1
|
Xin J, Song Z, Zheng B, Hu J, Zhao C, Chen D, Yang W. Biodegradation of Poly(Styrene- Alt-Maleic Anhydride) in Soil and Its Toxic Effects on the Environment. ACS APPLIED MATERIALS & INTERFACES 2025; 17:28211-28221. [PMID: 40314769 DOI: 10.1021/acsami.5c02749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
In recent years, synthetic polymers have become integral to modern society, but their improper disposal has led to significant environmental challenges. Therefore, it is of great significance to investigate the environmental impact of polymer waste. Herein, we conducted comprehensive research on the biodegradability of poly(styrene-alt-maleic anhydride) (PSM) when exposed to soil and microbes, as well as its toxic effects on soybean seedlings and Eisenia fetida. The biodegradation process of PSM was thoroughly evaluated using respirometry tests, Fourier transform infrared spectroscopy, gel permeation chromatography, weight loss analysis, and bacterial reproduction tests. After 90 days of incubation in soil, the mineralization ratio of PSM reached 15%, and the weight-average molecular weight gradually decreased from 28.0 to 14.5 kg/mol in the first 14 days. Additionally, PSM experienced a 50% degradation by Pseudomonas aeruginosa after 30 days. In terms of phytotoxicity, PSM showed slight effects on the morphology of soybean seedlings while inducing oxidative stress in roots. The toxic effects of PSM on Eisenia fetida were investigated using both filter paper and soil contact methods. The filter paper contact test showed that the LC50 value was above 1000.0 μg/cm2 at 48 h, while the soil contact test indicated an LC50 value of 93.34 g/kg at 7 days. In conclusion, PSM demonstrates excellent biodegradability and low biotoxicity, suggesting great potential for emerging environmental applications.
Collapse
Affiliation(s)
- Jiayi Xin
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ziyang Song
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bo Zheng
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Jiawen Hu
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Changwen Zhao
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dong Chen
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wantai Yang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing 100029, China
| |
Collapse
|
2
|
Chen J, Zhang S, Wang M, Kang G, Lu L, Chang N, Wang N, Xie Z, Liu Y, Zhang H, Shen W. Investigating the impact of landfill age and season on the occurrence and dissemination of antibiotic resistance genes in leachate and the underlying mechanisms using metagenomics. J Appl Microbiol 2025; 136:lxaf091. [PMID: 40251030 DOI: 10.1093/jambio/lxaf091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/10/2025] [Accepted: 04/17/2025] [Indexed: 04/20/2025]
Abstract
AIMS Antibiotic resistance genes (ARGs) pose a critical public health concern, with landfill leachate serving as a significant environmental reservoir. While ARG dynamics in leachate have been investigated in various contexts, their occurrence and influence factors in semi-arid regions remain poorly understood. This study investigated the occurrence and influence factors of ARG profiles, their potential hosts, and underlying mechanisms driving their proliferation. METHODS AND RESULTS Comprehensive metagenomic analysis of leachate samples collected from landfills of varying landfill ages (5, 10, and 20 years) in Hohhot, Inner Mongolia-a representative semi-arid region of northern China-across three seasons (autumn, spring, and summer). Metagenomic analysis revealed distinct patterns in core ARG abundances modulated by both landfill age and seasonal variations. Notably, landfill age predominantly influenced tetracycline- and glycopeptide-ARGs, while seasonal fluctuations primarily affected glycopeptide- and multidrug-ARGs. Taxonomic analysis identified Pseudomonas aeruginosa and P. fluorescens as the predominant resistant pathogens, with elevated prevalence during spring and winter compared to summer. Network analysis and metabolic pathway reconstruction demonstrated that landfill age maybe impacted ARG dissemination through modulation of carbohydrate and nitrogen metabolic pathways. This novel finding suggests a previously unrecognized mechanism linking waste decomposition stages to ARG proliferation. CONCLUSIONS Our study provides the first systematic characterization of ARG dynamics in semi-arid landfill leachate, offering crucial insights for developing targeted strategies to mitigate ARG dissemination in these distinct ecological contexts. These findings establish a theoretical framework for understanding ARG transmission in semi-arid environments, while providing empirical evidence to inform environmental management practices.
Collapse
Affiliation(s)
- Jianqiu Chen
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, 8 Jiangwangmiao Street, Xuanwu District, Nanjing 210042, China
- Department of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing 211198, China
| | - Shenghu Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, 8 Jiangwangmiao Street, Xuanwu District, Nanjing 210042, China
- Department of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing 211198, China
| | - Mingyu Wang
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Jimo District, Qingdao 266237, China
| | - Guodong Kang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, 8 Jiangwangmiao Street, Xuanwu District, Nanjing 210042, China
| | - Leilei Lu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, 8 Jiangwangmiao Street, Xuanwu District, Nanjing 210042, China
| | - Ning Chang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, 8 Jiangwangmiao Street, Xuanwu District, Nanjing 210042, China
| | - Ning Wang
- Department of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing 211198, China
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, 8 Jiangwangmiao Street, Xuanwu District, Nanjing 210042, China
| | - Zhilei Xie
- Inner Mongolia Environmental Monitoring Station, 39 Tengfei Road, Saihan District, Hohhot 010000, China
| | - Yanhua Liu
- Department of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing 211198, China
| | - Houhu Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, 8 Jiangwangmiao Street, Xuanwu District, Nanjing 210042, China
| | - Weitao Shen
- Department of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing 211198, China
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, 8 Jiangwangmiao Street, Xuanwu District, Nanjing 210042, China
| |
Collapse
|
3
|
Xie J, Ji J, Sun Y, Ma Y, Wu D, Zhang Z. Blood-brain barrier damage accelerates the accumulation of micro- and nanoplastics in the human central nervous system. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136028. [PMID: 39366047 DOI: 10.1016/j.jhazmat.2024.136028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
The widespread use of plastics has led to increased micro- and nanoplastics (MNPs) pollution, resulting in significant environmental challenges and concerns about potential harm to human health. This study investigated whether certain types of MNPs can accumulate in the human central nervous system (CNS) and trigger inflammatory responses, particularly after CNS infection. Our analysis of 28 cerebrospinal fluid (CSF) samples from 28 patients with or without CNS infection revealed that only polystyrene (PS), polyethylene (PE), polypropylene (PP), and polyvinyl chloride (PVC) were capable of selectively entering the human CNS. Concentrations of PP and PE were positively correlated with the CSF albumin index. The levels of interleukin-6 (IL-6) and interleukin-8 (IL-8) were significantly increased in patients with CNS infections. However, concentrations of MNPs were not significantly associated with CSF levels of IL-6 or IL-8. Overall, these findings suggest that specific MNPs can penetrate the human CNS, especially after impairment of the blood-brain barrier. Notably, MNPs derived from commonly used plastics did not significantly induce or exacerbate inflammation in the human CNS.
Collapse
Affiliation(s)
- Jian Xie
- Department of Neurology in Affiliated ZhongDa Hospital and Jiangsu Provincial Medical Key Discipline, School of Medicine, Institution of Neuropsychiatry, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Jiale Ji
- Department of Neurology in Affiliated ZhongDa Hospital and Jiangsu Provincial Medical Key Discipline, School of Medicine, Institution of Neuropsychiatry, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Yun Sun
- Department of Neurology in Affiliated ZhongDa Hospital and Jiangsu Provincial Medical Key Discipline, School of Medicine, Institution of Neuropsychiatry, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Yifan Ma
- Department of Neurology in Affiliated ZhongDa Hospital and Jiangsu Provincial Medical Key Discipline, School of Medicine, Institution of Neuropsychiatry, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Di Wu
- Department of Neurology in Affiliated ZhongDa Hospital and Jiangsu Provincial Medical Key Discipline, School of Medicine, Institution of Neuropsychiatry, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu, 210009, China.
| | - Zhijun Zhang
- Department of Neurology in Affiliated ZhongDa Hospital and Jiangsu Provincial Medical Key Discipline, School of Medicine, Institution of Neuropsychiatry, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu, 210009, China; Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Department of Mental Health and Public Health, Faculty of Life and Health Sciences of Shenzhen University of Advanced Technology, The Brain Cognition and Brain Disease institute of Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
4
|
Wang B, Wu L, Pang K, Zhang G, Xu D, Sun H, Yin X. Transport of reduced PBAT microplastics in saturated porous media: Synergistic effects of enhanced surface energy and roughness. WATER RESEARCH 2024; 267:122514. [PMID: 39342712 DOI: 10.1016/j.watres.2024.122514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
Microplastic (MP) pollution presents significant global environmental challenges, exacerbated by reduction aging processes in anoxic environments, thereby increasing environmental risks and potential threats to human health. However, the mechanisms underlying the transport of reduced MPs remain poorly understood. In this study, laboratory-scale column experiments were conducted to investigate the transport behavior of polybutylene adipate terephthalate (PBAT), a common biodegradable MPs, and its reduced products obtained through the aging process mediated by two typical reducing agents, NaBH4 and Na2S, under varying conditions (ionic strength (IS), divalent cations, and low molecular weight organic acids (LMWOAs)). The results indicated that reduction aging improved the hydrophilicity of PBAT by increasing the surface roughness (roughness factor increased from 1.300 to 1.642) and surface energy (from 51.80 to 107.03 mN m-1), thereby increasing the mobility of reduced PBAT (with recovery rate increased from 53.77 % to 63.18 %). Increased IS decreased the mobility of reduced PBAT by decreasing the surface negative charge density. Divalent cations inhibited the mobility of both pristine and reduced PBAT in porous media, with pristine PBAT, containing more oxygen functional groups, exhibiting stronger inhibition. Furthermore, LMWOAs promoted the retention of reduced PBAT in porous media, which was dependent on the type of LMWOAs. This study revealed the alterations in MPs properties caused by reduction aging and their effects on transport mechanisms, offering new insights into the transport behavior and environmental risks of reduced MPs.
Collapse
Affiliation(s)
- Binying Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Lan Wu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Kejing Pang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Guangcai Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Duo Xu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Huimin Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, PR China
| | - Xianqiang Yin
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
5
|
Cheng D, Liu H, Qian W, Yao R, Wang X. Migration characteristics of microplastics in riparian soils and groundwater. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:796. [PMID: 39112830 DOI: 10.1007/s10661-024-12962-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/01/2024] [Indexed: 09/14/2024]
Abstract
Investigations have revealed the presence of microplastics in both soil and groundwater, but the migration characteristics from soil to groundwater remain incompletely understood. In this study, two sampling sections consisting of soil-groundwater-river water were established near Lianxi Bridge and Xilin Bridge along the Jiuxi River in Xiamen. A total of 22 soil samples, 36 groundwater samples, and 18 river water samples were collected. Microplastics were detected in all samples with an abundance range of 392-836 n/kg in soil (mean, 655 ± 177 n/kg), 0.58-2.48 n/L groundwater (mean, 1.23 ± 0.42 n/L), and 0.38-1.80 n/L in river water (mean, 0.86 ± 0.41 n/L). Flakes predominantly constituted the shape of microplastics found in soil, while fibers dominated those present in water. Black, yellow, and red were the dominant color types. Polyamide (PA) and polyethylene (PE) were the main components of microplastics within soils, whereas polyethylene terephthalate (PET), polypropylene (PP), and PA prevailed within water. Microplastic particle sizes ranged from 39 to 2498 μm in soils, mainly from 29 to 3394 μm in water. The upstream section displayed higher abundances of microplastic compared to the downstream, revealing the soil particles having an intercepting effect on microplastics. The distribution and migration of microplastics in soil and groundwater are affected by many factors, including natural and anthropogenic factors, such as soil depth, soil properties, pore structure, hydrodynamics, hydraulic connections between groundwater and surface water, the extensive utilization and disposal of plastics, irrational exploitation of groundwater, and morphology and types of microplastics. These research findings contribute to a better understanding of the pathways, migration capacity, and influencing factors associated with microplastic entry into groundwater, thereby providing valuable technical support for the development of strategies aimed at controlling microplastic pollution.
Collapse
Affiliation(s)
- Dongdong Cheng
- College of the Environment and Ecology, Xiamen University, Xiamen, 361102, PR China
| | - Huatai Liu
- College of the Environment and Ecology, Xiamen University, Xiamen, 361102, PR China.
- Key Laboratory of the Coastal and Wetland Ecosystems, Xiamen University, Ministry of Education, Xiamen, 361102, PR China.
| | - Weixu Qian
- College of the Environment and Ecology, Xiamen University, Xiamen, 361102, PR China
| | - Rui Yao
- College of the Environment and Ecology, Xiamen University, Xiamen, 361102, PR China
| | - Xinhong Wang
- College of the Environment and Ecology, Xiamen University, Xiamen, 361102, PR China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, PR China
| |
Collapse
|
6
|
Zheng Y, Huang S, Fan H, Liu H, Xu J, Craig NJ, Li JY, He W, Su L. Microplastics in different tissues of historical and live samples of endangered mega-fish (Acipenser sinensis) and their potential relevance to exposure pathways. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 272:106943. [PMID: 38733942 DOI: 10.1016/j.aquatox.2024.106943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024]
Abstract
The Chinese sturgeon (Acipenser sinensis) is an endangered freshwater mega-fish (IUCN-red listed) that survives in the Yangtze River Basin, but the population of which has declined significantly in response to environmental pressures generated by human activities. In order to evaluate the interaction between Chinese sturgeon and microplastics (MPs) for the first time, we examined the gut and gills of historical samples (n = 27), in conjunction with the blood and mucus of live samples (n = 10), to explore the potential pathways involved in MP uptake. We detected MPs in 62.9 % of the field fish, with no significant difference between guts (mean=0.9 items/individual) and gills (mean=0.8 items/individual). The abundance of MPs in fish from 2017 was significantly higher than that from 2015 to 2016 with regards to both gills and gut samples. The size of MPs in gills was significantly smaller than those in guts, yet both contained mostly fibers (90.2 %). No MPs were confirmed in blood, however 62.5 % of mucus samples contained MPs. The MPs in mucus indicated the possibility of MPs entering Chinese sturgeons if their skins were damaged. The body size of Chinese sturgeons affected their MPs uptake by ingestion and inhalation, as less MPs were detected in the gut and gills of smaller individuals. Combining the evidence from historical and live samples, we revealed the presence of MPs in different tissues of Chinese sturgeon and their potential relevance to exposure pathways. Our work expands the understanding of multiple exposure pathways between MPs and long-lived mega-fish, while emphasizing the potential risks of long-term exposure in the field.
Collapse
Affiliation(s)
- Yueping Zheng
- Shanghai Aquatic Wildlife Conservation and Research Center, Shanghai 200003, China
| | - Sirui Huang
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Houyong Fan
- Shanghai Aquatic Wildlife Conservation and Research Center, Shanghai 200003, China
| | - Hanqi Liu
- East China Sea Ecological Center, MNR (Ministry of Natural Resources), Shanghai 201206, China
| | - Jianan Xu
- Shanghai Aquatic Wildlife Conservation and Research Center, Shanghai 200003, China
| | - Nicholas J Craig
- School of Biosciences, the University of Melbourne, Parkville, Victoria 3010, Australia
| | - Juan-Ying Li
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of River and Lake Biochain Construction and Resource Utilization, Shanghai 201702, China
| | - Wenhui He
- Shanghai Engineering Research Center of River and Lake Biochain Construction and Resource Utilization, Shanghai 201702, China
| | - Lei Su
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of River and Lake Biochain Construction and Resource Utilization, Shanghai 201702, China.
| |
Collapse
|
7
|
Jaafarzadeh N, Talepour N. Microplastics as carriers of antibiotic resistance genes and pathogens in municipal solid waste (MSW) landfill leachate and soil: a review. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2024; 22:1-12. [PMID: 38887766 PMCID: PMC11180052 DOI: 10.1007/s40201-023-00879-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/25/2023] [Indexed: 06/20/2024]
Abstract
Landfill leachate contains antibiotic resistance genes (ARGs) and microplastics (MPs), making it an important reservoir. However, little research has been conducted on how ARGs are enriched on MPs and how the presence of MPs affects pathogens and ARGs in leachates and soil. MPs possess the capacity to establish unique bacterial populations and assimilate contaminants from their immediate surroundings, generating a potential environment conducive to the growth of disease-causing microorganisms and antibiotic resistance genes (ARGs), thereby exerting selection pressure. Through a comprehensive analysis of scientific literature, we have carried out a practical assessment of this topic. The gathering of pollutants and the formation of dense bacterial communities on microplastics create advantageous circumstances for an increased frequency of ARG transfer and evolution. Additional investigations are necessary to acquire a more profound comprehension of how pathogens and ARGs are enriched, transported, and transferred on microplastics. This research is essential for evaluating the health risks associated with human exposure to these pollutants. Graphical Abstract
Collapse
Affiliation(s)
- Neamatollah Jaafarzadeh
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Environmental Health Engineering, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nastaran Talepour
- Department of Environmental Health Engineering, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
8
|
Zhang L, Zhao W, Yan R, Yu X, Barceló D, Sui Q. Microplastics in different municipal solid waste treatment and disposal systems: Do they pose environmental risks? WATER RESEARCH 2024; 255:121443. [PMID: 38492313 DOI: 10.1016/j.watres.2024.121443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/18/2024]
Abstract
Microplastic (MP) pollution is a significant worldwide environmental and health challenge. Municipal solid waste (MSW) can be an important source of MPs in the environment if treated and disposed of inappropriately, causing potential ecological risks. MSW treatment and disposal methods have been gradually shifting from landfilling/dumping to more sustainable approaches, such as incineration or composting. However, previous studies on MP characteristics in different MSW treatment and disposal systems have mainly focused either on landfills/dumpsites or composts. The lack of knowledge of multiple MSW treatment and disposal systems makes it difficult to ensure effective MP pollution control during MSW treatment and disposal. Therefore, this study systematically summarizes the occurrence of MPs in different MSW treatment and disposal systems (landfill/dumpsite, compost, and incineration) on the Eurasian scale, and discusses the factors that influence MPs in individual MSW treatment and disposal systems. In addition, the paper assesses the occurrence of MPs in the surrounding environment of MSW treatment and disposal systems and their ecological risks using the species sensitivity distribution approach. The study also highlights recommendations for future research, to more comprehensively describe the occurrence and fate of MPs during MSW treatment and disposal processes, and to develop appropriate pollution control measures to minimize MP pollution.
Collapse
Affiliation(s)
- Lei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wentao Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Ruiqi Yan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xia Yu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Damià Barceló
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, Spanish Council for Scientific Research (IDAEA-CSIC), Barcelona 08034, Spain
| | - Qian Sui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
9
|
Zhao S, Zheng Q, Wang H, Fan X. Nitrogen in landfills: Sources, environmental impacts and novel treatment approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171725. [PMID: 38492604 DOI: 10.1016/j.scitotenv.2024.171725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/05/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Nitrogen (N) accumulation in landfills is a pressing environmental concern due to its diverse sources and significant environmental impacts. However, there is relatively limited attention and research focus on N in landfills as it is overshadowed by other more prominent pollutants. This study comprehensively examines the sources of N in landfills, including food waste contributing to 390 million tons of N annually, industrial discharges, and sewage treatment plant effluents. The environmental impacts of N in landfills are primarily manifested in N2O emissions and leachate with high N concentrations. To address these challenges, this study presents various mitigation and management strategies, including N2O reduction measures and novel NH4+ removal techniques, such as electrochemical technologies, membrane separation processes, algae-based process, and other advanced oxidation processes. However, a more in-depth understanding of the complexities of N cycling in landfills is required, due to the lack of long-term monitoring data and the presence of intricate interactions and feedback mechanisms. To ultimately achieve optimized N management and minimized adverse environmental impacts in landfill settings, future prospects should emphasize advancements in monitoring and modeling technologies, enhanced understanding of microbial ecology, implementation of circular economy principles, application of innovative treatment technologies, and comprehensive landfill design and planning.
Collapse
Affiliation(s)
- Shan Zhao
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China; College of Civil Engineering, Tongji University, Shanghai 200092, China
| | - Qiteng Zheng
- College of Civil Engineering, Tongji University, Shanghai 200092, China
| | - Hao Wang
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Xinyao Fan
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| |
Collapse
|
10
|
Du T, Qian L, Shao S, Xing T, Li T, Wu L. Comparison of sulfide-induced transformation of biodegradable and conventional microplastics: Mechanism and environmental fate. WATER RESEARCH 2024; 253:121295. [PMID: 38354663 DOI: 10.1016/j.watres.2024.121295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
Biodegradable plastics have been massively produced and used as potential substitutes for conventional plastics, resulting in their inevitable entry into the environment and generation of biodegradable microplastics (MPs). The sulfidation transformation of MPs is an important process for their transformation in anoxic environments (e.g., sediments, anaerobic activated sludges) that can alter their environmental effects and risks. However, how sulfides induce the transformation of biodegradable MPs and whether they are similar to conventional MPs remains unknown. In the present study, we compared the transformation and mechanism of conventional polyethylene (PE) MPs and biodegradable poly(butylene adipate-co-terephthalate) (PBAT) MPs during sulfidation. The results demonstrated that sulfidation resulted in oxidation of PE MPs, whereas PBAT MPs underwent reduction and had higher physical damage, as evidenced by fragmentation, chain scission and organic compound release. Besides, reactive oxygen species and sulfide species played important roles in the sulfidation of PE and PBAT MPs, respectively. The presence of ester groups in PBAT MPs led to their hydrolysis, causing chain scission and further reduction. Furthermore, sulfidation caused a higher degree of adsorption and toxicity alterations in PBAT MPs than in PE MPs. This work uncovers critical abiotic transformation behaviors of biodegradable microplastics and highlights the necessity of considering microplastic structural features to accurately predict microplastic occurrence.
Collapse
Affiliation(s)
- Tingting Du
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China.
| | - Liwen Qian
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Song Shao
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Tianran Xing
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Tong Li
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China.
| | - Lijun Wu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| |
Collapse
|
11
|
Gunarathne V, Phillips AJ, Zanoletti A, Rajapaksha AU, Vithanage M, Di Maria F, Pivato A, Korzeniewska E, Bontempi E. Environmental pitfalls and associated human health risks and ecological impacts from landfill leachate contaminants: Current evidence, recommended interventions and future directions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169026. [PMID: 38056656 DOI: 10.1016/j.scitotenv.2023.169026] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/17/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
The improper management of solid waste, particularly the dumping of untreated municipal solid waste, poses a growing global challenge in both developed and developing nations. The generation of leachate is one of the significant issues that arise from this practice, and it can have harmful impacts on both the environment and public health. This paper presents an overview of the primary waste types that generate landfill leachate and their characteristics. This includes examining the distribution of waste types in landfills globally and how they have changed over time, which can provide valuable insights into potential pollutants in a given area and their trends. With a lack of specific regulations and growing concerns regarding environmental and health impacts, the paper also focuses on emerging contaminants. Furthermore, the environmental and ecological impacts of leachate, along with associated health risks, are analyzed. The potential applications of landfill leachate, suggested interventions and future directions are also discussed in the manuscript. Finally, this work addresses future research directions in landfill leachate studies, with attention, for the first time to the potentialities that artificial intelligence can offer for landfill leachate management, studies, and applications.
Collapse
Affiliation(s)
- Viraj Gunarathne
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, CO 10250, Sri Lanka; University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Ankur J Phillips
- Department of Microbiology, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India
| | - Alessandra Zanoletti
- INSTM and Chemistry for Technologies Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze, 38, 25123 Brescia, Italy
| | - Anushka Upamali Rajapaksha
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, CO 10250, Sri Lanka; Instrument Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Meththika Vithanage
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, CO 10250, Sri Lanka
| | - Francesco Di Maria
- LAR5 Laboratory, Dipartimento di Ingegneria, University of Perugia, via G. Duranti 93, 06125 Perugia, Italy
| | - Alberto Pivato
- DICEA - Department of Civil, Environmental and Architectural Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy
| | - Ewa Korzeniewska
- Department of Water Protection Engineering and Environmental Microbiology, The Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1 Str., 10-719 Olsztyn, Poland
| | - Elza Bontempi
- INSTM and Chemistry for Technologies Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze, 38, 25123 Brescia, Italy.
| |
Collapse
|
12
|
Negrete Velasco A, Ellero A, Ramseier Gentile S, Zimmermann S, Ramaciotti P, Stoll S. Impact of a nanofiltration system on microplastic contamination in Geneva groundwater (Switzerland). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:13512-13522. [PMID: 38253831 PMCID: PMC10881595 DOI: 10.1007/s11356-024-31940-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024]
Abstract
Microplastics (MPs) have been observed in the oceans, fresh waters, karstic water and remote water bodies. However, little is known on groundwater contamination, which is a natural resource of utmost importance for millions of people and is often perceived as a reliable source of water. Moreover, nanofiltration is perceived as a reliable technology to remove contaminants from water. In this study, large sample volumes of a silty-sandy gravel aquifer and the corresponding nanofiltered water were analysed for the presence of MPs (> 20 µm) using Fourier transform infrared (FTIR) microscopy. Concentration in ground water was 8 ± 7 MPs/m3 and increased to 36 ± 11 MPs/m3 in nanofiltered water. All MPs had a maximum Ferret diameter lower than 500 µm. Size distribution of MPs was towards the small size class (20-50 µm). In groundwater, 33% of MPs were detected in the smallest size class (20-50 µm) and 67% in the 50-100-µm-size class. In comparison, around 52% of MPs in nanofiltered water were observed in the 20-50 µm size class. Moreover, 33% of the MPs observed in nanofiltered water were in the 50-100 µm size class and 15% in the 100-500-µm-size class. From a chemical point of view, different plastic polymers were identified in groundwater and in nanofiltered water, such as polypropylene (PP), polyvinyl chloride (PVC), ethylene (vinyl acetate) copolymer (EVA), polyethylene (PE), polyethylene terephthalate (PET), polymethyl methacrylate (PMMA) and other polymer materials (such as polystyrene-based copolymers, vinyl-based copolymers). Fibres were observed in all samples, but only a small number of fibres (near 1%) were identified as PP synthetic fibres in nanofiltered water. Furthermore, no clear difference of fibre concentrations was observed between groundwater (232 ± 127 fibres/m3) and nanofiltered water (247 ± 118 fibres/m3). Groundwater had extremely low levels of microplastics, and although the nanofiltration effectively removes suspended particulate matter, it slightly contaminates the filtered water with MPs.
Collapse
Affiliation(s)
- Angel Negrete Velasco
- Department F.-A. Forel for Environmental and Aquatic Sciences, Faculty of Science, Group of Environmental Physical Chemistry, University of Geneva, 66, Boulevard Carl-Vogt, CH-1211, Geneva 4, Switzerland.
| | - Alicia Ellero
- SIG, Industrial Boards of Geneva, Geneva, Switzerland
| | | | | | | | - Serge Stoll
- Department F.-A. Forel for Environmental and Aquatic Sciences, Faculty of Science, Group of Environmental Physical Chemistry, University of Geneva, 66, Boulevard Carl-Vogt, CH-1211, Geneva 4, Switzerland
| |
Collapse
|
13
|
Lin D, Lai C, Wang X, Wang Z, Kuang K, Wang Z, Du X, Liu L. Enhanced membrane fouling by microplastics during nanofiltration of secondary effluent considering secretion, interaction and deposition of extracellular polymeric substances. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167110. [PMID: 37739085 DOI: 10.1016/j.scitotenv.2023.167110] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/25/2023] [Accepted: 09/13/2023] [Indexed: 09/24/2023]
Abstract
Microplastic (MP) has been found to influence membrane fouling during microfiltration/ultrafiltration processes in direct and indirect ways by acting as fouling components and changing microbial activities, respectively. However, there is no relevant research about the contribution of MPs to nanofiltration membrane fouling. In this study, for the first time, the impacts of MPs on membrane fouling during the nanofiltration of secondary effluent (SE) were systematically investigated from the perspective of bacterial extracellular polymeric substances (EPS) secretion, their interaction with coexisting pollutants and also deposition. Membrane flux behaviors indicate that MPs simultaneously aggravated the short-term and long-term membrane fouling resistance of nanofiltration by 46 % and 27 %, respectively. ATR-FTIR, XPS and spectrophotometry spectra demonstrate that the deteriorated membrane fouling by MPs directly resulted from the increased accumulation of protein-like, polysaccharides-like and humic-like substances on membranes. EEM spectra further confirmed that MPs preferred to induce serious cake layers, which dominated membrane flux decline but hindered pore fouling. According to CLSM and SEM-EDS mappings, MPs in SE could stimulate microbial activities and then aggravate EPS secretion, after which their interaction with Ca2+ was also enhanced in bulk solution. The cross-linker nets could promote the deposition of other unlinked pollutants on membranes. Besides, MPs could weaken the rejection of certain dissolved organic matters (from 57 % to 52 % on the 50th day of filtration) by aggravating cake-enhanced concentration polarization (CECP), but improved the average removal of inorganic salts from 58 % to 63 % by improving their back diffusion through cake layers. Based on these analyses, the mechanisms of MP-enhanced membrane fouling during the nanofiltration of SE can be thoroughly revealed.
Collapse
Affiliation(s)
- Dachao Lin
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Caijing Lai
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Xiaokai Wang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Zhihong Wang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Ke Kuang
- GuangZhou Sewage Purification Company, Guangzhou 510627, PR China
| | - Ziyuan Wang
- GuangZhou Sewage Purification Company, Guangzhou 510627, PR China
| | - Xing Du
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Lifan Liu
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|