1
|
Sun Y, Xia Q, Du L, Gan Y, Ren X, Liu G, Wang Y, Yan S, Li S, Zhang X, Xiao X, Jin H. Neuroprotective effects of Anshen Bunao Syrup on cognitive dysfunction in Alzheimer's disease rat models. Biomed Pharmacother 2024; 176:116754. [PMID: 38810401 DOI: 10.1016/j.biopha.2024.116754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/31/2024] Open
Abstract
Alzheimer's disease (AD) presents a significant challenge due to its prevalence and lack of cure, driving the quest for effective treatments. Anshen Bunao Syrup, a traditional Chinese medicine known for its neuroprotective properties, shows promise in addressing this need. However, understanding its precise mechanisms in AD remains elusive. This study aimed to investigate Anshen Bunao Syrup's therapeutic potential in AD treatment using a scopolamine-induced AD rat model. Assessments included novel-object recognition and Morris water maze tasks to evaluate spatial learning and memory, alongside Nissl staining and ELISA analyses for neuronal damage and biomarker levels. Results demonstrated that Anshen Bunao Syrup effectively mitigated cognitive dysfunction by inhibiting amyloid-β and phosphorylation Tau aggregation, thereby reducing neuronal damage. Metabolomics profiling of rats cortex revealed alterations in key metabolites implicated in tryptophan and fatty acid metabolism pathways, suggesting a role in the therapeutic effects of Anshen Bunao Syrup. Additionally, ELISA and correlation analyses indicated attenuation of oxidative stress and immune response through metabolic remodeling. In conclusion, this study provides compelling evidence for the neuroprotective effects of Anshen Bunao Syrup in AD models, shedding light on its potential as a therapeutic agent for AD prevention and treatment.
Collapse
Affiliation(s)
- Yuanfang Sun
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Qi Xia
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Lijing Du
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yu Gan
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xiaopeng Ren
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Institute of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Gang Liu
- Jilin Aodong Yanbian Pharmaceutical Co., Ltd., Yanbian 133700, China
| | - Yongkuan Wang
- Jilin Aodong Yanbian Pharmaceutical Co., Ltd., Yanbian 133700, China
| | - Shikai Yan
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; Institute of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Shasha Li
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xiuyun Zhang
- Jilin Aodong Yanbian Pharmaceutical Co., Ltd., Yanbian 133700, China.
| | - Xue Xiao
- Institute of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Huizi Jin
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
2
|
Cha J, Yun JH, Choi JH, Lee JH, Choi BT, Shin HK. Preclinical Evidence and Underlying Mechanisms of Polygonum multiflorum and Its Chemical Constituents Against Cognitive Impairments and Alzheimer's Disease. J Pharmacopuncture 2024; 27:70-81. [PMID: 38948308 PMCID: PMC11194523 DOI: 10.3831/kpi.2024.27.2.70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 02/16/2024] [Accepted: 03/05/2024] [Indexed: 07/02/2024] Open
Abstract
Objectives Cognitive impairments, ranging from mild to severe, adversely affect daily functioning, quality of life, and work capacity. Despite significant efforts in the past decade, more than 200 promising drug candidates have failed in clinical trials. Herbal remedies are gaining interest as potential treatments for dementia due to their long history and safety, making them valuable for drug development. This review aimed to examine the mechanisms behind the effect of Polygonum multiflorum on cognitive function. Methods This study focused primarily on the effects of Polygonum multiflorum and its chemical constituents on cognitive behavioral outcomes including the Morris water maze, the passive avoidance test, and the Y maze, as well as pathogenic targets of cognitive impairment and Alzheimer's disease (AD) like amyloid deposition, amyloid precursor protein, tau hyperphosphorylation, and cognitive decline. Additionally, a thorough evaluation of the mechanisms behind Polygonum multiflorum's impact on cognitive function was conducted. We reviewed the most recent data from preclinical research done on experimental models, particularly looking at Polygonum multiflorum's effects on cognitive decline and AD. Results According to recent research, Poligonum multiflorum and its bioactive components, stilbene, and emodin, influence cognitive behavioral results and regulate the pathological target of cognitive impairment and AD. Their mechanisms of action include reducing oxidative and mitochondrial damage, regulating neuroinflammation, halting apoptosis, and promoting increased neurogenesis and synaptogenesis. Conclusion This review serves as a comprehensive compilation of current experiments on AD and other cognitive impairment models related to the therapeutic effects of Polygonum multiflorum. We believe that these findings can serve as a basis for future clinical trials and have potential applications in the treatment of human neurological disorders.
Collapse
Affiliation(s)
- Jihyun Cha
- Department of Korean Medicine, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Ji Hwan Yun
- Department of Korean Medicine, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Ji Hye Choi
- Department of Korean Medicine, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Jae Ho Lee
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
- Graduate Training Program of Korean Medical Therapeutics for Healthy Aging, Pusan National University, Yangsan, Republic of Korea
| | - Byung Tae Choi
- Department of Korean Medicine, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
- Graduate Training Program of Korean Medical Therapeutics for Healthy Aging, Pusan National University, Yangsan, Republic of Korea
| | - Hwa Kyoung Shin
- Department of Korean Medicine, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
- Graduate Training Program of Korean Medical Therapeutics for Healthy Aging, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
3
|
Chakkittukandiyil A, Chakraborty S, Kothandan R, Rymbai E, Muthu SK, Vasu S, Sajini DV, Sugumar D, Mohammad ZB, Jayaram S, Rajagopal K, Ramachandran V, Selvaraj D. Side effects based network construction and drug repositioning of ropinirole as a potential molecule for Alzheimer's disease: an in-silico, in-vitro, and in-vivo study. J Biomol Struct Dyn 2023; 42:10785-10799. [PMID: 37723871 DOI: 10.1080/07391102.2023.2258968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 09/08/2023] [Indexed: 09/20/2023]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia in older adults. Drug repositioning is a process of finding new therapeutic applications for existing drugs. One of the methods in drug repositioning is to use the side-effect profile of a drug to identify a new therapeutic indication. The drugs with similar side-effects may act on similar biological targets and could affect the same biochemical process. In this study, we explored the Food and Drug Administration-approved drugs using PROMISCUOUS database to find those that have adverse effects profile comparable with the ligands being studied or used to treat AD. Here, we found that the ropinirole, a dopamine receptor agonist, shared a maximum number of side-effects with the drugs proven beneficial for treating AD. Furthermore, molecular modelling demonstrated that ropinirole exhibited strong binding affinity (-9.313 kcal/mol) and best ligand efficiency (0.49) with sigma-1 receptor. Here, we observed that the quaternary amino group of ropinirole is essential for binding with sigma-1 receptor. Molecular dynamic simulation indicated that the movement of the carboxy-terminal helices (α4/α5) could play a major role in the receptor's physiological functions. The neurotoxicity induced by Aβ25-35 in SH-SY5Y cells was reduced by ropinirole at concentrations 10, 30, and 50 µM. The effect on spatial learning and memory was examined in mice with Aβ25-35 induced memory deficit using the radial arm maze. Ropinirole (10 and 20 mg/kg) significantly improved the short and long-term memories in the radial arm maze test. Our results suggest that ropinirole has the potential to be repositioned for AD treatment.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Amritha Chakkittukandiyil
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Saurav Chakraborty
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Ram Kothandan
- Bioinformatics Laboratory, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, Tamil Nadu, India
| | - Emdormi Rymbai
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Santhosh Kumar Muthu
- Department of Biochemistry, Kongunadu Arts and Science College, GN Mills, Coimbatore, Tamil Nadu, India
| | - Soumya Vasu
- Department of Pharmaceutical Chemistry, Sri Ramachandra Institute of Higher Education & Research, Porur, Chennai, Tamil Nadu, India
| | - Deepak Vasudevan Sajini
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Deepa Sugumar
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Zubair Baba Mohammad
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Saravanan Jayaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Kalirajan Rajagopal
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Vadivelan Ramachandran
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Divakar Selvaraj
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| |
Collapse
|
4
|
Chiou JS, Chou CH, Ho MW, Tien N, Liang WM, Chiu ML, Tsai FJ, Wu YC, Chou IC, Lu HF, Lin TH, Liao CC, Huang SM, Li TM, Lin YJ. Effect of Chinese herbal medicine therapy on risks of all-cause mortality, infections, parasites, and circulatory-related mortality in HIV/AIDS patients with neurological diseases. Front Pharmacol 2023; 14:1097862. [PMID: 36937878 PMCID: PMC10020503 DOI: 10.3389/fphar.2023.1097862] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction: Long-term living with human immunodeficiency virus (HIV) and/or antiretroviral therapy (ART) is associated with various adverse effects, including neurocognitive impairment. Heterogeneous neurocognitive impairment remains an important issue, affecting between 15-65% of human immunodeficiency virus infection and acquired immunodeficiency syndrome (HIV/AIDS) patients and resulting in work performance, safety, and health-related outcomes that have a heavy economic burden. Methods: We identified 1,209 HIV/AIDS patients with neurological diseases during 2010-2017. The Kaplan-Meier method, log-rank test, and Cox proportional hazards model were used to analyze 308 CHM users and 901 non-CHM users within this population. Major CHM clusters were determined using association rule mining and network analysis. Results and Discussion: Results showed that CHM users had a 70% lower risk of all-cause mortality (adjusted hazard ratio (aHR) = 0.30, 95% confidence interval (CI):0.16-0.58, p < 0.001) (p = 0.0007, log-rank test). Furthermore, CHM users had an 86% lower risk of infections, parasites, and circulatory-related mortality (aHR = 0.14, 95% confidence interval (CI):0.04-0.46, p = 0.001) (p = 0.0010, log-rank test). Association rule mining and network analysis showed that two CHM clusters were important for patients with neurological diseases. In the first CHM cluster, Huang Qin (HQ; root of Scutellaria baicalensis Georgi), Gan Cao (GC; root of Glycyrrhiza uralensis Fisch.), Huang Lian (HL; root of Coptis chinensis Franch.), Jie Geng (JG; root of Platycodon grandiflorus (Jacq.) A.DC.), and Huang Bai (HB; bark of Phellodendron amurense Rupr.) were identified as important CHMs. Among them, the strongest connection strength was identified between the HL and HQ. In the second CHM cluster, Suan-Zao-Ren-Tang (SZRT) and Ye Jiao Teng (YJT; stem of Polygonum multiflorum Thunb.) were identified as important CHMs with the strongest connection strength. CHMs may thus be effective in treating HIV/AIDS patients with neurological diseases, and future clinical trials are essential for the prevention of neurological dysfunction in the population.
Collapse
Affiliation(s)
- Jian-Shiun Chiou
- PhD Program for Health Science and Industry, College of Healthcare, China Medical University, Taichung, Taiwan
| | - Chen-Hsing Chou
- PhD Program for Health Science and Industry, College of Healthcare, China Medical University, Taichung, Taiwan
| | - Mao-Wang Ho
- Section of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
- Department of Internal Medicine, School of Medicine, China Medical University, Taichung, Taiwan
| | - Ni Tien
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Wen-Miin Liang
- Department of Health Services Administration, China Medical University, Taichung, Taiwan
| | - Mu-Lin Chiu
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Fuu-Jen Tsai
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Department of Biotechnology and Bioinformatics, Asia University, Taichung, Taiwan
- Department of Pediatrics, China Medical University Children’s Hospital, Taichung, Taiwan
| | - Yang-Chang Wu
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - I-Ching Chou
- Department of Pediatrics, China Medical University Children’s Hospital, Taichung, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - Hsing-Fang Lu
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Ting-Hsu Lin
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Chiu-Chu Liao
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Shao-Mei Huang
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Te-Mao Li
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- *Correspondence: Te-Mao Li, ; Ying-Ju Lin,
| | - Ying-Ju Lin
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- *Correspondence: Te-Mao Li, ; Ying-Ju Lin,
| |
Collapse
|
5
|
Cai Z, Liu M, Zeng L, Zhao K, Wang C, Sun T, Li Z, Liu R. Role of traditional Chinese medicine in ameliorating mitochondrial dysfunction via non-coding RNA signaling: Implication in the treatment of neurodegenerative diseases. Front Pharmacol 2023; 14:1123188. [PMID: 36937876 PMCID: PMC10014574 DOI: 10.3389/fphar.2023.1123188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/17/2023] [Indexed: 03/05/2023] Open
Abstract
Neurodegenerative diseases (NDs) are common chronic disorders associated with progressive nervous system damage, including Alzheimer's disease, Parkinson's disease, and Huntington's disease, among others. Mitochondria are abundant in various nervous system cells and provide a bulk supply of the adenosine triphosphate necessary for brain function, considered the center of the free-radical theory of aging. One common feature of NDs is mitochondrial dysfunction, which is involved in many physiopathological processes, including apoptosis, inflammation, oxidative stress, and calcium homeostasis. Recently, genetic studies revealed extensive links between mitochondrion impairment and dysregulation of non-coding RNAs (ncRNAs) in the pathology of NDs. Traditional Chinese medicines (TCMs) have been used for thousands of years in treating NDs. Numerous modern pharmacological studies have demonstrated the therapeutic effects of prescription, herbal medicine, bioactive ingredients, and monomer compounds of TCMs, which are important for managing the symptoms of NDs. Some highly effective TCMs exert protective effects on various key pathological features regulated by mitochondria and play a pivotal role in recovering disrupted signaling pathways. These disrupted signaling pathways are induced by abnormally-expressed ncRNAs associated with mitochondrial dysfunction, including microRNAs, long ncRNAs, and circular RNAs. In this review, we first explored the underlying ncRNA mechanisms linking mitochondrial dysfunction and neurodegeneration, demonstrating the implication of ncRNA-induced mitochondrial dysfunction in the pathogenesis of NDs. The ncRNA-induced mitochondrial dysfunctions affect mitochondrial biogenesis, dynamics, autophagy, Ca2+ homeostasis, oxidative stress, and downstream apoptosis. The review also discussed the targeting of the disease-related mitochondrial proteins in NDs and the protective effects of TCM formulas with definite composition, standardized extracts from individual TCMs, and monomeric compounds isolated from TCM. Additionally, we explored the ncRNA regulation of mitochondrial dysfunction in NDs and the effects and potential mechanisms of representative TCMs in alleviating mitochondrial pathogenesis and conferring anti-inflammatory, antioxidant, and anti-apoptotic pathways against NDs. Therefore, this review presents an overview of the role of mitochondrion-related ncRNAs and the target genes for TCM-based therapeutic interventions in NDs, providing insight into understanding the "multi-level compound-target-pathway regulatory" treatment mechanism of TCMs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Rui Liu
- *Correspondence: Zhuorong Li, ; Rui Liu,
| |
Collapse
|
6
|
Yu H, Duan B, Wang Q, Feng L, Gu L, Weng Y. Chemical Constituents of the Roots of Fallopia multiflora. Chem Nat Compd 2022. [DOI: 10.1007/s10600-022-03637-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Park S, Lee J. Modulation of Hair Growth Promoting Effect by Natural Products. Pharmaceutics 2021; 13:pharmaceutics13122163. [PMID: 34959442 PMCID: PMC8706577 DOI: 10.3390/pharmaceutics13122163] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 02/04/2023] Open
Abstract
A large number of people suffer from alopecia or hair loss worldwide. Drug-based therapies using minoxidil and finasteride for the treatment of alopecia are available, but they have shown various side effects in patients. Thus, the use of new therapeutic approaches using bioactive products to reduce the risk of anti-hair-loss medications has been emphasized. Natural products have been used since ancient times and have been proven safe, with few side effects. Several studies have demonstrated the use of plants and their extracts to promote hair growth. Moreover, commercial products based on these natural ingredients have been developed for the treatment of alopecia. Several clinical, animal, and cell-based studies have been conducted to determine the anti-alopecia effects of plant-derived biochemicals. This review is a collective study of phytochemicals with anti-alopecia effects, focusing mainly on the mechanisms underlying their hair-growth-promoting effects.
Collapse
Affiliation(s)
- Seyeon Park
- Department of Applied Chemistry, Dongduk Women’s University, Seoul 02748, Korea;
| | - Joomin Lee
- Department of Food and Nutrition, Chosun University, Gwangju 61452, Korea
- Correspondence: ; Tel.: +82-62-230-7722
| |
Collapse
|
8
|
Sun ML, Chen XY, Cao JJ, Cui XH, Wang HB. Polygonum multiflorum Thunb extract extended the lifespan and healthspan of Caenorhabditis elegans via DAF-16/SIR-2.1/SKN-1. Food Funct 2021; 12:8774-8786. [PMID: 34374387 DOI: 10.1039/d1fo01908b] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polygonum multiflorum Thunb (PMT), as a traditional Chinese herbal medicine, has been widely used in the prevention and treatment of aging-related diseases, including Alzheimer's disease, Parkinson's disease, hyperlipidemia, atherosclerosis and inflammation. However, the effect of PMT on the lifespan and its molecular mechanisms are still unclear. Here we found that 60% ethanol refined fraction (PMT-E) of Polygonum multiflorum Thunb at 50 μg mL-1, which contained two main bioactive compounds, 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside (TSG) and emodin-8-O-β-D-glucoside (EG), could significantly increase the mean lifespan by 19.82%, delay the age-related decline of phenotypes, enhance stress resistance and reduce ROS accumulation in Caenorhabditis elegans. Moreover, we also found that the mitochondrial membrane potential (ΔΨ) and ATP content of worms treated with 50 μg mL-1 PMT-E were obviously improved. Further mechanistic studies revealed that DAF-16, SIR-2.1 and SKN-1 transcription factors were required for PMT-E-mediated lifespan extension. Finally, we found that PMT-E could significantly inhibit the toxicity induced by β-amyloid (Aβ) in Aβ transgenic worms. Altogether, these findings laid the foundation for the use of Polygonum multiflorum Thunb to treat aging and age-related diseases.
Collapse
Affiliation(s)
- Meng-Lu Sun
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Xin-Yan Chen
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Jin-Jin Cao
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Xiang-Huan Cui
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Hong-Bing Wang
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| |
Collapse
|
9
|
Teka T, Wang L, Gao J, Mou J, Pan G, Yu H, Gao X, Han L. Polygonum multiflorum: Recent updates on newly isolated compounds, potential hepatotoxic compounds and their mechanisms. JOURNAL OF ETHNOPHARMACOLOGY 2021; 271:113864. [PMID: 33485980 DOI: 10.1016/j.jep.2021.113864] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/04/2021] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polygonum multiflorum Thunb.(PM), (known as Heshouwu () in China) is one of the most important and well mentioned Chinese medicinal herbs in the literature for its use in blackening hair, nourishing liver and kidney, anti-aging, anti-hyperlipidemia, antioxidant, anti-inflammatory, anticancer, hepatoprotection, cardio-protection and improving age-related cognitive dysfunction. The purpose of this review is to give a comprehensive and recent update on PM: new compounds or isolated for the first time, potential hepatotoxic compounds and their mechanisms. Moreover, future perspectives and challenges in the future study of this plant are conversed which will make a new base for further study on PM. MATERIALS AND METHODS A comprehensive review of relevant published literature on PM using the scientific databases SCOPUS, PubMed, and Science Direct was done. RESULTS PM is broadly produced in many provinces of China and well known in other Eastern Asian Countries for its ethno-medical uses. Previous phytochemical investigation of PM had led to the isolation of more than 175 compounds including recently isolated 70 new compounds. Most of the new compounds isolated after 2015 are majorly dianthrone glycosides and stilbene glycosides. Processing has also a significant effect on chemical composition, pharmacological activities, and toxicity of PM. PM-induced liver injury is increasing after the first report in Hong Kong in 1996. Hepatotoxicity of PM was constantly reported in Japan, Korea, China, Australia, Britain, Italy, and other countries although its toxicity is related to idiosyncratic hepatotoxicity. More interestingly, although there is indispensable interest to predict idiosyncratic hepatotoxicity of PM and understand its mechanisms, the responsible hepatotoxic compounds and mechanisms of liver damage induced by PM are still not clear. There is a big controversy on the identification of the most responsible constituent. Anthraquinone and stilbene compounds in PM, mainly emodine and TSG are mentioned in the literature to be the main responsible hepatotoxic compounds. However, comparing the two compounds, which one is the more critical toxic agent for PM-induced hepatotoxicity is not well answered. Affecting different physiological and metabolic pathways such as oxidative phosphorylation and TCA cycle pathway, metabolic pathways, bile acid excretion pathway and genetic polymorphisms are among the mechanisms of hepatotoxicity of PM. CONCLUSION Deeper and effective high throughput experimental studies are still research hotspots to know the most responsible constituent and the mechanism of PM-induced hepatotoxicity.
Collapse
Affiliation(s)
- Tekleab Teka
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China; Department of Pharmacy, College of Medicine and Health Sciences, Wollo University, P. O. Box 1145, Dessie, Ethiopia
| | - Liming Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China
| | - Jian Gao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China
| | - Jiajia Mou
- Department of Medicinal Chemistry, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China
| | - Guixiang Pan
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, 69 Zengchan Road, Hebei District, Tianjin, 300250, PR China
| | - Haiyang Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China
| | - Xiumei Gao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China
| | - Lifeng Han
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China.
| |
Collapse
|
10
|
Protective Effect of Processed Polygoni multiflori Radix and Its Major Substance during Scopolamine-Induced Cognitive Dysfunction. Processes (Basel) 2021. [DOI: 10.3390/pr9020342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common cognitive disorder in the elderly population. However, effective pharmacological agents targeting AD have not been developed. The processed Polygoni multiflori Radix (PPM) and its main active substance, 2,3,5,4′-tetrahydroxystilbene-2-O-β-glucoside (TSG), has received considerable attention, majorly due to its neuroprotective activities against multiple biological activities within the human body. In this study, we provide new evidence on the therapeutic effect of PPM and TSG during cognitive impairment by evaluating the ameliorative potential of PPM and TSG in scopolamine-induced amnesia in ICR mice. PPM (100 or 200 mg/kg) was orally administered during the experimental period (days 1–15), and scopolamine was intraperitoneally injected to induce cognitive deficits during the behavioural test periods (days 8–15). The administration of PPM and TSG significantly improved memory loss and cognitive dysfunction in behavioural tests and regulated the cholinergic function, brain-derived neurotrophic factor, and neural apoptosis. The present study suggests that PPM and TSG improved scopolamine-induced cognitive dysfunction, but further study has to be supported for the clinical application of PPM and TSG for AD prevention and treatment.
Collapse
|
11
|
Chen CJ, Liu X, Chiou JS, Hang LW, Li TM, Tsai FJ, Ko CH, Lin TH, Liao CC, Huang SM, Liang WM, Lin YJ. Effects of Chinese herbal medicines on dementia risk in patients with sleep disorders in Taiwan. JOURNAL OF ETHNOPHARMACOLOGY 2021; 264:113267. [PMID: 32822822 DOI: 10.1016/j.jep.2020.113267] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/18/2020] [Accepted: 08/08/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sleep disorders affect an estimated 150 million people worldwide and result in adverse health, safety, and work performance-related outcomes that have important economic consequences. In Taiwan, Chinese herbal medicine (CHM) is a complementary natural medicine and has been widely used as an adjunctive therapy. AIM OF THE STUDY This study aimed to investigate the effect of CHM on dementia risk in patients with sleep disorders in Taiwan. MATERIALS AND METHODS We identified 124,605 patients with sleep disorders between the ages of 20 and 60 years. Of these, 5876 CHM users and 5876 non-CHM users were matched according to age and gender. The chi-squared test, Cox proportional hazard model, Kaplan-Meier method, and log-rank test were used for the comparisons. Association rule mining and network analysis were applied to determine a CHM pattern specialized for sleep disorders. RESULTS More CHM users did not use sleeping pills than non-CHM users. CHM users had a lower risk of dementia than non-CHM users after adjusting for age, gender, and sleeping pill use (hazard ratio (HR): 0.469, 95% CI = 0.289-0.760; p-value = 0.002). The cumulative incidence of dementia was lower among CHM users (long-rank test, p-value < 0.001). Association rule mining and network analysis showed that Ye-Jiao-Teng (YJT; Caulis Polygoni Multiflori; Polygonum multiflorum Thunb), Suan-Zao-Ren-Tang (SZRT), Jia-Wei-Xiao-Yao-San (JWXYS), He-Huan-Pi (HHP; Cortex Albizziae; Albizia julibrissin Durazz.), and Suan-Zao-Ren (SZR; Semen Zizyphi Spinosae; Ziziphus jujuba Mill.) were important CHMs for patients with sleep disorders in Taiwan. CONCLUSIONS A comprehensive list of herbal medicines may be useful for the clinical treatment of patients with sleep disorders, and for future scientific investigations into the prevention of dementia in these patients.
Collapse
Affiliation(s)
- Chao-Jung Chen
- Genetic Center, Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan; Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan.
| | - Xiang Liu
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Gaithersburg, MD, USA.
| | - Jian-Shiun Chiou
- Department of Health Services Administration, China Medical University, Taichung, Taiwan.
| | - Liang-Wen Hang
- Sleep Medicine Center, Department of Pulmonary and Critical Care Medicine, China Medical University Hospital, Taichung, Taiwan; Department of Respiratory Therapy, College of Health Care, China Medical University, Taichung, Taiwan.
| | - Te-Mao Li
- School of Chinese Medicine, China Medical University, Taichung, Taiwan.
| | - Fuu-Jen Tsai
- Genetic Center, Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan; School of Chinese Medicine, China Medical University, Taichung, Taiwan; Department of Biotechnology and Bioinformatics, Asia University, Taichung, Taiwan.
| | - Cheng-Hang Ko
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan.
| | - Ting-Hsu Lin
- Genetic Center, Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.
| | - Chiu-Chu Liao
- Genetic Center, Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.
| | - Shao-Mei Huang
- Genetic Center, Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.
| | - Wen-Miin Liang
- Department of Health Services Administration, China Medical University, Taichung, Taiwan.
| | - Ying-Ju Lin
- Genetic Center, Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan; School of Chinese Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
12
|
Guo HY, Lu ZY, Zhao B, Jiang WW, Xiong YH, Wang K. Effects of Bunao-Fuyuan decoction serum on proliferation and migration of vascular smooth muscle cells in atherosclerotic. Chin J Nat Med 2021; 19:36-45. [PMID: 33516450 DOI: 10.1016/s1875-5364(21)60004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Indexed: 11/28/2022]
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease, the main causes of which include abnormal lipid metabolism, endothelial injury, physical and chemical injury, hemodynamic injury, genetic factors and so on. These causes can lead to inflammatory injury of blood vessels and local dysfunction. Bunao-Fuyuan decoction (BNFY) is a traditional Chinese medicine compound that can treat cardiovascular and cerebrovascular diseases, but its effect on AS is still unknown. The aim of this study was to investigate the effect and mechanism of BNFY in proliferation and migration of vascular smooth muscle cells (VSMCs) on AS. At first, the expression of α-SMA protein in ox-LDL-induced VSMCs, which was detected by immunofluorescence staining and western blot. CCK-8 technique and cloning technique were used to detect the cell proliferation of ox-LDL-induced VSMCs after adding BNFY. Meanwhile, the expression of proliferating protein Ki67 was detected by immunofluorescence staining. Western blot was also used to detect the expression of proliferation-related proteins CDK2, CyclinE1 and P27. Flow cytometry was used to detect the effect of BNFY on cell cycle. The effects of BNFY on proliferation and migration of cells were detected by cell scratch test and Transwell. Western blot was used to detect the expression of adhesion factors ICAM1, VCAM1, muc1, VE-cadherin and RHOA/ROCK-related proteins in cells. We found that the expression of AS marker α-SMA protein increased significantly and cells shriveled and a few floated on the medium after induction of ox-LDL on VSCMs. The proliferation rate of ox-LDL VSMCs decreased significantly after adding different doses of BNFY, and BNFY can inhibit cell cycle. Meanwhile, we also found that cell invasion and migration rate were significantly inhibited and related cell adhesion factors ICAM1, VCAM1, muc1 and VE-cadherin were inhibited too by BNFY. Finally, we found that BNFY inhibited the expression of RHOA, ROCK1, ROCK2, p-MLC proteins in the RHOA/ROCK signaling pathway. Therefore, we can summarize that BNFY may inhibit the proliferation and migration of atherosclerotic vascular smooth muscle cells by inhibiting the activity of RHOA/ROCK signaling pathway.
Collapse
Affiliation(s)
- Huan-Yu Guo
- Department of FSTC Clinic of the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Zhen-Ya Lu
- Department of FSTC Clinic of the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Bo Zhao
- Department of FSTC Clinic of the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Wen-Wei Jiang
- Department of Internal Medicine of Traditional Chinese Medicine, Huzhou Central Hospital, Huzhou 310003, China
| | - Yan-Hua Xiong
- Department of Internal Medicine of Traditional Chinese Medicine, Zhejiang Hospital, Hangzhou 310007, China
| | - Kai Wang
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
13
|
Verification of the Field Productivity and Bioequivalence of a Medicinal Plant ( Polygonum multiflorum) Developed Using an In Vitro Culture Method. PLANTS 2020; 9:plants9101280. [PMID: 32998335 PMCID: PMC7600867 DOI: 10.3390/plants9101280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/18/2020] [Accepted: 09/24/2020] [Indexed: 11/21/2022]
Abstract
Polygonum multiflorum Thunb. is a perennial plant that belongs to Polygonaceae. Root tissues are the main plant parts used as medicinal herbs in Korean oriental medicine. The P. multiflorum tuber is well known for its medicinal properties in Korean oriental medicine, and it contains a number of useful substances (secondary metabolites of emodin, 2,3,5,4′-tetrahydroxystilbene-2-O-β-d-glucoside (TSG), etc.) that are increasing in demand, as several studies show that they have beneficial effects on the human body. In this study, the production volumes and useful material content differences between cultured P. multiflorum seedlings (culture seedlings: CSs), which had been grown using a tissue culture technique under optimized conditions, and existing varieties in circulation (seed seedlings: SSs) were determined using a long-term field test. The growth characteristics of the underground parts were investigated by harvesting the tuberous roots (medicinal parts) after 1 year, and the results showed that the fresh and dry weights of the CS tubers were higher than those of the SS tubers. However, the SS rootlets had higher fresh and dry weights than the CS rootlets. A liquid chromatography-mass spectrometry component analysis of the P. multiflorum tubers and a Fourier transform near-infrared spectrophotometer analysis of the roots were undertaken. The results showed that the levels of TSG, which is a medicinal substance produced by P. multiflorum, were higher in the CSs than in the SSs, but the differences were not significant. The CS results from this study will inform future studies on the mass production of P. multiflorum in the field because the medicinal area was greater in CSs than in SSs.
Collapse
|
14
|
Li HY, Yang JB, Li WF, Qiu CX, Hu G, Wang ST, Song YF, Gao HY, Liu Y, Wang Q, Wang Y, Cheng XL, Wei F, Jin HT, Ma SC. In vivo hepatotoxicity screening of different extracts, components, and constituents of Polygoni Multiflori Thunb. in zebrafish (Danio rerio) larvae. Biomed Pharmacother 2020; 131:110524. [PMID: 33152900 DOI: 10.1016/j.biopha.2020.110524] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/07/2020] [Accepted: 07/11/2020] [Indexed: 12/18/2022] Open
Abstract
Polygonum multiflorum Thunb. (PM) is a traditional Chinese medicine, commonly used to treat a variety of diseases. However, the hepatotoxicity associated with PM hampers its clinical application and development. In this study, we refined the zebrafish hepatotoxicity model with regard to the following endpoints: liver size, liver gray value, and the area of yolk sac. The levels of alanine aminotransferase, aspartate transaminase, albumin, and microRNAs-122 were evaluated to verify the model. Subsequently, this model was used to screen different extracts, components, and constituents of PM, including 70 % EtOH extracts of PM, four fractions from macroporous resin (components A, B, C, and D), and 19 compounds from component D. We found that emodin, chrysophanol, emodin-8-O-β-D-glucopyranoside, (cis)-emodin-emodin dianthrones, and (trans)-emodin-emodin dianthrones showed higher hepatotoxicity compared to other components in PM, whereas polyphenols showed lower hepatotoxicity. To the best of our knowledge, this study is the first to identify that dianthrones may account for the hepatotoxicity of PM. We believe that these findings will be helpful in regulating the hepatotoxicity of PM.
Collapse
Affiliation(s)
- Hong-Ying Li
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jian-Bo Yang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Wan-Fang Li
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Cai-Xia Qiu
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Guang Hu
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Shu-Ting Wang
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yun-Fei Song
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Hui-Yu Gao
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Yue Liu
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Qi Wang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Ying Wang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Xian-Long Cheng
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Feng Wei
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Hong-Tao Jin
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China; Beijing Union-Genius Pharmaceutical Technology Co. Ltd, Beijing, 100176, China.
| | - Shuang-Cheng Ma
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, 100050, China.
| |
Collapse
|
15
|
He Y, Xu W, Qin Y. Structural characterization and neuroprotective effect of a polysaccharide from Corydalis yanhusuo. Int J Biol Macromol 2020; 157:759-768. [DOI: 10.1016/j.ijbiomac.2020.01.180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 01/08/2020] [Accepted: 01/19/2020] [Indexed: 02/07/2023]
|
16
|
Chen SY, Gao Y, Sun JY, Meng XL, Yang D, Fan LH, Xiang L, Wang P. Traditional Chinese Medicine: Role in Reducing β-Amyloid, Apoptosis, Autophagy, Neuroinflammation, Oxidative Stress, and Mitochondrial Dysfunction of Alzheimer's Disease. Front Pharmacol 2020; 11:497. [PMID: 32390843 PMCID: PMC7188934 DOI: 10.3389/fphar.2020.00497] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/30/2020] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive age-related neurodegenerative disease characterized by memory loss and cognitive impairment. The major characteristics of AD are amyloid β plaques, apoptosis, autophagy dysfunction, neuroinflammation, oxidative stress, and mitochondrial dysfunction. These are mostly used as the significant indicators for selecting the effects of potential drugs. It is imperative to explain AD pathogenesis and realize productive treatments. Although the currently used chemical drugs for clinical applications of AD are effective in managing the symptoms, they are inadequate to achieve anticipated preventive or therapeutic outcomes. There are new strategies for treating AD. Traditional Chinese Medicine (TCM) has accumulated thousands of years of experience in treating dementia. Nowadays, numerous modern pharmacological studies have verified the efficacy of many bioactive ingredients isolated from TCM for AD treatment. In this review, representative TCM for the treatment of AD are discussed, and among these herbal medicines, the Lamiaceae family accounts for the highest proportion. It is concluded that monomers and extracts from TCM have potential therapeutic effect for AD treatment.
Collapse
Affiliation(s)
- Shi-Yu Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yue Gao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia-Yi Sun
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xian-Li Meng
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dong Yang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin-Hong Fan
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Xiang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ping Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
17
|
Abdul Manap AS, Wei Tan AC, Leong WH, Yin Chia AY, Vijayabalan S, Arya A, Wong EH, Rizwan F, Bindal U, Koshy S, Madhavan P. Synergistic Effects of Curcumin and Piperine as Potent Acetylcholine and Amyloidogenic Inhibitors With Significant Neuroprotective Activity in SH-SY5Y Cells via Computational Molecular Modeling and in vitro Assay. Front Aging Neurosci 2019; 11:206. [PMID: 31507403 PMCID: PMC6718453 DOI: 10.3389/fnagi.2019.00206] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/22/2019] [Indexed: 12/21/2022] Open
Abstract
Hallmarks of Alzheimer's disease (AD) pathology include acetylcholine (ACh) deficiency and plaque deposition. Emerging studies suggest that acetylcholinesterase (AChE) may interact with amyloid β (Aβ) to promote aggregation of insoluble Aβ plaques in brains of patients. Current therapeutic options available for AD patients, such as AChE inhibitors, provide only symptomatic relief. In this study, we screened four natural compounds believed to harbor cognitive benefits-curcumin, piperine, bacoside A, and chebulinic acid. In the first section, preliminary screening through computational molecular docking simulations gauged the suitability of the compounds as novel AChE inhibitors. From here, only compounds that met the in silico selection criteria were selected for the second section through in vitro investigations, including AChE enzyme inhibition assay, 3-(4,5-dimenthylthiazol-2-yl)-2,5-dimethyltetrazolium bromide (MTT) assay, Thioflavin T (ThT) assay, and biochemical analysis via a neuronal cell line model. Of the four compounds screened, only curcumin (-9.6 kcal/mol) and piperine (-10.5 kcal/mol) showed favorable binding affinities and interactions towards AChE and were hence selected. In vitro AChE inhibition demonstrated that combination of curcumin and piperine showed greater AChE inhibition with an IC50 of 62.81 ± 0.01 μg/ml as compared to individual compounds, i.e., IC50 of curcumin at 134.5 ± 0.06 μg/ml and IC50 of piperine at 76.6 ± 0.08 μg/ml. In the SH-SY5Y cell model, this combination preserved cell viability up to 85%, indicating that the compounds protect against Aβ-induced neuronal damage (p < 0.01). Interestingly, our results also showed that curcumin and piperine achieved a synergistic effect at 35 μM with an synergism quotient (SQ) value of 1.824. Synergistic behavior indicates that the combination of these two compounds at lower concentrations may provide a better outcome than singularly used for Aβ proteins. Combined curcumin and piperine managed to inhibit aggregation (reduced ThT intensity at 0.432 a.u.; p < 0.01) as well as disaggregation (reduced ThT intensity at 0.532 a.u.; p < 0.01) of fibrillar Aβ42. Furthermore, combined curcumin and piperine reversed the Aβ-induced up-regulation of neuronal oxidative stress (p < 0.01). In conclusion, curcumin and piperine demonstrated promising neuroprotective effects, whereas bacoside A and chebulinic acid may not be suitable lead compounds. These results are hoped to advance the field of natural products research as potentially therapeutic and curative AD agents.
Collapse
Affiliation(s)
- Aimi Syamima Abdul Manap
- School of Biosciences, Faculty of Health and Sciences, Taylor’s University, Subang Jaya, Malaysia
| | - Amelia Cheng Wei Tan
- School of Biosciences, Faculty of Health and Sciences, Taylor’s University, Subang Jaya, Malaysia
| | - Weng Hhin Leong
- School of Biosciences, Faculty of Health and Sciences, Taylor’s University, Subang Jaya, Malaysia
| | - Adeline Yoke Yin Chia
- School of Biosciences, Faculty of Health and Sciences, Taylor’s University, Subang Jaya, Malaysia
| | - Shantini Vijayabalan
- School of Pharmacy, Faculty of Health and Sciences, Taylor’s University, Subang Jaya, Malaysia
| | - Aditya Arya
- School of Medicine, Faculty of Health and Sciences, Taylor’s University, Subang Jaya, Malaysia
| | - Eng Hwa Wong
- School of Medicine, Faculty of Health and Sciences, Taylor’s University, Subang Jaya, Malaysia
| | - Farzana Rizwan
- School of Medicine, Faculty of Health and Sciences, Taylor’s University, Subang Jaya, Malaysia
| | - Umesh Bindal
- School of Medicine, Faculty of Health and Sciences, Taylor’s University, Subang Jaya, Malaysia
| | - Shajan Koshy
- School of Medicine, Faculty of Health and Sciences, Taylor’s University, Subang Jaya, Malaysia
| | - Priya Madhavan
- School of Medicine, Faculty of Health and Sciences, Taylor’s University, Subang Jaya, Malaysia
| |
Collapse
|
18
|
Yang J, He Y, Zou J, Xu L, Fan F, Ge Z. Effect of Polygonum Multiflorum Thunb on liver fatty acid content in aging mice induced by D-galactose. Lipids Health Dis 2019; 18:128. [PMID: 31153380 PMCID: PMC6545222 DOI: 10.1186/s12944-019-1055-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 04/17/2019] [Indexed: 12/14/2022] Open
Abstract
Background Polygonum Multiflorum Thunb(PMT) has multiple biological effects, such as anti-inflammatory, lipid-lowering, anti-aging and so on. Therefore, D-galactose-induced aging mice were used to study the effect of PMT on fatty acid metabolism and its underlying mechanism. Methods C57BL/6 male mice were randomly divided into normal group, aging model group, PMT intragastrical administration group (high, Medium, low); model group and PMT intragastrical administration group Daily intraperitoneal injection D-galactose 800 mg·ml− 1·Kg− 1 to establish subacute aging model; PMT intragastrical administration group at the same time to intragastrical PMT extract (1 g·ml− 1·Kg− 1, 0.6 g·ml− 1·Kg− 1, 0.3 g·ml− 1·Kg− 1), normal group injection and intragastrical equivalent saline for 60 consecutive days. By detecting the oxidation index of liver to judge the efficacy of PMT, gas chromatography-mass spectrometry (GC-MS) analysis was used to quantitatively analyze the fatty acid content in liver. Results Finally, we found that PMT improved the enzyme activity of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in aging mice, and reduce the enzyme activity of malondialdehyde (MDA), aspartate aminotransferase (AST) and alanine aminotransferase (ALT). The content of fatty acids such as C18:1, C18:2, C18:3 N3, C20:2 and C20:3 N3 decreased significantly in senescent mice (P < 0.05) as evidenced by GC-MS analysis, whereas, these fatty acids increased significantly after treatment of PMT (P < 0.05). Conclusion PMT improves the content of liver fatty acids in aging mice induced by D-galactose through, enhancing the activity of anti-oxidant enzymes.
Collapse
Affiliation(s)
- Jiangquan Yang
- Department of Biochemistry and Molecular Biology, Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Yuqi He
- Department of Pharmaceutical Analysis, Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Jiayi Zou
- Department of Biochemistry and Molecular Biology, Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Lin Xu
- Department of Biochemistry and Molecular Biology, Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Fang Fan
- Department of Biochemistry and Molecular Biology, Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Zhenglong Ge
- Department of Biochemistry and Molecular Biology, Zunyi Medical University, Zunyi, Guizhou Province, China.
| |
Collapse
|
19
|
Polygonum multiflorum Extract Exerts Antioxidative Effects and Increases Life Span and Stress Resistance in the Model Organism Caenorhabditis elegans via DAF-16 and SIR-2.1. PLANTS 2018; 7:plants7030060. [PMID: 30036983 PMCID: PMC6160924 DOI: 10.3390/plants7030060] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/09/2018] [Accepted: 07/13/2018] [Indexed: 01/14/2023]
Abstract
Extracts of the Chinese plant Polygonum multiflorum (PME) are used for medicinal purposes as well as food supplement due to anti-aging effects. Despite of the common use of these food supplements, experimental data on physiological effects of PME and its underlying molecular mechanisms in vivo are limited. We used the model organism Caenorhabditis elegans to analyze anti-aging-effects of PME in vivo (life span, lipofuscin accumulation, oxidative stress resistance, thermal stress resistance) as well as the molecular signaling pathways involved. The effects of PME were examined in wildtype animals and mutants defective in the sirtuin-homologue SIR-2.1 (VC199) and the FOXO-homologue DAF-16 (CF1038). PME possesses antioxidative effects in vivo and increases oxidative stress resistance of the nematodes. While the accumulation of lipofuscin is only slightly decreased, PME causes a significant elongation (18.6%) of mean life span. DAF-16 is essential for the reduction of thermally induced ROS accumulation, while the resistance against paraquat-induced oxidative stress is dependent on SIR-2.1. For the extension of the life span, both DAF-16 and SIR-2.1 are needed. We demonstrate that PME exerts protective effects in C. elegans via modulation of distinct intracellular pathways.
Collapse
|
20
|
Adebiyi OE, Olopade JO, Olayemi FO. Sodium metavanadate induced cognitive decline, behavioral impairments, oxidative stress and down regulation of myelin basic protein in mice hippocampus: Ameliorative roles of β-spinasterol, and stigmasterol. Brain Behav 2018; 8:e01014. [PMID: 29856129 PMCID: PMC6043703 DOI: 10.1002/brb3.1014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 04/10/2018] [Accepted: 04/17/2018] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Exposures to toxic levels of vanadium and soluble vanadium compounds cause behavioral impairments and neurodegeneration via free radical production. Consequently, natural antioxidant sources have been explored for effective and cheap remedy following toxicity. Grewia carpinifolia has been shown to improve behavioral impairments in vanadium-induced neurotoxicity, however, the active compounds implicated remains unknown. Therefore, this study was conducted to investigate ameliorative effects of bioactive compounds from G. carpinifolia on memory and behavioral impairments in vanadium-induced neurotoxicity. METHODS Sixty BALB/c mice were equally divided into five groups (A-E). A (control); administered distilled water, B (standard); administered α-tocopherol (500 mg/kg) every 72 hr orally with daily dose of sodium metavanadate (3 mg/kg) intraperitoneally, test groups C, and D; received single oral dose of 100 μg β-spinasterol or stigmasterol (bioactive compounds from G. carpinifolia), respectively, along with sodium metavanadate and the model group E, received sodium metavanadate only for seven consecutive days. Memory, locomotion and muscular strength were accessed using Morris water maze, Open field and hanging wire tests. In vivo antioxidant and neuroprotective activities were evaluated by measuring catalase, superoxide dismutase, MDA, H2 O2 , and myelin basic protein (MBP) expression in the hippocampus. RESULTS In Morris water maze, stigmasterol significantly (p ≤ 0.05) decreased escape latency and increased swimming time in target quadrant (28.01 ± 0.02; 98.24 ± 17.38 s), respectively, better than α-tocopherol (52.43 ± 13.25; 80.32 ± 15.21) and β-spinasterol (42.09 ± 14.27; 70.91 ± 19.24) in sodium metavanadate-induced memory loss (112.31 ± 9.35; 42.35 ± 11.05). β-Spinasterol and stigmasterol significantly increased exploration and latency in open field and hanging wire tests respectively. Stigmasterol also increased activities of antioxidant enzymes, decreased oxidative stress markers and lipid peroxidation in mice hippocampal homogenates, and increased MBP expression. CONCLUSIONS The findings of this study indicate a potential for stigmasterol, a bioactive compound from G. carpinifolia in improving cognitive decline, motor coordination, and ameliorating oxidative stress in vanadium-induced neurotoxicity.
Collapse
|
21
|
Zhou M, Wu J, Yu Y, Yang Y, Li J, Cui L, Yao W, Liu Y. Polygonum multiflorm alleviates glucocorticoid‑induced osteoporosis and Wnt signaling pathway. Mol Med Rep 2017; 17:970-978. [PMID: 29115514 PMCID: PMC5780178 DOI: 10.3892/mmr.2017.7997] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 10/10/2017] [Indexed: 12/18/2022] Open
Abstract
It is known that long-term excessive administration of glucocorticoid (GC) results in osteoporosis. The present study aimed to evaluate the protective effects of Polygonum multiflorm (PM) on the bone tissue of rats with GC-induced osteoporosis (GIO). A total of 90 6-month-old female Sprague Dawley rats (weight range, 190–210 g) were randomly divided into nine groups: Control (normal saline); prednisone (GC; 6 mg·kg−1·d−1; Model); GC plus PMR30 (the 30% ethanol eluent fraction of PM) (H) (400 mg·kg−1·d−1); GC plus PMR30 (M) (200 mg·kg−1·d−1); GC plus PMR30 (L) (100 mg·kg−1·d−1); GC plus PMRF (fat-soluble fraction of PM) (H) (400 mg·kg−1·d−1); GC plus PMRF (M) (200 mg·kg−1·d−1); GC plus PMRF (L) (100 mg·kg−1·d−1); GC plus calcitriol (CAL; 0.045 µg·kg−1·d−1; positive). Rats were administered intragastrically with prednisone and/or the aforementioned extracts for 120 days, and weighed once/week. The serum was collected for detection of biochemical markers. The left tibia was used for bone histomorphometry analysis. The right tibia was prepared for hematoxylin and eosin staining. The left femur was used to analyze the protein expression of dickkopf-1 (DKK1), WNT inhibitory factor 1 (WIF1) and secreted frizzled related protein 4 using western blotting. Long-term excessive treatment of prednisone inhibited the bone formation rate accompanied with a decrease in bone mass, growth plate, body weight, and the level of bone-specific alkaline phosphatase and hydroxyl-terminal propeptide of type I procollagen in the serum. Furthermore, a simultaneously increase in the level of tartrate resistant acid phosphatase-5b and cross-linked carboxy-terminal telopeptide of type I collagen in the serum, in addition to DKK1, and WIF1 protein expression, was observed. PMR30 (M and L) and PMRF (H) groups were able to reduce the negative effects of GC on the bones. PMR30 (M and L) and PMRF (H) dose demonstrated a protective effect of PM on bone tissue in GIO rats. The mechanism underlying the preventive effect of PM for the treatment of GIO may be associated with direct upregulation of the canonical Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Manru Zhou
- Department of Pharmacology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Jingkai Wu
- Department of Pharmacology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Yongjie Yu
- Department of Pharmacology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Yajun Yang
- Department of Pharmacology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Jin Li
- Department of Pharmacology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Liao Cui
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Weimin Yao
- Department of Respiratory Medicine, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Yuyu Liu
- Department of Pharmacology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| |
Collapse
|
22
|
Traditional Chinese Medicine Protects against Cytokine Production as the Potential Immunosuppressive Agents in Atherosclerosis. J Immunol Res 2017; 2017:7424307. [PMID: 29038791 PMCID: PMC5606136 DOI: 10.1155/2017/7424307] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/10/2017] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease caused by dyslipidemia and mediated by both innate and adaptive immune responses. Inflammation is a critical factor at all stages of atherosclerosis progression. Proinflammatory cytokines accelerate atherosclerosis progression, while anti-inflammatory cytokines ameliorate the disease. Accordingly, strategies to inhibit immune activation and impede immune responses towards anti-inflammatory activity are an alternative therapeutic strategy to conventional chemotherapy on cardiocerebrovascular outcomes. Since a number of Chinese medicinal plants have been used traditionally to prevent and treat atherosclerosis, it is reasonable to assume that the plants used for such disease may suppress the immune responses and the resultant inflammation. This review focuses on plants that have immunomodulatory effects on the production of inflammatory cytokine burst and are used in Chinese traditional medicine for the prevention and therapy of atherosclerosis.
Collapse
|
23
|
Anti-inflammatory effects of trans -2,3,5,4′-tetrahydroxystilbene 2- O - β -glucopyranoside (THSG) from Polygonum multiflorum (PM) and hypoglycemic effect of cis -THSG enriched PM extract. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.04.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
24
|
Khongsombat O, Nakdook W, Ingkaninan K. Inhibitory effects of Tabernaemontana divaricata root extract on oxidative stress and neuronal loss induced by amyloid β 25-35 peptide in mice. J Tradit Complement Med 2017; 8:184-189. [PMID: 29322008 PMCID: PMC5756015 DOI: 10.1016/j.jtcme.2017.05.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 04/12/2017] [Accepted: 05/17/2017] [Indexed: 12/31/2022] Open
Abstract
In Alzheimer's disease, there are numerous amyloid plaques, neurofibrillary tangles, and neuronal loss in several brain areas. Oxidative stress is involved in the mechanisms of Aβ-peptide induced neurotoxicity by the generation of free radical oxidative stress that may lead to neurodegeneration. Tabernaemontana divaricata has various medical properties in Thai folklore medicine including prevent forgetfulness or improve memory. The present study aimed to investigate the effects of T. divaricata root extract (TDE) on Aβ25-35 peptides induced neuronal loss and oxidative stress in mice. Male ICR mice were administered with vehicle or TDE (250, 500, and 1000 mg/kg b.w., p.o.) for 28 consecutive days. Then, these mice were given a single intracerebroventricular (i.c.v.) injection of Aβ25-35 or phosphate buffer saline (PBS) (10 μg/mouse). The novel object recognition (NOR) test was used to determine memory disturbance. In addition, the neuronal cells in the cerebral cortex and hippocampus were measured by using crystal violet staining and lipid peroxidation was determined by measuring the formation of thiobarbituric acid reactive substances. An i.c.v. injection of Aβ25-35 peptides could significantly induce memory impairment, increase level of lipid peroxidation including the neuronal loss in CA3 of hippocampus. However, the mice pretreated with TDE could prevent the memory loss, neuronal loss and decrease lipid peroxidation. These results suggest the potential therapeutic value in dementia of TDE through its antioxidant property.
Collapse
Affiliation(s)
- Onrawee Khongsombat
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand.,Center of Excellence in Medical Biotechnology, Naresuan University, Phitsanulok 65000, Thailand
| | - Walika Nakdook
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Kornkanok Ingkaninan
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
25
|
Sextius P, Betts R, Benkhalifa I, Commo S, Eilstein J, Massironi M, Wang P, Michelet JF, Qiu J, Tan X, Jeulin S. Polygonum multiflorum Radix extract protects human foreskin melanocytes from oxidative stress in vitro and potentiates hair follicle pigmentation ex vivo. Int J Cosmet Sci 2017; 39:419-425. [PMID: 28109001 DOI: 10.1111/ics.12391] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 11/21/2016] [Indexed: 12/01/2022]
Abstract
OBJECTIVE To examine the ability of an extract from traditional Chinese medicine, Polygonum multiflorum Radix, to protect melanocyte viability from oxidative stress, a key mechanism in the initiation and progression of hair greying. METHODS To assess the antioxidant capacity of Polygonum multiflorum Radix extract, primary human foreskin melanocytes were treated with a commercially available Polygonum multiflorum Radix extract added to culture medium and exposed to hydrogen peroxide (H2 O2 ), using intracellular reactive oxygen species concentrations and glutathione/protein ratios as endpoints. To improve solubility for cosmetic uses, a new Polygonum multiflorum Radix extract was derived. As hair greying is the consequence of melanocyte disappearance in an oxidative stress environment, we checked whether the antioxidant capacity of the new Polygonum multiflorum Radix extract could preserve melanocyte viability in response to H2 O2 -induced oxidative stress, and preserve pigmentation within ex vivo human hair follicles. RESULTS In vitro treatment of primary human foreskin melanocytes with traditional available Polygonum multiflorum Radix extract resulted in decreased intracellular ROS accumulation in response to H2 O2 exposure with a concomitant preservation of glutathione-to-protein ratio, consistent with a protective response against H2 O2 exposure and demonstrating the promise of this extract for protecting melanocytes against oxidative stress. Melanocytes treated with the improved Polygonum multiflorum Radix extract exhibited attenuated H2 O2 -induced cell death, demonstrating a clear cytoprotective effect. Treatment of ex vivo human hair follicles with the improved Polygonum multiflorum Radix extract resulted in a higher level of melanin compared to vehicle-treated controls, demonstrating an ex vivo protective effect on hair pigmentation. CONCLUSION Polygonum multiflorum Radix extract protects in vitro primary human foreskin melanocytes from the deleterious effects of H2 O2 exposure and improves pigmentation within ex vivo human hair follicles, demonstrating the utility of Polygonum multiflorum Radix extract as a potential active ingredient for the protection of melanocytes against premature death. This data provides in vitro mechanistic evidence consistent with existing in vivo studies for the use of Polygonum multiflorum Radix extract as a strategy for the prevention of oxidative stress-induced hair greying, in line with traditional Polygonum multiflorum Radix uses.
Collapse
Affiliation(s)
- P Sextius
- L'Oréal Research and Innovation, 1 Avenue Eugene Schueller, Aulnay-sous-Bois, 93601, France
| | - R Betts
- L'Oréal Research and Innovation, 550 Jin Yu Road, Pudong, Shanghai, China
| | - I Benkhalifa
- L'Oréal Research and Innovation, 1 Avenue Eugene Schueller, Aulnay-sous-Bois, 93601, France
| | - S Commo
- L'Oréal Research and Innovation, 1 Avenue Eugene Schueller, Aulnay-sous-Bois, 93601, France
| | - J Eilstein
- L'Oréal Research and Innovation, 1 Avenue Eugene Schueller, Aulnay-sous-Bois, 93601, France
| | - M Massironi
- Cutech Srl, Via San Marco, Padova, 9/M I-35129, Italy
| | - P Wang
- L'Oréal Research and Innovation, 550 Jin Yu Road, Pudong, Shanghai, China
| | - J-F Michelet
- L'Oréal Research and Innovation, 1 Avenue Eugene Schueller, Aulnay-sous-Bois, 93601, France
| | - J Qiu
- L'Oréal Research and Innovation, 550 Jin Yu Road, Pudong, Shanghai, China
| | - X Tan
- L'Oréal Research and Innovation, 550 Jin Yu Road, Pudong, Shanghai, China
| | - S Jeulin
- L'Oréal Research and Innovation, 1 Avenue Eugene Schueller, Aulnay-sous-Bois, 93601, France
| |
Collapse
|
26
|
Tang W, Li S, Liu Y, Wu JC, Pan MH, Huang MT, Ho CT. Anti-diabetic activities ofcis- andtrans-2,3,5,4′-tetrahydroxystilbene 2-O-β-glucopyranoside fromPolygonum multiflorum. Mol Nutr Food Res 2017; 61. [DOI: 10.1002/mnfr.201600871] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 12/25/2016] [Accepted: 12/30/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Wenping Tang
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains; Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization; College of Life Science; Huanggang Normal University; Huanggang China
- Department of Food Science; Rutgers-The State University of New Jersey; New Brunswick NJ USA
| | - Shiming Li
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains; Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization; College of Life Science; Huanggang Normal University; Huanggang China
| | - Yue Liu
- Department of Chemical Biology; Rutgers-The State University of New Jersey; Piscataway NJ USA
| | - Jia-Ching Wu
- Institute of Food Science and Technology; National Taiwan University; Taipei Taiwan
| | - Min-Hsiung Pan
- Institute of Food Science and Technology; National Taiwan University; Taipei Taiwan
| | - Mou-Tuan Huang
- Department of Chemical Biology; Rutgers-The State University of New Jersey; Piscataway NJ USA
| | - Chi-Tang Ho
- Department of Food Science; Rutgers-The State University of New Jersey; New Brunswick NJ USA
| |
Collapse
|
27
|
Chang CM, Wu PC, Chiang JH, Wei YH, Chen FP, Chen TJ, Pan TL, Yen HR, Chang HH. Integrative therapy decreases the risk of lupus nephritis in patients with systemic lupus erythematosus: A population-based retrospective cohort study. JOURNAL OF ETHNOPHARMACOLOGY 2017; 196:201-212. [PMID: 27974236 DOI: 10.1016/j.jep.2016.12.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 11/04/2016] [Accepted: 12/10/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Evidence on alleviating the risk of lupus nephritis by integrative therapy with conventional medicine (CM) and herbal medicine (HM) had not been addressed. AIM OF THE STUDY We investigated the integrative effect associated the risk by a retrospective Systemic Lupus Erythematosus (SLE) cohort from Taiwan National Health Insurance Research Database (NHIRD). MATERIALS AND METHODS SLE patients with a catastrophic illness certificate (CIC) were retrospectively enrolled from the SLE cohort of the Taiwan NHIRD between 1997 and 2011. The patients were divided into an integrative medicine (IM: integrated CM plus HM) and a non-IM (CM only) group with 1:1 propensity score matching. Cox proportional regression model and the Kaplan-Meier method were conducted to estimate the hazard ratio (HR) for lupus nephritis in the cohort. RESULTS Among 16,645 newly diagnosed SLE patients holding a CIC (SLE/CIC), 1933 had received HM and 1571 had received no HM treatment. After propensity score matching, there were 273 patients with lupus nephritis-120 in the IM group and 153 in the non-IM group. The adjusted HR (0.68, 95% confidence interval [CI]: 0.54-0.87, p<0.01) for lupus nephritis was lower in the IM group than in the non-IM group. The adjusted HR (0.69, 95% CI: 0.54-0.88, p<0.001) for lupus nephritis was also lower in the group of patients who had received CM plus HM than in the group that received CM only. The core pattern of HM prescriptions, which were integrated with CM for preventing lupus nephritis, was "Sheng-Di-Huang" (raw Rehmannia glutinosa Libosch.), "Mu-Dan-Pi" (Paeonia suffruticosa Andr.), "Dan-Shan" (Salvia miltiorrhiza Bge.), "Zhi-Bo-Di-Huang-Wan.", and "Chi-Shao" (Paeoniae lactiflorae Rubra). CONCLUSION Integrative therapy decreased the risk of lupus nephritis among SLE patients in Taiwan. Further investigation of the pharmacological mechanism and clinical efficacy are warranted.
Collapse
Affiliation(s)
- Ching-Mao Chang
- Center for Traditional Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC; Graduate Institute of Clinical Medicine, and Graduate Institute of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
| | - Po-Chang Wu
- Division of Rheumatology and Immunology and Department of Education, China Medical University Hospital, Taichung, Taiwan, ROC
| | - Jen-Huai Chiang
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan, ROC; College of Medicine, China Medical University, Taichung, Taiwan, ROC; Graduate Institute of Integrated Medicine, College of Chinese Medicine, Taichung, Taiwan, ROC
| | - Yau-Huei Wei
- Department of Biochemistry and Molecular Biology, School of Life Sciences, National Yang-Ming University, Taipei, Taiwan, ROC; Department of Medicine, Mackay Medical College, New Taipei, Taiwan, ROC
| | - Fang-Pey Chen
- Center for Traditional Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC; Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Tzeng-Ji Chen
- Department of Family Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC; Institute of Hospital and Health Care Administration, School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Tai-Long Pan
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan, ROC; Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan, ROC; Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan, ROC
| | - Hung-Rong Yen
- Research Center for Chinese Herbal Medicine, and School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan, ROC; Departments of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan, ROC; Research Center for Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, ROC.
| | - Hen-Hong Chang
- Research Center for Chinese Herbal Medicine, and School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan, ROC; Research Center for Chinese Medicine & Acupuncture, and School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan, ROC; Departments of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan, ROC.
| |
Collapse
|
28
|
Chen J, Wang Y, Hui C, Xi Y, Liu X, Qi F, Liu H, Wang Z, Niu S. Mechanisms of Heshouwuyin in regulating apoptosis of testicular cells in aging rats through mitochondrial pathway. Altern Ther Health Med 2016; 16:337. [PMID: 27586689 PMCID: PMC5009692 DOI: 10.1186/s12906-016-1323-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 08/25/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND Polygonum multiflorum has important effects on anti-aging and immunity enhancement. Many traditional Chinese medicine preparations based on Polygonum multiflorum are widely used for the clinical prevention and treatment of aging. However the mechanisms of these herb mixtures are often unknown. This study investigates the effect of Heshouwuyin, a Chinese herbal compound for invigorating the kidney, on the regulation of testicular cells apoptosis in aging rats. METHODS In this study, 18-month-old Wistar rats served as a model of natural aging and 12-month-old rats served as a young control group. Heshouwuyin group 1 and group 2 were comprised 18-month-old rats given Heshouwuyin intragastrically for 60 days and 30 days respectively. Then testes of the young control group were isolated in the age of 12 months, the other three groups were in the age of 18 months. RESULTS TUNEL assay showed that the rate of testicular cell apoptosis was obviously higher and Flow cytometry analysis showed that the rate of cell proliferation was significantly lower in the natural aging group than in the young control group and that intervention with Heshouwuyin could reverse this phenomenon. Therefore, we further applied microarray analysis to screen out differentially expressed genes regulated by Heshouwuyin and related to cell apoptosis. The expression of these genes was observed by quantitative fluorescence PCR, immunofluorescence staining, and western blot. The results showed that the expression of 14-3-3σ was significantly lower and that the expression of DR6, BAX, caspase-3 and Cytc were significantly higher in the natural aging group than in the young control group, but intervention with Heshouwuyin significantly reversed this phenomenon. Moreover, the curative efficacy of Heshouwuyin after 60 days was better than that of Heshouwuyin after 30 days. CONCLUSION Our study suggests that Heshouwuyin has anti-aging effects on the testis by means of inhibiting the occurrence of apoptosis in spermatogenic cells, thus improving the spermatogenic function of the testis. This is mainly achieved by regulating the expression of key genes in the mitochondrial apoptosis pathway.
Collapse
|
29
|
Chen T, Yang YJ, Li YK, Liu J, Wu PF, Wang F, Chen JG, Long LH. Chronic administration tetrahydroxystilbene glucoside promotes hippocampal memory and synaptic plasticity and activates ERKs, CaMKII and SIRT1/miR-134 in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2016; 190:74-82. [PMID: 27275773 DOI: 10.1016/j.jep.2016.06.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 04/10/2016] [Accepted: 06/04/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polygonum multiflorum Thunb is a traditional Chinese medicine with anti-aging effect. 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside (TSG) is generally considered as the main active component in Polygonum multiflorum Thunb. However, the effect of TSG on memory in adult is unclear till now. AIM OF STUDY 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside (TSG) is a polyphenols compound from Polygonum multiflorum Thunb. The present study aimed to evaluate the effect of chronic administration of TSG on hippocampal memory in normal mice. MATERIALS AND METHODS Behavioral test, electrophysiology and golgi staining were used to evaluate the effect of TSG on hippocampus-dependent memory and synaptic plasticity. Western blotting was used to determine the expression of ERK1/2, CaMKII, and SIRT1. Real-time quantitative PCR was explored to measure miR-134. RESULTS It was found that TSG enhanced hippocampus-dependent contextual fear memory and novel object recognition, facilitated hippocampal LTP and increased dendrite spine density in the CA1 region of hippocampus. TSG obviously promoted the phosphorylations of ERK1/2, CaMKII, CREB and the expression of BDNF in the hippocampus, with upregulation of silent information regulator 1 (SIRT1) and downregulation of miR-134. CONCLUSIONS Chronic administration of TSG promotes hippocampal memory in normal mice, suggesting that supplementary of TSG might serve as an enhancement of memory.
Collapse
Affiliation(s)
- Tao Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuan-Jian Yang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yan-Kun Li
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jing Liu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Peng-Fei Wu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China
| | - Fang Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China
| | - Jian-Guo Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China
| | - Li-Hong Long
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China.
| |
Collapse
|
30
|
Zhuo Y, Guo H, Cheng Y, Wang C, Wang C, Wu J, Zou Z, Gan D, Li Y, Xu J. Inhibition of phosphodiesterase-4 reverses the cognitive dysfunction and oxidative stress induced by Aβ25-35 in rats. Metab Brain Dis 2016; 31:779-91. [PMID: 26920899 DOI: 10.1007/s11011-016-9814-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 02/23/2016] [Indexed: 02/05/2023]
Abstract
Phosphodiesterase-4 (PDE4) inhibitors prevent the breakdown of the second messenger cAMP and have been demonstrated to improve learning in several animal models of cognition. In this study, we explored the antioxidative effects of rolipram in Alzheimer's disease (AD) by using bilateral Aβ25-35 injection into the hippocampus of rats, which were used as an AD model. Rats received 3 intraperitoneal (i.p.) doses of rolipram (0.1, 0.5 and 1.25 mg/kg) daily after the injection of Aβ25-35 for 25 days. Chronic administration of rolipram prevented the memory impairments induced by Aβ25-35, as assessed using the passive avoidance test and the Morris water maze test. Furthermore, rolipram significantly reduced the oxidative stress induced by Aβ25-35, as evidenced by the decrease in the levels of reactive oxygen species (ROS) and malondialdehyde (MDA), and restored the reduced GSH levels and superoxide dismutase (SOD) activity. Moreover, western blotting and real-time reverse transcription polymerase chain reaction (RT-PCR) analysis showed that rolipram remarkably upregulated thioredoxin (Trx) and inhibited the inducible nitric oxide synthase/nitric oxide (iNOS/NO) pathway in the hippocampus. These results demonstrated that rolipram improved the learning and memory abilities in an Aβ25-35-induced AD rat model. The mechanism underlying these effects may be due to the noticeable antioxidative effects of rolipram.
Collapse
Affiliation(s)
- Yeye Zhuo
- Department of Pharmacology, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
- The first affiliated hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Haibiao Guo
- Department of Pharmacology, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yufang Cheng
- Department of Pharmacology, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Chuang Wang
- Ningbo Key Laboratory of Behavioral Neuroscience, 818 Fenghua Road, Ningbo, Zhejiang, 315211, China
| | - Canmao Wang
- Department of Pharmacy, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, 518000, China
| | - Jingang Wu
- Department of Pharmacology, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Zhengqiang Zou
- Department of Pharmacology, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Danna Gan
- Department of Pharmacy, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, 518000, China
| | - Yiwen Li
- Department of Pharmacology, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jiangping Xu
- Department of Pharmacology, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
31
|
Chen HF, Chen YH, Liu CH, Wang L, Chen X, Yu BY, Qi J. Integrated chemometric fingerprints of antioxidant activities and HPLC-DAD-CL for assessing the quality of the processed roots of Polygonum multiflorum Thunb. (Heshouwu). Chin Med 2016; 11:18. [PMID: 27076840 PMCID: PMC4830048 DOI: 10.1186/s13020-016-0087-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 03/23/2016] [Indexed: 01/23/2023] Open
Abstract
Background The processed roots of Polygonum multiflorum Thunb. (Heshouwu; processed HSW) are commonly used in anti-aging medicine. Few reports have combined chemical profiles with bioactivity to evaluate the quality of the processed HSW. This study aims to integrate chemometric fingerprints of antioxidant activities and high-performance liquid chromatography–diode array detection–chemiluminescence (HPLC–DAD–CL) to assess the quality of processed HSW. Methods An online HPLC–DAD–CL based on the three reactive oxygen species (ROS), superoxide anion, hydrogen peroxide, and peroxynitriteanion, was developed to screen the potential anti-aging constituents for a comprehensive quality evaluation of processed HSW. Additionally, antioxidant-activity-integrated fingerprints were constructed and hierarchical cluster analysis and principal component analysis were used to evaluate the variations among 14 batches of processed HSW samples purchased from drug stores in different habitats. Results Fourteen batches of processed HSW samples were highly similar and classified into two clusters using hierarchical cluster analysis. Twelve active compounds exhibited antioxidant activity on the ROS with different degrees of sensitivity that constituted specific fingerprints. Among them, protocatechuic acid, catechin, trans-2,3,5,4′-tetrahydroxy-stilbene-2-O-β-d-glucoside, 2,3,5, 4′-tetrahydroxy-stilbene-2-O-β-d-(2′′-galloyl)-glucoside, torachrysone-8-O-glucoside, and emodin-8-O-β-d-glucoside exerted relatively large influences on the differences between processed HSW samples. Conclusion Our study established the antioxidative activity-integrated fingerprint for processed HSW and achieved a screening of the potential anti-aging constituents using the online HPLC–DAD–CL method with H2O2, O2•−, and ONOO−scavenging experiments. Electronic supplementary material The online version of this article (doi:10.1186/s13020-016-0087-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hai Fang Chen
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, 639 Longmian Road, Nanjing, 210009 China ; Key Laboratory of Modern Preparation of TCM of Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004 China
| | - You Hua Chen
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, 639 Longmian Road, Nanjing, 210009 China
| | - Chun Hua Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, 639 Longmian Road, Nanjing, 210009 China
| | - Lu Wang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, 639 Longmian Road, Nanjing, 210009 China
| | - Xi Chen
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, 639 Longmian Road, Nanjing, 210009 China
| | - Bo Yang Yu
- Department of Complex Prescription of Traditional Chinese Medicine, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198 China
| | - Jin Qi
- Department of Complex Prescription of Traditional Chinese Medicine, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198 China
| |
Collapse
|
32
|
Wang TH, Zhang J, Qiu XH, Bai JQ, Gao YH, Xu W. Application of Ultra-High-Performance Liquid Chromatography Coupled with LTQ-Orbitrap Mass Spectrometry for the Qualitative and Quantitative Analysis of Polygonum multiflorum Thumb. and Its Processed Products. Molecules 2015; 21:E40. [PMID: 26712736 PMCID: PMC6272829 DOI: 10.3390/molecules21010040] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 12/02/2015] [Accepted: 12/03/2015] [Indexed: 12/22/2022] Open
Abstract
In order to quickly and simultaneously obtain the chemical profiles and control the quality of the root of Polygonum multiflorum Thumb. and its processed form, a rapid qualitative and quantitative method, using ultra-high-performance liquid chromatography coupled with electrospray ionization-linear ion trap-Orbitrap hybrid mass spectrometry (UHPLC-LTQ-Orbitrap MS(n)) has been developed. The analysis was performed within 10 min on an AcQuity UPLC™ BEH C18 column with a gradient elution of 0.1% formic acid-acetonitrile at flow rate of 400 μL/min. According to the fragmentation mechanism and high resolution MS(n) data, a diagnostic ion searching strategy was used for rapid and tentative identification of main phenolic components and 23 compounds were simultaneously identified or tentatively characterized. The difference in chemical profiles between P. multiflorum and its processed preparation were observed by comparing the ions abundances of main constituents in the MS spectra and significant changes of eight metabolite biomarkers were detected in the P. multiflorum samples and their preparations. In addition, four of the representative phenols, namely gallic acid, trans-2,3,5,4'-tetra-hydroxystilbene-2-O-β-d-glucopyranoside, emodin and emodin-8-O-β-d-glucopyranoside were quantified by the validated UHPLC-MS/MS method. These phenols are considered to be major bioactive constituents in P. multiflorum, and are generally regarded as the index for quality assessment of this herb. The method was successfully used to quantify 10 batches of P. multiflorum and 10 batches of processed P. multiflorum. The results demonstrated that the method is simple, rapid, and suitable for the discrimination and quality control of this traditional Chinese herb.
Collapse
Affiliation(s)
- Teng-Hua Wang
- Lab of Chinese Materia Medica Preparation, the Second College of Clinic Medicine, Guangzhou University of Chinese Medicine; Guangdong Province Institute of TCM, Guangzhou 510006, China.
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Jing Zhang
- Lab of Chinese Materia Medica Preparation, the Second College of Clinic Medicine, Guangzhou University of Chinese Medicine; Guangdong Province Institute of TCM, Guangzhou 510006, China.
| | - Xiao-Hui Qiu
- Lab of Chinese Materia Medica Preparation, the Second College of Clinic Medicine, Guangzhou University of Chinese Medicine; Guangdong Province Institute of TCM, Guangzhou 510006, China.
| | - Jun-Qi Bai
- Lab of Chinese Materia Medica Preparation, the Second College of Clinic Medicine, Guangzhou University of Chinese Medicine; Guangdong Province Institute of TCM, Guangzhou 510006, China.
| | - You-Heng Gao
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Wen Xu
- Lab of Chinese Materia Medica Preparation, the Second College of Clinic Medicine, Guangzhou University of Chinese Medicine; Guangdong Province Institute of TCM, Guangzhou 510006, China.
| |
Collapse
|
33
|
Liu QF, Lee JH, Kim YM, Lee S, Hong YK, Hwang S, Oh Y, Lee K, Yun HS, Lee IS, Jeon S, Chin YW, Koo BS, Cho KS. In Vivo Screening of Traditional Medicinal Plants for Neuroprotective Activity against Aβ42 Cytotoxicity by Using Drosophila Models of Alzheimer's Disease. Biol Pharm Bull 2015; 38:1891-901. [PMID: 26458335 DOI: 10.1248/bpb.b15-00459] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, characterized by progressive neuronal loss with amyloid β-peptide (Aβ) plaques. Despite several drugs currently used to treat AD, their beneficial effects on AD progress remains under debate. Here, we established a rapid in vivo screening system using Drosophila AD models to assess the neuroprotective activities of medicinal plants that have been used in traditional Chinese medicine. Among 23 medicinal plants tested, the extracts from five plants, Coriandrum sativum, Nardostachys jatamansi, Polygonum multiflorum (P. multiflorum), Rehmannia glutinosa, and Sorbus commixta (S. commixta), showed protective effects against the Aβ42 neurotoxicity. We further characterized the neuroprotective activity of ethanol extracts from P. multiflorum and S. commixta. Aβ42-expressing flies that we used showed AD neurological phenotypes, such as decreased survival and motility and increased cell death and reactive oxygen species level. However, feeding these flies extracts from P. multiflorum or S. commixta showed strong suppression of such phenotypes. Similar results were observed in human cells, so that the treatment of P. multiflorum and S. commixta extracts increased the viability of Aβ-treated SH-SY5Y cells. Moreover, 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside, one of the main constituents of P. multiflorum, also showed similar protective activity against Aβ42 cytotoxicity in both Drosophila and human cells. Taken together, our results suggest that both P. multiflorum and S. commixta have therapeutic potential for the treatment of neurodegenerative diseases, such as AD.
Collapse
|
34
|
Bounda GA, Feng YU. Review of clinical studies of Polygonum multiflorum Thunb. and its isolated bioactive compounds. Pharmacognosy Res 2015; 7:225-36. [PMID: 26130933 PMCID: PMC4471648 DOI: 10.4103/0974-8490.157957] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 02/18/2015] [Accepted: 06/02/2015] [Indexed: 01/05/2023] Open
Abstract
Polygonum multiflorum Thunb. (PMT), officially listed in the Chinese Pharmacopoeia, is one of the most popular perennial Chinese traditional medicines known as He shou wu in China and East Asia, and as Fo-ti in North America. Mounting pharmacological studies have stressed out its key benefice for the treatment of various diseases and medical conditions such as liver injury, cancer, diabetes, alopecia, atherosclerosis, and neurodegenerative diseases as well. International databases such as PubMed/Medline, Science citation Index and Google Scholar were searched for clinical studies recently published on P. multiflorum. Various clinical studies published articles were retrieved, providing information relevant to pharmacokinetics-pharmacodynamics analysis, sleep disorders, dyslipidemia treatment, and neurodegenerative diseases. This review is an effort to update the clinical picture of investigations ever carried on PMT and/or its isolated bio-compounds and to enlighten its therapeutic assessment.
Collapse
Affiliation(s)
- Guy-Armel Bounda
- Department of Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - YU Feng
- Department of Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, China
| |
Collapse
|
35
|
Adewusi EA, Steenkamp V. Medicinal plants and their derivatives with amyloid beta inhibitory activity as potential targets for drug discovery. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2015. [DOI: 10.1016/s2222-1808(15)60810-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
36
|
TSG (2,3,5,4'-Tetrahydroxystilbene-2-O- β -D-glucoside) from the Chinese Herb Polygonum multiflorum Increases Life Span and Stress Resistance of Caenorhabditis elegans. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:124357. [PMID: 26075030 PMCID: PMC4436517 DOI: 10.1155/2015/124357] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 10/23/2014] [Indexed: 01/29/2023]
Abstract
2,3,5,4'-Tetrahydroxystilbene-2-O-β-D-glucoside (TSG) was isolated from Polygonum multiflorum, a plant which is traditionally used as an anti-ageing drug. We have analysed ageing-related effects of TSG in the model organism C. elegans in comparison to resveratrol. TSG exerted a high antioxidative capacity both in a cell-free assay and in the nematode. The antioxidative capacity was even higher compared to resveratrol. Presumably due to its antioxidative effects, treatment with TSG decreased the juglone-mediated induction of the antioxidative enzyme SOD-3; the induction of the GST-4 by juglone was diminished slightly. TSG increased the resistance of C. elegans against lethal thermal stress more prominently than resveratrol (50 μM TSG increased mean survival by 22.2%). The level of the ageing pigment lipofuscin was decreased after incubation with the compound. TSG prolongs the mean, median, and maximum adult life span of C. elegans by 23.5%, 29.4%, and 7.2%, respectively, comparable to the effects of resveratrol. TSG-mediated extension of life span was not abolished in a DAF-16 loss-of-function mutant strain showing that this ageing-related transcription factor is not involved in the effects of TSG. Our data show that TSG possesses a potent antioxidative capacity, enhances the stress resistance, and increases the life span of the nematode C. elegans.
Collapse
|
37
|
Xu NG, Xiao ZJ, Zou T, Huang ZL. Ameliorative effects of physcion 8-O-β-glucopyranoside isolated from Polygonum cuspidatum on learning and memory in dementia rats induced by Aβ1-40. PHARMACEUTICAL BIOLOGY 2015; 53:1632-1638. [PMID: 25856718 DOI: 10.3109/13880209.2014.997251] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT Polygonum cuspidatum Sieb. Et Zucc. (Polygonaceae) has been traditionally used in folk medicine to treat various diseases. OBJECTIVE This study investigates the ameliorative effects of physcion 8-O-β-glucopyranoside (PSG) isolated from P. cuspidatum on learning and memory in dementia rats induced by Aβ1-40. MATERIALS AND METHODS Dementia rats were prepared by intracerebroventricular injection of Aβ1-40. PSG (5, 10, 20, and 40 mg/kg/d, for 5 d) was administered orally. Ameliorative activity of PSG in dementia rats was evaluated by the Morris water maze (MWM) test, and its mechanisms were explored by evaluating AchE activity, levels of DA, NE, and 5-HT in hippocampus, and drebrin protein expressions in hippocampus. RESULTS Our results indicated that PSG (5, 10, 20, and 40 mg/kg/d) significantly inhibited the prolonged latency in dementia rats (p < 0.05), and inhibitory rates were 16.5, 22.7, 33.0, and 44.8% after 5 d of learning, indicating that PSG improves learning and memory of dementia rats. Furthermore, PSG significantly decreased AchE activity (10, 20, and 40 mg/kg/d; p < 0.05), increased 5-HT (20 and 40 mg/kg/d, p < 0.05), NE (10, 20, and 40 mg/kg/d; p < 0.05), and DA levels (5, 10, 20, and 40 mg/kg; p < 0.05) in the hippocampus. Additionally, PSG obviously decreased the Aβ contents in hippocampus (10, 20, and 40 mg/kg/d; p < 0.05), and up-regulated drebrin protein expressions (5, 10, 20, and 40 mg/kg/d; p < 0.05). CONCLUSIONS PSG can significantly enhance learning and memory in Aβ1-40-induced dementia rats, and the mechanisms may be related to increase levels of Ach, 5-HT, NE, and DA, decrease Aβ contents, and up-regulation of drebrin proteins in hippocampus.
Collapse
Affiliation(s)
- Nian-Gui Xu
- Department of Neurology, The Second Xiangya Hospital of the Central South University , Changsha , China
| | | | | | | |
Collapse
|
38
|
Jiang D, Chu X, Hu L, Jiang S, Hu F, Sun J, Li C. Yizhi Xingnao prescription improves the cognitive function of patients after a transient ischemic attack. Neural Regen Res 2015; 7:434-9. [PMID: 25774185 PMCID: PMC4350129 DOI: 10.3969/j.issn.1673-5374.2012.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Accepted: 12/22/2011] [Indexed: 11/18/2022] Open
Abstract
Patients with mild cognitive impairment after a transient ischemic attack were included in this study. They were treated with Yizhi Xingnao prescription, ergoloid mesylates or aspirin for 60 days. Evaluation using the Montreal Cognitive Assessment Scale showed that cognitive function was significantly improved in all patients, especially after the combined treatment of Yizhi Xingnao and aspirin. The scores from the Montreal Cognitive Assessment Scale were improved overall and the effective treatment rate was as high as 79%, which was higher than patients treated with a combination of ergoloid mesylates and aspirin, or aspirin alone. Our experimental findings indicate that Yizhi Xingnao prescription can improve mild cognitive impairment after a transient ischemic attack, and that it is more effective than ergoloid mesylates.
Collapse
Affiliation(s)
- Donglin Jiang
- The Third Affiliated Hospital of Nantong University, Wuxi 214000, Jiangsu Province, China
| | - Xing Chu
- The Third Affiliated Hospital of Nantong University, Wuxi 214000, Jiangsu Province, China
| | - Lingling Hu
- The Third Affiliated Hospital of Nantong University, Wuxi 214000, Jiangsu Province, China
| | - Shengyang Jiang
- The Third Affiliated Hospital of Nantong University, Wuxi 214000, Jiangsu Province, China
| | - Feng Hu
- The Third Affiliated Hospital of Nantong University, Wuxi 214000, Jiangsu Province, China
| | - Junming Sun
- The Third Affiliated Hospital of Nantong University, Wuxi 214000, Jiangsu Province, China
| | - Chengwan Li
- The Third Affiliated Hospital of Nantong University, Wuxi 214000, Jiangsu Province, China
| |
Collapse
|
39
|
Yao W, Gu C, Shao H, Meng G, Wang H, Jing X, Zhang W. Tetrahydroxystilbene Glucoside Improves TNF-α-Induced Endothelial Dysfunction: Involvement of TGFβ/Smad Pathway and Inhibition of Vimentin Expression. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2015; 43:183-98. [DOI: 10.1142/s0192415x15500123] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Endothelial dysfunction plays an important role in the pathogenesis of atherogenesis. 2,3,5,4′-tetrahydroxystilbene-2-O-β-D-glucoside (TSG), an active component of the rhizome extract from Polygonum multiflorum (PM), exhibits significant anti-atherosclerotic activity. Here, we used human umbilical vein endothelial cells (HUVECs) induced by tumor necrosis factor-α (TNF-α) in vitro to investigate the cytoprotective effects of TSG on TNF-α-induced endothelial injury and the related mechanisms. Pretreatment with 50 and 100 μM TSG markedly attenuated TNF-α-induced loss of cell viability and release of lactate dehydrogenase (LDH) and inhibited TNF-α-induced cell apoptosis. The inhibition of vimentin expression was involved in the cytoprotection afforded by TSG. Using inhibitors for PI3K and TGFβ or siRNA for Akt and Smad2, we found that vimentin production in HUVECs is regulated by TGFβ/Smad signaling, but not by PI3K–Akt–mTOR signaling. Meanwhile, TSG inhibited both the expression of TGFβ1 and the phosphorylation of Smad2 and Smad3, and TSG suppressed the nuclear translocation of Smad4 induced by TNF-α. These results suggest that TSG protects HUVECs against TNF-α-induced cell damage by inhibiting vimentin expression via the interruption of the TGFβ/Smad signaling pathway.
Collapse
Affiliation(s)
- Wenjuan Yao
- Department of Pharmacology, Nantong University Medical College, Jiangsu, China
| | - Chengjing Gu
- Department of Pharmacology, Nantong University Medical College, Jiangsu, China
| | - Haoran Shao
- Department of Pharmacology, Nantong University Medical College, Jiangsu, China
| | - Guoliang Meng
- Department of Pharmacology, Nantong University Medical College, Jiangsu, China
| | - Huiming Wang
- Department of Pharmacology, Nantong University Medical College, Jiangsu, China
| | - Xiang Jing
- Department of Pharmacology, Nantong University Medical College, Jiangsu, China
| | - Wei Zhang
- Department of Pharmacology, Nantong University Medical College, Jiangsu, China
| |
Collapse
|
40
|
Lin L, Ni B, Lin H, Zhang M, Li X, Yin X, Qu C, Ni J. Traditional usages, botany, phytochemistry, pharmacology and toxicology of Polygonum multiflorum Thunb.: a review. JOURNAL OF ETHNOPHARMACOLOGY 2015; 159:158-83. [PMID: 25449462 PMCID: PMC7127521 DOI: 10.1016/j.jep.2014.11.009] [Citation(s) in RCA: 263] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 11/07/2014] [Accepted: 11/07/2014] [Indexed: 05/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polygonum multiflorum Thunb., which is known as Heshouwu ( in Chinese) in China. It is traditionally valued and reported for hair-blacking, liver and kidney-tonifying and anti-aging effects as well as low toxicity. The aim of this review is to provide comprehensive information on the botany, traditional uses, phytochemistry, pharmacological research and toxicology of Polygonum multiflorum, based on the scientific literature. Moreover, trends and perspectives for future investigation of this plant are discussed. It will build up a new foundation for further study on Polygonum multiflorum. MATERIALS AND METHODS A systematic review of the literature on Polygonum multiflorum was performed using several resources, including classic books on Chinese herbal medicine and various scientific databases, such as PubMed, SciFinder, the Web of Science, Science Direct, China Knowledge Resource Integrated (CNKI). RESULTS Polygonum multiflorum is widely distributed throughout the world and has been used as a traditional medicine for centuries in China. The ethnomedical uses of Polygonum multiflorum have been recorded in many provinces of China and Japan for nine species of adulterants in six families. More than 100 chemical compounds have been isolated from this plant, and the major components have been determined to be stilbenes, quinones, flavonoids and others. Crude extracts and pure compounds of this plant are used as effective agents in pre-clinical and clinical practice due to their anti-aging, anti-hyperlipidaemia, anti-cancer and anti-inflammatory effects and to promote immunomodulation, neuroprotection, and the curing of other diseases. However, these extracts can also lead to hepatotoxicity, nephrotoxicity and embryonic toxicity. Pharmacokinetic studies have demonstrated that the main components of Polygonum multiflorum, such as 2,3,5,4'-tetrahydroxystilbene-2-O-β-d-glucopyranoside and emodin are distributed among many organs and tissues. CONCLUSION Therapeutic potential of Polygonum multiflorum has been demonstrated in the conditions like Alzheimer׳s disease, Parkinson׳s disease, hyperlipidaemia, inflammation and cancer, which is attributed to the presence of various stilbenes, quinones, flavonoids, phospholipids and other compounds in the drug. On the other hand, the adverse effects (hepatotoxicity, nephrotoxicity, and embryonic toxicity) of this plant were caused by the quinones, such as emodin and rhein. Thus more pharmacological and toxicological mechanisms on main active compounds are necessary to be explored, especially the combined anthraquinones (Emodin-8-O-β-d-glucopyranoside, Physcion-8-O-β-d-glucopyranoside, etc.) and the variety of stilbenes.
Collapse
Affiliation(s)
- Longfei Lin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Boran Ni
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Hongmei Lin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Miao Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Xuechun Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Xingbin Yin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Changhai Qu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Jian Ni
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China.
| |
Collapse
|
41
|
Lo YH, Chen YJ, Chung TY, Lin NH, Chen WY, Chen CY, Lee MR, Chou CC, Tzen JTC. Emoghrelin, a unique emodin derivative in Heshouwu, stimulates growth hormone secretion via activation of the ghrelin receptor. JOURNAL OF ETHNOPHARMACOLOGY 2015; 159:1-8. [PMID: 25446595 DOI: 10.1016/j.jep.2014.10.063] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 09/22/2014] [Accepted: 10/27/2014] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Heshouwu, the root of Polygonum multiflorum, is an anti-aging Chinese traditional medicine. Fresh (raw) Heshouwu is commonly converted to processed Heshouwu by specialized heating to alleviate its side effects of diarrhea presumably caused by anthraquinones. However, raw Heshouwu has been noted to be better than processed Heshouwu regarding anti-aging effects. The therapeutic effects of raw Heshouwu on aging-related diseases were somehow similar to the anti-aging effects of growth hormone release induced by ghrelin MATERIALS AND METHODS Major ingredients in the methanol extract from raw Heshouwu were separated and identified. Emodin-8-O-(6'-O-malonyl)-glucoside, a unique anthraquinone glycoside known to be completely eliminated in the conversion process of Heshouwu was isolated. This emodin derivative, tentatively named emoghrelin, was examined for its cytotoxicity and capability of stimulating growth hormone release of rat primary anterior pituitary cells via activation of the ghrelin receptor. Moreover, molecular modeling of emoghrelin docking to the ghrelin receptor was exhibited to explore the possible interaction within the binding pocket. RESULTS No apparent cytotoxicity was observed for emoghrelin of 10(-7)-10(-4)M. Similar to growth hormone-releasing hormone-6 (GHRP-6), a synthetic analog of ghrelin, emoghrelin was demonstrated to stimulate growth hormone secretion of rat primary anterior pituitary cells in a dose dependent manner, and the stimulation was inhibited by [d-Arg(1), d-Phe(5), d-Trp(7,9), Leu(11)]-substance P, an antagonist of the ghrelin receptor. Molecular modeling and docking showed that emoghrelin as well as GHRP-6 could fit in and adequately interact with the binding pocket of the ghrelin receptor. CONCLUSION The results suggest that emoghrelin is a key ingredient accounting for the anti-aging effects of Heshouwu, and possesses great potential to be a promising non-peptidyl analog of ghrelin.
Collapse
Affiliation(s)
- Yuan-Hao Lo
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
| | - Ying-Jie Chen
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
| | - Tse-Yu Chung
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
| | - Nan-Hei Lin
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Chung-Yu Chen
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - Maw-Rong Lee
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - Chi-Chung Chou
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Jason T C Tzen
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan; Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan.
| |
Collapse
|
42
|
Dong X, Zhang D, Zhang L, Li W, Meng X. Osthole improves synaptic plasticity in the hippocampus and cognitive function of Alzheimer's disease rats via regulating glutamate. Neural Regen Res 2014; 7:2325-32. [PMID: 25538756 PMCID: PMC4268736 DOI: 10.3969/j.issn.1673-5374.2012.30.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 07/10/2012] [Indexed: 12/22/2022] Open
Abstract
Osthole, an effective monomer in Chinese medicinal herbs, can cross the blood-brain barrier and protect against brain injury, with few toxic effects. In this study, a rat model of Alzheimer's disease was established after intracerebroventricular injection of β-amyloid peptide (25-35). Subsequently, the rats were intraperitoneally treated with osthole (12.5 or 25.0 mg/kg) for 14 successive days. Results showed that osthole treatment significantly improved cognitive impairment and protected hippocampal neurons of Alzheimer's disease rats. Also, osthole treatment alleviated suppressed long-term potentiation in the hippocampus of Alzheimer's disease rats. In these osthole-treated Alzheimer's disease rats, the level of glutamate decreased, but there was no significant change in γ-amino-butyric acid. These experimental findings suggest that osthole can improve learning and memory impairment, and increase synaptic plasticity in Alzheimer's disease rats. These effects of osthole may be because of its regulation of central glutamate and γ-amino-butyric acid levels.
Collapse
Affiliation(s)
- Xiaohua Dong
- Department of Pharmacology, College of Pharmacy, Hebei Medical University, Shijiazhuang 050017, Hebei Province, China ; Department of Pharmacology, School of Medicine, Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Danshen Zhang
- Department of Pharmacology, College of Pharmacy, Hebei Medical University, Shijiazhuang 050017, Hebei Province, China ; Department of Pharmacology, School of Medicine, Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Li Zhang
- Department of Pharmacology, School of Medicine, Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Wei Li
- Department of Pharmacology, School of Medicine, Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Xianyong Meng
- Department of Orthopedics, the First Attached Hospital, Hebei North University, Zhangjiakou 075000, Hebei Province, China
| |
Collapse
|
43
|
Liu S, Wu H, Xue G, Ma X, Wu J, Qin Y, Hou Y. Metabolic alteration of neuroactive steroids and protective effect of progesterone in Alzheimer's disease-like rats. Neural Regen Res 2014; 8:2800-10. [PMID: 25206601 PMCID: PMC4146013 DOI: 10.3969/j.issn.1673-5374.2013.30.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 09/11/2013] [Indexed: 11/18/2022] Open
Abstract
A correlation between metabolic alterations of neuroactive steroids and Alzheimer's disease remains unknown. In the present study, amyloid beta (Aβ) 25–35 (Aβ25–35) injected into the bilateral hippocampus CA1 region significantly reduced learning and memory. At the biochemical level, hippocampal levels of pregnenolone were significantly reduced with Aβ25–35 treatment. Furthermore, progesterone was considerably decreased in the prefrontal cortex and hippocampus, and 17β-estradiol was significantly elevated. To our knowledge, this is the first report showing that Aβ25–35, a main etiological factor of Alzheimer's disease, can alter the level and metabolism of neuroactive steroids in the prefrontal cortex and hippocampus, which are brain regions significantly involved in learning and memory. Aβ25–35 exposure also increased the expression of inflammatory mediators, tumor necrosis factor-α and interleukin-1β. However, subcutaneous injection of progesterone reversed the upregulation of tumor necrosis factor-α and interleukin-1β in a dose-dependent manner. Concomitant with improved cognitive abilities, progesterone blocked Aβ-mediated inflammation and increased the survival rate of hippocampal pyramidal cells. We thus hypothesize that Aβ-mediated cognitive deficits may occur via changes in neuroactive steroids. Moreover, our findings provide a possible therapeutic strategy for Alzheimer's disease via neuroactive steroids, particularly progesterone.
Collapse
Affiliation(s)
- Sha Liu
- Hebei Medical University, Shijiazhuang 050017, Hebei Province, China
| | - Honghai Wu
- Department of Pharmacy, Bethune International Peace Hospital of Chinese PLA, Shijiazhuang 050082, Hebei Province, China
| | - Gai Xue
- Department of Pharmacy, Bethune International Peace Hospital of Chinese PLA, Shijiazhuang 050082, Hebei Province, China
| | - Xin Ma
- Hebei Medical University, Shijiazhuang 050017, Hebei Province, China
| | - Jie Wu
- Hebei Medical University, Shijiazhuang 050017, Hebei Province, China
| | - Yabin Qin
- Hebei Medical University, Shijiazhuang 050017, Hebei Province, China
| | - Yanning Hou
- Hebei Medical University, Shijiazhuang 050017, Hebei Province, China ; Department of Pharmacy, Bethune International Peace Hospital of Chinese PLA, Shijiazhuang 050082, Hebei Province, China
| |
Collapse
|
44
|
Hu Y, Ji J, Ling F, Chen Y, Lu L, Zhang Q, Wang G. Screening Medicinal Plants for Use against Dactylogyrus intermedius (Monogenea) Infection in Goldfish. JOURNAL OF AQUATIC ANIMAL HEALTH 2014; 26:127-136. [PMID: 25229482 DOI: 10.1080/08997659.2014.902872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Abstract Methanol extracts of 24 traditional medicinal plants with potential anthelmintic activity against Dactylogyrus intermedius (Monogenea) in Goldfish Carassius auratus were investigated. Abrus cantoniensis, Citrus medica, Dioscorea collettii, and Polygonum multiflorum exhibited 100% activity and were selected for further evaluation by applying five solvents (petroleum ether, chloroform, ethyl acetate, methanol, and water) for the extraction of the samples, followed by an in vivo bioassay. Among the plants tested, water, methanol, and ethyl-acetate extracts of P. multiflorum showed the highest efficacies; EC50 values (median concentration that results in 50% of its maximal effect) were 1.9, 5.4, and 9.1 mg/L, respectively, and extracts showed 100% efficacy against Dactylogyrus intermedius at 100, 12.5, and 25 mg/L. This was followed by ethyl-acetate, chloroform, and methanol extracts of Dioscorea collettii, which demonstrated 100% efficacy at 80, 80, and 120 mg/L and had EC50 values of 19.7, 27.1, and 37.8 mg/L, respectively, after 48 h of exposure. Chloroform and ethyl-acetate extracts of C. medica, which exhibited 100% efficacy against Dactylogyrus intermedius at 100 and 125 mg/L, revealed similar activity and had EC50 values of 58.7 and 51.3 mg/L, respectively. The ethyl-acetate and methanol extracts of A. cantoniensis exhibited the lowest activity and had EC50 values of 279.4 and 64.3 mg/L. Acute toxicities of these active extracts were investigated on Goldfish for 48 h. The findings indicated that extracts of the four plants can be developed as a preferred natural antiparasitic for the control of D. intermedius. Received June 15, 2013; accepted February 11, 2014.
Collapse
Affiliation(s)
- Yang Hu
- a College of Science, Northwest A&F University , Yangling 712100 , China
| | | | | | | | | | | | | |
Collapse
|
45
|
Yang XP, Liu TY, Qin XY, Yu LC. Potential protection of 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside against staurosporine-induced toxicity on cultured rat hippocampus neurons. Neurosci Lett 2014; 576:79-83. [PMID: 24887581 DOI: 10.1016/j.neulet.2014.05.045] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 05/04/2014] [Accepted: 05/21/2014] [Indexed: 01/10/2023]
Abstract
The present study explored the effect of 2,3,5,4'-tetrahydroxystilbene-2-O-β-d-glucoside (THSG) on the staurosporine (STS)-induced toxicity in cultured rat hippocampal neurons. The results showed that administration of 200μM of THSG significantly protected against 0.3μM of STS-induced apoptosis in cultured rat hippocampal neurons tested by methyl thiazolyl tetrazolium (MTT) and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assays. Furthermore, when the Akt signaling pathway was blocked by LY294002, an inhibitor of Phosphatidyl Inositol 3-kinase (PI3K), the protective effects of THSG against STS-induced neurotoxicity were abrogated. We further examined the involvement of PI3K/Akt signaling pathway in THSG protection against STS-induced cytotoxicity on cultured neurons and found that administration of THSG significantly inhibited the STS-induced decreases in the content of phosphorylated AKt (p-Akt). Moreover, we found that THSG rescued the down-regulation of B cell lymphoma/lewkmia-2 (Bcl2) and pro-caspase-3 (pro-Csp3) caused by STS in the neurons. These results indicate that THSG protect the cultured rat hippocampal neurons against STS-induced cytotoxicity and the PI3K/Akt signaling and mitochondrial apoptotic pathways are involved in the THSG-induced protective effects.
Collapse
Affiliation(s)
- Xiao-Ping Yang
- Laboratory of Biotechnology and State Key Laboratory of Chinese Ethnic Minority Traditional Medicine, College of Life & Environmental Science, Minzu University of China, Beijing 100081, China
| | - Tao-Yan Liu
- Laboratory of Biotechnology and State Key Laboratory of Chinese Ethnic Minority Traditional Medicine, College of Life & Environmental Science, Minzu University of China, Beijing 100081, China
| | - Xiao-Yan Qin
- Laboratory of Biotechnology and State Key Laboratory of Chinese Ethnic Minority Traditional Medicine, College of Life & Environmental Science, Minzu University of China, Beijing 100081, China.
| | - Long-Chuan Yu
- Laboratory of Neurobiology and State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
46
|
Lee SV, Choi KH, Choi YW, Hong JW, Baek JU, Choi BT, Shin HK. Hexane extracts of Polygonum multiflorum improve tissue and functional outcome following focal cerebral ischemia in mice. Mol Med Rep 2014; 9:1415-21. [PMID: 24534954 DOI: 10.3892/mmr.2014.1943] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 02/05/2014] [Indexed: 11/05/2022] Open
Abstract
Polygonum multiflorum is a traditional Korean medicine that has been utilized widely in East Asian countries as a longevity agent. Clinical studies have demonstrated that Polygonum multiflorum improves hypercholesterolemia, coronary heart disease, neurosis and other diseases commonly associated with aging. However, scientific evidence defining the protective effects and mechanisms of Polygonum multiflorum against ischemic stroke is incomplete. In the present study, we investigated the cerebrovascular protective effects of Polygonum multiflorum against ischemic brain injury using an in vivo photothrombotic mouse model. To examine the underlying mechanism of action, we utilized an in vitro human brain microvascular endothelial cell (HBMEC) culture system. Hexane extracts (HEPM), ethyl acetate extracts (EAEPM) and methanol extracts (MEPM) of Polygonum multiflorum (100 mg/kg) were administered intraperitoneally 30 min prior to ischemic insult. Focal cerebral ischemia was induced in C57BL/6J mice and endothelial nitric oxide synthase knockout (eNOS KO) mice by photothrombotic cortical occlusion. We evaluated the infarct volume, as well as neurological and motor function, 24 h after ischemic brain injury. Following ischemic insult, HEPM induced a significant reduction in infarct volume and subsequent neurological deficits, compared with EAEPM and MEPM. HEPM significantly decreased infarct size and improved neurological and motor function, which was not observed in eNOS KO mice, suggesting that this cerebroprotective effect is primarily an eNOS-dependent mechanism. In vitro, HEPM effectively promoted NO production, however these effects were inhibited by the NOS inhibitor, L-NAME and the PI3K/Akt inhibitor, LY-294002. Furthermore, HEPM treatment resulted in increased phosphorylation-dependent activation of Akt and eNOS in HBMEC, suggesting that HEPM increased NO production via phosphorylation-dependent activation of Akt and eNOS. In conclusion, HEPM prevents cerebral ischemic damage through an eNOS-dependent mechanism, and thus may have clinical applications as a protective agent against neurological injury in stroke.
Collapse
Affiliation(s)
- Soo Vin Lee
- School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam 626-870, Republic of Korea
| | - Kyung Ha Choi
- School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam 626-870, Republic of Korea
| | - Young Whan Choi
- College of Natural Resources and Life Sciences, Pusan National University, Gyeongnam 627-706, Republic of Korea
| | - Jin Woo Hong
- School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam 626-870, Republic of Korea
| | - Jin Ung Baek
- School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam 626-870, Republic of Korea
| | - Byung Tae Choi
- School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam 626-870, Republic of Korea
| | - Hwa Kyoung Shin
- School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam 626-870, Republic of Korea
| |
Collapse
|
47
|
Zhang L, Huang L, Chen L, Hao D, Chen J. Neuroprotection by tetrahydroxystilbene glucoside in the MPTP mouse model of Parkinson's disease. Toxicol Lett 2013; 222:155-63. [PMID: 23911879 DOI: 10.1016/j.toxlet.2013.07.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 07/19/2013] [Accepted: 07/24/2013] [Indexed: 01/01/2023]
Abstract
Our in vitro experiments suggested that tetrahydroxystilbene glucoside (TSG) affords a significant neuroprotective effect against MPP⁺-induced damage and apoptosis in PC12 cells though activation of the PI3K/Akt pathway. This study was aimed to investigate the potential neuroprotective effect of TSG in 1-methyl-4-phenyl-1,2,3,6-tetrahydropypridine (MPTP)-treated mouse model of Parkinson's disease (PD). We found that treatment of TSG protected dopaminergic neurons by preventing MPTP-induced decreases in substantia nigra tyrosine hydroxylase (TH)-positive cells and striatal dopaminergic transporter (DAT) protein levels. Furthermore, it was also associated with increasing striatal Akt and GSK3β phosphorylation, up-regulation of the Bcl-2/BAD ratio, and inhibition of the activation of caspase-9 and caspase-3. These results showed that TSG promoted dopamine neuron survival in vivo, the PI3K/Akt signaling pathway may have mediated the protection of TSG against MPTP, suggesting that TSG treatment might represent a neuroprotective treatment for PD.
Collapse
Affiliation(s)
- Lingling Zhang
- Department of Scientific Research, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an 710054, China
| | | | | | | | | |
Collapse
|
48
|
Souza ACG, Sari MHM, Pinton S, Luchese C, Neto JSS, Nogueira CW. 2-Phenylethynyl-butyltellurium attenuates amyloid-β peptide(25-35)-induced learning and memory impairments in mice. J Neurosci Res 2013; 91:848-53. [DOI: 10.1002/jnr.23211] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Revised: 01/07/2013] [Accepted: 01/07/2013] [Indexed: 01/13/2023]
Affiliation(s)
- Ana Cristina Guerra Souza
- Departamento de Química; Centro de Ciências Naturais e Exatas; Universidade Federal de Santa Maria; Santa Maria; Brasil
| | | | - Simone Pinton
- Departamento de Química; Centro de Ciências Naturais e Exatas; Universidade Federal de Santa Maria; Santa Maria; Brasil
| | - Cristiane Luchese
- Mestrado em Nanociências; Centro de Ciências Tecnológicas; Centro Universitário Franciscano; Santa Maria; Brazil
| | - José Sebastião Santos Neto
- Departamento de Química; Centro de Ciências Naturais e Exatas; Universidade Federal de Santa Maria; Santa Maria; Brasil
| | - Cristina Wayne Nogueira
- Departamento de Química; Centro de Ciências Naturais e Exatas; Universidade Federal de Santa Maria; Santa Maria; Brasil
| |
Collapse
|
49
|
Steele ML, Truong J, Govindaraghavan S, Ooi L, Sucher NJ, Münch G. Cytoprotective properties of traditional Chinese medicinal herbal extracts in hydrogen peroxide challenged human U373 astroglia cells. Neurochem Int 2012; 62:522-9. [PMID: 22982670 DOI: 10.1016/j.neuint.2012.08.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Revised: 08/17/2012] [Accepted: 08/31/2012] [Indexed: 11/26/2022]
Abstract
Age is the leading risk factor for many of the most prevalent and devastating diseases including neurodegenerative diseases. A number of herbal medicines have been used for centuries to ameliorate the deleterious effects of ageing-related diseases and increase longevity. Oxidative stress is believed to play a role in normal ageing as well as in neurodegenerative processes. Since many of the constituents of herbal extracts are known antioxidants, it is believed that restoring oxidative balance may be one of the underlying mechanisms by which medicinal herbs can protect against ageing and cognitive decline. Based on the premise that astrocytes are key modulators in the progression of oxidative stress associated neurodegenerative diseases, 13 herbal extracts purported to possess anti-ageing properties were tested for their ability to protect U373 human astrocytes from hydrogen peroxide induced cell death. To determine the contribution of antioxidant activity to the cytoprotective ability of extracts, total phenol content and radical scavenging capacities of extracts were examined. Polygonum multiflorum, amongst others, was identified as possessing potent antioxidant and cytoprotective properties. Not surprisingly, total phenol content of extracts was strongly correlated with antioxidant capacity. Interestingly, when total phenol content and radical scavenging capacities of extracts were compared to the cytoprotective properties of extracts, only moderately strong correlations were observed. This finding suggests the involvement of multiple protective mechanisms in the beneficial effects of these medicinal herbs.
Collapse
Affiliation(s)
- Megan L Steele
- Dept. of Pharmacology, School of Medicine, University of Western Sydney, Campbelltown, NSW, Australia
| | | | | | | | | | | |
Collapse
|
50
|
Moradi-Afrapoli F, Asghari B, Saeidnia S, Ajani Y, Mirjani M, Malmir M, Dolatabadi Bazaz R, Hadjiakhoondi A, Salehi P, Hamburger M, Yassa N. In vitro α-glucosidase inhibitory activity of phenolic constituents from aerial parts of Polygonum hyrcanicum. ACTA ACUST UNITED AC 2012; 20:37. [PMID: 23351720 PMCID: PMC3555856 DOI: 10.1186/2008-2231-20-37] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 05/17/2012] [Indexed: 12/18/2022]
Abstract
Background and the purpose of the study The early stage of diabetes mellitus type 2 is associated with postprandial hyperglycemia. Hyperglycemia is believed to increase the production of free radicals and reactive oxygen species, leading to oxidative tissue damage. In an effort of identifying herbal drugs which may become useful in the prevention or mitigation of diabetes, biochemical activities of Polygonum hyrcanicum and its constituents were studied. Methods Hexane, ethylacetate and methanol extracts of P. hyrcanicum were tested for α-glucosidase inhibitory, antioxidant and radical scavenging properties. Active constituents were isolated and identified from the methanolic extract in an activity guided approach. Results A methanolic extract from flowering aerial parts of the plant showed notable α-glucosidase inhibitory activity (IC50 = 15 μg/ml). Thirteen phenolic compounds involving a cinnamoylphenethyl amide, two flavans, and ten flavonols and flavonol 3-O-glycosides were subsequently isolated from the extract. All constituents showed inhibitory activities while compounds 3, 8 and 11 (IC50 = 0.3, 1.0, and 0.6 μM, respectively) were the most potent ones. The methanol extract also showed antioxidant activities in DPPH (IC50 = 76 μg/ml) and FRAP assays (1.4 mmol ferrous ion equivalent/g extract). A total phenol content of 130 mg/g of the extract was determined by Folin-Ciocalteu reagent. Conclusion This study shows that P. hyrcanicum contains phenolic compounds with in vitro activity that can be useful in the context of preventing or mitigating cellular damages linked to diabetic conditions.
Collapse
Affiliation(s)
- Fahimeh Moradi-Afrapoli
- Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|