1
|
Huang G, Jian S, Gao X, Huang J, Deng X, Tan H, Li B. Sustainable water treatment ceramsite derived from dredged sludge and biomass waste for neutralizing acidic mining wastewater: Mechanisms and efficiency. ENVIRONMENTAL RESEARCH 2025; 274:121360. [PMID: 40064341 DOI: 10.1016/j.envres.2025.121360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/05/2025] [Accepted: 03/08/2025] [Indexed: 03/15/2025]
Abstract
Porous ceramsite, a typical water treatment material, could be potentially applied for treating acidic mining wastewater (AMW) with alkaline sources. This study aims to evaluate the treatment efficiency and mechanisms of water treatment ceramsite (WTC) derived from dredged sludge, biomass waste, and alkaline sources for neutralizing AMW. WTC with 8% CaCO3 was found to effectively increase the pH of AMW to 7 within 60 min, demonstrating its potential for AMW treatment. Mineralogical analysis revealed that the calcium-rich WTC primarily consisted of quartz, feldspar, and lime, with the decomposition of biomass waste during sintering creating a connecting pore structure that enhanced water treatment efficiency. At high temperatures, CaCO3 decomposed into CaO, the primary alkaline substance responsible for neutralizing AMW. However, excessively high sintering temperatures resulted in increased glassy and feldspar phases, which reduced the reactivity of the ceramsite. This study provides an innovative approach to AMW treatment by transforming solid waste into functional materials, offering a sustainable solution for environmental remediation. The results underscore the potential of WTC as a cost-effective and eco-friendly alternative for mitigating the environmental impacts of mining activities.
Collapse
Affiliation(s)
- Guan Huang
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
| | - Shouwei Jian
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China.
| | - Xin Gao
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
| | - Jianxiang Huang
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
| | - Xiufeng Deng
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
| | - Hongbo Tan
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
| | - Baodong Li
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China; Department of Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg, 412 96, Sweden
| |
Collapse
|
2
|
Li T, Sun T, Liu C, Lin L, Chen Z, Zhang J. Study on the preparation mechanism and dephosphorization effect of SW-ceramsite. Sci Rep 2025; 15:9983. [PMID: 40121272 PMCID: PMC11929828 DOI: 10.1038/s41598-025-94780-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025] Open
Abstract
To address environmental challenges such as eutrophication caused by excessive phosphorus discharge and low resource utilization of solid waste, this study investigates the factors influencing the physical properties of ceramsite from solid waste (SW-ceramsite) through sintering method, and its adsorption performance. The results shown that under the optimal conditions of additive dosage 9 g/100 g mixture, sintering temperature 1100 °C, heating rate 10 °C/min, and holding time 5 min, the values of breaking and wear rates and void fraction were 0.35% and 69.6%, respectively. Grey relation analysis indicated that the additive dosage was the most influential factor, followed by sintering temperature and heating rate, with holding time being the least impact. The equilibrium adsorption capacity (qe) of SW-ceramsite for phosphorus was 1.85 mg/g. The adsorption process was better described by the Freundlich adsorption isotherm, as well as by the pseudo-first-order and pseudo-second-order kinetic models, and was characterized as non-spontaneous and exothermic. After nine regeneration cycles, The qe of SW-ceramsite decreased by only 0.185 mg/g, with a regeneration loss rate was just 4.988%, suggesting good reusability. The findings suggest that the SW-ceramsite holds promise for treatment of phosphorus-containing wastewater.
Collapse
Affiliation(s)
- Tianpeng Li
- College of City and Architecture Engineering, Zaozhuang University, Zaozhuang, 277160, Shandong, China.
- State Key Laboratory of Crane Technology, Yanshan University, Qinhuangdao, 066000, Hebei, China.
| | - Tingting Sun
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang, 277160, Shandong, China
| | - Caiyi Liu
- State Key Laboratory of Crane Technology, Yanshan University, Qinhuangdao, 066000, Hebei, China
| | - Li Lin
- School of Materials and Chemical Engineering, Hunan City University, Yiyang, 413000, Hunan, China
| | - Zhan Chen
- College of City and Architecture Engineering, Zaozhuang University, Zaozhuang, 277160, Shandong, China
| | - Junfeng Zhang
- Dongying Shengfeng Environmental Protection Technology Co., Ltd, Dongying, 257000, Shandong, China
| |
Collapse
|
3
|
Zhang P, Shen D, Wang X, Wu S, Long Y, Gu F. Enhanced anaerobic digestion of waste activated sludge using magnetite-modified sludge ceramsite: Performance and microbial dynamics. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124389. [PMID: 39938297 DOI: 10.1016/j.jenvman.2025.124389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/27/2024] [Accepted: 01/29/2025] [Indexed: 02/14/2025]
Abstract
The effect of magnetite-modified sludge ceramsite on anaerobic digestion of sludge was systematically investigated in this study. The results revealed that the addition of magnetite significantly altered the properties of the ceramsite, while magnetite-modified ceramsite significantly altered the sludge anaerobic digestion process. Biochemical methane production potential experiments demonstrated that the cumulative methane production of the experimental group with moderate ceramsite addition was enhanced by 17.8% compared to the control group without ceramsite. This enhancement was attributed primarily to the favorable pore structure and biocompatibility of the modified ceramsite. The incorporation of magnetite facilitated the enrichment of microorganisms and the reduction of Fe(III), thereby promoting anaerobic digestion. Moreover, the ceramsite exhibited strong buffering capacity, contributing to the enhanced stability of the digestive system. Microbiological analyses revealed that the addition of ceramsite significantly altered the microbial community. Appropriate ceramsite addition resulted in the enrichment of bacteria associated with organic matter degradation and methanogenesis. Furthermore, potential iron-reducing bacteria (Clostridium_sensu_stricto) and bacteria capable of direct interspecies electron transfer (Syntrophomonas) were also enriched in the anaerobic system. This study demonstrates a viable approach for the efficient resource utilization of sludge.
Collapse
Affiliation(s)
- Pengqu Zhang
- School of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310012, China
| | - Dongsheng Shen
- School of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310012, China
| | - Xitong Wang
- School of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310012, China
| | - Shulin Wu
- School of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310012, China
| | - Yuyang Long
- School of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310012, China
| | - Foquan Gu
- School of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310012, China.
| |
Collapse
|
4
|
Chen X, Zhang C, Tong Y, Wang X, Chen X, Yang Y, Liu J, Chen Q, Li N. Preparation of high-strength ceramsite from coal gangue, fly ash, and steel slag. RSC Adv 2025; 15:4332-4341. [PMID: 39931397 PMCID: PMC11808660 DOI: 10.1039/d4ra08140d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/14/2025] [Indexed: 02/13/2025] Open
Abstract
Coal gangue (CG) and fly ash (FA) are generated in large quantities worldwide. In this study, high-strength and lightweight aggregate ceramsites were prepared from CG, FA, and steel slag (SS) without any additional chemical additives through high-temperature sintering. The study aimed at determine the sintering mechanism and optimal production process by evaluating the performance of ceramsites produced under various conditions. The results indicated that the ratio of CG, FA, and SS significantly influenced the ceramsites' properties. When the ratio of CG, FA, and SS was 3 : 1 : 1 and the sintering temperature was 1200 °C, the ceramsites demonstrated optimal performance. These ceramsites had a bulk density of 947 kg m-3, an apparent density of 1859 kg m-3, a high compressive strength of 21.17 MPa, and a 1 hour water absorption of 1.35%. The high-strength and lightweight aggregate ceramsites produced from CG, FA, and SS hold promise as construction materials, particularly due to the benefits of waste recycling. This study highlights the potential of utilizing these ceramsites as sustainable alternatives in various construction applications.
Collapse
Affiliation(s)
- Xi Chen
- School of Food Science and Technology, Henan University of Technology Henan 450001 China
- Zhengzhou Zhongyuan Silande High Technology Co., Ltd Henan 450000 China
- School of Materials Science, North China University of Water Resources and Electric Power Henan 450045 China
| | - Chenxi Zhang
- School of Materials Science, North China University of Water Resources and Electric Power Henan 450045 China
| | - Yuping Tong
- School of Materials Science, North China University of Water Resources and Electric Power Henan 450045 China
| | - Xiao Wang
- School of Materials Science, North China University of Water Resources and Electric Power Henan 450045 China
| | - Xiao Chen
- School of Materials Science, North China University of Water Resources and Electric Power Henan 450045 China
| | - Yuandong Yang
- Henan GOODS and MATERIALS Group Corporation Henan 450007 China
| | - Jiayin Liu
- School of Materials Science, North China University of Water Resources and Electric Power Henan 450045 China
| | - Qi Chen
- School of Materials Science, North China University of Water Resources and Electric Power Henan 450045 China
| | - Ningning Li
- School of Materials Science, North China University of Water Resources and Electric Power Henan 450045 China
| |
Collapse
|
5
|
Chen J, Xue J, Liu J, Samaei SHA, Robbins LJ. Near-Complete Phosphorus Recovery from Challenging Water Matrices Using Multiuse Ceramsite Made from Water Treatment Residual (WTR). WATER RESEARCH X 2024; 25:100267. [PMID: 39524567 PMCID: PMC11549993 DOI: 10.1016/j.wroa.2024.100267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
Water treatment residual (WTR) is a burden for many water treatment plants due to the large volumes and associated management costs. In this study, we transform aluminum-salt WTR (Al-WTR) into ceramsite (ASC) to recover phosphate from challenging waters. ASC showed remarkably higher specific surface area (SSA, 70.53 m2/g) and phosphate adsorption capacity (calculated 47.2 mg P/g) compared to previously reported ceramsite materials (< 40 m2/g SSA and < 20 mg P/g). ASC recovered over 94.9% of phosphate across a wide pH range (3 - 11) and generally sustained > 90% of its phosphate recovery at high concentrations of competing anions (i.e., Cl-, F-, SO4 2-, or HCO3 -) or humic acid (HA). We challenged the material with real municipal wastewater at 10°C and achieved simultaneous phosphate (>97.1%) and COD removal (71.2%). Once saturated with phosphate, ASC can be repurposed for landscaping or soil amendment. The economic analysis indicates that ASC can be a competitive alternative to natural clay-based ceramsite, biochar, or other useful materials. Therefore, ASC is an eco-friendly, cost-effective adsorbent for phosphate recovery from complex waters, shedding light upon a circular economy in the water sector.
Collapse
Affiliation(s)
- Jianfei Chen
- Cold-Region Water Resource Recovery Laboratory (CRWRRL), Environmental Systems Engineering, Faculty of Engineering & Applied Science, University of Regina, Regina, SK S4S 0A2, Canada
| | - Jinkai Xue
- Cold-Region Water Resource Recovery Laboratory (CRWRRL), Environmental Systems Engineering, Faculty of Engineering & Applied Science, University of Regina, Regina, SK S4S 0A2, Canada
| | - Jinyong Liu
- Department of Chemical & Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Seyed Hesam-Aldin Samaei
- Cold-Region Water Resource Recovery Laboratory (CRWRRL), Environmental Systems Engineering, Faculty of Engineering & Applied Science, University of Regina, Regina, SK S4S 0A2, Canada
| | - Leslie J. Robbins
- Department of Geology, University of Regina, Regina, SK S4S 0A2, Canada
| |
Collapse
|
6
|
Xu Y, Li Q, Tang Y, Huang H, Ren H. Electrocatalytic denitrification biofilter for advanced purification of chlorophenols via ceramsite-based Ti/SnO 2-Sb particle electrode: Performance, microbial community structure and mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123594. [PMID: 38378077 DOI: 10.1016/j.envpol.2024.123594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/22/2024]
Abstract
In response to the demand for advanced purification of industrial secondary effluent, a new method has been developed for treating chlorophenol wastewater using the novel ceramsite-based Ti/SnO2-Sb particle electrodes (Ti/SnO2-Sb/CB) enhanced electrocatalytic denitrification biofilter (EDNBF-P) to achieve removal of chlorophenols (CPs), denitrification, and reduction of effluent toxicity. The results showed that significantly improved CPs and TN removal efficiency at low COD/N compared to conventional denitrification biofilter, with CPs removal rates increasing by 0.33%-59.27% and TN removal rates increasing by 12.53%-38.92%. Under the conditions of HRT = 2h, 3V voltage, charging times = 12h, and 25 °C, the concentrations of the CPs in the effluent of EDNBF-P were all below 1 mg/L, the TN concentration was below 15 mg/L, while the effluent toxicity reached the low toxicity level. Additionally, the Ti/SnO2-Sb/CB particle electrodes effectively alleviated the accumulation of NO2--N caused by applied voltage. The Silanimonas, Pseudomonas and Rhodobacter was identified as the core microorganism for denitrification and toxicity reduction. This study validated that EDNBF-P could achieve synergistic treatment of CPs and TN through electrocatalysis and microbial degradation, providing a methodological support for achieving advanced purification of chlorophenol wastewater with low COD/N in industrial applications.
Collapse
Affiliation(s)
- Yujin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Qianqian Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Yingying Tang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Hui Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China.
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| |
Collapse
|
7
|
Yuan N, Li Z, Shang Q, Liu X, Deng C, Wang C. High efficiency of drinking water treatment residual-based sintered ceramsite in biofilter for domestic wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120401. [PMID: 38382437 DOI: 10.1016/j.jenvman.2024.120401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/22/2024] [Accepted: 02/13/2024] [Indexed: 02/23/2024]
Abstract
Aluminum (Al)-based drinking water treatment residue (DWTR) has often been attempted to be recycled as dominant ingredient to produce sintered ceramsite for water treatment. This study aimed to determine the long-term performance of DWTR-based ceramsite in treating domestic wastewater based on a 385-d biofilter test and by using physicochemical, metagenomic, and metatranscriptomic analyses. The results showed that the ceramsite-packed biofilter exhibited high and stable capability in removing phosphorus (P) and chemical oxygen demand (COD), with removal efficiencies of 92.6 ± 3.97% and 81.1 ± 14.0% for total P and COD, respectively; moreover, 88-100% of ammonium-nitrogen (N) was normally converted, and the total N removal efficiency reached 80-86% under proper aeration. Further analysis suggested that the forms of the removed P in the ceramsite were mainly NH4F- and NaOH-extractable. Microbial communities in the ceramsite biofilter exhibited relatively high activity. Typically, various organic matter degradation-related genes (e.g., hemicellulose and starch degradations) were enriched, and a complete N-cycling pathway was established, which is beneficial for enriching microbes involved in ammonium-N conversion, especially Candidatus Brocadia, Candidatus Jettenia, Nitrosomonas, and Nitrospira. In addition, the structures of the ceramsite had high stability (e.g., compressive strength and major compositions). The ceramsites showed limited metal and metalloid pollution risks and even accumulated copper from the wastewater. These results demonstrate the high feasibility of applying ceramsite prepared from Al-based DWTR for water treatment.
Collapse
Affiliation(s)
- Nannan Yuan
- Nanjing Vocational College of Information Technology, Nanjing, 210023, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Ziyi Li
- School of Biology, Food and Environment, Hefei University, Hefei, 230000, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Qiannan Shang
- School of Biology, Food and Environment, Hefei University, Hefei, 230000, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xiaowei Liu
- School of Biology, Food and Environment, Hefei University, Hefei, 230000, China
| | - Chengxun Deng
- School of Biology, Food and Environment, Hefei University, Hefei, 230000, China
| | - Changhui Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| |
Collapse
|
8
|
Gu K, Yang X, Yan X, He C, Mao W, Xiao F, Wei X, Fu X, Jiang Y. Effectiveness of a novel composite filler to enhance phosphorus removal in constructed wetlands. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:17052-17063. [PMID: 38334929 DOI: 10.1007/s11356-024-32191-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/21/2024] [Indexed: 02/10/2024]
Abstract
Improving the adsorption performance of wetland fillers is of great significance for enhancing pollutant removal in constructed wetlands. Currently, limited by complex preparation processes and high costs, large numbers of high adsorption fillers studied in lab are difficult to be applied in practical engineering. In this study, a newly low-cost and efficient phosphorus removal composite wetland filler (CFB) is prepared by using industrial and agriculture waste (steel slag and oyster shells) and natural ore (volcanic rock) as raw materials. The results show that phosphorus removal efficiency was largely enhanced by synergistic effects of steel slag, oyster shells, and volcanic rock, and it was mainly influenced by the proportion of each component of CFB. Based on the fitting of the classical isothermal equation, the adsorption capacity of CFB is 18.339 mg/g. The adsorption of phosphorus by CFB is endothermic and spontaneous, and there are heterogeneous surfaces and multi-layer adsorption processes, as well as pH value and temperature, are free from the influence on CFB phosphorus removal. During the practical wastewater application experiments, the phosphorus removal rate of the CFB-filled constructed wetland apparatus (CW-A) can reach 94.89% and is free from the influence on the removal of other pollutants (COD, TN, and NH3-N) by the system. Overall, the prepared CFB is of excellent decontamination effect, an extremely simple preparation process, low cost, and sound practical engineering application potential, providing new ideas and approaches for enhancing the phosphorus removal capacity and waste resource utilization of constructed wetland systems.
Collapse
Affiliation(s)
- Kaiyuan Gu
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, China
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Xiongwei Yang
- College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, 650224, China
| | - Xing Yan
- College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, 650224, China
| | - Chenggang He
- College of Tobacco Science, Yunnan Agricultural University, Kunming, 650000, China
| | - Wanchong Mao
- Sichuan Management & Monitoring Center Station of Radioactive Environment, Chengdu, 611139, China
| | - Fengkun Xiao
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, 650106, China
| | - Xiaomeng Wei
- College of Natural Resources & Environment, Northwest Agriculture & Forestry University, Xianyang, 712100, China
| | - Xinxi Fu
- School of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yonglei Jiang
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, China.
| |
Collapse
|
9
|
Cheng H, Shi W, Liu S, Wang Y, Song J, Long Y, Xiang Y, Xue Y. Adsorption of Phosphate by Two-Step Synthesis of Ceramsite from Electrolytic Manganese Residue/Dredged Sludge. MATERIALS (BASEL, SWITZERLAND) 2024; 17:939. [PMID: 38399190 PMCID: PMC10890683 DOI: 10.3390/ma17040939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/21/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
Carrying out research on the management of electrolytic manganese residue (EMR) is necessary to maintain the environment and human health. The dredged sludge (DS) and water hyacinth (WH) generated from dredging projects are potential environmental threats, and therefore suitable methods need to be found for their treatment. In this study, ceramsite was prepared by a two-step low-temperature firing method using DS and EMR as raw materials, WH as a pore-forming additive, and aluminate cement as a binder for the adsorption of phosphorus from wastewater. The optimal ratio and process parameters of the ceramsite were determined by mechanical and adsorption properties. The static adsorption experiments were conducted to study the effect of ceramsite dosage and solution pH on the removal of phosphorus. At the same time, dynamic adsorption experiments were designed to consider the influence of flow rate on its actual absorption effect, to explore the actual effect of ceramsite in wastewater treatment, and to derive a dynamic adsorption model that can provide technical support and theoretical guidance for environmental management.
Collapse
Affiliation(s)
- Hao Cheng
- College of Material and Chemical Engineering, Tongren University, Tongren 554300, China; (H.C.)
| | - Wei Shi
- College of Material and Chemical Engineering, Tongren University, Tongren 554300, China; (H.C.)
| | - Song Liu
- College of Material and Chemical Engineering, Tongren University, Tongren 554300, China; (H.C.)
| | - Yong Wang
- College of Material and Chemical Engineering, Tongren University, Tongren 554300, China; (H.C.)
| | - Jia Song
- College of Material and Chemical Engineering, Tongren University, Tongren 554300, China; (H.C.)
| | - Yu Long
- College of Material and Chemical Engineering, Tongren University, Tongren 554300, China; (H.C.)
| | - Yuan Xiang
- College of Material and Chemical Engineering, Tongren University, Tongren 554300, China; (H.C.)
| | - Yongjie Xue
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
10
|
Zheng Q, Ji Q, Tian T, Jin R, Liu Z, Fu W, Zhou J. Preparation of ceramsite using solid residue from anaerobic digestion of waste activated sludge and its enhancing effect on catalytic ozonation. ENVIRONMENTAL RESEARCH 2024; 243:117745. [PMID: 38008205 DOI: 10.1016/j.envres.2023.117745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 11/28/2023]
Abstract
Anaerobic digestion is an environmentally friendly method for reclaiming waste activated sludge. However, it cannot be overlooked that the solid residue generated from this process can still pose environmental risks and impose economic pressure on society. To mitigate and recycle the solid residue, this study utilized it as a primary raw material for manufacturing ceramsite with potential applications in wastewater treatment. The optimal ratio of solid residue to fly ash was demonstrated to be 6:4 with an additional 15% of clay supplementing the raw ceramsite materials. Furthermore, the optimal sintering process was established as preheating at 300 °C for 25 min followed by sintering at 1085 °C for 10 min, as determined through an L16 (44) Orthogonal test. The prepared ceramsite demonstrated advantageous performance parameters that exceeded the standards outlined in the Chinese industry standard CJ/T 299-2008 for water treatment artificial ceramsite. When utilized in an ozonation system, the ceramsite exhibited remarkable catalytic activity for phenol degradation by promoting the decomposition of molecular O3 into hydroxyl radicals. Additionally, it displayed minimal leaching of heavy metals and lower application costs. These findings emphasize its attractiveness in water and wastewater treatment processes and present a practical strategy for reclaiming this solid residue.
Collapse
Affiliation(s)
- Qiang Zheng
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Qiuyan Ji
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Tian Tian
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Ruofei Jin
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Ze Liu
- Hengli Petrochemical (Dalian) Chemical Co., LTD, Dalian, 116318, China
| | - Wang Fu
- Hengli Petrochemical (Dalian) Chemical Co., LTD, Dalian, 116318, China
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
11
|
Shen D, Zhang P, Wu SL, Long Y, Wei W, Ni BJ. Enhanced biomethane production from waste activated sludge anaerobic digestion by ceramsite and amended Fe 2O 3 ceramsite. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119973. [PMID: 38160547 DOI: 10.1016/j.jenvman.2023.119973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/07/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Wastes recycling and reutilization technique could simultaneously fulfill waste control and energy recovery sustainably, which has attracted increasing attention. This work proposed a novel waste reuse technology utilizing ceramsite and amended Fe2O3-ceramsite made from waste activated sludge (WAS) as additives to promote the yield of methane from WAS anaerobic digestion (AD). Experimental results demonstrated that compared to the control (85.05 ± 0.2 mL CH4/g-VS), the cumulative methane yield was effectively enhanced by 14% and 40% when ceramsite and Fe2O3-ceramsite were added. Further investigation revealed that ceramsite, especially the Fe2O3-ceramsite, enriched the populations of key anaerobes involved in hydrolysis, acidification, and methanogenesis. Meanwhile, potential syntrophic metabolisms between syntrophic bacteria and methanogens were confirmed in the Fe2O3-ceramsite AD system. Mechanisms studies exhibited that ceramsite and Fe2O3-ceramsite reinforced intermediate processes for methane production. The favorable pore structure, enhanced Fe (III) reduction capacity and conductivity also contributed a lot to the AD process.
Collapse
Affiliation(s)
- Dongsheng Shen
- School of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang Province, China
| | - Pengqu Zhang
- School of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang Province, China
| | - Shu-Lin Wu
- School of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang Province, China.
| | - Yuyang Long
- School of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang Province, China
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
12
|
Guo P, Zhao Z, Li Y, Zhang Y, He T, Hou X, Li S. Co-utilization of iron ore tailings and coal fly ash for porous ceramsite preparation: Optimization, mechanism, and assessment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119273. [PMID: 37832299 DOI: 10.1016/j.jenvman.2023.119273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/23/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023]
Abstract
Maximizing the utilization of industrial by-products, such as iron ore tailings (IOTs) and coal fly ash (CFA), is crucial toward sustainable development. This study provides a meticulous insight into the optimization, mechanism, and assessment of the co-utilization of IOTs and CFA for the preparation of porous ceramsite. Micro-CT results revealed that the prepared ceramsite exhibited an exceptional porosity, peaking at 56.98%, with a wide range of pore diameters (3.55-959.10 μm) under optimal conditions (IOTs content at 76%, preheating at 550 °C for 15 min, and sintering at 1177 °C for 14 min), while maintaining good mechanical properties (water adsorption of 1.28%, comprehensive strength of 8.75 MPa, apparent density of 1.37 g/cm3, and bulk density of 0.62 g/cm3). The primary parameters affecting the porosity were identified and ranked as follows: sintering temperature > IOTs content > sintering time. The formation and growth of pores could be attributed to the equilibrium relationship between the liquid-phase surface tension and the gas expansion force, accompanied by pore wall thinning and pore merging. Notably, the prepared ceramsite is both ecologically feasible and economically rewarding, boasting a profit margin of 9.47 $/ton. The comprehensive life cycle assessment (LCA) conducted further highlights the potential of its large-scale implementation for promoting sustainable development. This study provides an innovative strategy for the co-utilization of IOTs and CFA, with advantages such as cost-effectiveness, ecological feasibility and scalability of production.
Collapse
Affiliation(s)
- Penghui Guo
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zekun Zhao
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yongkui Li
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yabin Zhang
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Tao He
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xinmei Hou
- Institute for Carbon Neutrality, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Suqin Li
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
13
|
Fahim R, Cheng L, Mishra S. Structural and functional perspectives of carbon filter media in constructed wetlands for pollutants abatement from wastewater. CHEMOSPHERE 2023; 345:140514. [PMID: 37879377 DOI: 10.1016/j.chemosphere.2023.140514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/04/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023]
Abstract
Constructed wetlands (CWs) represent the most viable artificial wastewater treatment system that works on the principles of natural wetlands. Filter media are integrally linked to CWs and have substantial impacts on their performance for pollutant removal. Carbon-derived substrates have been in the spotlight for decades due to their abundance, sustainability, reusability, and potential to treat complex contaminants. However, the efficiency and feasibility of carbon substrates have not been fully explored, and there are only a few studies that have rigorously analyzed their performance for wastewater treatment. This critical synthesis of the literature review offers comprehensive insights into the utilization of carbon-derived substrates in the context of pollutant removal, intending to enhance the efficiency and sustainability of CWs. It also compares several carbon-based substrates with non-carbon substrates with respect to physiochemical properties, pollutant removal efficiency, and cost-benefit analysis. Furthermore, it addresses the concerns and possible remedies about carbon filtration materials such as configuration, clogging minimization, modification, and reusability to improve the efficacy of substrates and CWs. Recommendations made to address these challenges include pretreatment of wastewater, use of a substrate with smaller pore size, incorporation of multiple filter media, the introduction of earthworms, and cultivation of plants. A current scientific scenario has been presented for identifying the research gaps to investigate the functional mechanisms of modified carbon substrates and their interaction with other CW components.
Collapse
Affiliation(s)
- Raana Fahim
- College of Environment, Hohai University, Nanjing, 210098, China.
| | - Liu Cheng
- Key Laboratory of Integrated Regulation and Resource Development Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China.
| | - Saurabh Mishra
- College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
14
|
Cao C, Yu J, Xu X, Li F, Yang Z, Wang G, Zhang S, Cheng Z, Li T, Pu Y, Xian J, Yang Y, Pu Z. A review on fabricating functional materials by electroplating sludge: process characteristics and outlook. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:64827-64844. [PMID: 37093385 DOI: 10.1007/s11356-023-26934-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/06/2023] [Indexed: 05/03/2023]
Abstract
As the end product of the electroplating industry, electroplating sludge (ES) has a huge annual output and an abundant heavy metal (HM). The effective disposal of ES is attracting increasing attention. Currently, the widely used ES disposal methods (e.g. landfill and incineration) make it difficult to effectively control of HMs and synchronously utilise metal resources, leading to a waste of metal resources, HMs migration, and potential harm to the environment and human health. Therefore, techniques to limit HMs release into the environment and promote the efficient utilisation of metal resources contained within ES are of great interest. Based on these requirements, material reuse is a great potential means of ES management. This review presents an overview of the process flows, principles and feasibilities of the methods employed for the material reuse of ES. Several approaches have been investigated to date, including (1) additions in building materials, (2) application in pigment production, and (3) production of special functional materials. However, these three methods vary in their treatment scales, property requirements, ability to control HMs, and degree of utilisation of metal resources in ES. Currently, the safety of products and costs are not paid enough attention, and the large-scale disposal of HMs is not concordant with the effective management of HMs. Accordingly, this study proposes a holistic sustainable materialised reuse pattern of ES, which combines the scale and efficiency of sludge disposal and pays attention to the safety of products and the cost of transformation process for commercial application.
Collapse
Affiliation(s)
- Chenchen Cao
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jian Yu
- School of Geography and Tourism, Key Laboratory of Earth Surface Processes and Regional Response in the Yangtze-Huaihe River Basin, Anhui Normal University, Wuhu, 241003, China
| | - Xiaoxun Xu
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China.
- Key Laboratory of Soil Environment Protection of Sichuan Province, Chengdu, 611130, China.
| | - Feng Li
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhanbiao Yang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Soil Environment Protection of Sichuan Province, Chengdu, 611130, China
| | - Guiyin Wang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Soil Environment Protection of Sichuan Province, Chengdu, 611130, China
| | - Shirong Zhang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Soil Environment Protection of Sichuan Province, Chengdu, 611130, China
| | - Zhang Cheng
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ting Li
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yulin Pu
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Junren Xian
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuanxiang Yang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhien Pu
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
15
|
Xiao T, Wang H, Wang X, Wu H, Yuan S, Dai X, Dong B. New strategy of drinking water sludge as conditioner to enhance waste activated sludge dewaterability: Collaborative disposal. WATER RESEARCH 2023; 233:119761. [PMID: 36841166 DOI: 10.1016/j.watres.2023.119761] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/28/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Drinking water sludge (DWS) and waste activated sludge (WAS) are usually treated separately. With the continuous deepening understanding of the characteristics of two types sludge, the research and application of the collaborative disposal is worth considering. The heated modification DWS (HDWS) rich in inorganic matter and aluminum (Al2O3) can be used as a conditioner to enhance WAS dewaterability using its properties with physical skeleton and chemically catalyzed ozone (O3). The results showed that the minimum values of capillary water time (CST) and specific resistance filtration (SRF) for WAS were 20.9±2.40 s and 1.07±0.19×1013 m/kg at pH=4, O3 dosage=60 mg/g VS and HDWS dosage=700 mg/g VS, corresponding to the reduction of sludge cake water content (Wc) to 60.37±0.97 %. The mechanism of HDWS+O3 enhanced WAS dewaterability was systematically elucidated through pyridine-infrared analysis and density functional theory (DFT) calculations. The surface of Al2O3 in HDWS had more Lewis acidic sites, and the oxygen atoms of O3 combined with Al atoms to form Al-O bonds and undergo electron transfer, while O3 molecules dissociated to produce more hydroxyl radicals (·OH). With the oxidation of ·OH, the extra-microcolony/cellular polymers (EMPS/ECPS) structure were destroyed and became looser, promoting the conversion of internal moisture to free moisture. Zeta potential tended to zero, particle size increased, and the surface was more hydrophobic. Correlation analysis revealed that the component content, protein (PN) secondary structure and molecular weight (MW) in ECPS were positively and more strongly correlated with the sludge dewaterability compared to EMPS. The discovery of HDWS+O3 applied to effectively enhance WAS dewaterability provided an inspiring perspective on the emerging DWS and WAS co-processing disposition.
Collapse
Affiliation(s)
- Tingting Xiao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Hui Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiankai Wang
- YANGTZE Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing 100038, China
| | - Haibin Wu
- YANGTZE Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing 100038, China
| | - Shijie Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Bin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; YANGTZE Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing 100038, China.
| |
Collapse
|
16
|
Characterization of the Physical Chemistry Properties of Iron-Tailing-Based Ceramsite. Molecules 2023; 28:molecules28052258. [PMID: 36903514 PMCID: PMC10005355 DOI: 10.3390/molecules28052258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
In order to deal with the problems of resource waste and environmental pollution caused by solid waste, iron tailings (mainly SiO2, Al2O3 and Fe2O3) were used as the main raw material to create a type of lightweight and high-strength ceramsite. Iron tailings, dolomite (industrial grade, purity 98%) and a small amount of clay were combined in a N2 atmosphere at 1150 °C. X-ray fluorescence spectrometry (XRF), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and a themogravimetric analysis (TGA) were performed and the specific surface area was analyzed to determine the strength and adsorption of the ceramsite. The results of the XRF showed that SiO2, CaO and Al2O3 were the main components of the ceramsite, with MgO and Fe2O3 also included. The results of the XRD and SEM-EDS showed that the ceramsite contained several kinds of minerals and was mainly composed of akermanite, gehlenite and diopside, and that the morphology of the internal structure of the ceramsite was mainly massive and contained a small number of particles. The ceramsite could be used in engineering practice to improve the mechanical properties of materials and meet the requirements of actual engineering for the strength of materials. The results of the specific surface area analysis showed that the inner structure of the ceramsite was compact and that there were no large voids. The voids were mainly medium and large, with a high stability and strong adsorption ability. The TGA results showed that the quality of the ceramsite samples will continue to increase within a certain range. According to the XRD experimental results and experimental conditions, it was speculated that in the part of the ore phase containing Al, Mg or Ca in the ceramsite, the elements underwent relatively complex chemical reactions with each other, resulting in the formation of an ore phase with a higher molecular weight. This research provides the basis of characterization and analysis for the preparation of high-adsorption ceramsite from iron tailings and promotes the high-value utilization of iron tailings for waste pollution control.
Collapse
|
17
|
Huang C, Yuan N, He X, Wang C. Ceramsite made from drinking water treatment residue for water treatment: A critical review in association with typical ceramsite making. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 328:117000. [PMID: 36502704 DOI: 10.1016/j.jenvman.2022.117000] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/24/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
The use of ceramsite to construct filtration systems (e.g., biofilters) is a common method for water treatment. To promote such applications, the development of low-cost, high-performance, and environmentally friendly ceramsites has received increasing attention from scientists, and a critical step in the development is the preparation of raw materials. As an inevitable and non-hazardous by-product during potable water production, drinking water treatment residue (DWTR) is typically recycled to make water treatment ceramsite to promote recycling in filtration systems. This study aims to bridge the knowledge gap regarding DWTR in making ceramsites for water treatment. The results suggest that the fabrication methods for DWTR-based ceramsite can be generally classified into sintering and non-sintering procedures. For the sintering method, owing to the heterogeneous properties (especially aluminum, iron, and calcium), DWTR has been applied as various sub-ingredients for raw materials preparations. In contrast, for the non-sintering method, DWTR is commonly applied as the main ingredient, and natural curing, physical crosslinking, and thermal treatment methods have been typically adopted to make ceramsite. However, DWTR-based ceramsites tend to have a high adsorption capability and favorable microbial effects to control different kinds of pollution (e.g., phosphorus, nitrogen, and organic matter). Future work is typically recommended to thoroughly evaluate the performance of DWTR-based ceramsite-constructed filtration systems to control water pollution concerning the making procedures, the potential to control pollution, the stability, and the safety of raw DWTR-based ceramsite, providing systematic information to design more proper planning for beneficial recycling.
Collapse
Affiliation(s)
- Chenghao Huang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; Graduate University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nannan Yuan
- School of Electronic Information, Nanjing Vocational College of Information Technology, Nanjing, China
| | - Xiaosong He
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Changhui Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| |
Collapse
|
18
|
Zhang B, Zhou X, Ren X, Hu X, Ji B. Recent Research on Municipal Sludge as Soil Fertilizer in China: a Review. WATER, AIR, AND SOIL POLLUTION 2023; 234:119. [PMID: 36776548 PMCID: PMC9906581 DOI: 10.1007/s11270-023-06142-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Due to the annual increase in wastewater treatment in most Chinese cities, a major environmental issue has arisen: safe treatment, disposal, and recycling of municipal sludge. Municipal sludge has a high content of carbon and essential nutrients for plant growth; hence, it has gained interest among researchers as a soil fertilizer. This study discusses the potential usage of municipal sludge as soil fertilizer (indicators include nitrogen (N), phosphorus (P), and trace elements) along with its shortcomings and drawbacks (potentially toxic elements (PTEs), organic matter (OM), pathogens, etc.) as well as reviews the latest reports on the role of municipal sludge in land use. The use of municipal sludge as a soil fertilizer is a sustainable management practice and a single application of sludge does not harm the environment. However, repeated use of sludge may result in the accumulation of harmful chemicals and pathogens that can enter the food chain and endanger human health. Therefore, long-term field studies are needed to develop ways to eliminate these adverse effects and make municipal sludge available for agricultural use.
Collapse
Affiliation(s)
- Bo Zhang
- Key Laboratory of Ministry of Education On Safe Mining of Deep Metal Mines, Northeastern University, Shenyang, 110819 People’s Republic of China
| | - Xingxing Zhou
- College of Architecture and Environment, Ningxia Institute of Science and Technology, Shizuishan, 753000 People’s Republic of China
| | - Xupicheng Ren
- Key Laboratory of Ministry of Education On Safe Mining of Deep Metal Mines, Northeastern University, Shenyang, 110819 People’s Republic of China
| | - Xiaomin Hu
- Key Laboratory of Ministry of Education On Safe Mining of Deep Metal Mines, Northeastern University, Shenyang, 110819 People’s Republic of China
| | - Borui Ji
- Liaoning Inspection, Examination & Certification Centre, Liaoning Province Product Quality Supervision and Inspection Institute, Shenyang, 110014 People’s Republic of China
- National Quality Supervision & Testing Center of Petroleum Products, Shenyang, 110014 People’s Republic of China
| |
Collapse
|
19
|
Cheng Z, Xu D, Zhang Q, Tao Z, Hong R, Chen Y, Tang X, Zeng S, Wang S. Enhanced nickel removal and synchronous bioelectricity generation based on substrate types in microbial fuel cell coupled with constructed wetland: performance and microbial response. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:19725-19736. [PMID: 36239892 DOI: 10.1007/s11356-022-23458-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
In this study, an attempt was made to clarify the impact of substrates on the microbial fuel cell coupled with constructed wetland (CW-MFC) towards the treatment of nickel-containing wastewater. Herein, zeolite (ZEO), coal cinder (COA), ceramsite (CER), and granular activated carbon (GAC) were respectively introduced into lab-scaled CW-MFCs to systematically investigate the operational performances and microbial community response. GAC was deemed as the most effective substrate, and the corresponding device yielded favorable nickel removal efficiencies over 99% at different initial concentrations of nickel. GAC-CW-MFC likewise produced a maximum output voltage of 573 mV, power density of 8.95 mW/m2, and internal resistance of 177.9 Ω, respectively. The strong adsorptive capacity of nickel by GAC, accounting for 54.5% of total contaminant content, was mainly responsible for the favorable nickel removal performances of device GAC-CW-MFC. The high-valence Ni2+ was partially reduced to elemental Ni0 on the cathode, which provided evidence for the removal of heavy metals via the cathodic reduction of CW-MFC. The microbial community structure varied considerably as a result of substrates addition. For an introduction of GAC into the CW-MFC, a remarkably enriched population of genera Thermincola, norank_f__Geobacteraceae, Anaerovorax, Bacillus, etc. was noted. This study was dedicated to providing a theoretical guidance for an effective regulation of CW-MFC treatment on nickel-containing wastewater and accompanied by bioelectricity generation via the introduction of optimal substrate.
Collapse
Affiliation(s)
- Zhan Cheng
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| | - Dayong Xu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China.
| | - Qingyun Zhang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| | - Zhengkai Tao
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| | - Ran Hong
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| | - Yu Chen
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| | - Xiaolu Tang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| | - Shuai Zeng
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| | - Siyu Wang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| |
Collapse
|
20
|
He Q, Chen H, Tang H, Sun J, Xu H, Zhang Y. Immobilization of by-product sulfate salt slag from high-salt organic wastewater with fly ash in lightweight aggregate ceramsite. ENVIRONMENTAL TECHNOLOGY 2023; 44:832-840. [PMID: 34559038 DOI: 10.1080/09593330.2021.1985622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
The lightweight aggregate ceramsite (LAC) was prepared from by-product sulfate salt slag (BPSS) of high-salt organic wastewater with fly ash. The BPSS fixation rate, leaching toxicity, morphological structures and potential environmental risks of heavy metals in LAC were investigated. BPSS can be fixed in LAC when the mass ratio of Fly ash: Kaolin: clay was 7:1:2, the addition of BPSS was 28%, the heating rate was 8°C min-1, and the calcination temperature was 1100°C. The characteristics of the LAC met the requirements for Chinese lightweight aggregate standards (GB/T17431.2-2010). The Total Organic Carbon (TOC) content of the aqueous leaching liquor in LAC was less than 0.5 mg·L-1. And the fixation rate of heavy metal was more than 99%, which meets the requirements of GB 5085.3-2007. The BPSS immobilization mechanisms were mainly related to the formation of new crystal phases, including Leucite (KAlSi2O6), Albite (Na2O·Al2O3·6SiO2), Potash Feldspar (K2O·Al2O3·6SiO2), Jadeite (NaAlSi2O6), Hauyne ([Na,Ca]8[Si,Al]12O24[SO4]2), Nosean (Na8Al6Si6O24SO4), and Sodalite (Na8Al6Si6O24[MnO4]2) by incorporation of heavy metals in high-temperature curing reaction. This work provides an effective method for the harmless treatment and recycling of by-product salt residues from high-salt organic wastewater.
Collapse
Affiliation(s)
- Qian He
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, People's Republic of China
- National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Huixia Chen
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, People's Republic of China
- National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Haiyan Tang
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, People's Republic of China
- National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Jiyuan Sun
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, People's Republic of China
- National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Hongbin Xu
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, People's Republic of China
- National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - You Zhang
- Yuhuan Environmental Technology Co. LTD, Shijiazhuang, People's Republic of China
| |
Collapse
|
21
|
Ma Y, Zhu J, Yu J, Fu Y, Gong C, Huang X. Adsorption Characteristics of Phosphate Based on Al-Doped Waste Ceramsite: Batch and Column Experiments. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:671. [PMID: 36612990 PMCID: PMC9819071 DOI: 10.3390/ijerph20010671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Phosphorus widely existing in rainfall and wastewater impacts the water environment. In this study, sludge, cement block, and coal fly ash were employed as ceramsite material to synthesize Al-doped waste ceramsite (Al-ceramsite) for removing phosphate (PO43--P) from aqueous solutions. Batch static adsorption-desorption experiments were designed to investigate the effect of various parameters such as Al-ceramsite dosage, PO43--P concentration, temperature, initial pH, coexisting ions, and desorbents on the removal of PO43--P. Also, the fate of PO43--P removal efficiency in actual rainwater was studied through dynamic adsorption column experiments using Al-ceramsite. Results showed that Al-ceramsite could remove PO43--P efficiently under the optimum parameters as follows: Al-ceramsite dosage of 40 g/L, initial PO43--P concentration of 10 mg/L, temperature of 25 °C, and pH of 5. Besides that, the Al-ceramsite could completely remove PO43--P in actual rainwater, and the effluent PO43--P concentration was lower than the environmental quality standards for surface water Class Ⅰ (0.02 mg/L). The adsorption characteristics of Al-ceramsite on PO43--P by X-ray photoelectron spectroscopy (XPS) were further explained. As a result, ligand exchange and complexation were confirmed as the main PO43--P removal mechanism of Al-ceramsite. Thus, Al-ceramsite was prepared from industrial waste and has shown excellent potential for phosphorus removal in practical applications.
Collapse
Affiliation(s)
- Yameng Ma
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
- School of Materials and Environmental Engineering, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Jia Zhu
- School of Materials and Environmental Engineering, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Jianghua Yu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yicheng Fu
- State Key Laboratory of Simulation and Regulation of River Basin Water Cycle, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Chao Gong
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xiao Huang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| |
Collapse
|
22
|
Gan M, Xing J, Tang Q, Ji Z, Fan X, Zheng H, Sun Z, Chen X. Basic Research on Co-treatment of Municipal Solid Waste Incineration Fly Ash and Municipal Sludge for Energy-Saving Melting. ACS OMEGA 2022; 7:45153-45164. [PMID: 36530302 PMCID: PMC9753491 DOI: 10.1021/acsomega.2c05598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
MSWI fly ash and municipal sludge are solid wastes. Melting vitrification treatment was a resource utilization method. However, the flow temperature of grate furnace MSWI fly ash and municipal sludge was high (>1325 °C), which increased the energy consumption in the melting process. MSWI fly ash contained a large amount of CaO, and municipal sludge contained a large amount of SiO2, Al2O3, and Fe2O3. The temperature of melting vitrification can be reduced using these two kinds of CITY garbage as raw materials to change the proportion of ingredients. The eutectic characteristics of MSWI fly ash and municipal sludge and the phase diagrams of CaO-SiO2-Al2O3 (C-S-A) and CaO-SiO2-Al2O3-Fe2O3 (C-S-A-F) were analyzed in this paper. It established a low melting point mixing system. The results showed that when the amount of municipal sludge was 50-70%, the flow temperature of the mixtures was <1215 °C, which was significantly lower than that of MSWI fly ash (1490 °C) and municipal sludge (1325 °C). The optimal range of low melting point components was 14.1-36.3% CaO, 21.6-40.4% SiO2, 6.7-12.6% Al2O3, and 6.3-11.4% Fe2O3. At 400-1400 °C, the minerals in the mixtures mainly changed as follows: CaCO3 + SiO2 + Al2O3 → Ca2SiO4 + Ca3SiO5 + Ca2Al2SiO7 + Ca3Al2O6 + Ca12Al14O33 → CaAl2Si2O8. In the melting experiment, with the increase in temperature, most of the phases in the mixtures might become amorphous. Therefore, the low melting point phase anorthite (CaAl2Si2O8) only accounted for a small part of the final molten product.
Collapse
|
23
|
Zhang L, Ding D, Zhao J, Zhou G, Wang Z. Mixture Design and Mechanical Properties of Recycled Mortar and Fully Recycled Aggregate Concrete Incorporated with Fly Ash. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8143. [PMID: 36431637 PMCID: PMC9696722 DOI: 10.3390/ma15228143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/03/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Recycled aggregate concrete (RAC) is a sort of green, low carbon, environmental protection building material, its application is of great significance to the low carbonization of the construction industry. The performance and strength of RAC are much lower than natural aggregate concrete (NAC), which are the key factors restricting its application. Class F fly ash is a cementitious material that is considered environmentally hazardous. In this paper, appropriate water-binder (w/b) ratios were found through a mortar expansion test at first. The compressive strength of recycled mortar incorporated with class F fly ash was further studied. On this basis, the mechanical properties of nine groups of fully recycled aggregate concrete (FRAC) with a w/b ratio of 0.3, 0.35, and 0.4, and fly ash replacement ratios of 0, 20%, and 40%, were studied. The influence of the w/b ratio and fly ash replacement ratio on mechanical properties was analyzed and compared with previous research results. In addition, the conversion formulas between the splitting tensile strength, flexural strength, and compressive strength of FRAC were fitted and established. The research results have a certain guiding significance for the mixture design of FRAC and further application of class F fly ash.
Collapse
Affiliation(s)
- Lijuan Zhang
- School of Mechanics and Safety Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Dong Ding
- School of Mechanics and Safety Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Jun Zhao
- School of Mechanics and Safety Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Guosen Zhou
- Forth Co., Ltd. of China Construction Fifth Division, 69 Shihua Road, Guancheng District, Zhengzhou 450004, China
| | - Zhi Wang
- School of Mechanics and Safety Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| |
Collapse
|
24
|
Cheng X, Wei C, Ke X, Pan J, Wei G, Chen Y, Wei C, Li F, Preis S. Nationwide review of heavy metals in municipal sludge wastewater treatment plants in China: Sources, composition, accumulation and risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129267. [PMID: 35716572 DOI: 10.1016/j.jhazmat.2022.129267] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/18/2022] [Accepted: 05/28/2022] [Indexed: 05/22/2023]
Abstract
Systematically analyzing the problem of heavy metals in the municipal sludge, a meta-analysis of nine metals was undertaken to distinguish the sources and sinks of those with the impact of their accumulation on the environment. Municipal sludge was rich in N, P and K nutrients, was found to contain heavy metals comprising the descending order Zn > Mn > Cu > Cr > Pb > Ni > As > Cd > Hg. The forms, in which heavy metals accumulated in geographical regions, were characterized. The geographical distribution of heavy metals in the sludge showed a significant difference, with higher accumulation in Eastern and Southern regions, however, the risk evaluations showed the higher risk of heavy metals accumulation in Eastern and Western regions. Agricultural, industrial and traffic activities, and storm water pipeline sediments were identified as the main sources of heavy metals in the sludge. The correlation analysis elucidated the role of the total organic carbon in the accumulation of heavy metals in sludge. Municipal sludge is endowed with resource properties due to the detection of heavy metal contents thresholds in household products and its own resource-attributable enrichment behavior, which requires deduction of environmental risks.
Collapse
Affiliation(s)
- Xiaoqian Cheng
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Cong Wei
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Xiong Ke
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Jiamin Pan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Gengrui Wei
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Yao Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China.
| | - Fusheng Li
- River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Sergei Preis
- Department of Materials and Environment Technology, Tallinn University of Technology, Tallinn 19086, Estonia.
| |
Collapse
|
25
|
Li Y, Xu M, Li Q, Gai A, Yang T, Li R. Study on the Properties and Heavy Metal Solidification Characteristics of Sintered Ceramsites Composed of Magnesite Tailings, Sewage Sludge, and Coal Gangue. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11128. [PMID: 36078840 PMCID: PMC9518390 DOI: 10.3390/ijerph191711128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
With the rapid development of industry, the disposal of industrial solid waste needs to be solved urgently in China. Thus, an effective disposal method should be proposed to recycle these solid wastes in an environmentally friendly and sustainable manner. In this paper, ceramsite was prepared from sewage sludge (SS), magnesite tailings (MTs), and coal gangue (CG). The influence of the material ratio and sintering temperature on the properties of the ceramsite was investigated. The results show that the ceramsite had better properties when the following parameters were used: a ratio of SS: CG: MT of 4.5:4:1.5; a sintering temperature of 1250 °C; a compressive strength of 11.2 MPa (or it can be rounded to 11; our major remark relates to significant figures, and they should be up to 2-3 figures, according to measurement errors); a water absorption of 3.54%; and apparent and bulk densities of 1.19 and 0.81 g/cm3, respectively. The strength was superior to more than twice the 900-density grade prescribed by the Chinese national standard. After sintering, most of the heavy metals in the ceramsite mainly existed in the form of residue state (FD), meaning that they were highly stable. The leaching concentrations of Zn and Ni from the ceramsite were 0.72 and 0.25 mg/L lower than the prescribed regulatory limits (2.0 and 0.1 mg/L). The overall pollution toxicity index (OPTI) was only 240, less than that of raw pellets, indicating that the environmental risk is low. Not only did the ceramsite, prepared from SS, CG, and MT, exhibit excellent chemical properties, but it also proved to be an environmentally safe material. Therefore, it is an effective approach to realize the collaborative treatment of SS, CG, and MT by preparing ceramsite.
Collapse
Affiliation(s)
- Yanlong Li
- The Key Laboratory of Clean Energy in Liaoning Province, College of Energy and Environment, Shenyang Aerospace University, Shenyang 110136, China
| | | | | | | | | | - Rundong Li
- The Key Laboratory of Clean Energy in Liaoning Province, College of Energy and Environment, Shenyang Aerospace University, Shenyang 110136, China
| |
Collapse
|
26
|
Wang R, Lu M, Wang J. Co-Utilization of Sewage Sludge and Rice Husk in Ceramsite Preparation with Selective Adsorption Capacity to Pb. MATERIALS 2022; 15:ma15124310. [PMID: 35744368 PMCID: PMC9230551 DOI: 10.3390/ma15124310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/08/2022] [Accepted: 06/11/2022] [Indexed: 02/01/2023]
Abstract
Realizing the green recycling of sludge is an important link to effectively solve the problem of sludge disposal. In this paper, sewage sludge (SS) and rice husk (RH) were utilized as raw materials in preparing novel ceramsite (SRC) for the treatment of lead-containing wastewater, and its adsorption mechanism was explored. The results showed that the optimal preparation conditions were 40% RH + 60% SS mixture, a sintering temperature of 1190 °C, and a sintering time of 20 min. The basic properties of SRC met Chinese artificial ceramsite filter material standards for water treatment (CJ/T 299-2008). Under optimum adsorption conditions (pH = 6, 1 g/L SRC dosage, 20 mg/L Pb(NO)3 concentration, 18 h), the removal rate of Pb2+ reached 94.7%, and the equilibrium adsorption capacity was 18.94 mg/g. The adsorption process was more consistent with the pseudo-second-order kinetic model and the Langmuir isotherm model, indicating that the adsorption process was dominated by chemisorption. Thermodynamic parameters (ΔH0 > 0, ΔG0 < 0, ΔS0 > 0) indicated that the adsorption reaction was spontaneous and endothermic. The possible adsorption mechanisms are as follows: (1) SRC is rich in layered mesoporous structure, which provides sufficient reaction sites for Pb adsorption; (2) the sintered lawsonite and muscovite can strongly attract Pb and then form a new phase (Pb10[Si2O7]3(OH)2); (3) Pb2+ can bond with the Si−O- bond in aluminosilicates, and the introduction of Pb elevates the degree of polymerization of aluminosilicates in turn, indicating that the adsorption process is stable.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China;
| | - Meng Lu
- Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University, Wuhan 430073, China;
| | - Junxing Wang
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China;
- Correspondence: ; Tel.: +86-137-0718-2138
| |
Collapse
|
27
|
Zhao Y, Qiu X, Ma Z, Zhao C, Li Z, Zhai S. Fabrication of Pd/Sludge-biochar electrode with high electrochemical activity on reductive degradation of 4-chlorophenol in wastewater. ENVIRONMENTAL RESEARCH 2022; 209:112740. [PMID: 35085561 DOI: 10.1016/j.envres.2022.112740] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Effective treatment and utilization of sludge contribute to achieve conventional carbon emission reduction and resource recovery, which is of great significance to realize carbon neutralization of WWTPs. Sludge carbonization derived biochar has attracted more interest because of high potential as catalytic materials. Therein, sludge-derived electrode exhibits a promising potential in the case of sludge utilization for electrocatalysis, however, electrocatalytic performance of the already reported sludge-derived electrode is unsatisfactory due to insufficient active sites. In this study, an efficient Pd/sludge-biochar loaded foam nickel (Pd-SAC@Ni) was successfully fabricated using simple pyrolysis and solidification method, and exhibited remarkable electrocatalytic performance for 4-chlorophenol (4-CP) degradation. Furthermore, the morphology, element distribution and crystal composition were characterized by SEM, EDS, XPS and XRD. The Pd-SAC@Ni electrode exhibited superior electrocatalytic performance than Ni, SAC@Ni, Pd-Ni electrodes. The reduction rate of 98.9% was achieved at current density of 5 mA cm-2, 4-CP concentration of 0.8 mM and initial pH of 7.0. Also, Pd-SAC@Ni electrode showed desirable reusability and achieved 98% of 4-CP removal after multiple runs of experiments. Moreover, the active hydrogen species (H*) generation capacity of electrodes was determined using tert-butanol (TBA) as trapping agent. The mechanism analysis demonstrated that direct reduction process and indirect reduction process both involved in the 4-CP degradation process, and their contribution were 19.5% and 80.5%, respectively. Then, the intermediates formed in the electrochemical degradation of 4-CP were revealed by HPLC and the plausible degradation pathway was proposed. This study provides a cost-effective approach for preparing sludge biochar electrode, and explored a novel way to promote resourceful utilization of sludge for carbon neutrality.
Collapse
Affiliation(s)
- Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China
| | - Xiaojie Qiu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China
| | - Zehao Ma
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China
| | - Cailian Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China
| | - Zhuoran Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China
| | - Siyuan Zhai
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, No. 18 Shuangqing Road, Haidian District, Beijing, 100085, China.
| |
Collapse
|
28
|
Nitrogen and Phosphorus Removal Efficiency and Denitrification Kinetics of Different Substrates in Constructed Wetland. WATER 2022. [DOI: 10.3390/w14111757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Constructed wetlands (CWs) are generally used for wastewater treatment and removing nitrogen and phosphorus. However, the treatment efficiency of CWs is limited due to the poor performance of various substrates. To find appropriate substrates of CWs for micro-polluted water treatment, zeolite, quartz sand, bio-ceramsite, porous filter, and palygorskite self-assembled composite material (PSM) were used as filtering media to treat slightly polluted water with the aid of autotrophic denitrifying bacteria. PSM exhibited the most remarkable nitrogen and phosphorus removal performance among these substrates. The average removal efficiencies of ammonia nitrogen, total nitrogen, and total phosphorus of PSM were 66.4%, 58.1%, and 85%, respectively. First-order continuous stirred-tank reactor (first-order-CSTR) and Monod continuous stirred-tank reactor (Monod-CSTR) models were established to investigate the kinetic behavior of denitrification nitrogen removal processes using different substrates. Monod-CSTR model was proven to be an accurate model that could simulate nitrate nitrogen removal performance in vertical flow constructed wetland (VFCWs). Moreover, PSM demonstrated significant pollutant removal capacity with the kinetics coefficient of 2.0021 g/m2 d. Hence, PSM can be considered as a promising new type of substrate for micro-polluted wastewater treatment, and Monod-CSTR model can be employed to simulate denitrification processes.
Collapse
|
29
|
Influence of Ceramsite with Assembly Unit of Sludge and Excavated Soil on the Properties of Cement Concrete. MATERIALS 2022; 15:ma15093164. [PMID: 35591496 PMCID: PMC9101640 DOI: 10.3390/ma15093164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/14/2022] [Accepted: 04/22/2022] [Indexed: 12/10/2022]
Abstract
The application of sludge in the manufacture of ceramic material provides an outlet for waste disposal. In this study, we aimed to produce a new lightweight aggregate applications in concrete. The influence of burning temperature on the ignition loss rate, cylinder compressive strength, and the water absorption rate of ceramsite mixed with sludge and excavated soil was investigated. The slump flow, apparent density, and mechanical strength (flexural and compressive strengths) of cement concrete with ceramsite were determined. Moreover, the chloride ion permeability coefficient and the thermal conductivity were tested. Finally, scanning electron microscopy, X-ray diffraction, and thermal analysis were applied to analyze the mechanisms of the properties of ceramsite. Results show that the ignition loss rate and the burning temperature are in a quadratic relationship. The cylinder compressive strength shows a positive quadratic relationship with the burning temperature. However, the water absorption rate negatively correlates with the burning temperature. The addition of sludge can increase the ignition loss rate and cylinder compressive strength of ceramsite. Meanwhile, the effect of sludge on the water absorption rate is the opposite. Ceramsite decreases the slump flow and the apparent density of cement concrete. Cement concrete with 10% ceramsite shows the highest mechanical strength and the lowest chloride ion migration coefficient. Correction of the chloride ion migration coefficient and the content of ceramsite was performed as an exponential equation. Ceramsite exerts a negative effect on the thermal conductivity of cement concrete. Concrete with sludge ceramsite shows higher slump flow, apparent density, mechanical strength, and resistance to chloride ion penetration and thermal conductivity than concrete sludge with clay ceramsite. The mullite content of sludge ceramsite is higher than that of clay ceramsite. Additionally, sludge ceramsite exhibits a denser structure than that of clay ceramsite.
Collapse
|
30
|
Wang C, Huang C, Xu H, Yuan N, Liu X, Bai L, He X, Liu R. Ceramsite production using water treatment residue as main ingredient: The key affecting factors identification. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 308:114611. [PMID: 35114517 DOI: 10.1016/j.jenvman.2022.114611] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
As an inevitable by-product of potable water production, drinking water treatment residue (DWTR) recycling to make ceramsite can provide both environmental and economic benefits in constructing filtration treatment system for water environment remediation. Given the varied properties of DWTR from different waterworks, this study aims to identify the key factors affecting ceramsite production from DWTR as main ingredient based on five different DWTR with using clay as the auxiliary material. The results showed that of sintering temperature (500-1000 °C), DWTR:clay ratio (5:5 to 9:1), sintering time (5-60 min), and granule diameter (5-15 mm), the sintering temperature was the key parameter. Increasing temperatures from 500 to 1000 °C gradually promoted DWTR sintering by enhancing Si and Al crystallization, which typically increased the formation of SiO2 and CaAl2Si2O8 crystals in ceramsite. Ceramsites made from different DWTR tended to have different properties, mainly resulting from varied contents of Si (20.2%-48.6%), K (0.0894%-2.39%), Fe (4.56%-14.3%), and loss on ignition (11.7%-39.5%). During ingredients preparation to produce up-to-standard ceramsite, supplying additional Si and diluting loss on ignition were necessary for all DWTR, while supplying K and diluting Fe may be required for specific DWTR, due to the potential varied DWTR compositions caused by different water production processes applied (e.g., type of flocculants). Further toxicity characteristic leaching procedure analysis indicated the increased leaching of Cu. However, DWTR based ceramsite was identified as non-hazardous material; even, sintering treatment reduced the leachability of Ba, Be, Cd, and Cr. DWTR based ceramsite also had relatively high specific surface area (22.1-50.5 m2/g) and could adsorb Cd, Cu, and Pb from solution. Overall, based on appropriate management, DWTR can be recycled as the main ingredient in the production of ceramsite for water environment remediation.
Collapse
Affiliation(s)
- Changhui Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Chenghao Huang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; Graduate University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huacheng Xu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Nannan Yuan
- School of Electronic Information, Nanjing Vocational College of Information Technology, Nanjing, China
| | - Xin Liu
- College of Biology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Leilei Bai
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xiaosong He
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Rui Liu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; College of Biology and Environment, Nanjing Forestry University, Nanjing, 210037, China; Xuzhou Xinsheng Luyuan Cyclic Economy Industrial Investment & Development Co. Ltd., Xuzhou, 221003, China
| |
Collapse
|
31
|
Chen R, Pan Z, Chu S, Xiao J, Weng R, Ouyang D, Yang Y, Wu X, Huang Z. Optimize the Preparation of Novel Pyrite Tailings Based Non-sintered Ceramsite by Plackett-Burman Design Combined With Response Surface Method for Phosphorus Removal. Front Chem 2022; 10:850171. [PMID: 35350776 PMCID: PMC8957833 DOI: 10.3389/fchem.2022.850171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/21/2022] [Indexed: 11/21/2022] Open
Abstract
The large amount of untreated pyrite tailings has caused serious environmental problems, and the recycling of pyrite tailings is considered as an attractive strategy. Here, we reported a novel non-sintered ceramsite prepared with pyrite tailings (PTNC) as the main active raw material for phosphorus control, and the dosage effect of ingredients on total phosphorus (TP) removal ability was investigated. The results from Plackett-Burman Design (PBD) suggested the dosages of dehydrated sludge, sodium bicarbonate, and cement were the factors which significantly affect the TP removal ability. The Box-Behnken Design (BBD) based response surface methodology was further employed, and it indicated the interactions between different factors, and the optimized recipe for PTNC was 84.5 g (pyrite tailings), 10 g (cement), 1 g (calcined lime), 1 g (anhydrous gypsum), 3 g (dehydrated sludge), and 0.5 g (sodium bicarbonate). The optimized PTNC was characterized and which presented much higher specific area (7.21 m2/g) than the standard limitation (0.5 m2/g), as well as a lower wear rate (2.08%) rather than 6%. Additionally, the leaching metal concentrations of PTNC were far below the limitation of Chinese National Standard. The adsorption behavior of TP on PTNC was subsequently investigated with batch and dynamic experiments. It was found that the calculated max adsorption amount (qmax) was about 7 mg/g, and PTNC was able to offer a stable TP removal ability under different hydraulic retention time (HRT). The adsorption mechanism was discussed by model fitting analysis combined with XRD and SEM characterization, and cobalt phosphide sulfide was observed as the newly formed substance through the adsorption process, which suggested the existing of both physical and chemical adsorption effect. Our research not only offered an economic preparation method of ceramsite, but also broadened the recycling pathway of pyrite tailings.
Collapse
Affiliation(s)
- Ruihuan Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China
| | - Zhenlin Pan
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Shuyi Chu
- Wenzhou Academy of Agricultural Sciences, Wenzhou, China
| | - Jibo Xiao
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
- *Correspondence: Jibo Xiao, ; Zhida Huang,
| | - Rengui Weng
- Indoor Environment Engineering Research Center of Fujian Province, Fujian University of Technology, Fuzhou, China
| | - Da Ouyang
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, School of Environmental and Resource Sciences, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Yunlong Yang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Xiangting Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Zhida Huang
- Wenzhou Institute of Industry and Science, Wenzhou, China
- *Correspondence: Jibo Xiao, ; Zhida Huang,
| |
Collapse
|
32
|
Zhao X, Zhao X, Chen C, Zhang H, Wang L. Ecological floating bed for decontamination of eutrophic water bodies: Using alum sludge ceramsite. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 311:114845. [PMID: 35272160 DOI: 10.1016/j.jenvman.2022.114845] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/27/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
In this study, a combined ecological floating bed (C-EFB) with alum sludge ceramsite (ASC) was designed to improve the water purification effect of traditional ecological floating beds (T-EFBs). During the ASC preparation stage, alum sludge was shaped into a ball, air-dried, and fired under 600 °C. The physical and chemical properties of the ASC meet the requirements of Artificial Ceramsite Filter Materials for Water Treatment (CJ/T229-2008). This study investigated the increased capability of this new-type artificial substrate (ASC) on the removal of chemical oxygen demand (COD), ammonia nitrogen (NH4+-N), total phosphorus (TP), and total nitrogen (TN) from eutrophic landscape water. Compared with the T-EFB, the C-EFB owns a higher purification efficiency. The highest average efficiency of COD, NH4+-N, TN and TP removals during the four operating stages was 78.2%, 58.1%, 46.7% and 53.2%, respectively, in the C-EFB, which were all higher than those of 53.5%, 32.4%, 27.2% and 25.8%, respectively, for the T-EFB. Among them, the C-EFB showed a higher advantage in the removal of TP. The results showed that the potential benefits of utilizing ASC in seriously eutrophic bodies of water.
Collapse
Affiliation(s)
- Xiaohong Zhao
- Key Laboratory of Subsurface Hydrology and Ecology in Arid Areas, Ministry of Education, Chang'an University, Xi'an, 710054, China
| | - Xiaoyuan Zhao
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Chen Chen
- School of Optical Information and Energy Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Haidong Zhang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; National Agricultural Experimental Station for Soil Quality, Xiangcheng, Institute of Agricultural Sciences in Taihu Lake District, Suzhou, 215105, China
| | - Lingqing Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
33
|
Zhao L, Hu M, Muslim H, Hou T, Bian B, Yang Z, Yang W, Zhang L. Co-utilization of lake sediment and blue-green algae for porous lightweight aggregate (ceramsite) production. CHEMOSPHERE 2022; 287:132145. [PMID: 34500330 DOI: 10.1016/j.chemosphere.2021.132145] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/24/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Lake sediment and algal sludge with large output posed significant environmental risks. In this work, an idea of co-utilization of both solid wastes for the production of ceramsite (a sort of porous lightweight aggregates as building materials) was proposed and validated for the first time. The treatment process contained a dewatering step by a flocculation-pressure filtration method, and a sintered ceramsite preparation step. Effects of flocculant type and dosage on the dewatering performance were studied in the first step. An environmental-friendly amphoteric starch flocculant with a dosage of 12 mg/(g dried sample) was found to achieve the best dewatering performance. Effects of raw material mass ratio, sintering temperature and time in the second step were investigated. Under the optimal conditions (60 wt% of dewatered sediment; 20 wt% of dewatered algal sludge; 20 wt% of additives (fly ash: calcium oxide: kaolin = 2:1:2); sintering temperature: 1100 °C; time: 35 min), the obtained ceramsite met the Chinese National Standard as a qualified building material, with reliable environmental safety according to the leaching results for both heavy metals and microcystins. Both environmental and economic benefits of the proposed treatment were assessed. The process completely followed the rules of "reduction, harmlessness and resource utilization" for solid waste treatment and disposal; Meanwhile, the profit of the proposed ceramsite production could be more than 2.3 US dollar/m3. The co-utilization method in this work acted as a good example for the comprehensive management of solid wastes in water-rich areas.
Collapse
Affiliation(s)
- Lina Zhao
- School of Chemistry and Materials Science, School of Environment, Jiangsu Provincial Key Laboratory of Material Cycling and Pollution Control, Nanjing Normal University, Nanjing, 210046, China
| | - Min Hu
- School of Chemistry and Materials Science, School of Environment, Jiangsu Provincial Key Laboratory of Material Cycling and Pollution Control, Nanjing Normal University, Nanjing, 210046, China
| | - Halimi Muslim
- School of Chemistry and Materials Science, School of Environment, Jiangsu Provincial Key Laboratory of Material Cycling and Pollution Control, Nanjing Normal University, Nanjing, 210046, China
| | - Tianyang Hou
- School of Chemistry and Materials Science, School of Environment, Jiangsu Provincial Key Laboratory of Material Cycling and Pollution Control, Nanjing Normal University, Nanjing, 210046, China
| | - Bo Bian
- School of Chemistry and Materials Science, School of Environment, Jiangsu Provincial Key Laboratory of Material Cycling and Pollution Control, Nanjing Normal University, Nanjing, 210046, China
| | - Zhen Yang
- School of Chemistry and Materials Science, School of Environment, Jiangsu Provincial Key Laboratory of Material Cycling and Pollution Control, Nanjing Normal University, Nanjing, 210046, China.
| | - Weiben Yang
- School of Chemistry and Materials Science, School of Environment, Jiangsu Provincial Key Laboratory of Material Cycling and Pollution Control, Nanjing Normal University, Nanjing, 210046, China
| | - Limin Zhang
- School of Chemistry and Materials Science, School of Environment, Jiangsu Provincial Key Laboratory of Material Cycling and Pollution Control, Nanjing Normal University, Nanjing, 210046, China
| |
Collapse
|
34
|
Li P, Luo SH, Zhang L, Wang Q, Huang X, Zhang Y, Liu X, Liang J, Duan X. Study on preparation and performance of iron tailings-based porous ceramsite filter materials for water treatment. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
35
|
Xu J, Liu J, Hu J, Wang H, Sheng L, Dong X, Jiang X. Nitrogen and phosphorus removal in simulated wastewater by two aquatic plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:63237-63249. [PMID: 34227002 DOI: 10.1007/s11356-021-15206-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
Water pollution control is the focus of environmental pollution control. Ecological water treatment is widely used because of its low cost and landscape effect, and has no pollution. Aquatic plants have attracted wide attention because of their low cost and high level of resource utilization. In order to study the effects of emergent and submerged plants on the removal of different concentrations of wastewater, and the effect of pollutants on plant growth, two common aquatic plants found in Northeast China (Iris ensata Thunb. and Potamogeton malaianus Miq.) were selected. Under static conditions, the removal efficiency of nitrogen and phosphorus in wastewater with different concentrations by two kinds of plants was studied. The results showed that the removal rate of total nitrogen (TN) in medium- and high-pollutant concentration water samples and total phosphorus (TP) in medium- and low-pollutant concentration water with I. ensata reached more than 75%. The removal rate of TN in the medium-pollutant concentration water with P. malaianus reached 71.4%, while the removal efficiency of TN and TP in the low-pollutant concentration water was higher than 80%. In the Nanhu Park Lake samples, I. ensata had the highest removal rates of TN (80.38%) and TP (85.62%). This study shows that both I. ensata and P. malaianus can be used as aquatic plants to restore the water quality of urban lakes. This research provides an important basis for the phytoremediation and treatment of urban domestic wastewater and urban surface water bodies in Northern China.
Collapse
Affiliation(s)
- Jianling Xu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration / School of Environment, Northeast Normal University, Jingyue Street 2555, Changchun, 130017, China.
| | - Jiao Liu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration / School of Environment, Northeast Normal University, Jingyue Street 2555, Changchun, 130017, China
| | - Jiaqi Hu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration / School of Environment, Northeast Normal University, Jingyue Street 2555, Changchun, 130017, China
| | - Hanxi Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration / School of Environment, Northeast Normal University, Jingyue Street 2555, Changchun, 130017, China.
| | - Lianxi Sheng
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration / School of Environment, Northeast Normal University, Jingyue Street 2555, Changchun, 130017, China
| | - Xiaoliang Dong
- , Nanhu Park, Gongnong Road 2715, Changchun, 130021, China
| | - Xiaodan Jiang
- , Nanhu Park, Gongnong Road 2715, Changchun, 130021, China
| |
Collapse
|
36
|
Xu G, Hu T, Wei H, Cheng L, Wang H, Fang B. Response surface optimization, combustion characteristics and kinetic analysis of mixed fuels of Fenton/CaO conditioned municipal sewage sludge and rice husk. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 296:113181. [PMID: 34243090 DOI: 10.1016/j.jenvman.2021.113181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/18/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
The co-combustion characteristics and kinetics of Fenton/CaO conditioned MSS, and biomass rice husk (RH) are studied by thermogravimetry, and the condition optimization was carried out by response surface methodology (RSM). The results show that the mixed fuel with RH is helpful to decrease Ti and Tb values and increase combustion characteristic index (CCI). The CCI of MSS after conditioning is 0.59-0.88 times lower than that of the pure MSS. In addition, the total Em of S2, MSS/RH mixed combustion after Fenton/CaO conditioning is lower, the combustion reactivity is stronger. According to RSM, the optimum conditions are considered to be: RH mixing ratio 56%, Fenton/CaO conditioner dosage 147 mg g-1 dry solids, heating rate 30 K min-1, the maximum CCI 25.3305 × 10-7%2 °C-3 min-2, and the minimum Em 10.6403 kJ min-1. This study supplies new insights into combustion technology of sludge.
Collapse
Affiliation(s)
- Guiying Xu
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China; Department of Chemical & Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC, V6P 1Z3, Canada.
| | - Tuanqiao Hu
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China.
| | - Hetao Wei
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China.
| | - Long Cheng
- Department of Chemical & Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC, V6P 1Z3, Canada.
| | - Hanxi Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration / School of Environment, Northeast Normal University, Changchun, 130117, China.
| | - Baizeng Fang
- Department of Chemical & Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC, V6P 1Z3, Canada.
| |
Collapse
|
37
|
Wang H, Sun J, Xu J, Sheng L. Study on clogging mechanisms of constructed wetlands from the perspective of wastewater electrical conductivity change under different substrate conditions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 292:112813. [PMID: 34030018 DOI: 10.1016/j.jenvman.2021.112813] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/09/2021] [Accepted: 05/15/2021] [Indexed: 06/12/2023]
Abstract
Constructed wetland (CW) has obvious advantages in wastewater treatment of medium and small towns. However, there is a lack of health monitoring research on CW system clogging. The electrical conductivity (EC) of wastewater purified by CW is related to the concentration of pollutants, which can reflect the CW clogging. The objectives of this study are to reveal the mechanisms of CWs substrate clogging from the perspective of wastewater EC changes, and provide an important reference for the health evaluation of CWs. The EC changes of nine CWs substrates (quartz sand, zeolite, gravel, coarse sand, straw biochar, sludge biochar, clay ceramsite, fly ash ceramsite and shale ceramsite) under different conditions (purified water, wastewater and wastewater + NaCl) were tested, and comparative analysis was used to reveal the influence of different substrate materials on the change of wastewater EC. The results show that the adsorption ability of substrate material isn't the main factor affecting the EC of wastewater, and the soluble component in the material is the important factor to cause the difference of EC increment. Under the condition of 0.4-1.0 g L-1 NaCl concentration, the adsorption of substrate materials had little effect on the EC of wastewater, and the effect of NaCl used in CW tracer experiment was good. Quartz sand, coarse sand, gravel and sludge biochar have little influence on the change of wastewater EC. Other materials that have great influence on the change of wastewater EC can be treated by modifying or controlling the mixing ratio. The results are of great significance to reveal the clogging state of CW system and to carry out health assessment research.
Collapse
Affiliation(s)
- Hanxi Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration/School of Environment, Northeast Normal University, Jingyue Street 2555, Changchun, 130017, China
| | - Jitian Sun
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration/School of Environment, Northeast Normal University, Jingyue Street 2555, Changchun, 130017, China
| | - Jianling Xu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration/School of Environment, Northeast Normal University, Jingyue Street 2555, Changchun, 130017, China; Key Laboratory of Vegetation Ecology of Ministry of Education, Institute of Grassland Science, Northeast Normal University, Renmin Street 5268, Changchun, 130024, Jilin, China.
| | - Lianxi Sheng
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration/School of Environment, Northeast Normal University, Jingyue Street 2555, Changchun, 130017, China; Key Laboratory of Vegetation Ecology of Ministry of Education, Institute of Grassland Science, Northeast Normal University, Renmin Street 5268, Changchun, 130024, Jilin, China.
| |
Collapse
|