1
|
Wang X, Wang X, Chen W, Yuan J, Zhang Q. Adsorption of Cu(II) and Pb(II) in Aqueous Solution by Biochar Composites. ACS OMEGA 2025; 10:13816-13828. [PMID: 40256557 PMCID: PMC12004189 DOI: 10.1021/acsomega.4c06837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 03/06/2025] [Accepted: 03/25/2025] [Indexed: 04/22/2025]
Abstract
In this study, straw biochar (TB) was prepared by pyrolysis at 500 °C, and biochar composite material (TBS) was prepared by a 1:4 mass ratio with sludge (TS). Scanning electron microscopy and Fourier transform infrared spectroscopy were utilized to characterize the material before and after adsorption. The results demonstrated that TBS possesses significant pore structure characteristics and abundant active functional groups such as hydroxyl, carboxyl, and carbonyl groups, providing a structural basis for its efficient adsorption of heavy metal ions in aqueous solutions. The adsorption performance of the remediation materials for Cu(II) and Pb(II) in aqueous solution was systematically investigated. Experimental data showed that TBS achieved maximum adsorption capacities of 60.86 and 46.98 mg/g for Cu(II) and Pb(II) at equilibrium, respectively, exhibiting superior adsorption efficiency. Through fitting analysis using adsorption kinetic models and isothermal adsorption models, it was found that the pseudo-second-order kinetic model and Freundlich isothermal model could more accurately describe the adsorption process of the two heavy metal ions, indicating that chemical adsorption was the dominant mechanism and characterized by multilayer adsorption. Thermodynamic parameter calculations revealed negative ΔG values and positive ΔH and ΔS values, suggesting that the adsorption process was a spontaneous, entropy-increasing, and endothermic reaction. These research results fully validate the excellent removal capabilities of TBS for Cu(II) and Pb(II). This study has shown that TBS can be considered a promising and cost-effective adsorbent, demonstrating its potential to adsorb heavy metal ions in water.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Institute
of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma’anshan 243002, China
| | - Xiao Wang
- Institute
of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma’anshan 243002, China
| | - Wanke Chen
- Institute
of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma’anshan 243002, China
| | - Jing Yuan
- Department
of Civil Engineering, Tongling University, Tongling 244000, China
- Department
of Civil Engineering, Manitoba University, Winnipeg, MB R3T2N2, Canada
| | - Qianfeng Zhang
- Institute
of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma’anshan 243002, China
| |
Collapse
|
2
|
Taharia M, Das K, Sukul U, Chao HC, Banerjee P, Dey G, Sharma RK, Lin PY, Hung TC, Chen CY. Impact of bacterial cell concentration on microbial-mediated cerium carbonate precipitation for efficient heavy metal removal: Insights from adsorption isotherm, kinetics, and thermodynamics. BIORESOURCE TECHNOLOGY 2025; 421:132151. [PMID: 39921006 DOI: 10.1016/j.biortech.2025.132151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/21/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
Heavy metals (HMs) pollution is a pervasive environmental issue needs significant attention through bioremediation. Present study investigated the potentiality of Microbial-mediated Cerium Carbonate Precipitation (MMCCP) in simultaneous removal of HMs (Cr, Pb, and Cu) using different cellular concentration of Sporosarcina pasteurii. Results from SEM analysis revealed formation of spherical and rod-like structures (∼112nm), and finally XRD and FTIR confirmed the formation of high-purity crystalline CeCO3OH with surface-bound hydroxyl groups and CO32- ions, indicating successful cerium incorporation and formation in CeCO3OH. Moreover, optimal removal efficiencies for Cr (99%), Pb (99%), and Cu (68%) were achieved within 80min at 6mg/L concentration and 0.05g adsorbent dose. Adsorption followed the Langmuir isotherm (R2 = 0.9) and pseudo-second-order kinetics, with thermodynamic parameters indicating spontaneity and exothermicity (ΔG < 0, ΔH < 0, ΔS > 0). These findings demonstrate MMCCP's potential as an effective and sustainable approach for HMs remediation.
Collapse
Affiliation(s)
- Md Taharia
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Koyeli Das
- Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan; Doctoral Progam in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Uttara Sukul
- Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan; Doctoral Progam in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Hung-Chun Chao
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Pritam Banerjee
- Department of Environmental Science, Policy and Management, University of California, Berkeley, University Avenue and Oxford St. Berkeley, CA 94720, USA
| | - Gobinda Dey
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Raju Kumar Sharma
- Doctoral Progam in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan; Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan; Center for Nano Bio-Detection, Center for Innovative Research on Aging Society, AIM-HI, National Chung Cheng University, 168, University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Pin-Yun Lin
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan; Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Tung-Che Hung
- Department of Infectious Diseases, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Chien-Yen Chen
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan; Doctoral Progam in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan; Center for Nano Bio-Detection, Center for Innovative Research on Aging Society, AIM-HI, National Chung Cheng University, 168, University Road, Min-Hsiung, Chiayi County 62102, Taiwan; You-Cheng Engineering & Technology Co., Ltd, 168, University Road, Min-Hsiung, Chiayi County, 62102, Taiwan.
| |
Collapse
|
3
|
Jalilian M, Parvizi P, Zangeneh MR. Advances in graphene-based nanomaterials for heavy metal removal from water: Mini review. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2025; 97:e70062. [PMID: 40123408 DOI: 10.1002/wer.70062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/18/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025]
Abstract
The environment and public health are seriously at risk from the increasing levels of heavy metal (HM) pollution in water bodies, hence efficient remediation techniques must be developed. Unique physicochemical properties of graphene (Gn) such as its enormous surface area, chemical stability, and extraordinary adsorption capabilities have made it a promising candidate for application in various adsorption processes. Recent studies indicate the heavy metal removal capabilities of Gn-based materials such as Gn oxide (GO) and reduced GO (rGO) reach 99% efficiency rates for lead (Pb2+), cadmium (Cd2+), and mercury (Hg2+) through strong electrostatic bonds and metal coordination along with π-π stacking interactions. In addition, the selective nature of Gn-based adsorbents grows better through functionalization because it incorporates thiol, amine, and sulfonic acid groups. The integration of Gn-based materials with metal-organic frameworks (MOFs) combined with magnetic nanoparticles along with bio-based polymers enhances adsorption efficiency and increases stability while offering recyclability features. The conclusion of this study discusses the current obstacles such as cost, scalability, environmental impact, and selectivity and potential future developments for the widespread use of Gn-based adsorbents in water treatment, highlighting the significance of continued research to improve these substances for useful environmental applications. PRACTITIONER POINTS: Graphene-based materials exhibit high capacity for adsorbing various heavy metals, enhancing water purification. Functionalization of graphene improves its ability to selectively target and remove specific heavy metals like mercury and lead. Graphene derivatives can achieve heavy metal removal within minutes, making them efficient for water treatment. Despite high synthesis costs, graphene's superior performance may lower long-term operational costs in wastewater treatment.
Collapse
Affiliation(s)
- Milad Jalilian
- Department of Physics, Faculty of Science, Lorestan University, Khorramabad, Iran
- Pooya Power Knowledge Enterprise, Tehran, Iran
| | - Pooya Parvizi
- Department of Mechanical Engineering, School of Engineering, University of Birmingham, Birmingham, Edgbaston, UK
| | - Mohammad Reza Zangeneh
- Pooya Power Knowledge Enterprise, Tehran, Iran
- Department of Energy and Mechanical Engineering, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
4
|
Liu X, Hao Q, Fan M, Teng B. Carbonaceous adsorbents in wastewater treatment: From mechanism to emerging application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177106. [PMID: 39490830 DOI: 10.1016/j.scitotenv.2024.177106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/02/2024] [Accepted: 10/19/2024] [Indexed: 11/05/2024]
Abstract
Adsorption is of great significance in the water pollution control. Carbonaceous adsorbents, such as carbon quantum dots, carbon nanotubes, graphene, and activated carbons, have long been deployed in sustainable wastewater treatment due to their excellent physical structure and strong interaction with various pollutants; these features allow them to spark greater interest in environmental remediation. Although numerous eye-catch researches on carbon materials in wastewater treatment, there is a lack of comprehensive comparison and summary of the vivid structure-activity-application relationships of different types of carbonaceous adsorbents at the molecular and atomic level. Herein, this review aims to scrutinize and contrast the adsorption mechanisms of carbonaceous adsorbents with different dimensions, analyzing the qualitative differences in adsorption capacity from microscopic perspectives, structural diversity caused by preparation methods, and environmental external factors affecting adsorption occurrence. Then, a quantitatively in-depth critical appraisal of traditional and emerging contaminants in wastewater treatment using carbonaceous adsorbents, and innovative strategies for enhancing their adsorption capacity are discussed. Finally, in the context of growing imposed circularity and zero waste wishes, this review offers some promising insights for carbonaceous adsorbents in achieving sustainable wastewater treatment.
Collapse
Affiliation(s)
- Xiao Liu
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China; State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, 300071 Tianjin, China
| | - Qinglan Hao
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Maohong Fan
- Department of Chemical & Petroleum Engineering, University of Wyoming, Laramie, WY 82071, USA.
| | - Botao Teng
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
5
|
Taghavi Fardood S, Moradnia F, Aminabhavi TM. Green synthesis of novel Zn 0.5Ni 0.5FeCrO 4 spinel magnetic nanoparticles: Photodegradation of 4-nitrophenol and aniline under visible light irradiation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124534. [PMID: 39004207 DOI: 10.1016/j.envpol.2024.124534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
This study explores novel nanoparticles used in environmental remediation of 4-nitrophenol and aniline from wastewater bodies. The Zn0.5Ni0.5FeCrO4 magnetic nanoparticles (MNPs) were synthesized using tragacanth gel as a green, low-cost, and easy sol-gel method. The MNPs were characterized by XRD, XPS, FT-IR, VSM, TEM, EDX, FESEM, BET, DRS, and elemental mapping. The analysis demonstrated that nanoparticles have a spinel cubic structure, spatial distribution of the elements, ferromagnetic activity, narrow bandgap, and uniform morphology. Furthermore, effectiveness of the developed MNPs to degrade recalcitrant organic pollutants such as 4-nitrophenol (4-NP) and aniline under visible light exposure were studied. The results indicated 95% aniline and 80% of 4-NP were successfully degraded in 180 and 150 min, respectively. The total organic carbon (TOC) analysis revealed 65% and 54% removal of aniline and 4-NP. LC-MS was employed to elucidate the photodegradation mechanism and to identify the degradation products, including small fragmented molecules.
Collapse
Affiliation(s)
| | - Farzaneh Moradnia
- Department of Chemistry, Faculty of Science, Ilam University, Ilam, 69315516, Iran
| | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, 580 031, India; Korea University, Seoul, South Korea.
| |
Collapse
|
6
|
Soylak M, Ahmed HEH, Goktas O. Dispersive micro-solid phase extraction (D-μSPE) of nickel on activated nanodiamonds@Bi 2WO 6 nanocomposite from water and food samples. Food Chem 2024; 450:139351. [PMID: 38653049 DOI: 10.1016/j.foodchem.2024.139351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/26/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024]
Abstract
This study presents an original nano-sorbent using activated nanodiamonds@Bi2WO6 to separate and enrich nickel ions from water and food samples. FTIR, XRD, FE-SEM, FE-SEM-EDX, EDS-TEAM, TGA, and BET were used to characterize the nanocomposite. It has a large surface area, active functional groups, and better reactivity. Ni(II) ions were determined as Ni(II)-PADAP chelates using UV-VIS spectroscopy. The parameters were studied and optimized, including pH (6), eluent type and volume (1 mL), ligand quantity (10 μg), sorbent dosage (20 mg), and contact time (1 min). The method has a low limit of detection (LOD) of 1.6 μg L-1, a limit of quantification (LOQ) of 5.3 μg L-1, a relative standard deviation of 4.5%, and a preconcentration factor of 10. The method was validated by applying to certified reference materials (BCR estuarine water 505 and 1573a NIST). The method was successfully applied to tap waters, industrial waste waters, and vegetables.
Collapse
Affiliation(s)
- Mustafa Soylak
- Erciyes University, Faculty of Sciences, Department of Chemistry, 38039 Kayseri, Turkey; Technology Research & Application Center (ERU-TAUM), Erciyes University, 38039 Kayseri, Turkey; Turkish Academy of Sciences (TUBA), Cankaya, Ankara, Turkey.
| | - Hassan Elzain Hassan Ahmed
- Erciyes University, Faculty of Sciences, Department of Chemistry, 38039 Kayseri, Turkey; Technology Research & Application Center (ERU-TAUM), Erciyes University, 38039 Kayseri, Turkey; Sudan Atomic Energy Commission (SAEC) - Chemistry and Nuclear Physics Institute, Khartoum, Sudan; Sudan University of Science and Technology (SUST) - College of Science-Scientific Laboratories Department, Chemistry Section, Khartoum, Sudan
| | - Oguzhan Goktas
- Erciyes University, Faculty of Sciences, Department of Chemistry, 38039 Kayseri, Turkey; Technology Research & Application Center (ERU-TAUM), Erciyes University, 38039 Kayseri, Turkey
| |
Collapse
|
7
|
Soylak M, Aksu B, Elzain Hassan Ahmed H. Carboxylated nanodiamonds@CuAl 2O 4@TiO 2 nanocomposite for the dispersive micro-solid phase extraction of nickel at trace levels from food samples. Food Chem 2024; 445:138733. [PMID: 38387322 DOI: 10.1016/j.foodchem.2024.138733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/12/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
Heavy metal pollution poses a significant health risk, necessitating regular environmental monitoring for public safety. Elevated nickel concentrations can disrupt ecosystems and impact human health. This study presents a nano-sorbent can be used for dispersive micro-solid phase extraction of nickel. The nano-sorbent was characterized using FT-IR, XRD, FESEM, BET, and BJH. It demonstrated remarkable efficiency due to its nanoscale properties, optimizing results in exceptional extraction performance with minimal interference from common ions. A flame atomic absorption spectrometer was utilized for all measurements. It has a low LOD (0.29 μg L-1) and RSDs% (7.3 % and 6 % intra-day and inter-day, respectively), minimal variation, and a precisely accurate correlation (0.997). It can be used on black tea, green tea, carrots, coffee beans, tuna fish, herring fish, tobacco, soil, natural water, and wastewater samples. The accuracy of the method was assessed by analyzing TMDA-64.3 fortified water and NIST 1573a tomato leaves certified reference materials.
Collapse
Affiliation(s)
- Mustafa Soylak
- Erciyes University, Faculty of Sciences, Department of Chemistry, 38039 Kayseri, Turkey; Technology Research & Application Center (ERU-TAUM), Erciyes University, 38039 Kayseri, Turkey; Turkish Academy of Sciences (TUBA), Cankaya, Ankara, Turkey.
| | - Birgul Aksu
- Erciyes University, Faculty of Sciences, Department of Chemistry, 38039 Kayseri, Turkey; Technology Research & Application Center (ERU-TAUM), Erciyes University, 38039 Kayseri, Turkey
| | - Hassan Elzain Hassan Ahmed
- Erciyes University, Faculty of Sciences, Department of Chemistry, 38039 Kayseri, Turkey; Technology Research & Application Center (ERU-TAUM), Erciyes University, 38039 Kayseri, Turkey; Sudan Atomic Energy Commission (SAEC) - Chemistry and Nuclear Physics Institute, Khartoum, Sudan
| |
Collapse
|
8
|
Xie DA, Sun Y, Yang YL, Shi XL, Suo G, Hou X, Ye X, Zhang L, Chen ZG. Remarkable purification of organic dyes by NiOOH-modified industrial waste residues. J Colloid Interface Sci 2024; 664:136-145. [PMID: 38460379 DOI: 10.1016/j.jcis.2024.02.190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 03/11/2024]
Abstract
Extracting functional materials from industrial waste residues to absorb organic dyes can maximize waste reuse and minimize water pollution. However, the extraordinarily low purification efficiency still limits the practical application of this strategy. Herein, the lamellar NiOOH is in-situ anchored on the industrial waste red mud surface (ARM/NiOOH) as an adsorbent to purify organic dyes in wastewater. ARM/NiOOH adsorbent with high specific surface area and porosity provides considerable active sites for the congo red (CR), thereby significantly enhancing the removal efficiency of CR. Besides, we fit a reasonable adsorption model for ARM/NiOOH adsorbent and investigate its adsorption kinetics. Resultantly, ARM/NiOOH adsorbent can remarkably adsorb 348.0 mg g-1 CR within 5 min, which is 7.91 times that of raw RM. Our work provides a strategy for reusing industrial waste and purifying sewage pollution, which advances wastewater treatment engineering.
Collapse
Affiliation(s)
- De-An Xie
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Yu Sun
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Yan-Ling Yang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, PR China.
| | - Xiao-Lei Shi
- School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Guoquan Suo
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Xiaojiang Hou
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Xiaohui Ye
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Li Zhang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Zhi-Gang Chen
- School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland 4000, Australia.
| |
Collapse
|
9
|
Mohammadi A, Jafarpour E, Mirzaei K, Shojaei A, Jafarpour P, Beikmohammadi Eyni M, Mirzaei S, Molavi H. Novel ZIF-8/CNC Nanohybrid with an Interconnected Structure: Toward a Sustainable Adsorbent for Efficient Removal of Cd(II) Ions. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3862-3875. [PMID: 38194357 DOI: 10.1021/acsami.3c15524] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Water pollution, especially by heavy metals, continues to pose significant challenges, emphasizing the urgency to develop sustainable processes to remove pollutants while developing sustainable materials derived from renewable sources. In the present research, a nanoscale adsorbent was prepared to remove cadmium (Cd(II)) ions from wastewater by hybridizing zeolitic imidazolate framework-8 (ZIF-8) with a cellulose nanocrystal (CNC). The prepared nanohybrid exhibited an interconnected structure in which the ZIF-8 particles were connected to each other via CNC nanoneedles. The hybridization of ZIF-8 with CNC caused a significant enhancement in the adsorption performance of the fabricated nanohybrid compared to pure ZIF-8, increasing its adsorption capacity by nearly 36%. The adsorption of ZIF/CNC followed the Langmuir isotherm model and pseudo-second-order kinetics models, remarking homogeneous adsorption onto the surface of ZIF/CNC, where chemisorption controlled the rate of adsorption. The thermodynamic study uncovered that the adsorption is spontaneous, endothermic, and entropy-governed as the randomness was increased at the solid-liquid interface. Additionally, the influence of operating variables, such as temperature, adsorbent dosage, pH, and ionic strength, was studied to mimic the adsorption capabilities of the adsorbent in real conditions. Accordingly, the optimum conditions were found to be at 45 °C and pH = 7 with a dosage of 0.4 g/L for the adsorbent. Moreover, the adsorption in a multimetal solution showed that the ZIF/CNC nanohybrid can remove various heavy metals, including Cd(II), Fe(III), Cu(II), and Pb(II) ions simultaneously. Finally, the regeneration study confirmed the great potential of the ZIF/CNC nanohybrid, which retained 94% of its initial adsorption capacity after 5 consecutive adsorption/desorption cycles.
Collapse
Affiliation(s)
- Ali Mohammadi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, P.O. Box 11155-9465 Tehran, Iran
| | - Erfan Jafarpour
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, P.O. Box 11155-9465 Tehran, Iran
| | - Kamyar Mirzaei
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, P.O. Box 11155-9465 Tehran, Iran
| | - Akbar Shojaei
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, P.O. Box 11155-9465 Tehran, Iran
| | - Peyman Jafarpour
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Mahboube Beikmohammadi Eyni
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, P.O. Box 11155-9465 Tehran, Iran
| | - Shaghayegh Mirzaei
- School of Chemical Engineering, College of Engineering, University of Tehran, 14176-14411 Tehran, Iran
| | - Hossein Molavi
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Gava Zang, 45137-66731 Zanjan, Iran
| |
Collapse
|
10
|
Sheikh M, Harami HR, Rezakazemi M, Cortina JL, Aminabhavi TM, Valderrama C. Towards a sustainable transformation of municipal wastewater treatment plants into biofactories using advanced NH 3-N recovery technologies: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166077. [PMID: 37544447 DOI: 10.1016/j.scitotenv.2023.166077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/17/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Ammonia (NH3), as a prevalent pollutant in municipal wastewater discharges, can impair aquatic life and have a negatively impact on the environment. Proper wastewater treatment and management practices are essential to protect ecosystems and keep human populations healthy. Therefore, using highly effective NH3-N recovery technologies at wastewater treatment plants (WWTPs) is widely acknowledged as a necessity. In order to improve the overall efficiency of NH3 removal/recovery processes, innovative technologies have been generally applied to reduce its concentration when discharged into natural water bodies. This study reviews the current status of the main issues affecting NH3 recovery from municipal/domestic wastewater discharges. The current study investigated the ability to recover valuable resources, e.g., nutrients, regenerated water, and energy in the form of biogas through advanced and innovative methods in tertiary treatment to achieve higher efficiency towards sustainable wastewater and resource recovery facilities (W&RRFs). In addition, the concept of paradigm shifts from WWTP to a large/full scale W&RRF has been studied with several examples of conversion to innovative bio-factories producing materials. On the other hand, the carbon footprint and the high-energy consumption of the WWTPs were also considered to assess the sustainability of these facilities.
Collapse
Affiliation(s)
- Mahdi Sheikh
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/ Eduard Maristany 10-14, Campus Diagonal-Besòs, 08930 Barcelona, Spain; Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain
| | - Hossein Riasat Harami
- Department of Chemical and Biological Engineering, The University of Alabama, AL, USA
| | - Mashallah Rezakazemi
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran
| | - Jose Luis Cortina
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/ Eduard Maristany 10-14, Campus Diagonal-Besòs, 08930 Barcelona, Spain; Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain; Water Technology Center (CETaqua), Carretera d'Esplugues, 75, 08940 Cornellà de Llobregat, Spain
| | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka 580 031, India; School of Engineering, UPES, Bidholi, Dehradun, Uttarakhand 248 007, India
| | - Cesar Valderrama
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/ Eduard Maristany 10-14, Campus Diagonal-Besòs, 08930 Barcelona, Spain; Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain.
| |
Collapse
|
11
|
Molavi H, Mirzaei K, Jafarpour E, Mohammadi A, Salimi MS, Rezakazemi M, Nadagouda MM, Aminabhavi TM. Wastewater treatment using nanodiamond and related materials. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 349:119349. [PMID: 39491939 DOI: 10.1016/j.jenvman.2023.119349] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/19/2023] [Accepted: 10/14/2023] [Indexed: 11/05/2024]
Abstract
Nanodiamonds (NDs) are zero-dimensional (0D) carbon-based nanoparticles with SP3/SP2-hybridized carbon atoms that have shown great potential in wastewater treatment areas due to their high surface area, chemical stability, and unique adsorption properties. They can efficiently remove a wide range of pollutants from water, including heavy metals, organic compounds, and dyes via various mechanisms such as electrostatic interactions, π-π stacking, and ion exchange. NDs can be functionalized following different surface chemistries, enabling tailored surface properties and enhanced pollutant adsorption capabilities. This review covers recent research on the application of nanodiamonds in wastewater treatment domain with a major emphasis on adsorption, photocatalytic degradation, and membrane separation, highlighting their promising performances, challenges, and future directions.
Collapse
Affiliation(s)
- Hossein Molavi
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), GavaZang, Zanjan 45137-66731, Iran.
| | - Kamyar Mirzaei
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Erfan Jafarpour
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Ali Mohammadi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Mohammad Sepehr Salimi
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), GavaZang, Zanjan 45137-66731, Iran
| | - Mashallah Rezakazemi
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran.
| | - Megha M Nadagouda
- William Mason High School, 6100 Mason Montgomery Rd, Mason, OH 45040, USA
| | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, 580 031, India.
| |
Collapse
|
12
|
Saghir S, Wang Y, Xiao Z. In situ synthesis of multivariant zeolitic tetrazolate imidazole frameworks (ZTIFs) with uncoordinated N-heteroatom sites for efficient adsorption of antiviral drugs. JOURNAL OF CLEANER PRODUCTION 2023; 414:137654. [PMID: 37304129 PMCID: PMC10227440 DOI: 10.1016/j.jclepro.2023.137654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/15/2023] [Accepted: 05/29/2023] [Indexed: 06/13/2023]
Abstract
The current outbreak of the coronavirus (COVID-19) pandemic has significantly increased the global usage of antiviral drugs (AVDs), leading to higher concentrations of antibiotics in water pollution. To address this current issue, a new kind of adsorbent named isostructural zeolitic tetrazolate imidazolate frameworks (ZTIFs) were synthesized by combining imidazole and tetrazolates into one self-assembly approach by adjusting pores and stability of frameworks. The incorporation of imidazole ligand progressively increased the stability of frameworks. Furthermore, increasing the content of tetrazolate ligand greatly improved the adsorption performance due to N-rich sites by increasing the pore size. The obtained adsorbent composite exhibits macroporous structure up to 53.05 nm with excellent structural stability. Owing to their macropores and highly exposed active sites, the synthesized ZTIFs exhibit the maximum adsorption capacity for oseltamivir (OT) and ritonavir (RT) of 585.2 mg/g and 435.8 mg/g, respectively. Moreover, the adsorption uptake and saturation process were rapid compared to simple MOF. Within 20 min, both pollutants achieved equilibrium. The adsorption isotherms were best interpreted by Pseudo second order kinetics. The adsorption of AVDs on ZTIFs was spontaneous, exothermic, and thermodynamically feasible. The DFT calculations and characterization results after adsorption demonstrate that π-π interaction, pore filling, surface complexation, and electrostatic interaction were the primary features of the adsorption mechanism. The prepared ZTIFs composite exhibits high chemical, mechanical and thermal stability and can be recycled multiple times without destroying its morphology and structure. The adsorbent regeneration for several cycles impacted the operational cost and the eco-friendly characteristic of the process.
Collapse
Affiliation(s)
- Summaira Saghir
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, People's Republic of China
| | - Yongqiang Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, People's Republic of China
| | - Zhenggang Xiao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, People's Republic of China
| |
Collapse
|
13
|
Ahmadijokani F, Ahmadipouya S, Haris MH, Rezakazemi M, Bokhari A, Molavi H, Ahmadipour M, Pung SY, Klemeš JJ, Aminabhavi TM, Arjmand M. Magnetic Nitrogen-Rich UiO-66 Metal-Organic Framework: An Efficient Adsorbent for Water Treatment. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37319265 DOI: 10.1021/acsami.3c02171] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The postsynthetic modification of metal-organic frameworks (MOFs) has opened up a promising area to widen their water treatment application. However, their polycrystalline powdery state still restricts their widespread industrial-scale applications. Herein, the magnetization of UiO-66-NH2 is reported as a promising approach to facilitate the separation of the used MOFs after water treatment. A two-step postmodification procedure employing 2,4,6-trichloro-1,3,5-triazine (TCT) and 5-phenyl-1H-tetrazole (PTZ) agents was introduced to level up the adsorption performance of the magnetic nanocomposite. Despite a decrement in porosity and specific surface area of the designed MOFs (m-UiO-66-TCT) compared to neat UiO-66-NH2, it outweighs in adsorption capacity. It was observed that m-UiO-66-TCT has an adsorption capacity of ≈298 mg/g for methyl orange (MO) with facile MOF separation using an external magnet. Pseudo-second-order kinetic model and Freundlich isotherm models suitably interpret the experimental data. Thermodynamic studies showed that MO removal using m-UiO-66-TCT is spontaneous and thermodynamically favorable at higher temperatures. The m-UiO-66-TCT composite exhibited easy separation, high adsorption capacity, and good recyclability, rendering it an attractive candidate for the adsorptive removal of MO dye from aqueous environments.
Collapse
Affiliation(s)
- Farhad Ahmadijokani
- School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
- Department of Materials Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Salman Ahmadipouya
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran P932+FM4, Iran
| | - Mahdi Heidarian Haris
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran P932+FM4, Iran
| | - Mashallah Rezakazemi
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood 9WVR+757, Iran
| | - Awais Bokhari
- Sustainable Process Integration Laboratory - SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology- VUT Brno, Technická 2896/2, 616 69 Brno, Czech Republic
| | - Hossein Molavi
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Gava Zang, Zanjan 45137-66731, Iran
| | | | - Swee-Yong Pung
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, NibongTebal, Pulau Pinang 14300, Malaysia
| | - Jiří Jaromír Klemeš
- Sustainable Process Integration Laboratory - SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology- VUT Brno, Technická 2896/2, 616 69 Brno, Czech Republic
| | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi 580031, India
- School of Engineering, UPES, Bidholi, Dehradun 248 007, Uttarakhand, India
| | - Mohammad Arjmand
- School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| |
Collapse
|
14
|
Hama Aziz KH, Mustafa FS, Omer KM, Hama S, Hamarawf RF, Rahman KO. Heavy metal pollution in the aquatic environment: efficient and low-cost removal approaches to eliminate their toxicity: a review. RSC Adv 2023; 13:17595-17610. [PMID: 37312989 PMCID: PMC10258679 DOI: 10.1039/d3ra00723e] [Citation(s) in RCA: 116] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/02/2023] [Indexed: 06/15/2023] Open
Abstract
Heavy metal contamination of water sources has emerged as a major global environmental concern, threatening both aquatic ecosystems and human health. Heavy metal pollution in the aquatic environment is on the rise due to industrialization, climate change, and urbanization. Sources of pollution include mining waste, landfill leachates, municipal and industrial wastewater, urban runoff, and natural phenomena such as volcanic eruptions, weathering, and rock abrasion. Heavy metal ions are toxic, potentially carcinogenic, and can bioaccumulate in biological systems. Heavy metals can cause harm to various organs, including the neurological system, liver, lungs, kidneys, stomach, skin, and reproductive systems, even at low exposure levels. Efforts to find efficient methods to remove heavy metals from wastewater have increased in recent years. Although some approaches can effectively remove heavy metal contaminants, their high preparation and usage costs may limit their practical applications. Many review articles have been published on the toxicity and treatment methods for removing heavy metals from wastewater. This review focuses on the main sources of heavy metal pollution, their biological and chemical transformation, toxicological impacts on the environment, and harmful effects on the ecosystem. It also examines recent advances in cost-effective and efficient techniques for removing heavy metals from wastewater, such as physicochemical adsorption using biochar and natural zeolite ion exchangers, as well as decomposition of heavy metal complexes through advanced oxidation processes (AOPs). Finally, the advantages, practical applications, and future potential of these techniques are discussed, along with any challenges and limitations that must be considered.
Collapse
Affiliation(s)
- Kosar Hikmat Hama Aziz
- Department of Chemistry, College of Science, University of Sulaimani Qlyasan Street Sulaimani City 46001 Kurdistan Region Iraq
- Medical Laboratory Analysis Department, College of health sciences, Cihan University-Sulaimaniya Sulaimaniya 46001 Kurdistan region Iraq
| | - Fryad S Mustafa
- Department of Chemistry, College of Science, University of Sulaimani Qlyasan Street Sulaimani City 46001 Kurdistan Region Iraq
| | - Khalid M Omer
- Department of Chemistry, College of Science, University of Sulaimani Qlyasan Street Sulaimani City 46001 Kurdistan Region Iraq
| | - Sarkawt Hama
- Department of Chemistry, College of Science, University of Sulaimani Qlyasan Street Sulaimani City 46001 Kurdistan Region Iraq
| | - Rebaz Fayaq Hamarawf
- Department of Chemistry, College of Science, University of Sulaimani Qlyasan Street Sulaimani City 46001 Kurdistan Region Iraq
| | - Kaiwan Othman Rahman
- Department of Chemistry, College of Science, University of Sulaimani Qlyasan Street Sulaimani City 46001 Kurdistan Region Iraq
- Razga Company Sulaimani City 46001 Kurdistan Region Iraq
| |
Collapse
|
15
|
Cai Y, Jiang W, Liu D, Chang C. Adsorption of sulfanilamides using biochar derived from Suaeda salsa: adsorption kinetics, isotherm, thermodynamics, and mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27228-2. [PMID: 37147545 DOI: 10.1007/s11356-023-27228-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/21/2023] [Indexed: 05/07/2023]
Abstract
Suaeda biochar (SBC) was prepared by muffle furnace with Suaeda salsa at 600, 700, 800, and 900 ℃. The physical and chemical properties of biochar at different pyrolysis temperatures and the adsorption mechanism of sulfanilamide (SM) were studied by SEM-EDS, BET, FTIR, XRD, and XPS analysis. The adsorption kinetics and adsorption isotherms were fitted. The results showed that the kinetics was in line with the quasi-second-order adsorption model and belonged to chemisorption. The adsorption isotherm conformed to Langmuir adsorption isotherm model and belonged to monolayer adsorption. The adsorption of SM on SBC was spontaneous and exothermic. The adsorption mechanism may be pore filling, hydrogen bonding, and π-π electron donor acceptor (EDA) interaction.
Collapse
Affiliation(s)
- Yanrong Cai
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, China
- Institute of Ocean Research, Bohai University, Jinzhou, 121013, China
| | - Weili Jiang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, China
| | - Di Liu
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, China
| | - Chun Chang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, China.
- College of Environment and Chemical Engineering, Dalian University, Dalian, 116622, China.
| |
Collapse
|
16
|
Ijaz I, Bukhari A, Gilani E, Nazir A, Zain H. Synthesis of Fe-THC MOFs and functionalizing MOFs by MXenes for the selective removal of lead(ii) ions from wastewater. RSC Adv 2023; 13:5643-5655. [PMID: 36816064 PMCID: PMC9930097 DOI: 10.1039/d2ra08102d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
The elimination of heavy metals, especially lead, from wastewater is vital for the environment and human health and using a proper adsorbent to achieve this goal is highly desirable. Initially, Fe-THC MOF was prepared using a simple method and functionalized using MXene for efficient, rapid, and selective elimination of lead. Different characterization tools demonstrated that Fe-THC MOF and its composite Fe-THC/MXene were successfully prepared. The adsorption outcomes showed that the maximum sorption capability was 674 mg g-1 at 305 K and pH 4.5. The sorption kinetics obeys the pseudo-second-order kinetic model, and the sorption isotherms fit the Langmuir isotherm model. This finding suggests monolayer sorption on Fe-THC/MXene, and the rate-controlling step is chemisorption. Thermodynamic findings exhibit that sorption was a spontaneous and exothermic process. The sorption process can selectively adsorb Pb ions from aqueous media. After five adsorption-desorption tests, the adsorption efficiency of Fe-THC/MXene was still high. The sorption mechanism of lead on Fe-THC was mainly due to the interaction of lead ions with -F and -O ions and porosity of the Fe-THC/MXene composite. The -O and -F ions were derived from MXene, while the porosity was derived from the MOFs of composites. These findings confirmed that Fe-THC/MXene enables rapid, efficient, and selective elimination of lead from wastewater, which is of practical importance.
Collapse
Affiliation(s)
- Irfan Ijaz
- School of Chemistry, Faculty of Basic Sciences and Mathematics, Minhaj University Lahore Lahore 54700 Pakistan
| | - Aysha Bukhari
- School of Chemistry, Faculty of Basic Sciences and Mathematics, Minhaj University Lahore Lahore 54700 Pakistan
| | - Ezaz Gilani
- School of Chemistry, Faculty of Basic Sciences and Mathematics, Minhaj University Lahore Lahore 54700 Pakistan
| | - Ammara Nazir
- School of Chemistry, Faculty of Basic Sciences and Mathematics, Minhaj University Lahore Lahore 54700 Pakistan
| | - Hina Zain
- Department of Allied Health Sciences, Superior University LahoreLahore 54700Pakistan
| |
Collapse
|
17
|
Elgueta E, Becerra Y, Martínez A, Pereira M, Carrillo-Varela I, Sanhueza F, Nuñez D, Rivas BL. Adsorbents Derived from Xylan Hemicellulose with Removal Properties of Pollutant Metals. CHINESE JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1007/s10118-023-2897-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
18
|
Tajahmadi S, Molavi H, Ahmadijokani F, Shamloo A, Shojaei A, Sharifzadeh M, Rezakazemi M, Fatehizadeh A, Aminabhavi TM, Arjmand M. Metal-organic frameworks: A promising option for the diagnosis and treatment of Alzheimer's disease. J Control Release 2023; 353:1-29. [PMID: 36343762 DOI: 10.1016/j.jconrel.2022.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/22/2022]
Abstract
Beta-amyloid (Aβ) peptide is one of the main characteristic biomarkers of Alzheimer's disease (AD). Previous clinical investigations have proposed that unusual concentrations of this biomarker in cerebrospinal fluid, blood, and brain tissue are closely associated with the AD progression. Therefore, the critical point of early diagnosis, prevention, and treatment of AD is to monitor the levels of Aβ. In view of the potential of metal-organic frameworks (MOFs) for diagnosing and treating the AD, much attention has been focused in recent years. This review discusses the latest advances in the applications of MOFs for the early diagnosis of AD via fluorescence and electrochemiluminescence (ECL) detection of AD biomarkers, fluorescence detection of the main metal ions in the brain (Zn2+, Cu2+, Mn2+, Fe3+, and Al3+) in addition to magnetic resonance imaging (MRI) of the Aβ plaques. The current challenges and future strategies for translating the in vitro applications of MOFs into in vivo diagnosis of the AD are discussed.
Collapse
Affiliation(s)
- Shima Tajahmadi
- Institute for Nanoscience and Nanotechnology (INST), Sharif University of Technology, Tehran, Iran
| | - Hossein Molavi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran; Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Gava Zang, Zanjan 45137-66731, Iran
| | - Farhad Ahmadijokani
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | - Amir Shamloo
- Institute for Nanoscience and Nanotechnology (INST), Sharif University of Technology, Tehran, Iran; Department of Mechanical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran 11155-9161, Iran.
| | - Akbar Shojaei
- Institute for Nanoscience and Nanotechnology (INST), Sharif University of Technology, Tehran, Iran; Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Mohammad Sharifzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mashallah Rezakazemi
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran
| | - Ali Fatehizadeh
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tejraj M Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka 580 031, India; School of Engineering, UPES, Bidholi, Dehradun, Uttarakhand 248 007, India.
| | - Mohammad Arjmand
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada.
| |
Collapse
|
19
|
Tajahmadi S, Shamloo A, Shojaei A, Sharifzadeh M. Adsorption Behavior of a Gd-Based Metal-Organic Framework toward the Quercetin Drug: Effect of the Activation Condition. ACS OMEGA 2022; 7:41177-41188. [PMID: 36406538 PMCID: PMC9670691 DOI: 10.1021/acsomega.2c04800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/20/2022] [Indexed: 05/26/2023]
Abstract
A carboxylate gadolinium-based metal-organic framework (Gd-MOF) is an exceptional candidate for magnetic resonance imaging agents, but its low drug adsorption capacity hinders this MOF from being used as a theragnostic agent. In this work, the Gd-MOF was synthesized by a simple solvothermal method. Then, different activation situations, including various solvents over different time periods, were applied to enhance the specific surface area of the synthesized MOF. Different characterization analyses such as X-ray diffraction and Brunauer-Emmett-Teller along with experimental quercetin adsorption tests were done to study the crystalline and physical properties of various activated MOFs. In the following, the MOF activated by ethanol for 3 days (3d-E) was chosen as the best activated MOF due to its crystallinity, highest specific surface area, and drug adsorption capacity. More explorations were done for the selected MOF, including the drug adsorption isotherm, thermodynamics, and pH effect of adsorption. The results show that the activation process substantially affects the crystallinity, morphology, specific surface area, and drug adsorption capacity of Gd-MOFs. An optimized activation condition is proposed in this work, which shows an impressive enhancement of the specific surface area of Gd-MOFs just by simple solvent exchange method employment.
Collapse
Affiliation(s)
- Shima Tajahmadi
- Institute
for Nanoscience and Nanotechnology (INST), Sharif University of Technology, Tehran14588-89694, Iran
| | - Amir Shamloo
- Institute
for Nanoscience and Nanotechnology (INST), Sharif University of Technology, Tehran14588-89694, Iran
- Department
of Mechanical Engineering, Sharif University
of Technology, Azadi Avenue, Tehran11365-8639, Iran
- Stem
Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran11155-9161, Iran
| | - Akbar Shojaei
- Institute
for Nanoscience and Nanotechnology (INST), Sharif University of Technology, Tehran14588-89694, Iran
- Department
of Chemical and Petroleum Engineering, Sharif
University of Technology, Tehran11155-9465, Iran
| | - Mohammad Sharifzadeh
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran1416753955, Iran
| |
Collapse
|
20
|
Balasooriya IL, Chen J, Korale Gedara SM, Han Y, Wickramaratne MN. Applications of Nano Hydroxyapatite as Adsorbents: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2324. [PMID: 35889550 PMCID: PMC9319406 DOI: 10.3390/nano12142324] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/24/2022] [Accepted: 07/04/2022] [Indexed: 02/04/2023]
Abstract
Nano hydroxyapatite (Ca10(PO4)6(OH)2, HAp) has aroused widespread attention as a green and environmentally friendly adsorbent due to its outstanding ability in removing heavy metal ions, radio nuclides, organic pollutants and fluoride ions for wastewater treatment. The hexagonal crystal structure of HAp supports the adsorption mechanisms including ionic exchange reaction, surface complexation, the co-precipitation of new partially soluble phases and physical adsorption such as electrostatic interaction and hydrogen bonding. However, nano HAp has some drawbacks such as agglomeration and a significant pressure drop during filtration when used in powder form. Therefore, instead of using nano HAp alone, researchers have worked on modificationsand composites of nano HAp to overcome these issues and enhance the adsorption capacity. The modification of cationic doping and organic molecule grafting for nano HAp can promote the immobilization of ions and then increase adsorption capacity. Developing nano HAp composite with biopolymers such as gelatin, chitosan and chitin has proven to obtain a synergetic effect for improving the adsorption capacity of composites, in which nano HAp fixed and dispersed in polymers can playmuch more of a role for adsorption. This review summarizes the adsorption properties and adsorbent applications of nano HAp as well as the methods to enhance the adsorption capacity of nano HAp.
Collapse
Affiliation(s)
- Iresha Lakmali Balasooriya
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China; (I.L.B.); (J.C.); (S.M.K.G.)
| | - Jia Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China; (I.L.B.); (J.C.); (S.M.K.G.)
| | - Sriyani Menike Korale Gedara
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China; (I.L.B.); (J.C.); (S.M.K.G.)
| | - Yingchao Han
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China; (I.L.B.); (J.C.); (S.M.K.G.)
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan 528200, China
| | | |
Collapse
|