M, Kiani M, Ghadiri AM, Etessamifar F, Jaberizadeh AH, Shakeri A. Biosynthesis of Copper Oxide Nanoparticles with Potential Biomedical Applications. Int J Nanomedicine 2020; 15:3983-3999. [PMID: 32606660 PMCID: PMC7294052 DOI: 10.2147/ijn.s255398] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/28/2020] [Indexed: 12/28/2022] Open
Abstract
Introduction In recent years, the use of cost-effective, multifunctional, environmentally friendly and simple prepared nanomaterials/nanoparticles have been emerged considerably. In this manner, different synthesizing methods were reported and optimized, but there is still lack of a comprehensive method with multifunctional properties. Materials and Methods In this study, we aim to synthesis the copper oxide nanoparticles using Achillea millefolium leaf extracts for the first time. Catalytic activity was investigated by in situ azide alkyne cycloaddition click and also A3 coupling reaction, and optimized in terms of temperature, solvent, and time of the reaction. Furthermore, the photocatalytic activity of the synthesized nanoparticles was screened in terms of degradation methylene blue dye. Biological activity of the synthesized nanoparticles was evaluated in terms of antibacterial and anti-fungal assessments against Staphylococcus aureus, M. tuberculosis, E. coli, K. pneumoniae, P. mirabili, C. diphtheriae and S. pyogenes bacteria's and G. albicans, A. flavus, M. canis and G. glabrata fungus. In the next step, the biosynthesized CuO-NPs were screened by MTT and NTU assays. Results Based on our knowledge, this is a comprehensive study on the catalytic and biological activity of copper oxide nanoparticles synthesizing from Achillea millefolium, which presents great and significant results (in both catalytic and biological activities) based on a simple and green procedure. Conclusion Comprehensive biomedical and catalytic investigation of the biosynthesized CuO-NPs showed the mentioned method leads to synthesis of more eco-friendly nanoparticles. The in vitro studies showed promising and considerable results, and due to the great stability of these nanoparticles in a green media, effective biological activity considered as an advantageous.
Collapse
Affiliation(s)
- Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran 11155-3516, Iran
| | - Mojtaba Bagherzadeh
- Department of Chemistry, Sharif University of Technology, Tehran 11155-3516, Iran
| | - Mahsa Kiani
- Department of Chemistry, Sharif University of Technology, Tehran 11155-3516, Iran
| | | | - Fatemeh Etessamifar
- Department of Chemistry, Sharif University of Technology, Tehran 11155-3516, Iran
| | | | - Alireza Shakeri
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
46
|
Kumar R. NiCo 2O 4 Nano-/Microstructures as High-Performance Biosensors: A Review. NANO-MICRO LETTERS 2020; 12:122. [PMID: 34138118 PMCID: PMC7770908 DOI: 10.1007/s40820-020-00462-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 02/28/2020] [Indexed: 05/13/2023]
Abstract
Non-enzymatic biosensors based on mixed transition metal oxides are deemed as the most promising devices due to their high sensitivity, selectivity, wide concentration range, low detection limits, and excellent recyclability. Spinel NiCo2O4 mixed oxides have drawn considerable attention recently due to their outstanding advantages including large specific surface area, high permeability, short electron, and ion diffusion pathways. Because of the rapid development of non-enzyme biosensors, the current state of methods for synthesis of pure and composite/hybrid NiCo2O4 materials and their subsequent electrochemical biosensing applications are systematically and comprehensively reviewed herein. Comparative analysis reveals better electrochemical sensing of bioanalytes by one-dimensional and two-dimensional NiCo2O4 nano-/microstructures than other morphologies. Better biosensing efficiency of NiCo2O4 as compared to corresponding individual metal oxides, viz. NiO and Co3O4, is attributed to the close intrinsic-state redox couples of Ni3+/Ni2+ (0.58 V/0.49 V) and Co3+/Co2+ (0.53 V/0.51 V). Biosensing performance of NiCo2O4 is also significantly improved by making the composites of NiCo2O4 with conducting carbonaceous materials like graphene, reduced graphene oxide, carbon nanotubes (single and multi-walled), carbon nanofibers; conducting polymers like polypyrrole (PPy), polyaniline (PANI); metal oxides NiO, Co3O4, SnO2, MnO2; and metals like Au, Pd, etc. Various factors affecting the morphologies and biosensing parameters of the nano-/micro-structured NiCo2O4 are also highlighted. Finally, some drawbacks and future perspectives related to this promising field are outlined.
Collapse
Affiliation(s)
- Rajesh Kumar
- Department of Chemistry, Jagdish Chandra DAV College, Dasuya, Distt. Hoshiarpur, 144205, Punjab, India.
| |
Collapse
|
47
|
Nagore PB, Ghoti AJ, Salve AP, Mane KG. RETRACTED ARTICLE: Green Synthesis of Luminescent Copper Oxide Nanoparticles Using Ginger Lily Leaves Extract. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01614-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
48
|
A Comparative Study on the Structure and Catalytic Performance of UiO-66 Supported Pt Nanocatalysts Prepared by NaBH4 and H2 Reduction: Light-Off, Durability and Mechanism for CO Oxidation. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01597-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
49
|
Ma J, Liu C, Chen K. Counting on low-oxygen calcination to boost zinc ferrite powder’s topology and photocatalytic efficiency. ADV POWDER TECHNOL 2020. [DOI: 10.1016/j.apt.2020.01.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
50
|
Jayaprakash N, Suresh R, Rajalakshmi S, Sundaravadivel E, Raja S. One-step synthesis of CuO nanoparticles and their effects on H9c2 cardiomyoblasts cells. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1723628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Narayanan Jayaprakash
- Department of Chemistry, SRM Valliammai Engineering College (Autonomous), Chennai, India
| | - Ranganathan Suresh
- Department of Analytical and Inorganic Chemistry, Faculty of Chemical Sciences, University of Concepcion, Concepcion, Chile
- Department of Chemistry, Easwari Engineering College (Autonomous), Chennai, India
| | | | | | - Sundaramoorthy Raja
- Department of Electrical and Electronics Engineering, Sri Chandrasekharendra Saraswathi, Viswa Mahavidyalaya, Deemed to be University, India
| |
Collapse
|