1
|
François M, Lin KS, Rachmadona N. Microalgae-based membrane bioreactor for wastewater treatment, biogas production, and sustainable energy: A review. ENVIRONMENTAL RESEARCH 2025; 268:120802. [PMID: 39798663 DOI: 10.1016/j.envres.2025.120802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/28/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Managing wastewater and using renewable energy sources are challenges in achieving sustainable development goals. This study provides an overview of the factors influencing the performance of algae-based membrane bioreactors (AMBRs) for contaminant removal from wastewater and biogas production. This review highlights that the performance of AMBRs in removing total phosphorus (TP) and nitrogen (N) from wastewater can reach up to 93% and 97%, respectively, depending on parameters such as pH, hydraulic retention time (HRT), and algae concentration. Moreover, the removal of H2S from biogas substantially depends on the type of bioreactor used. Furthermore, algal biomass has proven to be a viable option for biogas production and CO2 sequestration, contributing to carbon neutrality. This review also underscores that microalgae are a valuable feedstock, either alone or in combination with other raw materials, for biogas production. In conclusion, this review outlines that maximizing the performance of bioreactors and the efficiency of microalgae used for biogas production and wastewater treatment requires careful control of parameters, such as HRT, solid retention time, pH, and temperature. Additionally, pH and the carbon-to-nitrogen ratio (C:N) are factors influencing CH4 yield during microalgae anaerobic digestion (AD). Further research is needed to evaluate the operational costs of AMBRs used for wastewater treatment and to compare the biogas yield from different types of bioreactors under similar conditions, including the use of the same feedstock.
Collapse
Affiliation(s)
- Mathurin François
- Department of Chemical Engineering and Materials Science/Environmental Technology Research Center, Yuan Ze University, Chung-Li District, Taoyuan City, 32003, Taiwan
| | - Kuen-Song Lin
- Department of Chemical Engineering and Materials Science/Environmental Technology Research Center, Yuan Ze University, Chung-Li District, Taoyuan City, 32003, Taiwan.
| | - Nova Rachmadona
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java, 45363, Indonesia; Research Collaboration Center for Biomass and Biorefinery Between BRIN and Universitas Padjadjaran, Jatinangor, West Java, 45363, Indonesia
| |
Collapse
|
2
|
Díaz V, Antiñolo L, Poyatos JM, Muñío MDM, Martín-Pascual J. Effect of hydraulic retention time and treated urban wastewater ratio on progressive adaptation of an inoculated microalgae in membrane photobioreactors. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123005. [PMID: 39476682 DOI: 10.1016/j.jenvman.2024.123005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/23/2024] [Accepted: 10/20/2024] [Indexed: 11/28/2024]
Abstract
Currently, there is a growing concern about water scarcity. The rising demand for wastewater treatment systems that facilitate the reuse of wastewater has resulted in a focus on the use of microalgae in sustainable treatments. These methods not only eliminate nutrients from the wastewater but also produce biomass that can be used to obtain high-value products. This study aimed to observe the effect of different hydraulic retention times (HRTs) and treated urban wastewater (TUWW) percentages on the growth of microalgae biomass and nutrient consumption in membrane photobioreactors. Microalgae biomass growth increases with HRT regardless of the percentage of TUWW. Biomass concentration stabilises at between 40% and 60% TUWW but significantly increases when 100% TUWW is used, resulting in the highest biomass concentrations. As HRT increases, ammonium and total nitrogen consumption also rise. A positive trend in ammonium consumption was observed with increasing TUWW, reaching its peak with 100% TUWW. The optimal conditions for biomass growth and nutrient removal are achieved with a 7-day HRT and 100% TUWW as influent, which was confirmed as optimal with the response surface methodology.
Collapse
Affiliation(s)
- Verónica Díaz
- Department of Civil Engineering, University of Granada 18071, Granada, Spain; Institute of Water Research, University of Granada 18071, Granada, Spain.
| | - Laura Antiñolo
- Department of Civil Engineering, University of Granada 18071, Granada, Spain; Institute of Water Research, University of Granada 18071, Granada, Spain.
| | - José Manuel Poyatos
- Department of Civil Engineering, University of Granada 18071, Granada, Spain; Institute of Water Research, University of Granada 18071, Granada, Spain.
| | - María Del Mar Muñío
- Institute of Water Research, University of Granada 18071, Granada, Spain; Department of Chemical Engineering, University of Granada 18071, Granada, Spain.
| | - Jaime Martín-Pascual
- Department of Civil Engineering, University of Granada 18071, Granada, Spain; Institute of Water Research, University of Granada 18071, Granada, Spain.
| |
Collapse
|
3
|
Liao Y, Fatehi P, Liao B. A Study of Theoretical Analysis and Modelling of Microalgal Membrane Photobioreactors for Microalgal Biomass Production and Nutrient Removal. MEMBRANES 2024; 14:245. [PMID: 39728695 DOI: 10.3390/membranes14120245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 12/28/2024]
Abstract
This study presents a theoretical and mathematical analysis and modelling of the emerging microalgal membrane photobioreactors (M-MPBRs) for wastewater treatment. A set of mathematical models was developed to predict the biological performances of M-MPBRs. The model takes into account the effects of hydraulic retention time (HRT), solid retention time (SRT), and the N/P ratio of influent on the biological performance of M-MPBRs, such as microalgal biomass production and nutrient (N and P) removals. The model was calibrated and validated using experimental data from the literature. This modelling study explained that prolonged SRT could promote biomass production and nutrient removal, while prolonging HRT exhibited a negative effect. Furthermore, biomass production could be improved by augmenting nutrient loading, and nutrient removal would be limited under insufficient conditions. The modelling results demonstrated that the best performance was achieved at HRT = 1 d and SRT = 40 d for typical municipal wastewater with an influent N concentration = 40 mg/L. The modelling results are in good agreement with the experimental results from the literature. The findings suggest that the proposed models can be used as a powerful mathematical tool to optimize these parameters to improve the removal of nutrients (N and P), as well as the productivity of biomass in M-MPBRs. This study provides new insights into the use of mathematical models for the optimal design and operation of the emerging M-MPBRs for sustainable wastewater treatment.
Collapse
Affiliation(s)
- Yichen Liao
- Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
| | - Pedram Fatehi
- Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
| | - Baoqiang Liao
- Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
| |
Collapse
|
4
|
Li Y, Barati B, Li J, Verhoestraete E, Rousseau DPL, Van Hulle SWH. Lab-scale evaluation of Microalgal-Bacterial granular sludge as a sustainable alternative for brewery wastewater treatment. BIORESOURCE TECHNOLOGY 2024; 411:131331. [PMID: 39181512 DOI: 10.1016/j.biortech.2024.131331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Microalgal-bacterial granular sludge (MBGS) could offer a sustainable alternative to traditional aerobic methods in brewery wastewater (BWW) treatment. This study compared MBGS with conventional activated sludge (AS) in treating real BWW and highlighted its advantages and challenges. MBGS achieved comparable chemical oxygen demand removal efficiency (93%) compared to AS (89%). Additionally, MBGS exhibited higher phosphate removal capabilities than AS. Extra nitrogen was added to influent to balance C/N ratio of BWW. MBGS was robust in handling C/N ratio fluctuations with an 82% total nitrogen removal efficiency. Metagenomic analysis further indicated that most of the genes involved in carbon, nitrogen and phosphorus metabolism were up-regulated in MBGS compared to AS. Despite changes in the microbial community and settling ability due to high starch and sugar content in BWW, MBGS demonstrated high efficiency and sustainability. Further research should optimize MBGS operation strategies to fully realize its potential for sustainable BWW treatment.
Collapse
Affiliation(s)
- Yanyao Li
- LIWET, Department of Green Chemistry and Technology, Ghent University Campus Kortrijk, Sint-Martens-Latemlaan 2B, 8500 Kortrijk, Belgium.
| | - Bahram Barati
- LIWET, Department of Green Chemistry and Technology, Ghent University Campus Kortrijk, Sint-Martens-Latemlaan 2B, 8500 Kortrijk, Belgium
| | - Jue Li
- Department of Environmental Science & Engineering, Fudan University, Songhu Road 2005, 200438 Shanghai, China
| | - Emma Verhoestraete
- LIWET, Department of Green Chemistry and Technology, Ghent University Campus Kortrijk, Sint-Martens-Latemlaan 2B, 8500 Kortrijk, Belgium
| | - Diederik P L Rousseau
- LIWET, Department of Green Chemistry and Technology, Ghent University Campus Kortrijk, Sint-Martens-Latemlaan 2B, 8500 Kortrijk, Belgium; Centre for Advanced Process Technology and Urban Resource Recovery (CAPTURE), Frieda Saeysstraat, 9052 Ghent, Belgium
| | - Stijn W H Van Hulle
- LIWET, Department of Green Chemistry and Technology, Ghent University Campus Kortrijk, Sint-Martens-Latemlaan 2B, 8500 Kortrijk, Belgium; Centre for Advanced Process Technology and Urban Resource Recovery (CAPTURE), Frieda Saeysstraat, 9052 Ghent, Belgium
| |
Collapse
|
5
|
Garieri T, Allen DG, Gao W, Liao B. A review of emerging membrane-based microalgal-bacterial processes for wastewater treatment: Process configurations, biological and membrane performance, and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172141. [PMID: 38580119 DOI: 10.1016/j.scitotenv.2024.172141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/15/2024] [Accepted: 03/30/2024] [Indexed: 04/07/2024]
Abstract
Microalgal-bacterial (MB) consortia create an excellent eco-system for simultaneous COD/BOD and nutrients (N and P) removals in a single step with significant reduction in or complete elimination of aeration and carbonation in the biological wastewater treatment processes. The integration of membrane separation technology with the MB processes has created a new paradigm for research and development. This paper focuses on a comprehensive and critical literature review of recent advances in these emerging processes. Novel membrane process configurations and process conditions affecting the biological performance of these novel systems have been systematically reviewed and discussed. Membrane fouling issues and control of MB biofilm formation and thickness associated with these emerging suspended growth or immobilized biofilm processes are addressed and discussed. The research gaps, challenges, outlooks of these emerging processes are identified and discussed in-depth. The findings from the literature suggest that the membrane-based MB processes are advanced biotechnologies with a significant reduction in energy consumption and process simplification and high process efficiency that are not achievable with current technologies in wastewater treatment. There are endless opportunities for research and development of these novel and emerging membrane-based MB processes.
Collapse
Affiliation(s)
- Teralyn Garieri
- Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
| | - D Grant Allen
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada
| | - Wa Gao
- Department of Civil Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
| | - Baoqiang Liao
- Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada.
| |
Collapse
|
6
|
Nouhou Moussa AW, Sawadogo B, Konate Y, Sidibe SDS, Heran M. Critical State of the Art of Sugarcane Industry Wastewater Treatment Technologies and Perspectives for Sustainability. MEMBRANES 2023; 13:709. [PMID: 37623770 PMCID: PMC10456721 DOI: 10.3390/membranes13080709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 08/26/2023]
Abstract
The worldwide pressure on water resources is aggravated by rapid industrialization, with the food industry, particularly sugar factories, being the foremost contributor. Sugarcane, a primary source of sugar production, requires vast amounts of water, over half of which is discharged as wastewater, often mixed with several byproducts. The discharge of untreated wastewater can have detrimental effects on the environment, making the treatment and reuse of effluents crucial. However, conventional treatment systems may not be adequate for sugarcane industry effluent treatment due to the high organic load and variable chemical and mineral pollution. It is essential to explore pollution-remediating technologies that can achieve a nexus (water, energy, and food) approach and contribute to sustainable development. Based on the extensive literature, membrane technologies such as the membrane bioreactor have shown promising results in treating sugarcane industry wastewater, producing treated water of higher quality, and the possibility of biogas recovery. The byproducts generated from this treatment can also be recovered and used in agriculture for food security. To date, membrane technologies have demonstrated successful results in treating industrial wastewater. This critical review aims to evaluate the performance of traditional and conventional processes in order to propose sustainable perspectives. It also serves to emphasize the need for further research on operating conditions related to membrane bioreactors for valuing sugarcane effluent, to establish it as a sustainable treatment system.
Collapse
Affiliation(s)
- Abdoul Wahab Nouhou Moussa
- Laboratoire Eaux Hydro-Systèmes et Agriculture (LEHSA), Institut International d’Ingénierie de l’Eau et de l’Environnement (2iE), Rue de la Science, Ouagadougou 01 BP 594, Burkina Faso; (B.S.); (Y.K.)
| | - Boukary Sawadogo
- Laboratoire Eaux Hydro-Systèmes et Agriculture (LEHSA), Institut International d’Ingénierie de l’Eau et de l’Environnement (2iE), Rue de la Science, Ouagadougou 01 BP 594, Burkina Faso; (B.S.); (Y.K.)
| | - Yacouba Konate
- Laboratoire Eaux Hydro-Systèmes et Agriculture (LEHSA), Institut International d’Ingénierie de l’Eau et de l’Environnement (2iE), Rue de la Science, Ouagadougou 01 BP 594, Burkina Faso; (B.S.); (Y.K.)
| | - Sayon dit Sadio Sidibe
- Laboratoire Energies Renouvelables et Efficacité Energétique (LaBEREE), Institut International d’Ingénierie de l’Eau et de l’Environnement (2iE), Rue de la Science, Ouagadougou 01 BP 594, Burkina Faso
| | - Marc Heran
- Institut Européen des Membranes, IEM, UMR-5635, Université de Montpellier, CNRS, Place Eugène Bataillon, CEDEX 5, 34095 Montpellier, France;
| |
Collapse
|
7
|
Viruela A, Aparicio S, Robles Á, Borrás Falomir L, Serralta J, Seco A, Ferrer J. Kinetic modeling of autotrophic microalgae mainline processes for sewage treatment in phosphorus-replete and -deplete culture conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149165. [PMID: 34311355 DOI: 10.1016/j.scitotenv.2021.149165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/16/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
A kinetic model of autotrophic microalgal growth in sewage was developed to determine the biokinetic processes involved, including carbon-, nitrogen- and phosphorus-limited microalgal growth, dependence on light intensity, temperature and pH, light attenuation and gas exchange to the atmosphere. A new feature was the differentiation between two metabolic pathways of phosphorus consumption according to the availability of extracellular phosphorus. Two scenarios were differentiated: phosphorus-replete and -deplete culture conditions. In the former, the microalgae absorbed phosphorus to grow and store polyphosphate. In the latter the microalgae used the stored polyphosphate as a phosphorus source for growth. Calibration and validation were performed with experimental data from a pilot-scale membrane photobioreactor (MPBR) fed with the permeate obtained from an anaerobic membrane bioreactor (AnMBR) pilot plant fed with real urban wastewater. 12 of the model parameters were calibrated. Despite the dynamics involved in the operating and environmental conditions, the model was able to reproduce the overall process performance with a single set of model parameters values. Four periods of different environmental and operational conditions were accurately simulated. Regarding the former, light and temperature ranged 10-406 μmol·m-2·s-1 and 19.7-32.1 °C, respectively. Concerning the later, the photobioreactors widths were 0.25 and 0.10 m, and the biomass and hydraulic retention times ranged 3-4.5 and 1.5-2.5 days, respectively. The validation of the model resulted in an overall correlation coefficient (R2) of 0.9954. The simulation results showed the potential of the model to predict the dynamics of the different components: the relative proportions of microalgae, nitrogen and phosphorus removal, polyphosphate storage and consumption, and soluble organic matter concentration, as well as the influence of environmental parameters on the microalgae's biokinetic processes. The proposed model could provide an effective tool for the industry to predict microalgae production and comply with the discharge limits in areas declared sensitive to eutrophication.
Collapse
Affiliation(s)
- Alexandre Viruela
- CALAGUA, Unidad Mixta UV-UPV, Institut Universitari d'Investigació d'Enginyeria de l'Aigua i Medi Ambient - IIAMA, Universitat Politècnica de València, Camí de Vera s/n, 46022 València, Spain
| | - Stéphanie Aparicio
- CALAGUA, Unidad Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Avinguda de la Universitat s/n, 46100, Burjassot, València, Spain.
| | - Ángel Robles
- CALAGUA, Unidad Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Avinguda de la Universitat s/n, 46100, Burjassot, València, Spain
| | - Luis Borrás Falomir
- CALAGUA, Unidad Mixta UV-UPV, Institut Universitari d'Investigació d'Enginyeria de l'Aigua i Medi Ambient - IIAMA, Universitat Politècnica de València, Camí de Vera s/n, 46022 València, Spain
| | - Joaquín Serralta
- CALAGUA, Unidad Mixta UV-UPV, Institut Universitari d'Investigació d'Enginyeria de l'Aigua i Medi Ambient - IIAMA, Universitat Politècnica de València, Camí de Vera s/n, 46022 València, Spain
| | - Aurora Seco
- CALAGUA, Unidad Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Avinguda de la Universitat s/n, 46100, Burjassot, València, Spain
| | - José Ferrer
- CALAGUA, Unidad Mixta UV-UPV, Institut Universitari d'Investigació d'Enginyeria de l'Aigua i Medi Ambient - IIAMA, Universitat Politècnica de València, Camí de Vera s/n, 46022 València, Spain
| |
Collapse
|
8
|
Zhang M, Leung KT, Lin H, Liao B. Membrane fouling in a microalgal-bacterial membrane photobioreactor: Effects of P-availability controlled by N:P ratio. CHEMOSPHERE 2021; 282:131015. [PMID: 34090001 DOI: 10.1016/j.chemosphere.2021.131015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/11/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
Microalgal-bacterial membrane photobioreactor (MB-MPBR) is a promising technology to simultaneously remove organics and nutrients from wastewater. However, membrane fouling in MB-MPBR was seldom studied. In this study, potential effects of P-availability on biomass properties and membrane fouling in MB-MPBR were investigated. Under a nitrogen sufficient condition, a lower N:P ratio of 3.9:1 (P-rich) caused more severe membrane fouling. The dominant fouling mechanism was cake layer formation. Serial characterization showed a smaller particle size distribution (PSD), more free microalgae and significantly different surface composition of microalgal-bacterial flocs at N:P ratio of 3.9:1 compared with that of 9.7:1. The variations on PSD and surface composition were fully consistent with that of filtration resistance and thus considered as the primary contributors to the different fouling performance. The above results suggested that controlling microalgae/bacteria consortium in a good ratio by optimizing operating conditions is the key event for membrane fouling control in MB-MPBRs.
Collapse
Affiliation(s)
- Meijia Zhang
- Biotechnoloy Research Program, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada; Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada; Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Kam-Tin Leung
- Biotechnoloy Research Program, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada; Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Baoqiang Liao
- Biotechnoloy Research Program, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada; Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada.
| |
Collapse
|
9
|
Singh V, Mishra V. Exploring the effects of different combinations of predictor variables for the treatment of wastewater by microalgae and biomass production. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Novoa AF, Vrouwenvelder JS, Fortunato L. Membrane Fouling in Algal Separation Processes: A Review of Influencing Factors and Mechanisms. FRONTIERS IN CHEMICAL ENGINEERING 2021. [DOI: 10.3389/fceng.2021.687422] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The use of algal biotechnologies in the production of biofuels, food, and valuable products has gained momentum in recent years, owing to its distinctive rapid growth and compatibility to be coupled to wastewater treatment in membrane photobioreactors. However, membrane fouling is considered a main drawback that offsets the benefits of algal applications by heavily impacting the operation cost. Several fouling control strategies have been proposed, addressing aspects related to characteristics in the feed water and membranes, operational conditions, and biomass properties. However, the lack of understanding of the mechanisms behind algal biofouling and control challenges the development of cost-effective strategies needed for the long-term operation of membrane photobioreactors. This paper reviews the progress on algal membrane fouling and control strategies. Herein, we summarize information in the composition and characteristics of algal foulants, namely algal organic matter, cells, and transparent exopolymer particles; and review their dynamic responses to modifications in the feedwater, membrane surface, hydrodynamics, and cleaning methods. This review comparatively analyzes (i) efficiency in fouling control or mitigation, (ii) advantages and drawbacks, (iii) technological performance, and (iv) challenges and knowledge gaps. Ultimately, the article provides a primary reference of algal biofouling in membrane-based applications.
Collapse
|