1
|
Phillips SG, Brake S, Garces D, Eckhert PM, Deng C, White JC, Peresin MS, Fairbrother DH. Tunable NPK Release from Surface-Esterified Nanocellulose-Based Prills. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:10955-10967. [PMID: 40418052 DOI: 10.1021/acs.est.5c02016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2025]
Abstract
Polysaccharides represent an ideal delivery platform for agrochemicals due to their biodegradability, biocompatibility, and abundance. However, hydrophilicity renders native polysaccharides ineffective at controlling the release of water-soluble agrochemicals. To overcome this limitation, we used a solvent-free, vapor-phase modification strategy to generate hydrophobic shells on the surface of nanofibrillated cellulose (CNF) prills and evaluated the effects of these tunable diffusion barriers on fertilizer release behavior. Hydrophobic shells of different thicknesses were created on CNF prills by esterification with acyl chlorides of varying alkyl chain lengths, although esterification did not hinder the inherent biodegradability of the CNFs. Fertilizer release rates were largely invariable to pH and NPK loading but were tunable over 3 orders of magnitude by varying the alkyl chain length and the degree of substitution (i.e., shell thickness). However, NPK release rates did not increase monotonically with increasing shell thickness; for long-chain (6 carbons or longer) esters, increases in shell thickness beyond optimal values increased release rates; SEM revealed that this originated from the introduction of fractures to the prills which act as diffusion channels. This work demonstrates the potential of controlled surface modification to generate a mineralizable and tunable NPK release platform from naturally sourced and sustainable feedstocks.
Collapse
Affiliation(s)
- Savannah G Phillips
- Department of Chemistry, Johns Hopkins University, 3400 N Charles Street, Baltimore, Maryland 21218, United States
| | - Sydney Brake
- Sustainable Bio-Based Materials Lab, College of Forestry, Wildlife and Environment, Auburn University, 602 Duncan Drive, Auburn, Alabama 36849, United States
| | - Duber Garces
- Sustainable Bio-Based Materials Lab, College of Forestry, Wildlife and Environment, Auburn University, 602 Duncan Drive, Auburn, Alabama 36849, United States
| | - Patrick M Eckhert
- Department of Chemistry, Johns Hopkins University, 3400 N Charles Street, Baltimore, Maryland 21218, United States
| | - Chaoyi Deng
- Department of Chemistry, Johns Hopkins University, 3400 N Charles Street, Baltimore, Maryland 21218, United States
- The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, Connecticut 06511, United States
| | - Jason C White
- The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, Connecticut 06511, United States
| | - Maria Soledad Peresin
- Sustainable Bio-Based Materials Lab, College of Forestry, Wildlife and Environment, Auburn University, 602 Duncan Drive, Auburn, Alabama 36849, United States
| | - D Howard Fairbrother
- Department of Chemistry, Johns Hopkins University, 3400 N Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
2
|
Sivamanjari SM, Jesitha K, Sreekala MS, Thomas S. Nanocellulose - metal-organic framework (MOF) composites for efficient carbon dioxide capture and sequestration: a review. Int J Biol Macromol 2025; 315:144583. [PMID: 40412690 DOI: 10.1016/j.ijbiomac.2025.144583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 05/19/2025] [Accepted: 05/21/2025] [Indexed: 05/27/2025]
Abstract
Air pollution, a major global challenge, poses significant risks to human health and the environment. While various porous materials have been used to reduce pollutants, they have limitations. Metal-organic frameworks (MOFs) stand out due to their unique combination of organic and inorganic components, allowing precise tuning of their structure and functionality. With remarkable properties such as tunable pore sizes and high porosity, MOFs are highly effective for CO2 separation. However, their fragility has led to the integration of bio-based materials such as nanocellulose. Nanocellulose, known for its abundance, non-toxicity, renewability, excellent hydrophilicity, flexibility, strength and low cost, offers a promising support matrix for MOFs. Functionalising nanocellulose with MOFs (NC-MOFs) shows great promise in CO2 adsorption and separation, presenting a valuable approach to mitigate carbon dioxide emissions. This review summarises the properties and synthesis methods involving NC-MOFs, focusing on various types of nanocellulose and their efficiency in CO2 capture. It also explores the adsorption mechanisms and factors influencing the stability and capacity of NC-MOFs in gas capture. Furthermore, we discuss the current limitations and future opportunities of NC-MOFs in addressing global carbon emissions, emphasising their potential role in tackling one of the most critical environmental challenges of our time.
Collapse
Affiliation(s)
- S Mallya Sivamanjari
- Postgraduate & Research Department of Chemistry, Sree Sankara College, Kalady, Kerala, India; School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala, India
| | - K Jesitha
- Postgraduate & Research Department of Chemistry, Sree Sankara College, Kalady, Kerala, India.
| | - M S Sreekala
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala, India; School of Polymer Science and Technology (SPST), Mahatma Gandhi University, Kottayam, Kerala, India; International and Inter University Centre for Nanoscience and Nanotechnology (IIUCNN), Mahatma Gandhi University, Kottayam, Kerala, India; School of Nanoscience and Nanotechnology (SNSNT), Mahatma Gandhi University, Kottayam, Kerala, India
| | - Sabu Thomas
- School of Polymer Science and Technology (SPST), Mahatma Gandhi University, Kottayam, Kerala, India; Trivandrum Engineering, Science and Technology (TrEST) Research Park, Trivandrum, Kerala, India; International and Inter University Centre for Nanoscience and Nanotechnology (IIUCNN), Mahatma Gandhi University, Kottayam, Kerala, India; School of Energy Materials, Mahatma Gandhi University, Kottayam, Kerala, India; School of Nanoscience and Nanotechnology (SNSNT), Mahatma Gandhi University, Kottayam, Kerala, India
| |
Collapse
|
3
|
Boberski P, Główka M, Torchała K, Kulczycki G, Kuźnik N. Sustainable Agriculture Solutions: Biodegradable Coatings for Enhanced-Efficiency Fertilizers Using Cellulose and Lignin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40391942 DOI: 10.1021/acs.jafc.5c01173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Current challenges in sustainable development and environmental protection are driving scientists and engineers to innovate and mitigate the negative impact of human activities on ecosystems. Strict legal requirements in the European Union (EU) underscore the need for changes to materials used in fertilizers because all components must be biodegradable by July 2024. The EU has published new guidelines for biodegradable materials based on ISO 17556, which assesses degradability in soil. One of the main directions to meet these expectations is the use of enhanced-efficiency fertilizers made from biodegradable materials. This review critically analyses recent advances in using natural raw materials as mineral fertilizer coatings, addressing a significant gap in the evaluation of their commercial viability. The properties of cellulose and lignin as coating materials and their modifications are discussed, including cellulose acetate, ethylcellulose, cellulose acetate butyrate, and phenolated and oxypropylated lignin. These findings provide practical guidance for fertilizer manufacturers seeking to comply with upcoming regulations while maintaining product efficacy.
Collapse
Affiliation(s)
- Przemysław Boberski
- Łukasiewicz Research Network, Institute of Heavy Organic Synthesis "Blachowania", ul. Energetyków 9, 47-225 Kędzierzyn-Koźle, Poland
- Faculty of Chemistry, Silesian University of Technology, ul. M. Strzody 9, 44-100 Gliwice, Poland
| | - Marek Główka
- Łukasiewicz Research Network, Institute of Heavy Organic Synthesis "Blachowania", ul. Energetyków 9, 47-225 Kędzierzyn-Koźle, Poland
- Faculty of Chemistry, Silesian University of Technology, ul. M. Strzody 9, 44-100 Gliwice, Poland
| | - Kamila Torchała
- Łukasiewicz Research Network, Institute of Heavy Organic Synthesis "Blachowania", ul. Energetyków 9, 47-225 Kędzierzyn-Koźle, Poland
| | - Grzegorz Kulczycki
- Institute of Soil Science, Plant Nutrition and Environmental Protection, Wroclaw University of Life and Environmental Sciences, ul. Grunwaldzka 53 street, 50-375 Wroclaw, Poland
| | - Nikodem Kuźnik
- Faculty of Chemistry, Silesian University of Technology, ul. M. Strzody 9, 44-100 Gliwice, Poland
| |
Collapse
|
4
|
de Oliveira JP, de Almeida MEF, Costa JDSS, da Silva IB, de Oliveira JS, Oliveira EL, Landim LB, da Silva NMC, de Oliveira CP. Effect of eucalyptus nanofibril as reinforcement in biodegradable thermoplastic films based on rice starch (Oryza sativa): Evaluation as primary packaging for crackers. Food Chem 2025; 474:143177. [PMID: 39914357 DOI: 10.1016/j.foodchem.2025.143177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/28/2025] [Accepted: 01/31/2025] [Indexed: 03/01/2025]
Abstract
This study investigated the incorporation of eucalyptus nanocellulose (CNF) into rice starch-based thermoplastic (TPS) films, evaluating the effects of four CNF concentrations (0 %, 2 %, 4 %, and 6 %, w/w) on the physicochemical properties of the films. The analyses included scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), solubility, mechanical properties, optical properties, biodegradability, and application for cookie preservation. Atomic force microscopy (AFM) confirmed good CNF dispersion at 4 %, while higher concentrations caused agglomeration. FTIR analysis revealed effective interactions between CNF and the starch matrix. The TPS + 4 % CNF film showed reductions in water solubility (44 %), solubility in acidic (34 %) and basic (32 %) conditions, water vapor permeability (51 %), and water retention capacity (27 %) compared to pure TPS. Tensile strength increased from 3 MPa (pure TPS) to 6.5 MPa (TPS with 4 % CNF), while elongation at break ranged from 38 % (pure TPS) to 65 % (TPS with 2 % CNF). At 6 % CNF, elongation decreased to 45 %, with increased rigidity. The TPS + 4 % CNF film demonstrated good performance in mechanical strength and water vapor barrier properties, while higher CNF concentrations resulted in stiffer, less flexible films due to restricted polymer chain mobility. Higher CNF concentrations also increased the film's opacity. With 90 % biodegradability after 15 days, the reinforced film showed environmental potential. In cookie preservation, TPS + 4 % CNF demonstrated promising performance, with moisture barrier and texture preservation capabilities comparable to oriented polypropylene (BOPP). The combination of biodegradable primary packaging with non-biodegradable secondary packaging offers an innovative solution for food protection with reduced environmental impact.
Collapse
Affiliation(s)
- Jocilane Pereira de Oliveira
- Graduate Program in Food Engineering and Science, State University of Bahia, Itapetinga, Bahia 45700-000, Brazil.
| | - Maria Elis Ferreira de Almeida
- Department of Agribusiness Technology, Federal Institute of Education, Science and Tecnology of Baiano, Guanambi Campus, Guanambi 46430-000, Bahia, Brazil
| | - Jéssica da Silva Santos Costa
- Department of Agribusiness Technology, Federal Institute of Education, Science and Tecnology of Baiano, Guanambi Campus, Guanambi 46430-000, Bahia, Brazil
| | - Isaac Borges da Silva
- Department of Agribusiness Technology, Federal Institute of Education, Science and Tecnology of Baiano, Guanambi Campus, Guanambi 46430-000, Bahia, Brazil
| | - Jéssica Santos de Oliveira
- Graduate Program in Food Engineering and Science, State University of Bahia, Itapetinga, Bahia 45700-000, Brazil
| | - Esaul Lucas Oliveira
- Graduate Program in Food Engineering and Science, State University of Bahia, Itapetinga, Bahia 45700-000, Brazil
| | - Lucas Britto Landim
- Department of Agribusiness Technology, Federal Institute of Education, Science and Tecnology of Baiano, Guanambi Campus, Guanambi 46430-000, Bahia, Brazil
| | - Normane Mirele Chaves da Silva
- Department of Agribusiness Technology, Federal Institute of Education, Science and Tecnology of Baiano, Guanambi Campus, Guanambi 46430-000, Bahia, Brazil
| | | |
Collapse
|
5
|
Djafaripetroudy S, Fatehi P, El Idrissi A, Kang K, Abidi N, McLaren B. Advancing agricultural efficiency and sustainability: Bio-inspired superabsorbent hydrogels for slow and controlled release fertilizers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 977:179366. [PMID: 40215637 DOI: 10.1016/j.scitotenv.2025.179366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/13/2025] [Accepted: 04/05/2025] [Indexed: 04/25/2025]
Abstract
Bio-inspired superabsorbent hydrogels (BiSAHs) represent a versatile polymeric material class that has garnered significant interest due to their multifunctional attributes and extensive range of applications. A thorough examination of the literature and patents on BiSAHs highlights their critical role across diverse sectors. This review provides an in-depth analysis of BiSAHs, focusing on their classification, synthesis methodologies, and potential applications in agriculture. It critically examines biopolymer-based SAHs as soil conditioners and slow and controlled, focusing on their classification, synthesis methodologies, and potential applications in agriculture. It critically examines biopolymer-based SAHs as soil conditioners and slow and controlled-release fertilizers, elucidating the mechanisms governing water retention, swelling capacity, and nutrient release kinetics. The review further presents detailed case studies illustrating the enhancement of crop growth and productivity facilitated by BiSAHs and their effectiveness as agrochemical carriers. Moreover, it explores the role of SAHs in crop protection, particularly in mitigating adverse abiotic stresses such as heavy metal toxicity, salinity, and drought. The ecological, economic, and societal impacts of BiSAH-based controlled-release fertilizers are evaluated, providing a balanced perspective on their sustainability. Ultimately, the review offers insights into future directions and emerging advancements in the development and application of BiSAHs in agricultural settings.
Collapse
Affiliation(s)
- Seyedrahman Djafaripetroudy
- Natural Resources Management Faculty, Lakehead University, 955 Oliver Rd, Thunder Bay, ON P7B 5E, Canada; Biorefinery Research Institute (BRI), Lakehead University, 1294 Balmoral St, Thunder Bay, ON P7B 4T6, Canada.
| | - Pedram Fatehi
- Biorefinery Research Institute (BRI), Lakehead University, 1294 Balmoral St, Thunder Bay, ON P7B 4T6, Canada.
| | - Ayoub El Idrissi
- Special Glass Key Lab of Hainan Province, School of Materials Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Kang Kang
- Biorefinery Research Institute (BRI), Lakehead University, 1294 Balmoral St, Thunder Bay, ON P7B 4T6, Canada.
| | - Noureddine Abidi
- Fibre and Biopolymer Research Institute, Texas Tech University, Box 42123, Lubbock, TX 79409, United States.
| | - Brian McLaren
- Natural Resources Management Faculty, Lakehead University, 955 Oliver Rd, Thunder Bay, ON P7B 5E, Canada.
| |
Collapse
|
6
|
Li M, Hu S, Bai X, Ren J, Tian K, Zhang H, Zhang Z, Nguyen V. Comparative Study on the Effects of Silicon Nanoparticles and Cellulose Nanocrystals on Drought Tolerance in Tall Fescue ( Festuca arundinacea Schreb.). PLANTS (BASEL, SWITZERLAND) 2025; 14:1461. [PMID: 40431030 PMCID: PMC12114911 DOI: 10.3390/plants14101461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2025] [Revised: 05/07/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025]
Abstract
Tall fescue (Festuca arundinacea Schreb.) is a herbaceous species that is commonly used for ecological slope restoration in China. However, water scarcity often constrains its growth due to the unique site conditions of steep slopes and climate-induced drought stress. This study aims to compare the ameliorative effects of silicon nanoparticles (Si NPs) and cellulose nanocrystals (CNCs) on drought stress in tall fescue and to elucidate their underlying mechanisms of action. The results indicated that drought stress impaired photosynthesis, restricted nutrient absorption, and increased oxidative stress, ultimately reducing biomass. However, Si NPs and CNCs enhanced drought tolerance and promoted biomass accumulation by improving photosynthesis, osmotic regulation, and antioxidant defense mechanisms. Specifically, Si NP treatment increased biomass by 48.71% compared to drought-stressed control plants, while CNCs resulted in a 33.41% increase. Transcriptome sequencing further revealed that both nanomaterials enhanced drought tolerance by upregulating genes associated with photosynthesis and antioxidant defense. Additionally, Si NPs improved drought tolerance by stimulating root growth, enhancing nutrient uptake, and improving leaf structure. In contrast, CNCs play a distinct role by regulating the expression of genes related to cell wall synthesis and metabolism. These findings highlight the crucial roles of these two nanomaterials in plant stress protection and offer a sustainable strategy for the maintenance and management of slope vegetation.
Collapse
Affiliation(s)
- Meng Li
- College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling 712100, China; (M.L.); (S.H.); (X.B.); (J.R.)
| | - Sile Hu
- College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling 712100, China; (M.L.); (S.H.); (X.B.); (J.R.)
| | - Xulong Bai
- College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling 712100, China; (M.L.); (S.H.); (X.B.); (J.R.)
| | - Jie Ren
- College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling 712100, China; (M.L.); (S.H.); (X.B.); (J.R.)
| | - Kanliang Tian
- College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling 712100, China; (M.L.); (S.H.); (X.B.); (J.R.)
| | - Huili Zhang
- College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling 712100, China
| | - Zhilong Zhang
- College of Forestry, Northwest A&F University, Yangling 712100, China;
| | - Vanquy Nguyen
- Southern Branch of Joint Vietnam-Russia Tropical Science and Technology Research Center, Hochiminh 740500, Vietnam;
| |
Collapse
|
7
|
Alebachew AW, Dong Y, Abdalkarim SYH, Wu C, Yu HY. Recent progress of multifunctional nanocellulose-based pharmaceutical materials: A review. Int J Biol Macromol 2025; 306:141427. [PMID: 40020852 DOI: 10.1016/j.ijbiomac.2025.141427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/09/2025] [Accepted: 02/22/2025] [Indexed: 03/03/2025]
Abstract
In the pharmaceutical industry, ongoing research and development focus on discovering new drug formulations that align with regulatory approvals. Recently, innovative drug delivery systems have been used to maximize therapeutic efficacy with a precision of sustained drug delivery in the disease management system. Nanocellulose (NCs) synthesized from abundant cellulose, have attracted wide attention for potential pharmaceutical applications due to their unique properties, such as biocompatibility, high surface area-to-volume ratio, extensive drug loading and binding capacity, controlled drug release efficiency, strength, and availability with various treatments and modification ability. Nevertheless, research on nanocarriers (NCs) in the pharmaceutical field faces several limitations and challenges. Key areas requiring further exploration include chemical consumption, energy intensity, effluent management, recovery processes from acid hydrolysis, reaction times, ecotoxicology, and overall development progress. This overview provides the applications of emerging nanocellulose. It gives a clue on the synthesis of sustainable NCs related to their different sources, pre- and post-modifications of NCs, and key properties in pharmaceutical sectors. Furthermore, it gives an overview of the current advancements, life cycle analysis, biosafety, and key property performance with a summary of challenges and future perspectives.
Collapse
Affiliation(s)
- Amare Worku Alebachew
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yanjuan Dong
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Somia Yassin Hussain Abdalkarim
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Chao Wu
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Hou-Yong Yu
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
8
|
Lakhani KG, Salimi M, Idrissi AE, Hamid R, Motamedi E. Nanocellulose-hydrogel hybrids: A review on synthesis and applications in agriculture, food packaging and water remediation. Int J Biol Macromol 2025; 309:143081. [PMID: 40222524 DOI: 10.1016/j.ijbiomac.2025.143081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/06/2025] [Accepted: 04/10/2025] [Indexed: 04/15/2025]
Abstract
The growing demand for sustainable and environment-friendly materials has driven extensive research on biopolymers for applications in agriculture, food science, and environmental remediation. Among these, nanocellulose-hydrogel hybrids (NC-HHs) have gained significant attention as an innovative class of bio-based materials that uniquely combine the remarkable physicochemical properties of nanocellulose with the functional versatility of hydrogels. These hybrids are characterised by exceptional water retention, mechanical strength and biodegradability, enabling advances in precision agriculture, smart food preservation and contaminant remediation. This review provides a comprehensive understanding of the synthesis, properties, and multifunctional applications of NC-HHs, emphasising their innovative role in sustainability. In agriculture, NC-HHs enhance soil moisture retention, support plant growth, and serve as carriers for controlled-release fertilizers, optimizing water and nutrient use efficiency. In the food industry, they enable intelligent packaging solutions that extend shelf life, monitor food freshness, and inhibit microbial growth. Additionally, NC-HHs present groundbreaking strategies for environmental remediation by effectively immobilizing pollutants in water and soil. Beyond summarizing recent advances, this review presents an in-depth mechanistic perspective on the interactions between NC and HH, critically evaluating their structure-property relationships, functional adaptability and application-specific performance. By integrating recent advances in nanocellulose functionalisation, polymer chemistry and the development of responsive hydrogels, this review critically examines the key technological innovations and future prospects of NC-HHs, underscoring their transformative potential in addressing global challenges related to food security, environmental sustainability, and sustainable agricultural practices.
Collapse
Affiliation(s)
- Komal G Lakhani
- Department of Biotechnology, Junagadh Agricultural University, Junagadh, Gujarat, India
| | - Mehri Salimi
- Department of Soil and Water Research, Hamedan Agricultural and Natural Resources Research and Education Center, AREEO, Hamedan, Iran
| | - Ayoub El Idrissi
- Special Glass Key Lab of Hainan Province, School of Materials Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Rasmieh Hamid
- Department of Plant Breeding, Cotton Research Institute of Iran (CRII), Agricultural Research, Education and Extension Organization (AREEO), Gorgan, Iran.
| | - Elaheh Motamedi
- Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| |
Collapse
|
9
|
Zhang H, Zou P, Yuan F, Yu Z, Huang S, Lu L. Ginger residue-derived nanocellulose as a sustainable reinforcing agent for composite films. Int J Biol Macromol 2025; 308:142754. [PMID: 40180093 DOI: 10.1016/j.ijbiomac.2025.142754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/24/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
Nanocellulose extracted from agricultural waste for the development of reinforced sustainable composites is needed, due to a greater environmental responsibility and awareness of environmental pollution. In this work, the extraction of nanocellulose (GNC) from ginger residue was conducted via acid hydrolysis without complicated pretreatments. The potential application of GNC as a reinforcing agent for sustainable composite films was also explored. The results showed that the obtained GNC exhibited a rod-like shape with a high aspect ratio (15.75 ± 4.25). X-ray diffraction patterns revealed a cellulose II structure with a crystallinity index of 88.47 %. The reinforcing effects of GNC were evaluated in composite films made from different matrices, including sodium alginate (SA) and chitosan (CS), to assess its performance in enhancing material properties. The incorporation of 5 % of GNC significantly improved the tensile strength of SA and CS by 94 % and 64 %, respectively. Notably, the addition of GNC also enhanced the elongation at break of the SA-based films. This study demonstrates that ginger residue is a promising and sustainable feedstock for extracting nanocellulose, which can serve as an effective reinforcing agent in biocomposite films.
Collapse
Affiliation(s)
- Huili Zhang
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Department of Packaging Engineering, Jiangnan University, 1800 Li Hu Avenue, Wuxi 214122, Jiangsu, China
| | - Peiqi Zou
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Department of Packaging Engineering, Jiangnan University, 1800 Li Hu Avenue, Wuxi 214122, Jiangsu, China
| | - Fangyang Yuan
- School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu Province, 214122, China
| | - Zhilong Yu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Shuting Huang
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Department of Packaging Engineering, Jiangnan University, 1800 Li Hu Avenue, Wuxi 214122, Jiangsu, China.
| | - Lixin Lu
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Department of Packaging Engineering, Jiangnan University, 1800 Li Hu Avenue, Wuxi 214122, Jiangsu, China.
| |
Collapse
|
10
|
Naseem S, Sajid R, Nabeel M, Sadiqa A, Rizwan M, Zulfiqar MR, Ahmad A, Iqbal DN. Advancing nanocellulose-based biosensors: pioneering eco-friendly solutions for biomedical applications and sustainable material replacement. Int J Biol Macromol 2025; 309:143057. [PMID: 40220829 DOI: 10.1016/j.ijbiomac.2025.143057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/30/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025]
Abstract
The escalating demand for sustainable and high-performance biosensing technologies has intensified interest in nanocellulose-based biosensors as eco-friendly alternatives to conventional materials. Nanocellulose, derived from abundant natural sources, offers remarkable properties such as high surface area, mechanical strength, biocompatibility, and chemical versatility, making it highly suitable for biosensing applications. This review delves into the synthesis, functionalization, and diverse applications of nanocellulose materials, particularly bacterial nanocellulose (BNC) and cellulose nanofibrils (CNFs), in the development of advanced biosensors. Innovative functionalization techniques, including polymer grafting and TEMPO oxidation, have been employed to enhance the specificity, stability, and sensitivity of these biosensors. These advancements lay the foundation for a sustainable and efficient biosensing framework, positioning nanocellulose-based technologies at the forefront of developing eco-friendly and accessible biosensors for biomedical applications and beyond.
Collapse
Affiliation(s)
- Sobia Naseem
- Department of Chemistry, University of Engineering and Technology, Lahore, Pakistan; Department of Polymer and Process Engineering, University of Engineering and Technology, Lahore, Pakistan
| | - Rumana Sajid
- Department of Chemistry, The University of Lahore, Lahore 54590, Pakistan
| | - Muhammad Nabeel
- Department of Chemistry, The University of Lahore, Lahore 54590, Pakistan
| | - Ayesha Sadiqa
- Department of Chemistry, The University of Lahore, Lahore 54590, Pakistan.
| | - Muhammad Rizwan
- Department of Chemistry, University of Engineering and Technology, Lahore, Pakistan.
| | | | - Awais Ahmad
- Department of Chemistry, The University of Lahore, Lahore 54590, Pakistan.
| | - Dure Najaf Iqbal
- Department of Chemistry, The University of Lahore, Lahore 54590, Pakistan
| |
Collapse
|
11
|
Antu UB, Roy TK, Roshid MM, Mitu PR, Barman MK, Tazry J, Trisha ZF, Bairagi G, Hossain SA, Uddin MR, Islam MS, Mahiddin NA, Al Bakky A, Ismail Z, Idris AM. Perspective of nanocellulose production, processing, and application in sustainable agriculture and soil fertility enhancement: A potential review. Int J Biol Macromol 2025; 303:140570. [PMID: 39904432 DOI: 10.1016/j.ijbiomac.2025.140570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/18/2025] [Accepted: 01/31/2025] [Indexed: 02/06/2025]
Abstract
Nanocellulose, a promising green material derived from various bio-sources, has potentiality on and off-site in the agricultural sector. Due to its special qualities, which include high strength, hydrophilicity, and biocompatibility, it is a material that may be used in a variety of industries, especially agriculture. This review explores in this article production processes, post-processing procedures, and uses of nanocellulose in soil fertility increment and sustainable agriculture. A variety of plant materials, agricultural waste, and even microbes can be used to isolate nanocellulose. Nanocellulose is produced using both top-down and bottom-up methods, each of which has benefits and limitations of its own. It can be applied as nano-biofertilizer in agriculture to enhance beneficial microbial activity, increase nutrient availability, and improve soil health. Moreover, nanocellulose can be used in fertilizer and pesticide formulations with controlled releases to increase efficacy and lessen environmental effects. Innovative approaches to sustainable agriculture are provided by nanocellulose technologies, which also support the UN's Sustainable Development Goals (SDGs), especially those pertaining to eradicating hunger and encouraging responsible consumption. Nanocellulose promotes climate action and ecosystem preservation by increasing resource efficiency and decreasing dependency on hazardous chemicals, ultimately leading to the development of a circular bioeconomy. Nonetheless, there are still issues with the high cost of production and the energy-intensive isolation procedures. Despite its various potentialities, challenges such as high production costs, environmental concerns, and regulatory issues must be addressed for nanocellulose to be widely adopted and effectively integrated into farming practices.
Collapse
Affiliation(s)
- Uttam Biswas Antu
- Department of Soil Science, Patuakhali Science and Technology University, Dumki-8602, Patuakhali, Bangladesh.
| | - Tusar Kanti Roy
- Department of Agricultural Chemistry, Khulna Agricultural University, Khulna 9100, Bangladesh.
| | - Md Mustaqim Roshid
- Department of Management Studies, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Puja Rani Mitu
- Department of Botany, Khulna Govt., Mahila College, Khulna 0312, Bangladesh
| | - Manoj Kumar Barman
- Faculty of Agriculture, Patuakhali Science and Technology University, Dumki-8602, Patuakhali, Bangladesh
| | - Jannatun Tazry
- Faculty of Agriculture, Patuakhali Science and Technology University, Dumki-8602, Patuakhali, Bangladesh
| | - Zannatul Ferdause Trisha
- Faculty of Agriculture, Patuakhali Science and Technology University, Dumki-8602, Patuakhali, Bangladesh
| | - Goutam Bairagi
- Department of Agronomy, Patuakhali Science and Technology University, Dumki-8602, Patuakhali, Bangladesh
| | - Sk Arafat Hossain
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Rafiq Uddin
- Department of Soil Science, Patuakhali Science and Technology University, Dumki-8602, Patuakhali, Bangladesh
| | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Dumki-8602, Patuakhali, Bangladesh; East Coast Environmental Research Institute (ESERI), Gong Badak Campus, Universiti Sultan Zainal Abidin, 21300 Kuala Nerus Terengganu, Malaysia.
| | - Nor Aida Mahiddin
- East Coast Environmental Research Institute (ESERI), Gong Badak Campus, Universiti Sultan Zainal Abidin, 21300 Kuala Nerus Terengganu, Malaysia
| | - Abdullah Al Bakky
- Agricultural wing, Bangladesh Jute Research Institute, Dhaka 1207, Bangladesh.
| | - Zulhilmi Ismail
- Centre for River and Coastal Engineering (CRCE), Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Malaysia; Department of Water & Environmental Engineering, Faculty of Civil Engineering, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Malaysia.
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia.
| |
Collapse
|
12
|
Yang C, Liu Y, Duan G, Zhang C, Huang Y, Li S, Jiang S. Research progress on improving dispersion stability of nanocellulose in different media: A review. Int J Biol Macromol 2025; 304:140967. [PMID: 39952515 DOI: 10.1016/j.ijbiomac.2025.140967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 01/26/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Nanocellulose has been widely used in various fields due to its good biocompatibility, mechanical properties, large specific surface area and environmental friendliness. Among these applications, uniformly dispersing nanocellulose in various media to improve its performance is an application with good development prospects. However, due to the presence of surface hydroxyl groups, nanocellulose tends to form aggregates between molecular chains and is less compatible with nonpolar solvents, thus making it difficult to be stably dispersed in solvents. How to break the aggregation between cellulose and improve its compatibility with the medium has become a challenging issue. In this paper, the dispersion system is classified into polar medium, nonpolar medium and polymer matrix according to the polarity and state of the medium, and a review is presented on how to improve the dispersion stability of nanocellulose in different media. The methods of using surface modification to improve the dispersion stability of nanocellulose in different media, such as carboxylation, amidation, and grafting of long-chain molecules to reduce the aggregation among nanocellulose and to improve the compatibility with solvents, are highlighted. Finally, suggestions are made for future research directions.
Collapse
Affiliation(s)
- Chen Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yanbo Liu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Gaigai Duan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chunmei Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Yong Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shanshan Li
- College of Pharmacy, Southwest Minzu University, Chengdu 610000, China.
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
13
|
Ahmad M, Kim B, Velev OD. Sustainable Biopolymer Colloids: Advances in Morphology for Enhanced Functionalities. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:7160-7173. [PMID: 40071655 DOI: 10.1021/acs.langmuir.5c00013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Biobased polymers such as cellulose, chitin/chitosan, starch, alginate, and lignin are making inroads as sustainable, environmentally safe and biodegradable alternatives to synthetic colloidal materials. This perspective summarizes recent developments in preparation techniques, identifies critical barriers, and proposes future directions for improving the performance and applicability of biopolymer colloidal structures. A major focus is the sustainable colloids morphology as a means of introducing functionality without chemical modification. We discuss the strategies for fabrication of four distinct classes of colloidal morphologies from biobased materials: spherical and nonspherical particles, fibers/fibrils, and films. Their preparation methods can be categorized into physical and chemical approaches. Despite advancements in these methods, challenges persist regarding uniformity, scalability, desired properties, and the need to enhance environmental sustainability. Addressing these challenges is essential for facilitating the transition from synthetic polymers to greener, more sustainable, and microplastic-free colloidal alternatives.
Collapse
Affiliation(s)
- Mesbah Ahmad
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Byeunggon Kim
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Orlin D Velev
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
14
|
Maddirala S, Tadepalli SP, Lakshiakanthan E, Ganesan JJ, Issac R, Basavegowda N, Baek KH, Haldar D. Biodegradable composite films of barley fibers for food packaging applications: A review. Int J Biol Macromol 2025; 295:139611. [PMID: 39788235 DOI: 10.1016/j.ijbiomac.2025.139611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/11/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
The conventional food packaging is creating a significant cause of environmental hazards, posing challenges in disposal and recycling. Lignocellulose fibers possess remarkable biodegradable properties and can be modified or blended with other polymers. Thus, using lignocellulose biocomposite films derived from barley, a renewable source can mitigate and potentially transform into sustainable, innovative packaging material in the food sectors. Hence, this review focuses on barley lignocellulose fibers incorporated into different film matrix phases, showing promising enhanced mechanical, and functional properties. Barley biocomposites provide the necessary protective functions to replace traditional plastic for food packaging applications and that could reduce the negative effects on the environment. In addition, we highlighted various recently developed barley lignocellulose-based biocomposite films for a variety of food packaging applications. Furthermore, an overview of the environmental impact of plastic pollution and its effects on ecological niches has been emphasized. Additionally, aspects of different sustainable goals (SDGs 9, 12, 13) are discussed. Based on the existing research gaps, this article is concluded with the challenges and discussed further perspectives of biocomposites enriched with barley lignocellulose fibers.
Collapse
Affiliation(s)
- Samuel Maddirala
- Division of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu 641114, India
| | - Sai Prabhat Tadepalli
- Division of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu 641114, India
| | - Emisha Lakshiakanthan
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Janet Joshiba Ganesan
- Railway Technical Centre, Department of Electronic Engineering, National Kaohsiung University of Science and Technology (First campus), No 1, Daxue road, Yanchao District, Kaohsiung City 82445, Taiwan
| | - Reya Issac
- Division of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu 641114, India
| | - Nagaraj Basavegowda
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Dibyajyoti Haldar
- Division of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu 641114, India.
| |
Collapse
|
15
|
Antony Jose S, Cowan N, Davidson M, Godina G, Smith I, Xin J, Menezes PL. A Comprehensive Review on Cellulose Nanofibers, Nanomaterials, and Composites: Manufacturing, Properties, and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:356. [PMID: 40072159 PMCID: PMC11901645 DOI: 10.3390/nano15050356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025]
Abstract
Cellulose nanofibers (CNFs), cellulose nanomaterials (CNMs), and cellulose-based composites represent a convergence of material science, sustainability, and advanced engineering, paving the way for innovative and eco-friendly materials. This paper presents a comprehensive review of these materials, encompassing their extraction, preparation methods, properties, applications, and future directions. The manufacturing of CNFs and CNMs leverages diverse techniques-chemical, mechanical, and enzymatic-with each offering distinct advantages in tailoring material characteristics to meet specific needs. Strategies for functionalization and surface modification are detailed, highlighting their role in enhancing the properties of CNFs and composites while addressing challenges in scaling production to industrial levels. The structural, mechanical, thermal, optical, electrical, and biocompatibility properties of CNFs, CNMs, and their composites are explored, underscoring their versatility for applications across various industries. Cellulose-based composites, in particular, demonstrate exceptional tunable properties for specific uses, although achieving uniform dispersion remains a key technical hurdle. These materials have applications in packaging, automotive, aerospace, biomedical devices, energy storage, and environmental remediation. Emerging research trends emphasize the integration of CNFs and CNMs with advanced manufacturing technologies, promoting sustainable practices and life cycle considerations while advancing their commercialization potential. This rapidly evolving field holds immense promise for addressing global challenges by creating high-performance, and sustainable materials. This review is crucial in advancing the understanding of cellulose nanofibers, nanomaterials, and cellulose-based composites, providing valuable insights that will drive the development of sustainable, high-performance materials for a wide range of applications, ultimately addressing key global challenges.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Pradeep L. Menezes
- Department of Mechanical Engineering, University of Nevada-Reno, Reno, NV 89557, USA; (S.A.J.); (N.C.); (M.D.); (G.G.); (I.S.); (J.X.)
| |
Collapse
|
16
|
Li Y, Tang Y, Ding Y, Lyu Y, Su W, Nadeem M, Zhang P, Rui Y. Carboxymethyl Cellulose Surface Modification Alleviates the Toxicity of Fe-MOFs to Rice and Improves Iron Absorption. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:336. [PMID: 40072139 PMCID: PMC11901664 DOI: 10.3390/nano15050336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/12/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025]
Abstract
Iron-based metal-organic frameworks (Fe-MOFs) are widely used for agricultural chemical delivery due to their high loading capacity, and they also have the potential to provide essential iron for plant growth. Therefore, they hold significant promise for agricultural applications. Evaluating the plant biotoxicity of Fe-MOFs is crucial for optimizing their use in agriculture. In this study, we used the natural biomacromolecule carboxymethyl cellulose (CMC) to encapsulate the Fe-MOF NH2-MIL-101 (Fe) (MIL). Through hydroponic experiments, we investigated the biotoxic effects of Fe-MOFs on rice before and after CMC modification. The results show that the accumulation of iron in rice is dependent on the dose and the exposure concentration of Fe-MOFs. CMC modification (MIL@CMC) can reduce the release rate of Fe ions from Fe-MOFs in aqueous solutions with different pH values (5 and 7). Furthermore, MIL@CMC treatment significantly increases the absorption of iron by both the aboveground and root parts of rice. MIL@CMC significantly alleviated the growth inhibition of rice seedlings and increased the aboveground biomass of rice under medium- to high-exposure conditions. Specifically, in rice roots, MIL induced a more intense oxidative stress response, with significant increases in the activities of related antioxidant enzymes (CAT, POD, and SOD) and MDA content. Our results demonstrated that the encapsulation of NH2-MIL-101(Fe) using CMC effectively alleviated oxidative damage and promoted the uptake and growth of iron in rice. These findings suggest that rational modification can have a positive effect on reducing the potential phytotoxicity of MOFs and improving their biosafety in agricultural applications.
Collapse
Affiliation(s)
- Yuanbo Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
- State Key Laboratory of Nutrient Use and Management, China Agricultural University, Beijing 100193, China
| | - Yuying Tang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
- State Key Laboratory of Nutrient Use and Management, China Agricultural University, Beijing 100193, China
| | - Yanru Ding
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
- State Key Laboratory of Nutrient Use and Management, China Agricultural University, Beijing 100193, China
| | - Yaping Lyu
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China;
| | - Wenhao Su
- Department of Agricultural Engineering, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Muhammad Nadeem
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
- State Key Laboratory of Nutrient Use and Management, China Agricultural University, Beijing 100193, China
| | - Peng Zhang
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China;
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
- State Key Laboratory of Nutrient Use and Management, China Agricultural University, Beijing 100193, China
- China Agricultural University Professor Workstation of Tangshan Jinhai New Material Co., Ltd., Tangshan 063305, China
- China Agricultural University Professor Workstation of Wuqiang County, Hengshui 053000, China
| |
Collapse
|
17
|
Drozdov AD, deClaville Christiansen J. Structure-property relations in rheology of cellulose nanofibrils-based hydrogels. J Colloid Interface Sci 2025; 678:1-19. [PMID: 39178687 DOI: 10.1016/j.jcis.2024.08.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/08/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024]
Abstract
Hydrogels prepared from self-assembled cellulose nanofibrils (CNFs) are widely used in biomedicine, electronics and environmental technology. Their ability to serve as inks for extrusion-based 3D printing is conventionally evaluated by means of rheological tests. A model is developed that describes the response of CNF gels in small- and large-amplitude oscillatory tests in a unified manner. The model involves a reasonably small number of material parameters, ensures good agreement between results of simulation and observations in oscillatory tests and correctly predicts the stress-strain Lissajous curves, experimental data in hysteresis loop tests, and measurements of the steady-state viscosity. The model is applied to analyze how composition and preparation conditions for CNF gels affect transition from shear thinning to weak strain overshoot in large-amplitude shear oscillatory tests. Based on the model, simple relations are derived for the fractal dimension of CNF clusters and the storage modulus of gels prepared in aqueous solutions of multivalent salts. The validity of these equations is confirmed by comparison of their predictions with observations in independent tests.
Collapse
Affiliation(s)
- A D Drozdov
- Department of Materials and Production, Aalborg University, Fibigerstraede 16, Aalborg 9220, Denmark.
| | - J deClaville Christiansen
- Department of Materials and Production, Aalborg University, Fibigerstraede 16, Aalborg 9220, Denmark
| |
Collapse
|
18
|
Ahmed S, Islam MS, Antu UB, Islam MM, Rajput VD, Mahiddin NA, Paul JR, Ismail Z, Ibrahim KA, Idris AM. Nanocellulose: A novel pathway to sustainable agriculture, environmental protection, and circular bioeconomy. Int J Biol Macromol 2025; 285:137979. [PMID: 39592042 DOI: 10.1016/j.ijbiomac.2024.137979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/06/2024] [Accepted: 11/21/2024] [Indexed: 11/28/2024]
Abstract
Nanocellulose, obtained from natural cellulose, has attracted considerable interest for its distinctive properties and wide-ranging potential applications. Studies suggest that nanocellulose improves the thermal, mechanical, and barrier properties of conventional cellulose. This review investigates the production, properties, approach, and application of nanocellulose from various sources in agriculture. The main role play of cellulose-nanocomposite is discussed as a seed coating agent to improve seed dispersal, germination, protection against fungi and insects, plant growth promoter, adsorption of targeted pollutants, providing water and nutrient retention, and other advantages. As a nobility, we included all mechanical, chemical, and static culture approaches to the production procedure of nanocellulose and its application as a nanocarrier in soil, including the unique properties of nanocellulose, such as its high surface area, inherent hydrophilicity, and ease of surface modification. Here, methods such as melt compounding, solution casting, and in situ polymerization were evaluated to incorporate nanoparticles into cellulose materials and produce nanocellulose and cellulose-nanocomposites with improved strength, stability, water resistance, and reduced gas permeability. The commercialization faces challenges such as high production costs, scalability issues, and the need for more research on environmental impacts and plant interactions. Despite these hurdles, this field is promising, with ongoing advancements likely to yield new and improved agricultural materials. This review thoroughly examines the innovative application of nanocellulose in slow and controlled-release fertilizers and pesticides, to transform nutrient management, boost crop productivity, and minimize the environmental impact.
Collapse
Affiliation(s)
- Sujat Ahmed
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh.
| | - Md Saiful Islam
- Department of Soil Science, Faculty of Agriculture, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh; East Coast Environmental Research Institute (ESERI), Gong Badak Campus, Universiti Sultan Zainal Abidin, 21300 Kuala Nerus, Terengganu, Malaysia.
| | - Uttam Biswas Antu
- Department of Soil Science, Faculty of Agriculture, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Md Moshiul Islam
- Department of Agronomy, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh.
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia.
| | - Nor Aida Mahiddin
- East Coast Environmental Research Institute (ESERI), Gong Badak Campus, Universiti Sultan Zainal Abidin, 21300 Kuala Nerus, Terengganu, Malaysia.
| | - Joyti Rani Paul
- Faculty of Agriculture, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Zulhilmi Ismail
- Centre for River and Coastal Engineering (CRCE), Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Malaysia; Department of Water & Environmental Engineering, Faculty of Civil Engineering, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Malaysia.
| | - Khalid A Ibrahim
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia; Center for Environment and Tourism Studies and Research, King Khalid University, Abha, Saudi Arabia.
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia
| |
Collapse
|
19
|
Ghobashy MM, Amin MA, Mustafa AE, El-Diehy MA, El-Damhougy BK, Nady N. Synthesis and application of a multifunctional poly (vinyl pyrrolidone)-based superabsorbent hydrogel for controlled fertilizer release and enhanced water retention in drought-stressed Pisum sativum plants. Sci Rep 2024; 14:27734. [PMID: 39532945 PMCID: PMC11557843 DOI: 10.1038/s41598-024-76255-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
Water scarcity poses a significant challenge to agricultural production, prompting the development of sustainable technologies to optimize water resource utilization. This study focuses on the synthesis and application of a multifunctional poly (vinylpyrrolidone); PVP-based superabsorbent hydrogel (SAH) for controlled release of essential fertilizers (nitrogen, phosphorus, and potassium) and enhanced water retention in soil. The hydrogel was prepared via a facile one-step approach and compared to a control soil without hydrogel amendment. The reaction was initiated in the presence of poly(vinylpyrrolidone) (PVP) to produce a PVP-based copolymer hydrogel. The hydrogel was then subjected to a basic treatment using either sodium hydroxide (hydrogel #1) or potassium hydroxide (hydrogel #2). The PVP-based SAH exhibited excellent swelling capacity, water retention, and fertilizer release properties. When applied to Pisum sativum plants under drought stress, the hydrogel significantly improved soil moisture levels, nutrient availability, and plant growth parameters compared to the control. The hydrogel #2-amended plants demonstrated enhanced biomass, chlorophyll content, and photosynthetic efficiency, highlighting the hydrogel's effectiveness in mitigating the adverse effects of drought stress. These findings demonstrate the potential of the PVP-based SAH as a promising strategy for sustainable agriculture, offering using readily available and inexpensive raw materials, suggesting a relatively low-cost and scalable production process. Furthermore, the hydrogel facilitates water conservation, controlled nutrient delivery, and improved plant performance under drought stress conditions.
Collapse
Affiliation(s)
- Mohamed Mohamady Ghobashy
- Radiation Research of Polymer Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, P.O. Box 29, Nasr City, Cairo, Egypt
| | - Mohamed A Amin
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
| | - Abeer E Mustafa
- Department of Botany and Microbiology, Faculty of Science (Girls), Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Mahmoud A El-Diehy
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
| | - Basem Kh El-Damhougy
- Department of Chemistry, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
| | - Norhan Nady
- Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-city), New Borg El-Arab City, 21934, Alexandria, Egypt.
| |
Collapse
|
20
|
Jurczyková T, Kmeťová E, Kačík F, Lexa M, Dědič D. Evaluating the Effectiveness of Cellulose-Based Surfactants in Expandable Graphite Wood Coatings. Polymers (Basel) 2024; 16:2832. [PMID: 39408542 PMCID: PMC11478889 DOI: 10.3390/polym16192832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024] Open
Abstract
This study deals with the design of modern environmentally friendly and non-toxic flame retardants based on expandable graphite 25 K + 180 (EG) modified by cellulose ethers (Lovose TS 20, Tylose MH 300, Klucel H) and nanocellulose (CNC) that are biocompatible with wood and, therefore, are a prerequisite for an effective surfactant for connecting EG to wood. The effectiveness of the formulations and surfactants was verified using a radiant heat source test. The cohesion of the coating to the wood surface and the cohesion of the expanded graphite layer were also assessed. The fire efficiency of the surfactants varied greatly. Still, in combination with EG, they were all able to provide sufficient protection-the total relative mass loss was, in all cases, in the range of 7.38-7.83% (for untreated wood it was 88.67 ± 1.33%), and the maximum relative burning rate decreased tenfold compared to untreated wood, i.e., to 0.04-0.05%·s-1. Good results were achieved using Klucel H + EG and CNC + EG formulations. Compared to Klucel H, CNC provides significantly better cohesion of the expanded layer, but its high price increases the cost of the fireproof coating.
Collapse
Affiliation(s)
- Tereza Jurczyková
- Department of Wood Processing and Biomaterials, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16000 Prague, Czech Republic; (M.L.); (D.D.)
| | - Elena Kmeťová
- Department of Fire Protection, Faculty of Wood Sciences and Technology, Technical University in Zvolen, 96001 Zvolen, Slovakia;
| | - František Kačík
- Department of Chemistry and Chemical Technologies, Faculty of Wood Sciences and Technology, Technical University in Zvolen, 96001 Zvolen, Slovakia;
| | - Martin Lexa
- Department of Wood Processing and Biomaterials, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16000 Prague, Czech Republic; (M.L.); (D.D.)
| | - Daniel Dědič
- Department of Wood Processing and Biomaterials, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16000 Prague, Czech Republic; (M.L.); (D.D.)
| |
Collapse
|
21
|
Lv Q, Xiao T, Dong G, Tan X, Zhang Z, Zhao M, Zhu M, Li J, Zhang W. Preparation and characterization of starch carbamate modified natural sodium alginate composite hydrogel blend formulation and its application for slow-release fertilizer. Int J Biol Macromol 2024; 278:134713. [PMID: 39154686 DOI: 10.1016/j.ijbiomac.2024.134713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/31/2024] [Accepted: 08/11/2024] [Indexed: 08/20/2024]
Abstract
The exploration of environmentally friendly slow-release fertilizer (SRF) based on natural bio-polymers is of great importance in the development of modern agriculture and horticulture. Herein, a novel starch carbamate (SC) modified sodium alginate (SA) hydrogel (SC/SAH) was prepared utilizing as-synthesized SC and natural SA through the cationic ions crosslinking method and ultimately the corresponding slow-release fertilizer (SC/SAH-SRF) was successfully developed by immersing the dried SC/SAH matrix into saturated urea solution. Due to the low gelation temperature and high viscosity of the synthesized SC, the formed SC/SAH exhibits significantly enhanced properties including excellent water absorbency up to 8.02 g/g with considerable repeatability, abundant pore structure and high hydrophilicity compared with the neat SAH and natural starch based hydrogel (NS/SAH). Accordingly, the SC/SAH leads to higher urea loading amount ∼ 1.28 g/g. Importantly, the resultant SC/SAH-SRF also shows superior slow-release performance, yielding a cumulative urea release of only 61.6 % within 10 h and almost completely release >16 h in water, what's more, only 58.5 % of the urea releases within 25 days and exceeding 50 days for complete release in soil column assays. The slow-release of urea from SC/SAH-SRF well complies for the first-order kinetics and accomplishes via a non-Fickian diffusion process. Moreover, the pot experiment demonstrates that the SC/SAH-SRF has higher growth promotion role for the maize seedlings than those of others. Consequently, this work provides a novel strategy for preparing environmentally friendly SRF by blending modified starch and hydrogel.
Collapse
Affiliation(s)
- Qihang Lv
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China
| | - Tianyuan Xiao
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China
| | - Guohua Dong
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China.
| | - Xiaoxiao Tan
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China
| | - Zhuanfang Zhang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China
| | - Ming Zhao
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China; Technology Innovation Center of Industrial Hemp for State Market Regulation, Qiqihar University, Qiqihar 161006, PR China
| | - Min Zhu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China
| | - Jinlong Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China; Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals, Qiqihar University, Qiqihar 161006, PR China
| | - Wenzhi Zhang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China.
| |
Collapse
|
22
|
Ammar A, Nouira A, El Mouridi Z, Boughribil S. Recent trends in the phytoremediation of radionuclide contamination of soil by cesium and strontium: Sources, mechanisms and methods: A comprehensive review. CHEMOSPHERE 2024; 359:142273. [PMID: 38750727 DOI: 10.1016/j.chemosphere.2024.142273] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/03/2024] [Accepted: 05/05/2024] [Indexed: 05/19/2024]
Abstract
This comprehensive review examines recent trends in phytoremediation strategies to address soil radionuclide contamination by cesium (Cs) and strontium (Sr). Radionuclide contamination, resulting from natural processes and nuclear-related activities such as accidents and the operation of nuclear facilities, poses significant risks to the environment and human health. Cs and Sr, prominent radionuclides involved in nuclear accidents, exhibit chemical properties that contribute to their toxicity, including easy uptake, high solubility, and long half-lives. Phytoremediation is emerging as a promising and environmentally friendly approach to mitigate radionuclide contamination by exploiting the ability of plants to extract toxic elements from soil and water. This review focuses specifically on the removal of 90Sr and 137Cs, addressing their health risks and environmental implications. Understanding the mechanisms governing plant uptake of radionuclides is critical and is influenced by factors such as plant species, soil texture, and physicochemical properties. Phytoremediation not only addresses immediate contamination challenges but also provides long-term benefits for ecosystem restoration and sustainable development. By improving soil health, biodiversity, and ecosystem resilience, phytoremediation is in line with global sustainability goals and environmental protection initiatives. This review aims to provide insights into effective strategies for mitigating environmental hazards associated with radionuclide contamination and to highlight the importance of phytoremediation in environmental remediation efforts.
Collapse
Affiliation(s)
- Ayyoub Ammar
- Laboratory of Virology, Microbiology, Quality and Biotechnology /Eco-toxicology and Biodiversity (LVMQB/EB), Faculty of Sciences and Techniques Mohammedia, University Hassan II, Casablanca, Morocco; National Center for Energy, Sciences, and Nuclear Techniques (CNESTEN), Rabat, Morocco; Laboratory of Environment and Conservation of Natural Resources, National Institute of Agronomique Research (INRA), Rabat, Morocco.
| | - Asmae Nouira
- National Center for Energy, Sciences, and Nuclear Techniques (CNESTEN), Rabat, Morocco
| | - Zineb El Mouridi
- Laboratory of Environment and Conservation of Natural Resources, National Institute of Agronomique Research (INRA), Rabat, Morocco
| | - Said Boughribil
- Laboratory of Virology, Microbiology, Quality and Biotechnology /Eco-toxicology and Biodiversity (LVMQB/EB), Faculty of Sciences and Techniques Mohammedia, University Hassan II, Casablanca, Morocco
| |
Collapse
|
23
|
Liu Y, Liu X, Jiao Y, Li M. Regulation of the Degradation Properties of Tyrosinase-Catalyzed Crosslinking Silk Membranes for Superficial Wound Repair. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2839. [PMID: 38930208 PMCID: PMC11204666 DOI: 10.3390/ma17122839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024]
Abstract
Appropriate biodegradability to meet the demands of wound repair is critical for superficial wound repair membrane applications. Tyrosinase-catalyzed crosslinking SF (c-SF) membranes were constructed and regulated the degradation behavior in this study. The crosslinking degree of the c-SF membranes could be adjusted by reaction ratios of tyrosinase against SF (TYR/SF). Upon reaching a TYR/SF ratio of 20/6000, the degree of crosslinking increased to 88.17 ± 0.20%, without obvious changes in the crystal structure. The degradation behavior was regulated by the TYR/SF ratio and the degradation environment. All c-SF membranes remained stable after immersion without collagenase but showed an adjustable degradation behavior in the presence of collagenase. As the TYR/SF ratio increased, the residual weights increased from 23.31 ± 1.35% to 60.12 ± 0.82% after 7 days of degradation, occurring with low increased amounts of β-sheet structure and free amino acids. This work provides a new c-SF membrane with controllable rapid degradability and favorable cytocompatibility, which can help to meet requirements for biodegradable superficial wound repair membranes.
Collapse
Affiliation(s)
- Yu Liu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | | | | | - Mingzhong Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| |
Collapse
|
24
|
El Idrissi A, Tayi F, Dardari O, Essamlali Y, Jioui I, Ayouch I, Akil A, Achagri G, Dänoun K, Amadine O, Zahouily M. Urea-rich sodium alginate-based hydrogel fertilizer as a water reservoir and slow-release N carrier for tomato cultivation under different water-deficit levels. Int J Biol Macromol 2024; 272:132814. [PMID: 38825281 DOI: 10.1016/j.ijbiomac.2024.132814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/23/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
In this study, a new eco-friendly urea-rich sodium alginate-based hydrogel with a slow-release nitrogen property was prepared, and its effectiveness was evaluated in the cultivation of tomato plants under different water stress levels. The structure and performance of the hydrogel were investigated by FTIR, XRD, TGA, DTG, and SEM. The swelling and release experiments showed that prepared urea-rich hydrogel exhibited a high-water holding capacity (412 ± 4 g/g) and showed a sustained and slow nitrogen release property. A greenhouse pot experiment was conducted using two hydrogel levels (0.1 and 0.5 wt%) under two water deficit levels (30 and 70 % based on required water irrigation). Germination tests indicated that the developed hydrogel fertilizer has no phytotoxicity and has a positive impact on the germination rate even under water deficit conditions. The application of hydrogel fertilizer at 0.5 wt% significantly (p > 0.05) enhanced plant growth parameters such as leaf number, chlorophyll content, stem diameter, and plant length compared to the control treatment. The magnitude of the responses to the hydrogel fertilizer application depended on the concentration of applied hydrogel fertilizer and stress severity with the most positive effects on the growth and yield of tomato observed at a level of 0.5 %. Tomato yield was significantly enhanced by 19.58 %-12.81 %, 18.58 %-22.02 %, and 39.38 %-43.18 % for the plant amended with hydrogel at 0.1-0.5 wt% and grown under water deficit levels of 0, 30, and 70 %, respectively, compared to the control treatment.
Collapse
Affiliation(s)
- Ayoub El Idrissi
- Laboratory of Materials, Catalysis & Natural Resources Valorization, URAC 24, Faculty of Science and Technology, Hassan II University, B.P. 146 Casablanca, Morocco; MAScIR Foundation, VARENA Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco.
| | - Fatima Tayi
- Laboratory of Materials, Catalysis & Natural Resources Valorization, URAC 24, Faculty of Science and Technology, Hassan II University, B.P. 146 Casablanca, Morocco; MAScIR Foundation, VARENA Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Othmane Dardari
- Laboratory of Materials, Catalysis & Natural Resources Valorization, URAC 24, Faculty of Science and Technology, Hassan II University, B.P. 146 Casablanca, Morocco; MAScIR Foundation, VARENA Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Younes Essamlali
- MAScIR Foundation, VARENA Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco.
| | - Ilham Jioui
- MAScIR Foundation, VARENA Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Ikrame Ayouch
- MAScIR Foundation, VARENA Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Adil Akil
- MAScIR Foundation, VARENA Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Ghizlane Achagri
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830000, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Karim Dänoun
- MAScIR Foundation, VARENA Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Othmane Amadine
- MAScIR Foundation, VARENA Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Mohamed Zahouily
- Laboratory of Materials, Catalysis & Natural Resources Valorization, URAC 24, Faculty of Science and Technology, Hassan II University, B.P. 146 Casablanca, Morocco; MAScIR Foundation, VARENA Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco.
| |
Collapse
|
25
|
Mikhailidi A, Ungureanu E, Tofanica BM, Ungureanu OC, Fortună ME, Belosinschi D, Volf I. Agriculture 4.0: Polymer Hydrogels as Delivery Agents of Active Ingredients. Gels 2024; 10:368. [PMID: 38920915 PMCID: PMC11203096 DOI: 10.3390/gels10060368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/27/2024] Open
Abstract
The evolution from conventional to modern agricultural practices, characterized by Agriculture 4.0 principles such as the application of innovative materials, smart water, and nutrition management, addresses the present-day challenges of food supply. In this context, polymer hydrogels have become a promising material for enhancing agricultural productivity due to their ability to retain and then release water, which can help alleviate the need for frequent irrigation in dryland environments. Furthermore, the controlled release of fertilizers by the hydrogels decreases chemical overdosing risks and the environmental impact associated with the use of agrochemicals. The potential of polymer hydrogels in sustainable agriculture and farming and their impact on soil quality is revealed by their ability to deliver nutritional and protective active ingredients. Thus, the impact of hydrogels on plant growth, development, and yield was discussed. The question of which hydrogels are more suitable for agriculture-natural or synthetic-is debatable, as both have their merits and drawbacks. An analysis of polymer hydrogel life cycles in terms of their initial material has shown the advantage of bio-based hydrogels, such as cellulose, lignin, starch, alginate, chitosan, and their derivatives and hybrids, aligning with sustainable practices and reducing dependence on non-renewable resources.
Collapse
Affiliation(s)
- Aleksandra Mikhailidi
- Higher School of Printing and Media Technologies, St. Petersburg State University of Industrial Technologies and Design, 18 Bolshaya Morskaya Street, 191186 St. Petersburg, Russia;
| | - Elena Ungureanu
- “Ion Ionescu de la Brad” Iasi University of Life Sciences Iasi, 3 Mihail Sadoveanu Alley, 700490 Iasi, Romania
| | - Bogdan-Marian Tofanica
- “Gheorghe Asachi” Technical University of Iasi, 73 Prof. Dr. Docent D. Mangeron Boulevard, 700050 Iasi, Romania;
| | - Ovidiu C. Ungureanu
- Faculty of Medicine, “Vasile Goldis” Western University of Arad, 94 the Boulevard of the Revolution, 310025 Arad, Romania;
| | - Maria E. Fortună
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania;
| | - Dan Belosinschi
- Innovations Institute in Ecomaterials, Ecoproducts, and Ecoenergies, University of Quebec at Trois-Rivières, 3351, Boul. des Forges, Trois-Rivières QC G8Z 4M3, Canada;
| | - Irina Volf
- “Gheorghe Asachi” Technical University of Iasi, 73 Prof. Dr. Docent D. Mangeron Boulevard, 700050 Iasi, Romania;
| |
Collapse
|
26
|
Li M, Zhang P, Mao J, Li J, Zhang Y, Xu B, Zhou J, Cao Q, Xiao H. Construction of cellulose-based hybrid hydrogel beads containing carbon dots and their high performance in the adsorption and detection of mercury ions in water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:121076. [PMID: 38710148 DOI: 10.1016/j.jenvman.2024.121076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/17/2024] [Accepted: 04/30/2024] [Indexed: 05/08/2024]
Abstract
Cellulose-based adsorbents have been extensively developed in heavy metal capture and wastewater treatment. However, most of the reported powder adsorbents suffer from the difficulties in recycling due to their small sizes and limitations in detecting the targets for the lack of sensitive sensor moieties in the structure. Accordingly, carbon dots (CDs) were proposed to be encapsulated in cellulosic hydrogel beads to realize the simultaneous detection and adsorption of Hg (II) in water due to their excellent fluorescence sensing performance. Besides, the molding of cellulose was beneficial to its recycling and further reduced the potential environmental risk generated by secondary pollution caused by adsorbent decomposition. In addition, the detection limit of the hydrogel beads towards Hg (II) reached as low as 8.8 × 10-8 M, which was below the mercury effluent standard declared by WHO, exhibiting excellent practicability in Hg (II) detection and water treatment. The maximum adsorption capacity of CB-50 % for Hg (II) was 290.70 mg/g. Moreover, the adsorbent materials also had preeminent stability that the hydrogel beads could maintain sensitive and selective sensing performance towards Hg (II) after 2 months of storage. Additionally, only 3.3% of the CDs leaked out after 2 weeks of immersion in water, ensuring the accuracy of Hg (II) evaluation. Notably, the adsorbent retained over 80% of its original adsorption capacity after five consecutive regeneration cycles, underscoring its robustness and potential for sustainable environmental applications.
Collapse
Affiliation(s)
- Ming Li
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China.
| | - Panpan Zhang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China.
| | - Jianwei Mao
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China.
| | - Jianfeng Li
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China.
| | - Yuling Zhang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China.
| | - Bo Xu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, PR China.
| | - Jin Zhou
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, PR China.
| | - Qianyong Cao
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, PR China.
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, E3B 5A3, Canada.
| |
Collapse
|
27
|
Channab BE, El Idrissi A, Ammar A, Dardari O, Marrane SE, El Gharrak A, Akil A, Essemlali Y, Zahouily M. Recent advances in nano-fertilizers: synthesis, crop yield impact, and economic analysis. NANOSCALE 2024; 16:4484-4513. [PMID: 38314867 DOI: 10.1039/d3nr05012b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The escalating global demand for food production has predominantly relied on the extensive application of conventional fertilizers (CFs). However, the increased use of CFs has raised concerns regarding environmental risks, including soil and water contamination, especially within cereal-based cropping systems. In response, the agricultural sector has witnessed the emergence of healthier alternatives by utilizing nanotechnology and nano-fertilizers (NFs). These innovative NFs harness the remarkable properties of nanoparticles, ranging in size from 1 to 100 nm, such as nanoclays and zeolites, to enhance nutrient utilization efficiency. Unlike their conventional counterparts, NFs offer many advantages, including variable solubility, consistent and effective performance, controlled release mechanisms, enhanced targeted activity, reduced eco-toxicity, and straightforward and safe delivery and disposal methods. By facilitating rapid and complete plant absorption, NFs effectively conserve nutrients that would otherwise go to waste, mitigating potential environmental harm. Moreover, their superior formulations enable more efficient promotion of sustainable crop growth and production than conventional fertilizers. This review comprehensively examines the global utilization of NFs, emphasizing their immense potential in maintaining environmentally friendly crop output while ensuring agricultural sustainability.
Collapse
Affiliation(s)
- Badr-Eddine Channab
- Laboratory of Materials, Catalysis & Valorization of Natural Resources, URAC 24, Faculty of Science and Technology, Hassan II University, Casablanca B.P. 146, Morocco.
| | - Ayoub El Idrissi
- Laboratory of Materials, Catalysis & Valorization of Natural Resources, URAC 24, Faculty of Science and Technology, Hassan II University, Casablanca B.P. 146, Morocco.
| | - Ayyoub Ammar
- Laboratory of Virology, Oncology, Biosciences, Environment and New Energies, Faculty of Sciences and Techniques Mohammedia, University Hassan II of Casablanca, Casablanca B.P. 146, Morocco.
| | - Othmane Dardari
- Laboratory of Materials, Catalysis & Valorization of Natural Resources, URAC 24, Faculty of Science and Technology, Hassan II University, Casablanca B.P. 146, Morocco.
| | - Salah Eddine Marrane
- Laboratory of Materials, Catalysis & Valorization of Natural Resources, URAC 24, Faculty of Science and Technology, Hassan II University, Casablanca B.P. 146, Morocco.
| | - Abdelouahed El Gharrak
- Laboratory of Materials, Catalysis & Valorization of Natural Resources, URAC 24, Faculty of Science and Technology, Hassan II University, Casablanca B.P. 146, Morocco.
| | - Adil Akil
- Natural Resources Valorization Center, Moroccan Foundation for Advanced Science, Innovation and Research, Rabat, Morocco.
- Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Youness Essemlali
- Laboratory of Materials, Catalysis & Valorization of Natural Resources, URAC 24, Faculty of Science and Technology, Hassan II University, Casablanca B.P. 146, Morocco.
- Natural Resources Valorization Center, Moroccan Foundation for Advanced Science, Innovation and Research, Rabat, Morocco.
- Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Mohamed Zahouily
- Laboratory of Materials, Catalysis & Valorization of Natural Resources, URAC 24, Faculty of Science and Technology, Hassan II University, Casablanca B.P. 146, Morocco.
- Natural Resources Valorization Center, Moroccan Foundation for Advanced Science, Innovation and Research, Rabat, Morocco.
- Mohammed VI Polytechnic University, Ben Guerir, Morocco
| |
Collapse
|
28
|
El Aouni A, El Ouardi M, Arab M, Saadi M, Haspel H, Kónya Z, Ben Ali A, Jada A, BaQais A, Ait Ahsaine H. Design of Bismuth Tungstate Bi 2WO 6 Photocatalyst for Enhanced and Environmentally Friendly Organic Pollutant Degradation. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1029. [PMID: 38473501 PMCID: PMC10934721 DOI: 10.3390/ma17051029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/10/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024]
Abstract
In this study, a chemical precipitation approach was adopted to produce a photocatalyst based on bismuth tungstate Bi2WO6 for enhanced and environmentally friendly organic pollutant degradation. Various tools such as X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), optical spectroscopy and X-ray photoelectron spectroscopy, were employed to assess the structural and morphological properties. Hence, the XRD profiles showed a well crystallized Bi2WO6 orthorhombic phase. The photocatalytic performance of the resulting photocatalyst was assessed by the decomposition of Rhodamine B (RhB) and methyl orange (MO) with a decomposition efficiency of 97 and 92%, along with the highest chemical oxygen demand of 82 and 79% during 120 min of illumination, respectively. The principal novelty of the present work is to focus on the changes in the crystalline structure, the morphology, and the optical and the photoelectrochemical characteristics of the Bi2WO6, by tuning the annealing temperature of the designed photocatalyst. Such physicochemical property changes in the as-prepared photocatalyst will affect in turn its photocatalytic activity toward the organic pollutant decomposition. The photocatalytic mechanism was elaborated based on electrochemical impedance spectroscopy, photocurrent analysis, photoluminescence spectroscopy, and radical trapping measurements. The overall data indicate that the superoxide O2•- and holes h+ are the principal species responsible for the pollutant photodegradation.
Collapse
Affiliation(s)
- Aicha El Aouni
- Laboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Sciences, Mohammed V University, Rabat 1014, Morocco; (A.E.A.); (M.E.O.); (M.S.); (A.B.A.)
| | - Mohamed El Ouardi
- Laboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Sciences, Mohammed V University, Rabat 1014, Morocco; (A.E.A.); (M.E.O.); (M.S.); (A.B.A.)
- Aix Marseille University, Université de Toulon, CNRS, IM2NP, CS CEDEX 9, 60584 Toulon, France;
| | - Madjid Arab
- Aix Marseille University, Université de Toulon, CNRS, IM2NP, CS CEDEX 9, 60584 Toulon, France;
| | - Mohamed Saadi
- Laboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Sciences, Mohammed V University, Rabat 1014, Morocco; (A.E.A.); (M.E.O.); (M.S.); (A.B.A.)
| | - Henrik Haspel
- HUN-REN-SZTE Reaction Kinetics and Surface Chemistry Research Group, Rerrich Béla tér 1, H-6720 Szeged, Hungary; (H.H.); (Z.K.)
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1, H-6720 Szeged, Hungary
| | - Zoltán Kónya
- HUN-REN-SZTE Reaction Kinetics and Surface Chemistry Research Group, Rerrich Béla tér 1, H-6720 Szeged, Hungary; (H.H.); (Z.K.)
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1, H-6720 Szeged, Hungary
| | - Abdelkader Ben Ali
- Laboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Sciences, Mohammed V University, Rabat 1014, Morocco; (A.E.A.); (M.E.O.); (M.S.); (A.B.A.)
| | - Amane Jada
- Institute of Materials Science of Mulhouse (IS2M), Haute Alsace University, 68100 Mulhouse, France;
- Strasbourg University, 67081 Strasbourg, France
| | - Amal BaQais
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Hassan Ait Ahsaine
- Laboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Sciences, Mohammed V University, Rabat 1014, Morocco; (A.E.A.); (M.E.O.); (M.S.); (A.B.A.)
| |
Collapse
|