1
|
Ayeni EA, Aldossary AM, Ayejoto DA, Gbadegesin LA, Alshehri AA, Alfassam HA, Afewerky HK, Almughem FA, Bello SM, Tawfik EA. Neurodegenerative Diseases: Implications of Environmental and Climatic Influences on Neurotransmitters and Neuronal Hormones Activities. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191912495. [PMID: 36231792 PMCID: PMC9564880 DOI: 10.3390/ijerph191912495] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/21/2022] [Accepted: 09/24/2022] [Indexed: 05/23/2023]
Abstract
Neurodegenerative and neuronal-related diseases are major public health concerns. Human vulnerability to neurodegenerative diseases (NDDs) increases with age. Neuronal hormones and neurotransmitters are major determinant factors regulating brain structure and functions. The implications of environmental and climatic changes emerged recently as influence factors on numerous diseases. However, the complex interaction of neurotransmitters and neuronal hormones and their depletion under environmental and climatic influences on NDDs are not well established in the literature. In this review, we aim to explore the connection between the environmental and climatic factors to NDDs and to highlight the available and potential therapeutic interventions that could use to improve the quality of life and reduce susceptibility to NDDs.
Collapse
Affiliation(s)
- Emmanuel A. Ayeni
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ahmad M. Aldossary
- National Center of Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 12354, Saudi Arabia
| | - Daniel A. Ayejoto
- Department of Industrial Chemistry, University of Ilorin, Ilorin 240003, Nigeria
| | - Lanre A. Gbadegesin
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
| | - Abdullah A. Alshehri
- National Center of Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 12354, Saudi Arabia
| | - Haya A. Alfassam
- KACST-BWH Center of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh 12354, Saudi Arabia
| | - Henok K. Afewerky
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
- School of Allied Health Professions, Asmara College of Health Sciences, Asmara P.O. Box 1220, Eritrea
| | - Fahad A. Almughem
- National Center of Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 12354, Saudi Arabia
| | - Saidu M. Bello
- Institute of Pharmacognosy, University of Szeged, 6720 Szeged, Hungary
| | - Essam A. Tawfik
- National Center of Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 12354, Saudi Arabia
| |
Collapse
|
2
|
Mo C, Zhao J, Liang J, Wang H, Chen Y, Huang G. Exosomes: A novel insight into traditional Chinese medicine. Front Pharmacol 2022; 13:844782. [PMID: 36105201 PMCID: PMC9465299 DOI: 10.3389/fphar.2022.844782] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Exosomes are small extracellular vesicles and play an essential role in the mediation of intercellular communication both in health and disease. Traditional Chinese medicine (TCM) has historically been used to maintain human health and treat various diseases up till today. The interplay between exosomes and TCM has attracted researchers’ growing attention. By integrating the available evidence, TCM formulas and compounds isolated from TCM as exosome modulators have beneficial effects on multiple disorders, such as tumors, kidney diseases, and hepatic disease, which may associate with inhibiting cells proliferation, anti-inflammation, anti-oxidation, and attenuating fibrosis. Exosomes, a natural delivery system, are essential in delivering compounds isolated from TCM to target cells or tissues. Moreover, exosomes may be the potential biomarkers for TCM syndromes, providing strategies for TCM treatment. These findings may provide a novel insight into TCM from exosomes and serve as evidence for better understanding and development of TCM.
Collapse
Affiliation(s)
- Chao Mo
- Graduate School, Guangxi University of Chinese Medicine, Nanning, China
- Department of Nephrology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Jie Zhao
- Graduate School, Hunan University of Chinese Medicine, Changsha, China
| | - Jingyan Liang
- Graduate School, Guangxi University of Chinese Medicine, Nanning, China
| | - Huiling Wang
- Graduate School, Guangxi University of Chinese Medicine, Nanning, China
| | - Yu Chen
- Graduate School, Guangxi University of Chinese Medicine, Nanning, China
| | - Guodong Huang
- Department of Nephrology, Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
- *Correspondence: Guodong Huang,
| |
Collapse
|
3
|
The Positive Role and Mechanism of Herbal Medicine in Parkinson's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9923331. [PMID: 34567415 PMCID: PMC8457986 DOI: 10.1155/2021/9923331] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/23/2021] [Accepted: 07/15/2021] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disease, manifested by the progressive functional impairment of the midbrain nigral dopaminergic neurons. Due to the unclear underlying pathogenesis, disease-modifying drugs for PD remain elusive. In Asia, such as in China and India, herbal medicines have been used in the treatment of neurodegenerative disease for thousands of years, which recently attracted considerable attention because of the development of curative drugs for PD. In this review, we first summarized the pathogenic factors of PD including protein aggregation, mitochondrial dysfunction, ion accumulation, neuroinflammation, and oxidative stress, and the related recent advances. Secondly, we summarized 32 Chinese herbal medicines (belonging to 24 genera, such as Acanthopanax, Alpinia, and Astragalus), 22 Chinese traditional herbal formulations, and 3 Indian herbal medicines, of which the ethanol/water extraction or main bioactive compounds have been extensively investigated on PD models both in vitro and in vivo. We elaborately provided pictures of the representative herbs and the structural formula of the bioactive components (such as leutheroside B and astragaloside IV) of the herbal medicines. Also, we specified the potential targets of the bioactive compounds or extractions of herbs in view of the signaling pathways such as PI3K, NF-κB, and AMPK which are implicated in oxidative and inflammatory stress in neurons. We consider that this knowledge of herbal medicines or their bioactive components can be favorable for the development of disease-modifying drugs for PD.
Collapse
|
4
|
Zheng M, Chen M, Wang W, Zhou M, Liu C, Fan Y, Shi D. Protection by rhynchophylline against MPTP/MPP +-induced neurotoxicity via regulating PI3K/Akt pathway. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113568. [PMID: 33188898 DOI: 10.1016/j.jep.2020.113568] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Isolated from Uncaria rhynchophylla (U. rhynchophylla), rhynchophylline (Rhy) has been applied for treating diseases related to central nervous system such as Parkinson's disease. Nevertheless, the molecular mechanism of the neuroprotective effect has not been well interpreted. AIM OF THE STUDY To investigate the effects of Rhy on MPTP/MPP + -induced neurotoxicity in C57BL/6 mice or PC12 cells and study the mechanisms involved. MATERIALS AND METHODS The neuroprotective effect of Rhy on MPTP-induced neurotoxicity was evaluated by spontaneous motor activity test, as well as a test of rota-rod on a rat model of Parkinson's disease. The numbers of TH-positive neurons in the substantia nigra pars compacta (SNpc) was assessed by immunohistological. CCK-8, lactate dehydrogenase (LDH), reactive oxygen species (ROS), the concentration of intracellular calcium ([Ca2+]i) and flow cytometry analysis were performed to evaluate the pharmacological property of Rhy on 1-methyl-4-phenylpyridinium (MPP+) induced neurotoxicity in PC12 cells. Besides, LY294002, a PI3K inhibitor was employed to determine the underlying molecular signaling pathway revealing the effect of Rhy by western-blot analysis. RESULTS The results showed that Rhy exhibited a protective effect against the MPTP-induced decrease in tyrosine hydroxylase (TH)-positive fibers in the substantia nigra at 30 mg/kg, demonstrated by the immunohistological and behavioral outcomes. Furthermore, it has been indicated that cell viability was improved and the MPP+-induced apoptosis was inhibited after the treatment of Rhy at 20 μM, which were severally analyzed by the CCK-8 and the Annexin V/propidium iodide staining method. In addition, Rhy treatment attenuated MPP+-induced up-regulation of LDH, ([Ca2+]i), and the levels of ROS. Besides, it can be revealed from the Western blot assay that LY294002, as a selective Phosphatidylinositol 3-Kinase (PI3K) inhibitor, effectively inhibited the Akt phosphorylation caused by Rhy, which suggested that Rhy showed its protective property through the activated the PI3K/Akt signaling pathway. Moreover, the Rhy-induced decreases of Bax and caspase-3 as the proapoptotic markers and the increase of Bcl-2 as the antiapoptotic marker, were blocked by LY294002 in the MPP+-treated PC12 cells. CONCLUSIONS Rhy exerts a neuroprotective effect is partly mediated by activating the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Meizhu Zheng
- The Central Laboratory, Changchun Normal University, Changchun, Jilin, PR China.
| | - Minghui Chen
- College of Life Science, Changchun Normal University, Changchun, Jilin, PR China.
| | - Wenli Wang
- College of Life Science, Changchun Normal University, Changchun, Jilin, PR China.
| | - Mi Zhou
- College of Life Science, Changchun Normal University, Changchun, Jilin, PR China.
| | - Chunming Liu
- The Central Laboratory, Changchun Normal University, Changchun, Jilin, PR China.
| | - Yajun Fan
- College of Life Science, Changchun Normal University, Changchun, Jilin, PR China.
| | - Dongfang Shi
- The Central Laboratory, Changchun Normal University, Changchun, Jilin, PR China.
| |
Collapse
|
5
|
Zheng M, Chen M, Liu C, Fan Y, Shi D. Alkaloids extracted from Uncaria rhynchophylla demonstrate neuroprotective effects in MPTP-induced experimental parkinsonism by regulating the PI3K/Akt/mTOR signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2021; 266:113451. [PMID: 33049346 DOI: 10.1016/j.jep.2020.113451] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/07/2020] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Alkaloids isolated from Uncaria rhynchophylla (Miq.) Miq. ex Havil. (Rubiaceae), alkaloids (URA) have been used to treat diseases related to the central nervous system, such as Parkinson's disease. Nevertheless, the potential mechanisms underlying their neuroprotective effects are not well-understood. AIM OF THE STUDY We investigated the neuroprotective effects of URAs in a mouse model of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced Parkinson's disease (PD) and the possible involvement of a molecular signaling pathway. MATERIALS AND METHODS Two typical experiments for animal behavior despair, the spontaneous motor activity and the rotarod experiments, were employed to evaluate the efficacy of URAs in mice with PD symptoms. Dopamine (DA) neurons and their metabolism were evaluated using high-performance liquid chromatography-tandem mass spectrometry. The mechanism of action of the alkaloids was investigated by analyzing their effects on the phosphoinositide 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway using western blotting. RESULTS URA treatment effectively improved the behaviors of the mice during the "spontaneous motor activity and latency to fall off the rotarod test". Moreover, URAs demonstrated a protective role in dopaminergic neurons by increasing the expression of the dopamine transporter and tyrosine hydroxylase, which were supposed to be reduced by MPTP, inhibiting dopamine turnover, and changing dopamine and relevant metabolites. In addition to its association with the increase in the Bcl-2/Bad ratio, URA treatment also attenuated the cleaved caspase-3 level and enhanced the phosphorylation of Akt and mTOR. CONCLUSION These findings provide evidence that URA can effectively protect neurons from the neurotoxicity caused by MPTP in mouse models of PD by up-regulating the PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Meizhu Zheng
- The Central Laboratory, Changchun Normal University, Changchun, Jilin, China.
| | - Minghui Chen
- College of Life Science, Changchun Normal University, Changchun, Jilin, China.
| | - Chunming Liu
- The Central Laboratory, Changchun Normal University, Changchun, Jilin, China.
| | - Yajun Fan
- College of Life Science, Changchun Normal University, Changchun, Jilin, China.
| | - Dongfang Shi
- The Central Laboratory, Changchun Normal University, Changchun, Jilin, China.
| |
Collapse
|
6
|
Evaluation of Zhenwu Decoction Effects on CYP450 Enzymes in Rats Using a Cocktail Method by UPLC-MS/MS. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4816209. [PMID: 32461991 PMCID: PMC7240782 DOI: 10.1155/2020/4816209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/06/2020] [Indexed: 12/15/2022]
Abstract
This thesis is aimed at shedding light on the effects of the Zhenwu decoction (ZWD) on the activities and mRNA expressions of seven CYP450 isoenzymes. In the first step, we determined the main chemical compounds of ZWD by high-performance liquid chromatography (HPLC). Next, 48 male (SD) rats were randomly divided into the normal saline (NS) group and the ZWD low- (2.1875 g/kg), medium- (4.375 g/kg), and high- (8.75 g/kg) dose groups (12 per group). All rats were gavaged once daily for 28 consecutive days. A mixed solution of seven probe drugs was injected into 24 rats through the caudal vein after the last intragastric administration. Lastly, a validated cocktail method and real-time quantitative reverse-transcription polymerase chain reaction (RT-qPCR) were used to detect pharmacokinetic parameters and mRNA expressions, respectively. Compared with the NS group, ZWD at medium- and high-dose groups could significantly induce CYP2C6 (P < 0.05) activity, while the mRNA expression (P < 0.05) increased only in the high-dose group. Additionally, CYP2C11 activity was induced and consistent with mRNA expression (P < 0.05). Moreover, ZWD could induce the activity of CYP3A1 (P < 0.05), but the mRNA expression showed no significant differences except in high-dose groups. Additionally, ZWD has no effects on CYP1A2, CYP2B1, CYP2C7, and CYP2D2. In conclusion, the significant inductive effects of ZWD on three CYP450 isoenzymes indicated that when ZWD was coadministrated with drugs mediated by these enzymes, not only should the potential herb-drug interactions (HDIs) be observed, but the dosage adjustment and tissue drug concentration should also be considered. Furthermore, the approach described in this article can be applied to study the importance of gender, age, and disease factors to HDI prediction.
Collapse
|
7
|
Zheng M, Liu C, Fan Y, Shi D, Jian W. Total glucosides of paeony (TGP) extracted from Radix Paeoniae Alba exerts neuroprotective effects in MPTP-induced experimental parkinsonism by regulating the cAMP/PKA/CREB signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2019; 245:112182. [PMID: 31445131 DOI: 10.1016/j.jep.2019.112182] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/08/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The totally-amounted glucosides of paeony (TGP), which are made up of paeoniflorin, albiflorin, oxypaeoniflorin as well as benzoylpaeoniflorin, constitute the Baishao' actively-working component extracted from Radix Paeonia alba employed in conventional oriental medicine aiming to treat cerebrovascular disorders, such as Parkinson's disease. However, its pharmacologic mechanism is not clear. AIM OF THE STUDY The initial investigation was made on TGP's neuroprotective effects on PD of the mouse model based on 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) as well as the identification of potential involvement of a molecular signaling pathway. MATERIALS AND METHODS The evaluation of the behavioral damage as well as neurotoxicity in mice was made through MPTP. Spontaneous motor activity test, as well as a test of Rota-rod on mice was employed for the measurement of bradykinesia symptom. Additionally, liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS-MS) works as the determiner of the main monoamine neurotransmitters dopamine (DA) along with its metabolites 3, 4-dihydroxyphenylacetic acid (DOPAC) as well as homovanillic acid (HVA) based on mouse hippocampus connected with the anti-Parkinson's disease like effect of TGP. Besides, the measurement of the effects of TGP treatment on the expressions level of TH, DAT, a-synuclein, p-CREBS133 as well as apoptosis influence was made with the help of western-blot assay with apoptosis-related markers such as Bax and Bcl-2. RESULTS The results showed that TGP treatment lessened the behavior-based loss shown "in the spontaneous motor activity as well as the potential of falling to rotarod test". In addition, we found that pretreatment with TGP markedly improved motor coordination, striatal dopamine and its metabolite levels. Furthermore, pretreatment of TGP conducted the protection for dopaminergic neurons with the prevented MPTP-induced reductions within the tyrosine hydroxylase (TH), substantia nigra dopaminergic transporter (DAT), as well as increasing α-synuclein protein levels with transformed dopamine catabolism as well as inhibited dopamine turnover. Besides, TGP treatment helped reversed apoptosis signaling molecules Bcl-2/Bax' reduction; meanwhile improving p-CREBS133 the factor of growth signaling in the substantia nigra' decrease. CONCLUSION These results suggested that TGP can enhance dopaminergic neuron's cell survival in the SNpc in virtue of the activated cAMP/PKA/CREB factor of growth on inhibiting the pathway of second messenger apoptosis as well. In conclusion, the current findings indicate TGP is expected to be a new cure for PD.
Collapse
Affiliation(s)
- Meizhu Zheng
- The Central Laboratory, Changchun Normal University, Changchun, Jilin Province, 130032, China.
| | - Chunming Liu
- The Central Laboratory, Changchun Normal University, Changchun, Jilin Province, 130032, China.
| | - Yajun Fan
- College of Life Science, Changchun Normal University, Changchun, Jilin Province, 130032, China.
| | - Dongfang Shi
- The Central Laboratory, Changchun Normal University, Changchun, Jilin Province, 130032, China.
| | - Weining Jian
- College of Life Science, Changchun Normal University, Changchun, Jilin Province, 130032, China.
| |
Collapse
|
8
|
Ji Y, Wang D, Zhang B, Lu H. Bergenin Ameliorates MPTP-Induced Parkinson’s Disease by Activating PI3K/Akt Signaling Pathway. J Alzheimers Dis 2019; 72:823-833. [PMID: 31658061 DOI: 10.3233/jad-190870] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yangfei Ji
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dan Wang
- Department of Cardiology, Zhengzhou Central Hospital, Zhengzhou, China
| | - Boai Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hong Lu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
Curative Anti-Inflammatory Properties of Chinese Optimized Yinxieling Formula in Models of Parkinson's Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:6142065. [PMID: 30519267 PMCID: PMC6241364 DOI: 10.1155/2018/6142065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/22/2018] [Accepted: 10/15/2018] [Indexed: 12/19/2022]
Abstract
Parkinson's disease (PD) is marked by the progressive degeneration of dopaminergic neurons (DAN) accompanied by glial activation. Thus, inhibiting glial activation that occurs during this disease could be an effective method for treating PD. Optimized Yinxieling Formula (OYF), a Chinese medicinal formula, which is used to efficiently treat autoimmune disease psoriasis, has been proved to display potential immunomodulatory effects in inflammation-associated diseases. This study assessed the therapeutic benefits of OYF on glial-mediated neuroinflammation and neuroprotection in PD models in vitro and in vivo. First, the results showed that OYF significantly suppresses LPS-induced proinflammatory cytokine secretion and attenuates the overall inflammatory responses in BV-2 cells. Second, in vivo studies confirm that while the validity of our MPTP-induced PD mouse models possesses activated glia and significant neurobehavioral dysfunction, pretreatment with OYF prevents glial activation and ameliorates movement dysfunction in the MPTP-induced PD mouse models as evaluated by the pole and rotarod tests. Third, transcriptomic analyses were carried out to reveal the underlying molecular mechanism of the OYF treatment. Sixteen pathways were significantly upregulated in the OYF-treated PD model mice, including the cytokine-cytokine receptor interaction, cell adhesion molecules, coagulation, and complement cascades. Fifteen pathways were significantly downregulated in the OYF-treated PD model mice, such as the natural killer cell mediated cytotoxicity, hematopoietic cell lineage, phagosome, and others. These pathways share direct or indirect features of immunomodulation, suggesting that the physiological effects of OYF involve key roles of immune and inflammation regulations. Therefore, we prove that OYF is a useful immunomodulatory formula in developing prevention and treatment methods for neurodegenerative disease PD.
Collapse
|
10
|
Yan D, Pan X, Yao J, Wang D, Wu X, Chen X, Shi N, Yan H. MAPKs and NF-κB-mediated acrylamide-induced neuropathy in rat striatum and human neuroblastoma cells SY5Y. J Cell Biochem 2018; 120:3898-3910. [PMID: 30368882 DOI: 10.1002/jcb.27671] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/20/2018] [Indexed: 01/05/2023]
Abstract
Acrylamide (ACR) is a potent neurotoxin that can be produced during high-temperature food processing, but the underlying toxicological mechanism remains unclear. In this study, the detrimental effects of ACR on the striatal dopaminergic neurons and the roles of mitogen-activated protein kinases (MAPKs) and nuclear factor κB (NF-κB) in ACR-induced neuronal apoptosis were investigated. Acute ACR exposure caused dopaminergic neurons loss and apoptosis as revealed by decreased tyrosine hydroxylase (TH)-positive cells and TH protein level and increased terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL)-positive cells in the striatum. ACR-decreased glutathione content, increased levels of malondialdehyde, proinflammatory cytokines tumor necrosis factor α, and interleukin 6. In addition, nuclear NF-κB and MAPKs signaling pathway with c-Jun N-terminal kinase (JNK) and p38 were activated by ACR. Specific inhibitors were used to explore the roles of MAPKs and NF-κB pathways in ACR-induced apoptosis in SH-SY5Y cells. Pretreatment with JNK-specific inhibitors SP600125 markedly upregulated the reduced B-cell lymphoma 2 (Bcl-2) content and downregulated the increased Bcl-2-associated X protein (Bax) level and thereby eventually reduced the proportions of early and late apoptotic cells induced by ACR, while p38 suppression by SB202190 only reversed the decrease in Bcl-2 expression. Inhibition of NF-κB by BAY 11-7082 markedly upregulated Bax level and decreased Bcl-2 expression, and eventually increasing the proportions of neuronal apoptosis compared with that in ACR alone. These results suggested that JNK contributed to ACR-induced apoptosis, while NF-κB acted as a protective regulator in response to ACR-induced neuropathy. This study helps to offer a deeper insight into the mechanism of ACR-induced neuropathy.
Collapse
Affiliation(s)
- Dandan Yan
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoqi Pan
- Department of Preventive Medicine, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianling Yao
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dun Wang
- Department of Community Health Service Management Center, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xu Wu
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyi Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Nian Shi
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Yan
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
La L, Wang L, Qin F, Jiang J, He S, Wang C, Li Y. Zhen-wu-tang ameliorates adenine-induced chronic renal failure in rats: regulation of the canonical Wnt4/beta-catenin signaling in the kidneys. JOURNAL OF ETHNOPHARMACOLOGY 2018; 219:81-90. [PMID: 29248448 DOI: 10.1016/j.jep.2017.12.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 11/24/2017] [Accepted: 12/12/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zhen-wu-tang (ZWT), composed of Radix Aconiti lateralis, Rhizoma Atractylodis macrocephalae, Poria, Radix Paeoniae alba and ginger, is a classic Chinese herbal formula for the treatment of chronic kidney diseases that may cause chronic renal failure (CRF). AIM OF THE STUDY To better understand its clinical use, this study investigated the effects and underlying mechanisms of action of ZWT on CRF. MATERIALS AND METHODS CRF was induced by adenine. ZWT was given via an oral gavage method. The serum biochemical parameters were measured enzymatically or by ELISA. The kidneys were examined pathohistologically. The gene expression was analyzed by real time PCR and Western blot. RESULTS Similar to the positive control losartan, ZWT extract inhibited adenine-induced increase in serum concentrations of creatinine, BUN and advanced oxidation protein products in rats. These effects were accompanied by attenuation of proteinuria and renal pathological changes and suppression of renal mRNA and protein overexpression of Collagen IV and fibronectin, two of the key components of fibrosis. Mechanistically, renal mRNA and protein expression of Wnt4, a Wnt signaling ligand, was increased in the adenine-treated group, compared to the vehicle-treated control. Consistently, Wnt4 downstream genes beta-catenin and Axin were also overexpressed. Treatment with ZWT extract and losartan suppressed adenine-stimulated overexpression of these mRNAs and proteins. CONCLUSIONS The present results demonstrate that ZWT extract ameliorates adenine-induced CRF in rats by regulation of the canonical Wnt4/beta-catenin signaling in the kidneys. Our findings provide new insight into the underlying renoprotective mechanisms of the ancient formula.
Collapse
Affiliation(s)
- Lei La
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Lili Wang
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China.
| | - Fei Qin
- Guangzhou Baiyunshan Pharmaceutical Holdings CO. Ltd, BAIYUNSHAN Pharmaceutical General Factory, Guangzhou 510515, China.
| | - Jian Jiang
- Endocrinology and Metabolism Group, Sydney Institute of Health Sciences/Sydney Institute of Traditional Chinese Medicine, NSW 2000, Australia.
| | - Songqi He
- College of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China.
| | - Chunxia Wang
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Yuhao Li
- Endocrinology and Metabolism Group, Sydney Institute of Health Sciences/Sydney Institute of Traditional Chinese Medicine, NSW 2000, Australia.
| |
Collapse
|
12
|
Yu Y, Xie W, Wang C. Chaihushugan decoction exerts antiepileptic effects by increasing hippocampal glutamate metabolism in pentylenetetrazole-kindled rats. J TRADIT CHIN MED 2016; 35:659-65. [PMID: 26742311 DOI: 10.1016/s0254-6272(15)30156-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To investigate the antiepileptic effects of Chaihushugan decoction (CHSGD) in rats with pentylenetetrazole (PTZ)-induced seizures and to discuss the impact of CHSGD on glutamate metabolism, a hypothesized underlying mechanism of seizure reduction. METHODS Fifty Wistar rats were divided randomly into either control (n = 10) or experimental (n = 40) groups. Rats in the control group were administered physiological saline intraperitoneally. A subconvulsive dose of PTZ (35 mg/kg) was administered intraperitoneally to rats in the experimental group to induce seizures. The fully PTZ-kindled rats were then randomly divided into five subgroups (n = 8 each) based on the following treatment categories: physiological saline, VPA (200 mg/kg), CHSGD (2.5 g/kg), CHSGD (5 g/kg), or CHSGD (10 g/kg), administered orally once per day, respectively. On day 28 following initiation of drug treatment, seizures were monitored. The rats were then sacrificed, and hippocampal dissections were performed for subsequent studies. RESULTS CHSGD significantly prolonged the latency of myoclonic, clonic, and tonic seizures, while decreasing overall seizure rates in the kindled rats. The measured concentrations of 2-[N-(7-nitrobenz-2-oxa-1,3-diazo-4-yl) amino]-2-deoxy-d-glucose (2-NBDG) and glutamate were significantly lower in the hippocampi of kindled rats in groups treated with CHSGD compared with those treated with PTZ alone. In addition, CHSGD was found to up-regulate both the expression of glutamate transporter-1 (GLT-1) protein and the activity of glutamine synthetase (GS) in the hippocampi of kindled rats. CONCLUSION These results suggest that CHSGD has antiepileptic effects on PTZ-induced seizures. The results further suggest an increase in glutamate metabolism at the synaptic cleft is a putative underlying mechanism of seizure reduction.
Collapse
|
13
|
Pan X, Guo X, Xiong F, Cheng G, Lu Q, Yan H. Acrylamide increases dopamine levels by affecting dopamine transport and metabolism related genes in the striatal dopaminergic system. Toxicol Lett 2015; 236:60-8. [PMID: 25943760 DOI: 10.1016/j.toxlet.2015.04.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 04/28/2015] [Accepted: 04/30/2015] [Indexed: 12/25/2022]
Abstract
Dopaminergic system dysfunction is proved to be a possible mechanism in acrylamide (ACR) -induced neurotoxicity. The neurotransmitter dopamine (DA) has an increasingly important role in the dopaminergic system. Thus, the goal of this study is to evaluate effects of ACR on dopamine and its metabolite levels, dopamine transport and metabolic gene expression in dopaminergic neurons. Male Sprague-Dawley (SD) rats were dosed orally with ACR at 0 (saline), 20, 30, and 40 mg/kg/day for 20 days. Splayed hind limbs, reduced tail flick time and abnormal gait which preceded other neurologic parameters were observed in the above rats. ACR significantly increased dopamine levels, decreased 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanilic acid (HVA) contents in an area dependent manner in rat striatum. Immunohistochemical staining of the striatum revealed that the number of tyrosine hydroxylase (TH) positive cells significantly increased, while monoamine oxidase (MAO) positive cells were drastically reduced, which was consistent with changes in their mRNA and protein expressions. In addition, dopamine transporter (DAT) and vesicular monoamine transporter 2 (VMAT2) expression levels were both down-regulated in the striatum. These results suggest that dopamine levels increase significantly in response to ACR, presumably due to changes in the dopamine transport and metabolism related genes expression in the striatal dopaminergic neurons.
Collapse
Affiliation(s)
- Xiaoqi Pan
- Department of Health Toxicology, MOE Key Lab of Environment Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Research institute for Environmental Medicine, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiongxiong Guo
- Shenzhen Luohu Institute of Health Inspection, Shenzhen 518000, China
| | - Fei Xiong
- Chongqing Jiulongpo Municipal Center for Disease and Prevention, Chongqing 400039, China
| | - Guihong Cheng
- Department of Health Toxicology, MOE Key Lab of Environment Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qing Lu
- Research institute for Environmental Medicine, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hong Yan
- Department of Health Toxicology, MOE Key Lab of Environment Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
14
|
Escin, a Novel Triterpene, Mitigates Chronic MPTP/p-Induced Dopaminergic Toxicity by Attenuating Mitochondrial Dysfunction, Oxidative Stress, and Apoptosis. J Mol Neurosci 2014; 55:184-197. [DOI: 10.1007/s12031-014-0303-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 04/03/2014] [Indexed: 12/21/2022]
|
15
|
Role of early life exposure and environment on neurodegeneration: implications on brain disorders. Transl Neurodegener 2014; 3:9. [PMID: 24847438 PMCID: PMC4028099 DOI: 10.1186/2047-9158-3-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 04/17/2014] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic lateral sclerosis (ALS) and retinal degeneration have been studied extensively and varying molecular mechanisms have been proposed for onset of such diseases. Although genetic analysis of these diseases has also been described, yet the mechanisms governing the extent of vulnerability to such diseases remains unresolved. Recent studies have, therefore, focused on the role of environmental exposure in progression of such diseases especially in the context of prenatal and postnatal life, explaining how molecular mechanisms mediate epigenetic changes leading to degenerative diseases. This review summarizes both the animal and human studies describing various environmental stimuli to which an individual or an animal is exposed during in-utero and postnatal period and mechanisms that promote neurodegeneration. The SNPs mediating gene environment interaction are also described. Further, preventive and therapeutic strategies are suggested for effective intervention.
Collapse
|
16
|
Lu C, Zhang J, Shi X, Miao S, Bi L, Zhang S, Yang Q, Zhou X, Zhang M, Xie Y, Miao Q, Wang S. Neuroprotective effects of tetramethylpyrazine against dopaminergic neuron injury in a rat model of Parkinson's disease induced by MPTP. Int J Biol Sci 2014; 10:350-7. [PMID: 24719552 PMCID: PMC3979987 DOI: 10.7150/ijbs.8366] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 01/31/2014] [Indexed: 02/06/2023] Open
Abstract
Parkinson's disease (PD) is the second most prevalent progressive neurodegenerative disease. Although several hypotheses have been proposed to explain the pathogenesis of PD, apoptotic cell death and oxidative stress are the most prevalent mechanisms. Tetramethylpyrazine (TMP) is a biological component that has been extracted from Ligusticum wallichii Franchat (ChuanXiong), which exhibits anti-apoptotic and antioxidant roles. In the current study, we aimed to investigate the possible protective effect of TMP against dopaminergic neuron injury in a rat model of Parkinson's disease induced by MPTP and to elucidate probable molecular mechanisms. The results showed that TMP could notably prevent MPTP-induced dopaminergic neurons damage, reflected by improvement of motor deficits, enhancement of TH expression and the content of dopamine and its metabolite, DOPAC. We observed MPTP-induced activation of mitochondrial apoptotic death pathway, evidenced by up-regulation of Bax, down-regulation of Bcl-2, release of cytochrome c and cleavage of caspase 3, which was significantly inhibited by TMP. Moreover, TMP could prevent MPTP-increased TBARS level and MPTP-decreased GSH level, indicating the antioxidant role of TMP in PD model. And the antioxidant role of TMP attributes to the prevention of MPTP-induced reduction of Nrf2 and GCLc expression. In conclusion, in MPTP-induced PD model, TMP prevents the down-regulation of Nrf2 and GCLc, maintaining redox balance and inhibiting apoptosis, leading to the attenuation of dopaminergic neuron damage. The effectiveness of TMP in treating PD potentially leads to interesting therapeutic perspectives.
Collapse
Affiliation(s)
- Chen Lu
- 1. Institute of Materia, Fourth Military Medical University, Xi'an 710032, China
| | - Jin Zhang
- 2. Department of Hand Surgery, 401 Military Hospital, Qingdao 266071, China
| | - Xiaopeng Shi
- 3. Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Shan Miao
- 1. Institute of Materia, Fourth Military Medical University, Xi'an 710032, China
| | - Linlin Bi
- 1. Institute of Materia, Fourth Military Medical University, Xi'an 710032, China
| | - Song Zhang
- 4. Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Qian Yang
- 1. Institute of Materia, Fourth Military Medical University, Xi'an 710032, China
| | - Xuanxuan Zhou
- 1. Institute of Materia, Fourth Military Medical University, Xi'an 710032, China
| | - Meng Zhang
- 1. Institute of Materia, Fourth Military Medical University, Xi'an 710032, China
| | - Yanhua Xie
- 1. Institute of Materia, Fourth Military Medical University, Xi'an 710032, China
| | - Qing Miao
- 1. Institute of Materia, Fourth Military Medical University, Xi'an 710032, China
| | - Siwang Wang
- 1. Institute of Materia, Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
17
|
Neuroprotective effects of madecassoside in early stage of Parkinson's disease induced by MPTP in rats. Fitoterapia 2013; 90:112-8. [DOI: 10.1016/j.fitote.2013.07.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 07/11/2013] [Accepted: 07/13/2013] [Indexed: 01/27/2023]
|
18
|
Li XZ, Zhang SN, Liu SM, Lu F. Recent advances in herbal medicines treating Parkinson's disease. Fitoterapia 2013; 84:273-85. [DOI: 10.1016/j.fitote.2012.12.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Revised: 12/02/2012] [Accepted: 12/09/2012] [Indexed: 12/17/2022]
|
19
|
Song JX, Sze SCW, Ng TB, Lee CKF, Leung GPH, Shaw PC, Tong Y, Zhang YB. Anti-Parkinsonian drug discovery from herbal medicines: what have we got from neurotoxic models? JOURNAL OF ETHNOPHARMACOLOGY 2012; 139:698-711. [PMID: 22212501 DOI: 10.1016/j.jep.2011.12.030] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 12/20/2011] [Accepted: 12/20/2011] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Herbal medicines are used to treat Parkinson's disease (PD) in ancient medical systems in Asian countries such as India, China, Japan and Korea based on their own anecdotal or experience-based theories. AIM OF THE REVIEW To systematically summarize and analyze the anti-Parkinsonian activities of herbal preparations (including active compounds, herbal extracts and formulations) investigated in the neurotoxic models of PD and provide future references for basic and clinical investigations. MATERIALS AND METHODS All the herbal materials tested on in vitro and in vivo neurotoxic models of PD were retrieved from PubMed database by using pre-set searching strings. The relevant compounds and herbal extracts with anti-Parkinsonian activities were included and analyzed according to their chemical classifications or biological activities. RESULTS A total of 51 herbal medicines were analyzed. A diversity of compounds isolated from herbal materials were reported to be effective on neurotoxic models of PD by modulating multiple key events or signaling pathways implicated in the pathogenesis of PD. The main structure types of these compounds belong to catechols, stilbenoids, flavonoids, phenylpropanoids and lignans, phenylethanoid glycosides and terpenes. Although some herbal extracts and formulations have shown positive results on PD animal models, the relative compounds accounting for the effects and the underlying mechanisms remain to be further investigated. CONCLUSIONS Herbal medicines can be an alternative and valuable source for anti-Parkinsonian drug discovery. Compounds classified into stilbenoids, flavonoids, catechols and terpenes may be the most promising candidates for further investigation. Some well-studies compounds such as baicalein, puerarin, resveratrol, curcumin and ginsenosides deserve further consideration in clinical trials. In-depth experimental studies are still needed to evaluate the efficacy of herbal extracts and formulations in PD models.
Collapse
Affiliation(s)
- Ju-Xian Song
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Xu CL, Wang QZ, Sun LM, Li XM, Deng JM, Li LF, Zhang J, Xu R, Ma SP. Asiaticoside: attenuation of neurotoxicity induced by MPTP in a rat model of Parkinsonism via maintaining redox balance and up-regulating the ratio of Bcl-2/Bax. Pharmacol Biochem Behav 2011; 100:413-8. [PMID: 22001429 DOI: 10.1016/j.pbb.2011.09.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 09/15/2011] [Accepted: 09/27/2011] [Indexed: 01/21/2023]
Abstract
In this study, we investigated the neuroprotective effects of asiaticoside, a triterpenoid saponin isolated from the Chinese medicinal herb Centella asiatica, in the rats model of Parkinsonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Rats were first injected with MPTP. One day after surgery, asiaticoside was administered and the behavioral tests were assessed. On 14th day, the rats were sacrificed, substantia nigra (SN) and striatum were dissected, and then dopamine (DA) and its metabolites in striatum and malonyldialdehyde (MDA) contents, reduced glutathione (GSH) level and gene expression level in SN were estimated. Treatment with asiaticoside was found to protect dopaminergic neuron by antagonizing MPTP induced neurotoxicity and to improve locomotor dysfunction. Asiaticoside significantly attenuated the MPTP-induced reduction of dopamine in the striatum. The content of MDA was significantly decreased while the GSH level was significantly increased in asiaticoside-treated groups. In addition, asiaticoside increased the Bcl-2/Bax ratio. These results indicated that asiaticoside was effective in reversing MPTP induced Parkinsonism via its neuroprotective effects including antioxidant activity, maintaining the metabolic balance of DA, and increasing ratio of Bcl-2/Bax.
Collapse
Affiliation(s)
- Chang-Liang Xu
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|