1
|
Nguyen VT, Dao LXA, Van Dong N, Le CH. Concentration of 226Ra in soil, water, and sediment of active and abandoned quarries in southern Vietnam and environmental risk assessment: experimental and modeling studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:335-354. [PMID: 39681786 DOI: 10.1007/s11356-024-35771-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/08/2024] [Indexed: 12/18/2024]
Abstract
Open-pit mining disturbs the earth's surface, impacts geological characteristics, and releases many pollutants including heavy metals, radionuclides, and poisonous gases into the environment. This study investigated the difference between the activity levels of 226Ra radionuclide in the abandoned quarry region (region A) and the active quarry region (region B). In the surface soil, the mean values of activity concentrations were 40 Bq kg-1 and 55 Bq kg-1 in region A and region B, respectively. The statistical analysis shows that the obtained values of 226Ra concentrations in Region B are higher and more dispersed than those in Region A. For four study quarry lakes, the ranges of activity concentrations in water and sediment were (0-19.4 mBq L-1) and (25-71 Bq kg-1), respectively. The levels of 226Ra in lake water are within the recommended value of 0.74 Bq L-1 of the United States Environmental Protection Agency (USEPA) for radiation safety. This water can be considered for drinking, agricultural irrigation, and fish farming. The Revised Universal Soil Loss Equation (RUSLE) estimated the soil loss due to soil erosion in the abandoned quarries. It was predicted that the soil erosion degrees in the study area were from very low class to moderately high class according to soil loss classification. The Quantitative Water, Air, Sediment Interaction (QWASI) was validated to predict 226Ra activity concentrations in the water and sediment of quarry lakes. Based on Student's t-test, the predicted values of 226Ra activity concentrations for study quarry lakes agreed with the measured values (confidence interval 95%).
Collapse
Affiliation(s)
- Van Thang Nguyen
- Nuclear Technique Laboratory, University of Science, Ho Chi Minh City, Vietnam.
- Vietnam National University, Ho Chi Minh City, Vietnam.
| | - Lam Xuan Anh Dao
- Nuclear Technique Laboratory, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Nguyen Van Dong
- Faculty of Chemistry, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Cong Hao Le
- Nuclear Technique Laboratory, University of Science, Ho Chi Minh City, Vietnam
- Faculty of Physics and Engineering Physics, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| |
Collapse
|
2
|
Chen X, Zhong J, Lin H, Ye Z, Wang Y, Ma X. Efficient enrichment of uranium (VI) in aqueous solution using magnesium-aluminum layered double hydroxide composite phosphate-modified hydrothermal biochar: Mechanism and adsorption. CHEMOSPHERE 2024; 362:142667. [PMID: 38906190 DOI: 10.1016/j.chemosphere.2024.142667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/01/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
This study presents the successful synthesis of Magnesium-aluminum layered double hydroxide composite phosphate-modified hydrothermal biochar for efficient removal of U(VI) from aqueous solutions. A novel synthesis approach involving phosphate thermal polymerization-hydrothermal method was employed, deviating from conventional pyrolysis methods, to produce hydrothermal biochar. The combination of solvent thermal polymerization technique with hydrothermal process facilitated efficient loading of layered double hydroxide (LDH) components onto the biochar surface, ensuring simplicity, low energy consumption and enhanced modifiability. Bamboo waste was utilized as the precursor for biochar, highlighting its superior green and sustainable characteristics. Additionally, this study elucidated the interactions between phosphate-modified hydrothermal biochar and LDH components with U(VI). Physicochemical analysis demonstrated that the composite biochar possessed a high surface area and abundant oxygen-containing functional groups. XPS and FTIR analyses confirmed the efficient adsorption of U(VI), attributed to chelation interactions between phosphate groups, magnesium hydroxyl groups, hydroxyl groups and U(VI), as well as the co-precipitation of U(VI) with multi-hydroxyl aluminum cations captured by LDH. The composite biochar reached adsorption equilibrium with U(VI) within 80 min and exhibited excellent fitting to the pseudo-second-order kinetic model and Langmuir model. Under conditions of pH = 4 and 298 K, it displayed significantly high maximum adsorption capacity of approximately 388.81 mg g⁻1, surpassing untreated biochar by 17-fold. The adsorption process was found to be endothermic and spontaneous and even after five consecutive adsorption-desorption cycles, the removal efficiency of U(VI) remained stable at 75.46%. These findings underscore the promising application prospects of Magnesium-aluminum layered double hydroxide composite phosphate-modified hydrothermal biochar in efficiently separating U(VI) from uranium-containing wastewater, emphasizing its environmental and economic value.
Collapse
Affiliation(s)
- Xinchen Chen
- Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, Guangdong, China.
| | - Jingyu Zhong
- Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, Guangdong, China.
| | - Huanyue Lin
- Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, Guangdong, China.
| | - Ziyuan Ye
- Faculty of Psychology, Beijing Normal University, Zhuhai, 519082, Guangdong, China.
| | - Yun Wang
- School of Nuclear Science and Engineering, East China University of Technology, Nanchang, 330013, Jiangxi, China.
| | - Xianfeng Ma
- Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, Guangdong, China.
| |
Collapse
|
3
|
E Silva CR, de Oliveira FM. Natural radioactivity in mineral phosphate fertilizers and its impacts on human health: an overview. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:118149-118160. [PMID: 37936035 DOI: 10.1007/s11356-023-30467-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/10/2023] [Indexed: 11/09/2023]
Abstract
Humans are constantly exposed to radioactivity present in rocks, soils, and water, mainly from materials in the Earth's crust that contain chemical elements belonging to the radioactive series of uranium and thorium. An important anthropogenic source of these natural radioisotopes to the environment is fertilizers, widely used to increase agricultural productivity. Exposure to ionizing radiation can become a public health problem worldwide, since it is related to the development of different cancers in humans. The present study aimed to survey research on the radioactive content in different types of mineral phosphate fertilizers used around the world through a comprehensive review of the Scopus and Web of Science databases. About 80 scientific articles fit the purpose of this review. The concentration activity values found varied widely from one country to another, and there is no specific legislation that determines the maximum allowed limits of radioisotopes in these agricultural inputs. In addition, there are still uncertainties regarding the impact of natural radioactivity from fertilizers on human health, highlighting the need for further investigations on the subject.
Collapse
Affiliation(s)
- Camila Rodrigues E Silva
- Postgraduate Program in Chemistry, Universidade Federal Fluminense, Outeiro de São João Batista, s/n, Niterói, RJ, 24020-141, Brazil.
| | - Fabiana Monteiro de Oliveira
- Postgraduate Program in Chemistry, Universidade Federal Fluminense, Outeiro de São João Batista, s/n, Niterói, RJ, 24020-141, Brazil
| |
Collapse
|
4
|
Martinez-Morata I, Sobel M, Tellez-Plaza M, Navas-Acien A, Howe CG, Sanchez TR. A State-of-the-Science Review on Metal Biomarkers. Curr Environ Health Rep 2023; 10:215-249. [PMID: 37337116 PMCID: PMC10822714 DOI: 10.1007/s40572-023-00402-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2023] [Indexed: 06/21/2023]
Abstract
PURPOSE OF REVIEW Biomarkers are commonly used in epidemiological studies to assess metals and metalloid exposure and estimate internal dose, as they integrate multiple sources and routes of exposure. Researchers are increasingly using multi-metal panels and innovative statistical methods to understand how exposure to real-world metal mixtures affects human health. Metals have both common and unique sources and routes of exposure, as well as biotransformation and elimination pathways. The development of multi-element analytical technology allows researchers to examine a broad spectrum of metals in their studies; however, their interpretation is complex as they can reflect different windows of exposure and several biomarkers have critical limitations. This review elaborates on more than 500 scientific publications to discuss major sources of exposure, biotransformation and elimination, and biomarkers of exposure and internal dose for 12 metals/metalloids, including 8 non-essential elements (arsenic, barium, cadmium, lead, mercury, nickel, tin, uranium) and 4 essential elements (manganese, molybdenum, selenium, and zinc) commonly used in multi-element analyses. RECENT FINDINGS We conclude that not all metal biomarkers are adequate measures of exposure and that understanding the metabolic biotransformation and elimination of metals is key to metal biomarker interpretation. For example, whole blood is a good biomarker of exposure to arsenic, cadmium, lead, mercury, and tin, but it is not a good indicator for barium, nickel, and uranium. For some essential metals, the interpretation of whole blood biomarkers is unclear. Urine is the most commonly used biomarker of exposure across metals but it should not be used to assess lead exposure. Essential metals such as zinc and manganese are tightly regulated by homeostatic processes; thus, elevated levels in urine may reflect body loss and metabolic processes rather than excess exposure. Total urinary arsenic may reflect exposure to both organic and inorganic arsenic, thus, arsenic speciation and adjustment for arsebonetaine are needed in populations with dietary seafood consumption. Hair and nails primarily reflect exposure to organic mercury, except in populations exposed to high levels of inorganic mercury such as in occupational and environmental settings. When selecting biomarkers, it is also critical to consider the exposure window of interest. Most populations are chronically exposed to metals in the low-to-moderate range, yet many biomarkers reflect recent exposures. Toenails are emerging biomarkers in this regard. They are reliable biomarkers of long-term exposure for arsenic, mercury, manganese, and selenium. However, more research is needed to understand the role of nails as a biomarker of exposure to other metals. Similarly, teeth are increasingly used to assess lifelong exposures to several essential and non-essential metals such as lead, including during the prenatal window. As metals epidemiology moves towards embracing a multi-metal/mixtures approach and expanding metal panels to include less commonly studied metals, it is important for researchers to have a strong knowledge base about the metal biomarkers included in their research. This review aims to aid metals researchers in their analysis planning, facilitate sound analytical decision-making, as well as appropriate understanding and interpretation of results.
Collapse
Affiliation(s)
- Irene Martinez-Morata
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 West 168th Street, 1107, New York, NY, 10032, USA.
| | - Marisa Sobel
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 West 168th Street, 1107, New York, NY, 10032, USA
| | - Maria Tellez-Plaza
- Centro Nacional de Epidemiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 West 168th Street, 1107, New York, NY, 10032, USA
| | - Caitlin G Howe
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Tiffany R Sanchez
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 West 168th Street, 1107, New York, NY, 10032, USA
| |
Collapse
|
5
|
Chen X, Wang Y, Xia H, Ren Q, Li Y, Xu L, Xie C, Wang Y. "One-can" strategy for the synthesis of hydrothermal biochar modified with phosphate groups and efficient removal of uranium(VI). JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2023; 263:107182. [PMID: 37094506 DOI: 10.1016/j.jenvrad.2023.107182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/08/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
Significant selectivity, reasonable surface modification and increased structural porosity were three key factors to improve the competitiveness of biochar in the adsorption field. In this study, a hydrothermal bamboo-derived biochar modified with phosphate groups (HPBC) was synthesized using "one-can" strategy. BET showed that this method could effectively increase the specific surface area (137.32 m2 g-1) and simulation of wastewater experiments indicated HPBC had an excellent selectivity for U(VI) (70.35%), which was conducive to removal of U(VI) in real and complex environments. The accurate matchings of pseudo-second-order kinetic model, thermodynamic model and Langmuir isotherm showed that at 298 K, pH = 4.0, the adsorption process dominated by chemical complexation and monolayer adsorption was spontaneous, endothermic and disordered. Saturated adsorption capacity of HPBC could reach 781.02 mg g-1 within 2 h. The introduction of phosphoric acid and citric acid by "one-can" method not only provided abundant -PO4 to assist adsorption, but also activated oxygen-containing groups on the surface of the bamboo matrix. Results showed that adsorption mechanism of U(VI) by HPBC included electrostatic action and chemical complexation involving P-O, PO and ample oxygen-containing functional groups. Therefore, HPBC with high phosphorus content, outstanding adsorption performance, excellent regeneration, remarkable selectivity and green value provided a novel solution for the field of radioactive wastewater treatment.
Collapse
Affiliation(s)
- Xinchen Chen
- School of Nuclear Science and Engineering, East China University of Technology, Nanchang, 330013, Jiangxi, China
| | - Yang Wang
- School of Nuclear Science and Engineering, East China University of Technology, Nanchang, 330013, Jiangxi, China
| | - Hongtao Xia
- School of Nuclear Science and Engineering, East China University of Technology, Nanchang, 330013, Jiangxi, China
| | - Qi Ren
- School of Nuclear Science and Engineering, East China University of Technology, Nanchang, 330013, Jiangxi, China
| | - Yang Li
- School of Nuclear Science and Engineering, East China University of Technology, Nanchang, 330013, Jiangxi, China
| | - Lejin Xu
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Chuting Xie
- School of Architecture & Urban Planning, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Yun Wang
- School of Nuclear Science and Engineering, East China University of Technology, Nanchang, 330013, Jiangxi, China.
| |
Collapse
|
6
|
Watts D, Palombo EA, Jaimes Castillo A, Zaferanloo B. Endophytes in Agriculture: Potential to Improve Yields and Tolerances of Agricultural Crops. Microorganisms 2023; 11:1276. [PMID: 37317250 DOI: 10.3390/microorganisms11051276] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 06/16/2023] Open
Abstract
Endophytic fungi and bacteria live asymptomatically within plant tissues. In recent decades, research on endophytes has revealed that their significant role in promoting plants as endophytes has been shown to enhance nutrient uptake, stress tolerance, and disease resistance in the host plants, resulting in improved crop yields. Evidence shows that endophytes can provide improved tolerances to salinity, moisture, and drought conditions, highlighting the capacity to farm them in marginal land with the use of endophyte-based strategies. Furthermore, endophytes offer a sustainable alternative to traditional agricultural practices, reducing the need for synthetic fertilizers and pesticides, and in turn reducing the risks associated with chemical treatments. In this review, we summarise the current knowledge on endophytes in agriculture, highlighting their potential as a sustainable solution for improving crop productivity and general plant health. This review outlines key nutrient, environmental, and biotic stressors, providing examples of endophytes mitigating the effects of stress. We also discuss the challenges associated with the use of endophytes in agriculture and the need for further research to fully realise their potential.
Collapse
Affiliation(s)
- Declan Watts
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Enzo A Palombo
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Alex Jaimes Castillo
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Bita Zaferanloo
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| |
Collapse
|
7
|
Effects of agricultural activities on long-term accumulations of 226Ra and 210Po in topsoil. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08472-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
8
|
Nursapina NA, Shynybek BA, Matveyeva IV, Nazarkulova SN, Štrok M, Benedik L, Ponomarenko OI. Effect of mineral fertilisers application on the transfer of natural radionuclides from soil to radish (Raphanus sativus L.). JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2022; 247:106863. [PMID: 35325629 DOI: 10.1016/j.jenvrad.2022.106863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 02/25/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Non-controlled usage of mineral fertilisers in agriculture land of Kazakhstan is a concerning issue, due to possible contamination of the soil by radionuclides. Pot experiment of growing of R. sativus with application of mineral fertilisers was carried out under natural conditions. Two commonly used mineral fertilisers, mono-potassium phosphate and ammonium nitrate, were chosen in the frame of current research to determine the impact of mineral fertiliser on transfer of natural radionuclides from soil to R. sativus edible part. For this goal, the activity concentrations of natural radionuclides U-234, U-238, Th-230, Th-232 and Ra-226, were determined in both R. sativus edible part and the investigated soil by using alpha-particle spectrometry. The highest activity concentrations were found for R. sativus edible part growing on soil that was fertilised by mono-potassium phosphate and were equal to 174 ± 17, 134 ± 15, 62 ± 4, 15 ± 2 and 2.8 ± 0.6 Bq/kg for U-234, U-238, Th-230, Th-232 and Ra-226, respectively. The results of soil-to- R. sativus edible part transfer factor for different radionuclides varied depending on the mineral fertiliser used. For evaluation of impact during consumption of R. sativus edible part by a population of Kazakhstan, annual effective ingestion dose and excess lifetime cancer risk were determined. The highest annual effective ingestion dose was found for R. sativus edible part cultivated in mono-potassium phosphate-fertilised soil and was equal to 4.4 μSv year-1.
Collapse
Affiliation(s)
- N A Nursapina
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, al-Farabi 71, 050040, Almaty, Kazakhstan
| | - B A Shynybek
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, al-Farabi 71, 050040, Almaty, Kazakhstan
| | - I V Matveyeva
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, al-Farabi 71, 050040, Almaty, Kazakhstan.
| | - Sh N Nazarkulova
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, al-Farabi 71, 050040, Almaty, Kazakhstan
| | - M Štrok
- Jožef Stefan Institute, Jamova 39, SI, 1000, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, SI, 1000, Ljubljana, Slovenia
| | - L Benedik
- Jožef Stefan Institute, Jamova 39, SI, 1000, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, SI, 1000, Ljubljana, Slovenia
| | - O I Ponomarenko
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, al-Farabi 71, 050040, Almaty, Kazakhstan
| |
Collapse
|
9
|
Nguyen VT, Thu Huynh NP, Le CH. Accumulation rates of natural radionuclides ( 40K, 210Pb, 226Ra, 238U, and 232Th) in topsoils due to long-term cultivations of water spinach (Ipomoea Aquatica Forssk.) and rice (Oryza Sativa L.) based on model assessments: A case study in Dong Nai province, Vietnam. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 271:111001. [PMID: 32778287 DOI: 10.1016/j.jenvman.2020.111001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 06/18/2020] [Accepted: 06/21/2020] [Indexed: 06/11/2023]
Abstract
In topsoils, the activity concentrations of natural radionuclides (hereafter NRs) increase due to the addition of NRs from fertilizers, irrigation water, and air dust pollution. On the other hand, various physical-chemical and environmental processes such as radioactive decay, volatilization, leaching, erosion, and plant uptake were responsible for the decrease of the activity concentrations of NRs in the topsoils. In this study, behaviours of 40K, 210Pb, 226Ra, 238U, and 232Th in topsoils were modelled by the CEMC soil model and the HYDRUS-1D model. An exponential equation was proposed for estimating the accumulation rates of these radionuclides in the topsoils. Long-term accumulation of radionuclides was assessed for water spinach (Ipomoea Aquatica Forssk.) soil (hereafter VES) and rice (Oryza sativa L.) soil (hereafter RIS). We found that the current agricultural practices caused the increase of 40K activity concentration in the water spinach soil, and 40K, 210Pb, 226Ra, and 232Th activity concentrations in the rice soil. The accumulation rates of radionuclides were in the order 238U < 232Th < 226Ra < 210Pb < 40K. 25 years of cultivation with water spinach can increase/decrease + (165 ± 6) Bq of 40K, - (8.2 ± 0.7) Bq of 210Pb, - (4.3 ± 0.2) Bq of 226Ra, - (7 0.3 ± 0.3) Bq of 238U, and - (1.8 ± 0.1) Bq of 232Th in 1 kg soil. For rice cultivation, these values are + (1004 ± 39), + (3.3 ± 0.2), + (3.0 ± 0.2), - (5.1 ± 0.3), (2.2 ± 0.1) Bq kg-1 for 40K, 210Pb, 226Ra, 238U, and 232Th, respectively.
Collapse
Affiliation(s)
- Van Thang Nguyen
- Department of Nuclear Physics and Nuclear Engineering, Faculty of Physics and Engineering Physics, University of Science, Ho Chi Minh City, Viet Nam; Nuclear Technique Laboratory, University of Science, Ho Chi Minh City, Viet Nam; Vietnam National University, Ho Chi Minh City, Viet Nam.
| | - Nguyen Phong Thu Huynh
- Department of Nuclear Physics and Nuclear Engineering, Faculty of Physics and Engineering Physics, University of Science, Ho Chi Minh City, Viet Nam; Nuclear Technique Laboratory, University of Science, Ho Chi Minh City, Viet Nam; Vietnam National University, Ho Chi Minh City, Viet Nam
| | - Cong Hao Le
- Department of Nuclear Physics and Nuclear Engineering, Faculty of Physics and Engineering Physics, University of Science, Ho Chi Minh City, Viet Nam; Nuclear Technique Laboratory, University of Science, Ho Chi Minh City, Viet Nam; Vietnam National University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
10
|
Dong L, Wei Q, Qin W, Jiao F. Selective adsorption of sodium polyacrylate on calcite surface: Implications for flotation separation of apatite from calcite. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116415] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
11
|
Emami S, Alikhani HA, Pourbabaei AA, Etesami H, Sarmadian F, Motessharezadeh B. Effect of rhizospheric and endophytic bacteria with multiple plant growth promoting traits on wheat growth. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:19804-19813. [PMID: 31090003 DOI: 10.1007/s11356-019-05284-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 04/25/2019] [Indexed: 05/22/2023]
Abstract
The present study focused on the characterization of plant growth promoting rhizospheric (R) and endophytic (E) bacteria and their impact on wheat cultivars growth. In this study, 400 strains were isolated from the rhizosphere soil (250 isolates) and surface-sterilized roots (150 isolates) of wheat and screened for their ability to plant growth promotion (PGP) traits. Four R isolates and four E isolates with different ability were selected to investigate the interaction between R and B bacteria associated with wheat cultivars under in vitro and greenhouse conditions. Plant growth parameters were found to be enhanced by the combined inoculation of two groups of R and E bacteria compared to individual inoculations (respectively 33.7 and 37.8% increase in root and shoot dry weight), suggesting that PGP rhizobacteria acted synergistically with PGP endophytes in phosphate solubilization. Compared to inoculation with phosphate-solubilizing bacteria (PSB) or indole-3-acetic acid producer bacteria (IAA-PB), inoculation by bacteria with multiple PGP properties (PSB and IAA-PS) showed higher promotion capacity. Also, in greenhouse assay, bacterial inoculation had a positive effect on the soil dehydrogenase (70.2%) and phosphatase (52.2%) activity. It seems PGP traits do not work independently of each other but additively as it was suggested in the "synergistic hypothesis" that multiple mechanisms are responsible for the plant growth promotion and increased yield. Findings of this study could improve the current bio-fertilizer production procedure in research and related industries.
Collapse
Affiliation(s)
- Somayeh Emami
- Department of Soil Science Engineering, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj, 31587-77871, Iran.
| | - Hossein Ali Alikhani
- Department of Soil Science Engineering, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj, 31587-77871, Iran
| | - Ahmad Ali Pourbabaei
- Department of Soil Science Engineering, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj, 31587-77871, Iran
| | - Hassan Etesami
- Department of Soil Science Engineering, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj, 31587-77871, Iran
| | - Fereydoon Sarmadian
- Department of Soil Science Engineering, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj, 31587-77871, Iran
| | - Babak Motessharezadeh
- Department of Soil Science Engineering, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj, 31587-77871, Iran
| |
Collapse
|
12
|
Kong W, Li Q, Li X, Su Y, Yue Q, Gao B. A biodegradable biomass-based polymeric composite for slow release and water retention. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 230:190-198. [PMID: 30286348 DOI: 10.1016/j.jenvman.2018.09.086] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 09/01/2018] [Accepted: 09/23/2018] [Indexed: 06/08/2023]
Abstract
Slow-release fertilizer has been proven to be more effective than traditional fertilizer for providing a long-term stable nutrient supply. Although such fertilizers have been widely investigated, their water-retention properties and biodegradability have not been fully analysed. Composites of fertilizers and polymers provide opportunities to prepare new types of fertilizer with enhanced properties for real applications. Chicken feather protein-graft-poly(potassium acrylate)-polyvinyl alcohol semi-interpenetrating networks forming a super absorbent resin combined with nitrogen (N) and phosphorus (P) (CFP-g-PKA/PVA/NP semi-IPNs SAR) was prepared. The chemically bonded or physically embedded fertilizer compound could be released form the resin matrix to the surrounding soil under irrigation. The synthesis mechanism, morphology, and chemical and mechanical structure of the synthesized composites were investigated. The reactant doses were optimized through response surface methodology (RSM). A 30-day field trial of the prepared SAR was applied to detect the influence of sample particle size, soil salinity, pH, and moisture content on the slow-release behaviour of N and P. The maximum release values of N and P from the composites were 69.46% N and 65.23% P. A 120-day soil burying experiment and 30-day Aspergillus niger (A. niger) inoculation were performed, and the biodegradability and change in microstructure were monitored. The addition of SAR to soil could also improve the water-retention ability of the soil.
Collapse
Affiliation(s)
- Wenjia Kong
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Qian Li
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China.
| | - Xiaodi Li
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Yuan Su
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China; School of Mathematic and Quantitative Economics, Shandong University of Finance and Economics, Jinan 250100, China
| | - Qinyan Yue
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Baoyu Gao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
13
|
Comparative Study of Natural Radioactivity and Radiological Hazard Parameters of Various Imported Tiles Used for Decoration in Sudan. Symmetry (Basel) 2018. [DOI: 10.3390/sym10120746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Various commercially imported ceramic materials used in the building of Sudanese dwellings were examined in order to determine their natural radioactivity and radiological hazard parameters. In this context, twenty-five different consignments were sampled and analyzed using (3″ × 3″) sodium iodide gamma spectrometry system NaI(Tl). The identified average activity concentrations of 238U, 232Th, and 40K were 183 ± 70, 51 ± 44, and 238 ± 77 Bq/kg dry-weights, respectively. A positive correlation between 238U and 232Th in the investigated samples was identified from the observed significant correlation (R2 = 0.8). Interestingly, a low Th/U ratio (~0.3) was recorded, which could be related to the systematic loss of thorium during the fabrication process. The measured activity concentrations for these radionuclides were comparable with the reported data obtained from similar materials used in other countries showing similarity in ceramic materials used in buildings. Five different radiation indices, such as the average radium equivalent (Raeq), the absorbed dose rate (D), the annual effective dose equivalent (AEDE), the external hazard index (Hex), and the radioactivity level index (lγ), which indicate hazardous radiation, were estimated from these measurements. The obtained results revealed average values of 274 ± 106 Bq/kg, 125 ± 48 nGy/h, 1.23 ± 0.48 mSv/y, 0.74 ± 0.29, and 0.94 ± 0.37, for Raeq, D, AEDE, Hex, and lγ, respectively. The mean values of Raeq and Hex were in good agreement with the international limits, while the means of D and lγ were higher than the universal values. Calculated AEDE in about 60% of the samples exceeded the universal limit of 1 mSv/y for the public exposure (maximum value of 2.16 mSv/y). The investigated parameters were in the same range for the majority of imported samples; however, they were slightly higher than the locally produced ceramic, highlighting the importance of monitoring imported materials for their radioactivity contents.
Collapse
|
14
|
Jónás J, Somlai J, Csordás A, Tóth-Bodrogi E, Kovács T. Radiological survey of the covered and uncovered drilling mud depository. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2018; 188:30-37. [PMID: 29103632 DOI: 10.1016/j.jenvrad.2017.10.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/31/2017] [Accepted: 10/31/2017] [Indexed: 06/07/2023]
Abstract
In petroleum engineering, the produced drilling mud sometimes contains elevated amounts of natural radioactivity. In this study, a remediated Hungarian drilling mud depository was investigated from a radiological perspective. The depository was monitored before and after a clay layer was applied as covering. In this study, the ambient dose equivalent rate H*(10) of the depository has been measured by a Scintillator Probe (6150AD-b Dose Rate Meter). Outdoor radon concentration, radon concentration in soil gas, and in situ field radon exhalation measurements were carried out using a pulse-type ionization chamber (AlphaGUARD radon monitor). Soil gas permeability (k) measurements were carried out using the permeameter (RADON-JOK) in situ device. Geogenic radon potentials were calculated. The radionuclide content of the drilling mud and cover layer sample has been determined with an HPGe gamma-spectrometer. The gamma dose rate was estimated from the measured radionuclide concentrations and the results were compared with the measured ambient dose equivalent rate. Based on the measured results before and after covering, the ambient dose equivalent rates were 76 (67-85) nSv/h before and 86 (83-89) nSv/h after covering, radon exhalation was 9 (6-12) mBq/m2s before and 14 (5-28) mBq/m2s after covering, the outdoor radon concentrations were 11 (9-16) before and 13 (10-22) Bq/m3after covering and the soil gas radon concentrations were 6 (3-8) before and 24 (14-40) kBq/m3 after covering. Soil gas permeability measurements were 1E-11 (7E-12-1E-11) and 1E-12 (5E-13-1E-12) m2 and the calculated geogenic radon potential values were 6 (3-8) and 12 (6-21) before and after the covering. The main radionuclide concentrations of the drilling mud were CU-238 12 (10-15) Bq/kg, CRa-226 31 (18-40) Bq/kg, CTh-232 35 (33-39) Bq/kg and CK-40 502 (356-673) Bq/kg. The same radionuclide concentrations in the clay were CU-238 31 (29-34) Bq/kg, CRa-226 45 (40-51) Bq/kg, CTh-232 58 (55-60) Bq/kg and CK-40 651 (620-671) Bq/kg. According to our results, the drilling mud depository exhibits no radiological risk from any radiological aspects (radon, radon exhalation, gamma dose, etc.); therefore, long term monitoring activity is not necessary from the radiological point of view.
Collapse
Affiliation(s)
- Jácint Jónás
- Institute of Radiochemistry and Radioecology, University of Pannonia, 10 Egyetem Str., H-8200 Veszprém, Hungary; NORM Hungary Kft., Hungary
| | - János Somlai
- Institute of Radiochemistry and Radioecology, University of Pannonia, 10 Egyetem Str., H-8200 Veszprém, Hungary
| | - Anita Csordás
- Institute of Radiochemistry and Radioecology, University of Pannonia, 10 Egyetem Str., H-8200 Veszprém, Hungary
| | - Edit Tóth-Bodrogi
- Institute of Radiochemistry and Radioecology, University of Pannonia, 10 Egyetem Str., H-8200 Veszprém, Hungary
| | - Tibor Kovács
- Institute of Radiochemistry and Radioecology, University of Pannonia, 10 Egyetem Str., H-8200 Veszprém, Hungary; Social Organization for Radioecological Cleanliness, Hungary.
| |
Collapse
|
15
|
Gross alpha, gross beta and activity concentration of 226Ra in some fertilizers commonly used in the south of Vietnam and health risk due to radionuclides transferred from fertilizers to food crops. J Radioanal Nucl Chem 2018. [DOI: 10.1007/s10967-018-5858-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
16
|
Hegedűs M, Tóth-Bodrogi E, Jónás J, Somlai J, Kovács T. Mobility of 232Th and 210Po in red mud. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2018; 184-185:71-76. [PMID: 29367087 DOI: 10.1016/j.jenvrad.2018.01.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 01/04/2018] [Accepted: 01/15/2018] [Indexed: 06/07/2023]
Abstract
The valorization of industrial by-products such as red mud became a tempting opportunity, but the understanding of the risks involved is required for the safe utilization of these products. One of the risks involved are the elevated levels of radionuclides (in the 100-1300 Bq/kg range for both the 238U and 232 Th decay chains, but usually lower than 1000 Bq/kg, which is the recommended limit for excemption or clearance according to the EU BSS released in 2013) in red mud that can affect human health. There is no satisfactory answer for the utilization of red mud; the main current solution is still almost exclusively disposal into a landfill. For the safe utilization and deposition of red mud, it is important to be able to assess the leaching behaviour of radionuclides. Because there is no commonly accepted measurement protocol for testing the leaching of radionuclides in the EU a combined measurement protocol was made and tested based on heavy metal leaching methods. The leaching features of red mud were studied by methods compliant with the MSZ-21470-50 Hungarian standard, the CEN/TS 14429 standard and the Tessier sequential extraction method for 232Th and 210Po. The leached solutions were taken to radiochemical separation followed by spontaneous deposition for Po and electrodeposition for Th. The 332 ± 33 Bq/kg 232Th content was minimally mobile, 1% became available for distilled water 1% and 6% for Lakanen-Erviö solution; the Tessier extraction showed minimal mobility in the first four steps, while more than 85% remained in the residue. The 210Po measurements had a severe disturbing effect in many cases, probably due to large amounts of iron present in the red mud, from the 310 ± 12 Bq/kg by aqua regia digestion, distilled water mobilized 23%, while Lakanen-Erviö solution mobilized ∼13%. The proposed protocol is suitable for the analysis of Th and Po leaching behaviour.
Collapse
Affiliation(s)
- Miklós Hegedűs
- Institute of Radiochemistry and Radioecology, University of Pannonia, 10 Egyetem Str., H-8200, Veszprém, Hungary
| | - Edit Tóth-Bodrogi
- Institute of Radiochemistry and Radioecology, University of Pannonia, 10 Egyetem Str., H-8200, Veszprém, Hungary
| | - Jácint Jónás
- Institute of Radiochemistry and Radioecology, University of Pannonia, 10 Egyetem Str., H-8200, Veszprém, Hungary
| | - János Somlai
- Institute of Radiochemistry and Radioecology, University of Pannonia, 10 Egyetem Str., H-8200, Veszprém, Hungary
| | - Tibor Kovács
- Institute of Radiochemistry and Radioecology, University of Pannonia, 10 Egyetem Str., H-8200, Veszprém, Hungary.
| |
Collapse
|