1
|
Wang Q, Peng X, Yuan Y, Zhou X, Huang J, Wang H. The effect of Torreya grandis inter-cropping with Polygonatum sibiricum on soil microbial community. Front Microbiol 2024; 15:1487619. [PMID: 39697655 PMCID: PMC11652488 DOI: 10.3389/fmicb.2024.1487619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/04/2024] [Indexed: 12/20/2024] Open
Abstract
Background Inter-cropping is a reasonable planting pattern between different plants. Inter-cropping of Torreya grandis with Polygonatum sibiricum is a relatively mature planting pattern in China, which has been applied to improve soil ecological environment and reduce the occurrence of pests and diseases in China. However, there is currently limited knowledge on the response of soil microbial communities to this practice. Methods In this study, we employed Illumina MiSeq sequencing coupled with Functional Annotation of Prokaryotic Taxa (FAPROTAX) and Fungi Functional Guild (FUNGuild) analyses to investigate the dynamic changes in soil microbial communities across seven treated groups [the bulk soil of the T. grandis inter-cropping with P. sibiricum (IB), the bulk soil for mono-cropping of P. sibiricum (PB), the bulk soil for mono-cropping of T. grandis (TB), the P. grandis rhizosphere soil of the T. grandis inter-cropping with P. sibiricum (IPR), the rhizosphere soil for mono-cropping of P. sibiricum (PR), the T. grandis rhizosphere soil of the T. grandis inter-cropping with P. sibiricum (ITR), and the rhizosphere soil for mono-cropping of T. grandis (TR)]. Results The results showed that the rhizosphere soil of Torreya-Polygonatum inter-cropping exhibited higher microbial community richness, diversity and evenness than mono-cropping (ITR > TR, IPR > PR). Inter-cropping increased the abundance of Micrococcaceae, Xanthobacteraceae, Saitozyma, while decreased Bacillus, Burkholderia, Streptomyces, Cladosporium, and Gibberella significantly of the rhizosphere soil of T. grandis. Further, the abundance of pathogens, such as Fusarium and Neocosmospora, was higher in mono-cropping samples compared to inter-cropping. There existed distinct variations in bacterial and fungal communities among all groups except for IB and TB. The FAPROTAX and FUNGuild analyses results indicated that inter-cropping significantly enhanced soil microbial function associated with nutrient cycling and exhibited a consistent increase in the relative abundance of nitrogen-cycling and carbon-cycling bacteria, and decreased the abundance of plant pathogen guild in the inter-cropping sample ITR compared to the mono-cropping TR. Conclusion Our findings suggest that T. grandis inter-cropping with P. sibiricum not only enhance the diversity of soil microbial communities, but also improve the nitrogen and carbon cycling functions. In addition, the inter-cropping can effectively reduce the relative abundance of some soil-borne pathogens for T. grandis and P. sibiricum, indicating that this intercropping method may alleviate the impact of pathogens on crops, thus providing assistance for plant disease prevention and sustainable management.
Collapse
Affiliation(s)
| | | | | | | | - Jianqin Huang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, Zhejiang, China
| | - Haonan Wang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Pan M, Wu Y, Sun C, Ma H, Ye X, Li X. Polygonati Rhizoma: A review on the extraction, purification, structural characterization, biosynthesis of the main secondary metabolites and anti-aging effects. JOURNAL OF ETHNOPHARMACOLOGY 2024; 327:118002. [PMID: 38437890 DOI: 10.1016/j.jep.2024.118002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/13/2024] [Accepted: 02/29/2024] [Indexed: 03/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polygonati Rhizome (PR) is a plant that is extensively widespread in the temperate zones of the Northern Hemisphere. It is a member of the Polygonatum family of Asparagaceae. PR exhibits diverse pharmacological effects and finds applications in ethnopharmacology, serving as a potent tonic for more than two millennia. PR's compounds endow it with various pharmacological properties, including anti-aging, antioxidant, anti-fatigue, anti-inflammatory, and sleep-enhancing effects, as well as therapeutic potential for osteoporosis and age-related diseases. AIM OF THE STUDY This review seeks to offer a thorough overview of the processing, purification, extraction, structural characterization, and biosynthesis pathways of PR. Furthermore, it delves into the anti-aging mechanism of PR, using organ protection as an entry point. MATERIALS AND METHODS Information on PR was obtained from scientific databases (Google Scholar, Web of Science, ScienceDirect, SciFinder, PubMed, CNKI) and books, doctoral theses, and master's dissertations. RESULTS In this investigation, 49 polysaccharides were extracted from PR, and the impact of various processing, extraction, and purification techniques on the structure and activity of these polysaccharides was evaluated. Additionally, 163 saponins and 46 flavonoids were identified, and three key biosynthesis pathways of secondary metabolites were outlined. Notably, PR and Polygonat Rhizomai polysaccharides (PRP) exhibit remarkable protective effects against age-induced injuries to the brain, liver, kidney, intestine, heart, and vessels, thereby promoting longevity and ameliorating the aging process. CONCLUSIONS PR, a culinary and therapeutic herb, is rich in active components and pharmacological activities. Based on this review, PR plays a meaningful role in lifespan extension and anti-aging, which can be attributed to PRP. Future research should delve deeper into the structural aspects of PRP that underlie its anti-aging effects and explore potential synergistic interactions with other compounds. Moreover, exploring the potential applications of PR in functional foods and pharmaceutical formulations is recommended to advance the development of industries and resources focused on healthy aging.
Collapse
Affiliation(s)
- Miao Pan
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, China.
| | - Yajing Wu
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, China.
| | - Chunyong Sun
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, China.
| | - Hang Ma
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, China.
| | - Xiaoli Ye
- School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Xuegang Li
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
3
|
Xu Y, Liang H, Mao X, Chen Y, Hou B, Hao Z. Molecular mechanism of Rhizoma Polygonati in the treatment of nephrolithiasis: network pharmacology analysis and in vivo experimental verification. Urolithiasis 2024; 52:35. [PMID: 38376588 DOI: 10.1007/s00240-024-01533-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/16/2024] [Indexed: 02/21/2024]
Abstract
Rhizoma Polygonati (RP) is the dried rhizome of the liliaceous plant. It has anti-inflammatory and anti-apoptosis effects. But its role in kidney stones has not been studied. The purpose of this study was to verify the effect of RP in the treatment of nephrolithiasis through network pharmacological analysis and in vivo experiments. The active compounds and protein targets of RP, as well as the potential targets of the nephrolithiasis were searched from the database. The protein-protein interaction (PPI) network diagram and the drug-compounds-targets-disease network were constructed. The enrichment analysis was performed by Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG). Subsequently, the effect of RP on the prevention and treatment of nephrolithiasis was experimentally validated in vivo. Animal experiments showed that RP ameliorates renal function and reduced crystal deposition in a mouse model. It may act through anti-inflammation and anti-apoptosis. Our study showed that RP could prevent and treat nephrolithiasis by inhibiting apoptosis and inflammation, which provided a new efficacy and clinical application for RP.
Collapse
Affiliation(s)
- Yuexian Xu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, China
| | - Hu Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, China
| | - Xike Mao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, China
| | - Yang Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
- Institute of Urology, Anhui Medical University, Hefei, China.
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, China.
| | - Bingbing Hou
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, China
| | - Zongyao Hao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
- Institute of Urology, Anhui Medical University, Hefei, China.
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, China.
| |
Collapse
|
4
|
Xiang M, Liu J, Ma K, Sha Y, Zhan Y, Zhang W, Kong X. The mechanism of Qijing Mingmu decoction on cellular senescence of conjunctivochalasis. BMC Complement Med Ther 2023; 23:302. [PMID: 37644481 PMCID: PMC10466834 DOI: 10.1186/s12906-023-04138-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/23/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Qijing Mingmu decoction (QJMM), a compound Chinese medicine preparation, which consists of Lycium barbarum, Polygonatum, Ophiopogon japonicus, Poria cocos, Glycyrrhiza, Eclipta prostrata and Ligusticum striatum, has been confirmed to be effective for the treatment of conjunctivochalasis (CCH) in clinic and reduce cellular senescence. However, the underlying mechanism is still unknown. Our previous study revealed that p38-mediated cellular senescence contributed to the pathogenesis of CCH. METHODS To explore whether p38 might be the potential therapeutic target of QJMM for CCH, CCH fibroblasts were treated with QJMM granule and then the effect of QJMM granule on the expression and promoter activity of p38α was determined by western blot and dual luciferase reporter gene assay, respectively. Meanwhile, the influence of QJMM granule on cell proliferation, oxidative stress, cellular senescence and the expression of the cellular senescence-associated genes were measured by corresponding methods. RESULTS QJMM granule significantly decreased the protein expression of p38α and p-p38α in CCH fibroblasts in a dose-dependent manner and inhibited p38α promoter activity. QJMM granule as well as the p38 inhibitor SB203580 reduced the level of reactive oxygen species and increased the activity of superoxide dismutase in CCH fibroblasts. QJMM granule and SB203580 promoted cell proliferation and reduced the percentage of SA-β-Gal-positive cells. The mRNA and protein expression of p53 and p21 was remarkably down-regulated by QJMM granule as well as SB203580 and that of SMP30 was up-regulated in CCH fibroblasts. CONCLUSIONS Our findings demonstrated that QJMM granule was effective for alleviating cellular senescence of CCH fibroblasts by p38 MAPK signaling and the followed p53/p21 signaling.
Collapse
Affiliation(s)
- Minhong Xiang
- Department of Ophthalmology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, No.164 Lanxi Road, Shanghai, 200062, P.R. China.
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Hefei, 230032, China.
| | - Jiang Liu
- Department of Ophthalmology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, No.164 Lanxi Road, Shanghai, 200062, P.R. China
| | - Kai Ma
- Department of Ophthalmology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, No.164 Lanxi Road, Shanghai, 200062, P.R. China
| | - Yongyi Sha
- Department of Ophthalmology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, No.164 Lanxi Road, Shanghai, 200062, P.R. China
| | - Yueping Zhan
- Department of Central Lab, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Wei Zhang
- Department of Ophthalmology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, No.164 Lanxi Road, Shanghai, 200062, P.R. China
| | - Xueqing Kong
- Department of Ophthalmology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, No.164 Lanxi Road, Shanghai, 200062, P.R. China
| |
Collapse
|
5
|
Zhao L, Xu C, Zhou W, Li Y, Xie Y, Hu H, Wang Z. Polygonati Rhizoma with the homology of medicine and food: A review of ethnopharmacology, botany, phytochemistry, pharmacology and applications. JOURNAL OF ETHNOPHARMACOLOGY 2023; 309:116296. [PMID: 36841378 DOI: 10.1016/j.jep.2023.116296] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/30/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polygonati Rhizoma (PR), which contains rich national cultural connotations, is a traditional Chinese medicine with homology of medicine and food. It has been used for a long time as a tonic in China's multi-ethnic medical system, and is also used to treat diseases such as premature graying hair, deficiency of blood and essence, diabetes, hypertension, etc. Meanwhile, PR is often used as food in China, India, South Korea and other Asian countries, which can satisfy hunger and provide many health benefits. AIM OF THE REVIEW This paper systematically reviewed the ethnopharmacology, botany, phytochemistry, pharmacology and related applications research of PR, and provided a reference for the comprehensive applications of PR, including basic research, product development and clinical applications. This paper also refined the national application characteristics of PR, such as rich plant resources, special chemical components and anti-hidden hungry, which laid a foundation for its high value and high connotation development in the future. MATERIALS AND METHODS The literature information was collected systematically from the electronic scientific databases, including PubMed, Science Direct, Google Scholar, Web of Science, Geen Medical, China National Knowledge Infrastructure, as well as other literature sources, such as classic books of herbal medicine. RESULTS A comprehensive analysis of the above literature confirmed that PR has been used in the ethnic medicine system of Asian countries such as China for thousands of years. In this paper, 12 species including official species that can be used as PR are summarized, which provide rich plant resources for PR. The chemical components in PR are divided into nutritional components and active components. The former not only contains non-starch polysaccharides and fructo-oligosaccharides, which account for about 50% in PR and are recognized as high-quality diet in the world, but also contains inorganic elements and mineral elements. And a total of 199 kinds active ingredients, including saponins, flavonoids, alkaloids, etc., were sorted out by us. The above ingredients make PR have a special property of anti-hidden hunger. Studies have shown that PR has a wide range of pharmacological activities, such as immune regulation, blood glucose regulation, lipid-lowering, antioxidant, anti-tumor, antibacterial, etc. It has been widely used in medicine, food, cosmetics, gardens and other fields. CONCLUSIONS PR, as a classic medicinal material of the same origin, is widely used in the traditional ethnic medicine system. It contains abundant potential plant resources, chemical components and pharmacological activities. This paper also suggests that PR with high application value in food industry, has the potential to become a high-quality coarse grain. Exploring the way of grain and industrialization of PR is beneficial to fully develop the economic value of PR.
Collapse
Affiliation(s)
- Linxian Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Chunyi Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Weiling Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yanyan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yongmei Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Huiling Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Zhanguo Wang
- Holistic Integrative Medicine Industry Collaborative Innovation Research Center, Qiang Medicine Standard Research Promotion Base and Collaborative Innovation Research Center, School of Preclinical Medicine, Chengdu University, Chengdu, 610106, China.
| |
Collapse
|
6
|
Cui XY, Wu X, Lu D, Wang D. Network pharmacology-based strategy for predicting therapy targets of Sanqi and Huangjing in diabetes mellitus. World J Clin Cases 2022; 10:6900-6914. [PMID: 36051114 PMCID: PMC9297423 DOI: 10.12998/wjcc.v10.i20.6900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/02/2022] [Accepted: 04/15/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND A comprehensive literature search shows that Sanqi and Huangjing (SQHJ) can improve diabetes treatment in vivo and in vitro, respectively. However, the combined effects of SQHJ on diabetes mellitus (DM) are still unclear.
AIM To explore the potential mechanism of Panax notoginseng (Sanqi in Chinese) and Polygonati Rhizoma (Huangjing in Chinese) for the treatment of DM using network pharmacology.
METHODS The active components of SQHJ and targets were predicted and screened by network pharmacology through oral bioavailability and drug-likeness filtration using the Traditional Chinese Medicine Systems Pharmacology Analysis Platform database. The potential targets for the treatment of DM were identified according to the DisGeNET database. A comparative analysis was performed to investigate the overlapping genes between active component targets and DM treatment-related targets. We constructed networks of the active component-target and target pathways of SQHJ using Cytoscape software and then analyzed the gene functions. Using the STRING database to perform an interaction analysis among overlapping genes and a topological analysis, the interactions between potential targets were identified. Gene Ontology (GO) function analyses and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were conducted in DAVID.
RESULTS We screened 18 active components from 157 SQHJ components, 187 potential targets for active components and 115 overlapping genes for active components and DM. The network pharmacology analysis revealed that quercetin, beta-sitosterol, baicalein, etc. were the major active components. The mechanism underlying the SQHJ intervention effects in DM may involve nine core targets (TP53, AKT1, CASP3, TNF, interleukin-6, PTGS2, MMP9, JUN, and MAPK1). The screening and enrichment analysis revealed that the treatment of DM using SQHJ primarily involved 16 GO enriched terms and 13 related pathways.
CONCLUSION SQHJ treatment for DM targets TP53, AKT1, CASP3, and TNF and participates in pathways in leishmaniasis and cancer.
Collapse
Affiliation(s)
- Xiao-Yan Cui
- Hebei Institute for Drug and Medical Device Control, Shijiazhuang 050011, Hebei Province, China
| | - Xiao Wu
- Department of Basic Medical, HE’s University, Shenyang 110163, Liaoning Province, China
| | - Dan Lu
- College of Clinical, HE’s University, Shenyang 110163, Liaoning Province, China
| | - Dan Wang
- College of Human Kinesiology, Shenyang Sport University, Shenyang 110102, Liaoning Province, China
| |
Collapse
|
7
|
Qiao X, Wang B, Yuan Z, Yu F, Zhang Y, Wang Y, Yang Y, Tang J, Jiang Z, Lin L, Zhang L, Du Z, Zhang Y. The polysaccharides from Yiqi Yangyin complex attenuated mammary gland hyperplasia: Integrating underlying biological mechanisms and network pharmacology. J Funct Foods 2022. [DOI: 10.1016/j.jff.2021.104878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
8
|
Machaerium hirtum (Vell.) Stellfeld Alleviates Acute Pain and Inflammation: Potential Mechanisms of Action. Biomolecules 2020; 10:biom10040590. [PMID: 32290371 PMCID: PMC7226113 DOI: 10.3390/biom10040590] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 02/07/2023] Open
Abstract
Machaerium hirtum (Vell.) Stellfeld (Fabaceae) known in Brazil as “jacaranda de espinho” or “espinheira santa nativa” is a medicinal plant commonly used in folk medicine to treat ulcers, cough and diarrhea. This study aimed to investigate the anti-inflammatory and antinociceptive effects of hydroalcoholic extracts from M. hirtum twig (HEMh) using in vivo experimental models of nociception through the involvement of transient receptor potential channels, acid-sensing ion channel (ASIC), nitrergic, opioidergic, glutamatergic, and supraspinal pathways. Our results revealed an antinociceptive effect of HEMh mediated by the opioidergic, l-arginine-nitric oxide and glutamate systems, as well as by interactions with TRPA1/ASIC channels. The anti-inflammatory effect of HEMh evaluated with a xylene-induced ear edema and by the involvement of arachidonic acid and prostaglandin E2 (PGE2) showed involvement of the COX pathway, based on observed decreases in PGE2 levels. A phytochemical investigation of the HEMh led to the isolation of α-amyrin, β-amyrin, allantoin, apigenin-7-methoxy-6-C-β-d-glucopyranoside, and apigenin-6-C-β-d-glucopyranosyl-8-C-β-d-xylopyranoside. In conclusion, the acute oral administration of HEMh inhibits the nociceptive behavioral response in animals through the nitrergic, opioid, glutamatergic pathways, and by inhibition of the TRPA1 and ASIC channels, without causing locomotor dysfunction. In addition, its anti-inflammatory effect is associated with the COX pathway and decreased PGE2 levels.
Collapse
|
9
|
Quispe-Fuentes I, Vega-Gálvez A, Aranda M, Poblete J, Pasten A, Bilbao-Sainz C, Wood D, McHugh T, Delporte C. Effects of drying processes on composition, microstructure and health aspects from maqui berries. Journal of Food Science and Technology 2020; 57:2241-2250. [PMID: 32431350 DOI: 10.1007/s13197-020-04260-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/20/2019] [Accepted: 01/16/2020] [Indexed: 11/28/2022]
Abstract
The aim of this study is to determine the effects of different drying methods, including freeze drying (FD), convective drying, sun drying, infrared drying and vacuum drying (VD), on the chemical composition and microstructure of maqui berries as well as their anti-inflammatory and antidiabetic activities. Results showed that all dried samples have high unsaturated fatty acids contents (up to 83%) and high total dietary fiber contents (above 50%). Also, one hundred grams of dried berries provide between 11 and 21% of the recommended daily intake of α-tocopherol. Moreover, all dried maqui extracts reduced topical inflammation in treated mice. The highest anti-inflammatory effect against phorbol 12-myristate 13-acetate was found for VD and FD samples. Also, all dried maqui extracts showed antidiabetic activity by inhibiting α-glucosidase activity. The highest α-glucosidase inhibition activity was found for FD samples. The different biological activities of the dried maqui berries were related to differences in the extractability of metabolites due to microstructural changes during drying. The results indicated the potential use of dried maqui as a food ingredient with high unsaturated fatty acids, dietary fiber and α-tocopherol or as a natural extract with therapeutic agents.
Collapse
Affiliation(s)
- Issis Quispe-Fuentes
- 1Department of Food Engineering, University of La Serena, Av. Raúl Bitrán 1305, Box 599, La Serena, Chile.,2Instituto de Investigación Multidisciplinario en Ciencias y Tecnología, University of La Serena, La Serena, Chile
| | - Antonio Vega-Gálvez
- 1Department of Food Engineering, University of La Serena, Av. Raúl Bitrán 1305, Box 599, La Serena, Chile
| | - Mario Aranda
- 3Laboratory of Advanced Research on Food and Drugs, Department of Food Science and Technology, Faculty of Pharmacy, University of Concepción, Concepción, Chile
| | - Jacqueline Poblete
- 1Department of Food Engineering, University of La Serena, Av. Raúl Bitrán 1305, Box 599, La Serena, Chile
| | - Alexis Pasten
- 1Department of Food Engineering, University of La Serena, Av. Raúl Bitrán 1305, Box 599, La Serena, Chile
| | | | - Delilah Wood
- 5Bioproducts Research Unit, U.S. Dept. of Agriculture, Albany, CA USA
| | - Tara McHugh
- 4Healthy Processed Foods Research, U.S. Dept. of Agriculture, Albany, CA USA
| | - Carla Delporte
- 6Laboratory of Natural Products, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| |
Collapse
|
10
|
Li C, Ban M, Bai F, Chen J, Jin X, Song Y. Anti-Nociceptive and Anti-Inflammation Effect Mechanisms of Mutants of Syb-prII, a Recombinant Neurotoxic Polypeptide. Toxins (Basel) 2019; 11:E699. [PMID: 31805689 PMCID: PMC6949983 DOI: 10.3390/toxins11120699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 01/09/2023] Open
Abstract
Syb-prII, a recombinant neurotoxic polypeptide, has analgesic effects with medicinal value. Previous experiments indicated that Syb-prII displayed strong analgesic activities. Therefore, a series of in vivo and vitro experiments were designed to investigate the analgesic and anti-inflammatory properties and possible mechanisms of Syb-prII. The results showed that administered Syb-prII-1 and Syb-prII-2 (0.5, 1, 2.0 mg/kg, i.v.) to mice significantly reduced the time of licking, biting, or flicking of paws in two phases in formalin-induced inflammatory nociception. Syb-prII-1 inhibited xylene-induced auricular swelling in a dose-dependent manner. The inhibitory effect of 2.0 mg/kg Syb-prII-1 on the ear swelling model was comparable to that of 200 mg/kg aspirin. In addition, the ELISA and Western blot analysis suggested that Syb-prII-1 and Syb-prII-2 may exert an analgesic effect by inhibiting the expression of Nav1.8 and the phosphorylation of ERK, JNK, and P38. Syb-prII-1 markedly suppressed the expression of IL-1β, IL-6, and TNF-α of mice in formalin-induced inflammatory nociception. We used the patch-clamp technique and investigated the effect of Syb-prII-1 on TTX-resistant sodium channel currents in acutely isolated rat DRG neurons. The results showed that Syb-prII-1 can significantly down regulate TTX-resistant sodium channel currents. In conclusion, Syb-prII mutants may alleviate inflammatory pain by significantly inhibiting the expression of Nav1.8, mediated by the phosphorylation of MAPKs and significant inhibition of TTX-resistant sodium channel currents.
Collapse
Affiliation(s)
| | | | | | | | | | - Yongbo Song
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China; (C.L.); (M.B.); (F.B.); (J.C.); (X.J.)
| |
Collapse
|
11
|
Xian YF, Hu Z, Ip SP, Chen JN, Su ZR, Lai XP, Lin ZX. Comparison of the anti-inflammatory effects of Sinapis alba and Brassica juncea in mouse models of inflammation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 50:196-204. [PMID: 30466979 DOI: 10.1016/j.phymed.2018.05.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/16/2018] [Accepted: 05/18/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Sinapis Semen is derived from the dried mature seeds of Sinapis alba L. or Brassica juncea (L.) Czern. et Coss. Traditionally, the seeds from S. alba are called "White Sinapis Semen" while those from B. juncea are called "Yellow Sinapis Semen". PURPOSE The present study aimed to compare the chemical composition and the anti-inflammatory effects of 50% aqueous ethanol extracts of the White Sinapis Semen (EWSS) and Yellow Sinapis Semen (EYSS) using both acute (12-O-tetradecanoylphorbol-acetate (TPA)- and arachidonic acid (AA)-induced mouse ear edema) and chronic (multiple applications of croton oil (CO)) inflammatory models. METHODS The anti-inflammatory effects of EWSS and EYSS were determined by measuring the ear thickness and myeloperoxidase (MPO) activity. The anti-inflammatory mechanism was explored by measuring the protein and mRNA levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6 in the ear of the TPA-treated mice. RESULTS The results showed that both EWSS and EYSS significantly decreased the ear thickness in both the TPA- and AA-induced acute models, as well as in the CO-induced chronic model. In addition, EWSS and EYSS could markedly inhibit the MPO activity in the ears of TPA-, AA- or CO-treated mice. Moreover, EWSS and EYSS also remarkably inhibited the protein and mRNA levels of TNF-α and IL-6 in the ears of TPA-treated mice. Comparatively, EWSS exerted more potent anti-inflammatory effect than that of EYSS. CONCLUSION Our results revealed that both EWSS and EYSS are effective anti-inflammatory agents against acute and chronic inflammatory processes, and EWSS possess more potent anti-inflammatory effect than EYSS. The anti-inflammatory effect of the two herbs may be mediated, at least in part, by suppressing the mRNA expression of a panel of inflammatory mediators including TNF-α, IL-6 and IL-1β.
Collapse
Affiliation(s)
- Yan-Fang Xian
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China
| | - Zhen Hu
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China
| | - Siu-Po Ip
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China
| | - Jian-Nan Chen
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Zi-Ren Su
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Xiao-Ping Lai
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Zhi-Xiu Lin
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China.
| |
Collapse
|
12
|
Zeng WJ, Tan Z, Lai XF, Xu YN, Mai CL, Zhang J, Lin ZJ, Liu XG, Sun SL, Zhou LJ. Topical delivery of l-theanine ameliorates TPA-induced acute skin inflammation via downregulating endothelial PECAM-1 and neutrophil infiltration and activation. Chem Biol Interact 2018; 284:69-79. [PMID: 29458014 DOI: 10.1016/j.cbi.2018.02.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/27/2017] [Accepted: 02/13/2018] [Indexed: 02/08/2023]
Abstract
l-theanine, the most abundant free amino acid in tea, has been documented to possess many different bioactive properties through oral or intragastrical delivery. However, little is known about the effect of topical delivery of l-theanine on acute inflammation. In the present study, by using 12-O-tetradecanoylphorbol-13-acetate (TPA, 2.5 μg/ear)-induced ear edema model in mice, we first found that single-dose local pretreatment of l-theanine 30 min before TPA time- and dose-dependently suppressed the increases in both skin thickness and weight. Subsequently l-theanine ameliorated TPA-induced erythema, vascular permeability increase, epidermal and dermal hyperplasia, neutrophil infiltration and activation via downregulating the expression of PECAM-1 (a platelet endothelial adhesion molecule-1) in blood vessels and the production of pro-inflammatory cytokines IL-1β, TNF-α, and mediator cyclooxygenase-2 (COX-2), which is mainly expressed in neutrophils. It highlighted the potential of l-theanine as a locally administrable therapeutic agent for acute cutaneous inflammation.
Collapse
Affiliation(s)
- Wei-Jie Zeng
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhi Tan
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xing-Fei Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangdong Academy of Agricultural Sciences, Dafeng Road 6th, Guangzhou, 510640, China
| | - Ya-Nan Xu
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Chun-Lin Mai
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jun Zhang
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhen-Jia Lin
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xian-Guo Liu
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shi-Li Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangdong Academy of Agricultural Sciences, Dafeng Road 6th, Guangzhou, 510640, China.
| | - Li-Jun Zhou
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
13
|
Herath KHINM, Bing SJ, Cho J, Kim A, Kim GO, Lee JC, Jee Y. Citrus hallabong [(Citrus unshiu × C. sinensis) × C. reticulata)] exerts potent anti-inflammatory properties in murine splenocytes and TPA-induced murine ear oedema model. PHARMACEUTICAL BIOLOGY 2016; 54:2939-2950. [PMID: 27333995 DOI: 10.1080/13880209.2016.1194865] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 05/24/2016] [Indexed: 06/06/2023]
Abstract
CONTEXT Hallabong [(Citrus unshiu × C. sinensis) X C. reticulata)] (Rutaceae) is a hybrid citrus cultivated in temperate regions of South Korea. Its fruit is well-known for pharmacological properties. OBJECTIVE This study examined the anti-inflammatory effect of 80% ethanol extract of Hallabong (HE) on concanavalin A (Con A)-stimulated splenocytes and mouse oedema model induced by 12-O-tetradecanoylphorbal acetate (TPA). MATERIALS AND METHODS Murine splenocytes treated with HE were stimulated with Con A (10 μg/mL, for 24 h) were evaluated for T-cell population and production of inflammatory cytokines IL-2, IL-4 and IFN-γ. Anti-inflammatory effect of topically applied HE (100 μg/20 μL) on TPA (4 μg/20 μL/ear)-induced ear oedema was investigated in mouse model. RESULTS HE-treated Con A-stimulated murine splenocytes showed a marked decrease in CD44/CD62L+ memory T-cell population, an important marker for anti-inflammatory activity, and a significant inhibition in the production of IL-2 and IFN-γ. HE treatment had reduced the mouse skin oedema (47%) and myeloperoxidase (MPO) activity significantly (40%) in TPA-challenged tissues. More importantly, immunohistochemical localization revealed the suppressed (p < 0.05) expression of inducible nitric oxide (iNOS), cyclooxygenase-2 (COX2). HE decreased the infiltration of CD3+ T cells and F4/80+ macrophages to the site of inflammation and a topical application of HE significantly suppressed the expression of TNF-α (20.2%). DISCUSSION AND CONCLUSION A topical application of HE can exert a potential anti-inflammatory effect and HE can be explored further as a putative alternative therapeutic agent for inflammatory oedema.
Collapse
Affiliation(s)
| | - So Jin Bing
- a Department of Veterinary Medicine and Veterinary Medical Research Institute , Jeju National University , Jeju , Korea
| | - Jinhee Cho
- a Department of Veterinary Medicine and Veterinary Medical Research Institute , Jeju National University , Jeju , Korea
| | - Areum Kim
- b Department of Advanced Convergence Technology & Science , Jeju National University , Jeju , Korea
| | - Gi-Ok Kim
- c Jeju Diversity Research Institute, Jeju Technopark , Seogwipo , Korea
| | - Jong-Chul Lee
- c Jeju Diversity Research Institute, Jeju Technopark , Seogwipo , Korea
| | - Youngheun Jee
- a Department of Veterinary Medicine and Veterinary Medical Research Institute , Jeju National University , Jeju , Korea
- b Department of Advanced Convergence Technology & Science , Jeju National University , Jeju , Korea
| |
Collapse
|
14
|
Anti-inflammatory activities of Dangyuja (Citrus grandis Osbeck) in concanavalin A stimulated murine splenocytes and 12-O-tetradecanoylphorbol-13-acetate-induced murine skin edema. Biomed Pharmacother 2016; 83:1353-1364. [DOI: 10.1016/j.biopha.2016.08.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 08/04/2016] [Accepted: 08/16/2016] [Indexed: 01/01/2023] Open
|
15
|
Lee MY, Moon BC, Kwon YK, Jung Y, Oh TK, Hwang GS. Discrimination of Polygonatum species and identification of novel markers using (1) H NMR- and UPLC/Q-TOF MS-based metabolite profiling. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:3846-3852. [PMID: 26689164 DOI: 10.1002/jsfa.7580] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 11/19/2015] [Accepted: 12/22/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Rhizomes of Polygonatum species are commonly used as herbal supplements in Asia. They have different medicinal effects by species but have been misused and mixed owing to their similar taste and smell. Therefore accurate and reliable analytical methods to discriminate between Polygonatum species are required. RESULTS In this study, global and targeted metabolite profiling using (1) H nuclear magnetic resonance ((1) H NMR) spectroscopy and ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF MS) was applied to discriminate between different Polygonatum species. Partial least squares discriminant analysis (PLS-DA) models were used to classify and predict species of Polygonatum. Cross-validation derived from PLS-DA revealed good predictive accuracy. Polygonatum species were classified into unique patterns based on K-means clustering analysis. 4-Hydrobenzoic acid and trigonelline were identified as novel marker compounds and quantified accurately. CONCLUSION The results demonstrate that metabolite profiling approaches coupled with chemometric analysis can be used to classify and discriminate between different species of various herbal medicines. © 2015 Society of Chemical Industry.
Collapse
Affiliation(s)
- Min Young Lee
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, 120-140, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 305-764, Republic of Korea
| | - Byeong Cheol Moon
- Center of Herbal Resources Research, Korea Institute of Oriental Medicine, Daejeon, 305-811, Republic of Korea
| | - Yong-Kook Kwon
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, 120-140, Republic of Korea
| | - Youngae Jung
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, 120-140, Republic of Korea
| | - Tae Kyu Oh
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 305-764, Republic of Korea
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, 120-140, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 305-764, Republic of Korea
- Department of Life Science, Ewha Womans University, Seoul, 120-750, Republic of Korea
| |
Collapse
|
16
|
Zhang Z, Chen X, Chen H, Wang L, Liang J, Luo D, Liu Y, Yang H, Li Y, Xie J, Su Z. Anti-inflammatory activity of β-patchoulene isolated from patchouli oil in mice. Eur J Pharmacol 2016; 781:229-38. [DOI: 10.1016/j.ejphar.2016.04.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/11/2016] [Accepted: 04/13/2016] [Indexed: 12/30/2022]
|
17
|
Motoyama K, Tanida Y, Hata K, Hayashi T, Hashim IIA, Higashi T, Ishitsuka Y, Kondo Y, Irie T, Kaneko S, Arima H. Anti-inflammatory Effects of Novel Polysaccharide Sacran Extracted from Cyanobacterium Aphanothece sacrum in Various Inflammatory Animal Models. Biol Pharm Bull 2016; 39:1172-8. [PMID: 27170516 DOI: 10.1248/bpb.b16-00208] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The goal of this study was to investigate the topical anti-inflammatory effects of the megamolecular polysaccharide sacran extracted from cyanobacterium Aphanothece sacrum using various inflammatory animal models. Sacran showed potent anti-inflammatory effects with optimum effective concentrations at 0.01 and 0.05% (w/v). Sacran markedly inhibited paw swelling and neutrophil infiltration in carrageenan-induced rat paw edema. Additionally, 6,7-dimethoxy-1-methyl-2(1H)-quinoxalinone-3-propionyl-carboxylic acid (DMEQ)-labeled sacran had the ability to penetrate carrageenan-induced rat paw skin rather than normal skin. Also, sacran significantly suppressed kaolin-induced and dextran-induced rat paw edema throughout the duration of the study. Furthermore, sacran significantly suppressed 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced mouse ear edema and mRNA expression levels of cyclooxygenase (COX)-2 as well as pro-inflammatory cytokines such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6. Safety of sacran solution was verified by negligible cytotoxicity in HaCaT cells. These results suggest that sacran may be useful as a therapeutic agent against inflammatory skin diseases with no life-threatening adverse effects.
Collapse
|
18
|
Beserra FP, Santos RDC, Périco LL, Rodrigues VP, Kiguti LRDA, Saldanha LL, Pupo AS, da Rocha LRM, Dokkedal AL, Vilegas W, Hiruma-Lima CA. Cissus sicyoides: Pharmacological Mechanisms Involved in the Anti-Inflammatory and Antidiarrheal Activities. Int J Mol Sci 2016; 17:E149. [PMID: 26805827 PMCID: PMC4783883 DOI: 10.3390/ijms17020149] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/21/2015] [Accepted: 12/22/2015] [Indexed: 02/07/2023] Open
Abstract
The objective of this study was to evaluate the pharmacological mechanisms involved in anti-inflammatory and antidiarrheal actions of hydroalcoholic extract obtained from the leaves of Cissus sicyoides (HECS). The anti-inflammatory effect was evaluated by oral administration of HECS against acute model of edema induced by xylene, and the mechanisms of action were analysed by involvement of arachidonic acid (AA) and prostaglandin E₂ (PGE₂). The antidiarrheal effect of HECS was observed and we analyzed the motility and accumulation of intestinal fluid. We also analyzed the antidiarrheal mechanisms of action of HECS by evaluating the role of the opioid receptor, α₂ adrenergic receptor, muscarinic receptor, nitric oxide (NO) and PGE₂. The oral administration of HECS inhibited the edema induced by xylene and AA and was also able to significantly decrease the levels of PGE₂. The extract also exhibited significant anti-diarrheal activity by reducing motility and intestinal fluid accumulation. This extract significantly reduced intestinal transit stimulated by muscarinic agonist and intestinal secretion induced by PGE₂. Our data demonstrate that the mechanism of action involved in the anti-inflammatory effect of HECS is related to PGE₂. The antidiarrheal effect of this extract may be mediated by inhibition of contraction by acting on the intestinal smooth muscle and/or intestinal transit.
Collapse
Affiliation(s)
- Fernando Pereira Beserra
- Departamento de Fisiologia, Instituto de Biociências, Universidade Estadual Paulista-UNESP, CEP 18618-970 Botucatu, São Paulo, Brazil.
| | - Raquel de Cássia Santos
- Unidade Integrada de Farmacologia e Gastroenterologia, Faculdade de Ciências Médicas, Universidade São Francisco, CEP 12916-900 Bragança Paulista, São Paulo, Brazil.
| | - Larissa Lucena Périco
- Departamento de Fisiologia, Instituto de Biociências, Universidade Estadual Paulista-UNESP, CEP 18618-970 Botucatu, São Paulo, Brazil.
| | - Vinicius Peixoto Rodrigues
- Departamento de Fisiologia, Instituto de Biociências, Universidade Estadual Paulista-UNESP, CEP 18618-970 Botucatu, São Paulo, Brazil.
| | - Luiz Ricardo de Almeida Kiguti
- Departamento de Farmacologia, Instituto de Biociências, Universidade Estadual Paulista-UNESP, CEP 18618-970 Botucatu, São Paulo, Brazil.
| | - Luiz Leonardo Saldanha
- Departamento de Ciências Biológicas, Faculdade de Ciências, Universidade Estadual Paulista-UNESP, CEP 17033-360 Bauru, São Paulo, Brazil.
- Departamento de Botânica, Instituto de Biociências, Universidade Estadual Paulista-UNESP, CEP 18618-970 Botucatu, São Paulo, Brazil.
| | - André Sampaio Pupo
- Departamento de Farmacologia, Instituto de Biociências, Universidade Estadual Paulista-UNESP, CEP 18618-970 Botucatu, São Paulo, Brazil.
| | - Lúcia Regina Machado da Rocha
- Departamento de Fisiologia, Instituto de Biociências, Universidade Estadual Paulista-UNESP, CEP 18618-970 Botucatu, São Paulo, Brazil.
| | - Anne Lígia Dokkedal
- Departamento de Ciências Biológicas, Faculdade de Ciências, Universidade Estadual Paulista-UNESP, CEP 17033-360 Bauru, São Paulo, Brazil.
| | - Wagner Vilegas
- Campus Experimental do Litoral Paulista, Universidade Estadual Paulista-UNESP, CEP 11330-900 São Vicente, São Paulo, Brazil.
| | - Clélia Akiko Hiruma-Lima
- Departamento de Fisiologia, Instituto de Biociências, Universidade Estadual Paulista-UNESP, CEP 18618-970 Botucatu, São Paulo, Brazil.
| |
Collapse
|
19
|
Wang H, Li D, Du Z, Huang MT, Cui X, Lu Y, Li C, Woo SL, Conney AH, Zheng X, Zhang K. Antioxidant and anti-inflammatory properties of Chinese ilicifolius vegetable (Acanthopanax trifoliatus (L) Merr) and its reference compounds. Food Sci Biotechnol 2015. [DOI: 10.1007/s10068-015-0144-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
20
|
Hernández-Valle E, Herrera-Ruiz M, Salgado GR, Zamilpa A, Ocampo MLA, Aparicio AJ, Tortoriello J, Jiménez-Ferrer E. Anti-inflammatory effect of 3-O-[(6'-O-palmitoyl)-β-D-glucopyranosyl sitosterol] from Agave angustifolia on ear edema in mice. Molecules 2014; 19:15624-37. [PMID: 25268718 PMCID: PMC6271596 DOI: 10.3390/molecules191015624] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 09/11/2014] [Accepted: 09/12/2014] [Indexed: 11/16/2022] Open
Abstract
In Mexico Agave angustifolia has traditionally been used to treat inflammation. The aim of this study was to measure the anti-inflammatory effect of the extract of A. angustifolia, the isolation and identification of active compounds. From the acetone extract two active fractions were obtained, (AsF13 and AaF16). For the characterization of pharmacological activity, the acute inflammatory model of mouse ear edema induced with TPA was used. The tissue exposed to TPA and treatments were subjected to two analysis, cytokine quantification (IL-1β, IL-6, IL-10 and TNF-α) and histopathological evaluation. The active fraction (AaF16) consisted principally of 3-O-[(6'-O-palmitoyl)-β-D-glucopyranpsyl] sitosterol. In AaF13 fraction was identified β-sitosteryl glucoside (2) and stigmasterol (3). The three treatments tested showed a concentration-dependent anti-inflammatory effect (AaAc Emax = 33.10%, EC50 = 0.126 mg/ear; AaF13 Emax = 54.22%, EC50 = 0.0524 mg/ear; AaF16 Emax = 61.01%, EC50 = 0.050 mg/ear). The application of TPA caused a significant increase on level of IL-1β, IL-6 and TNFα compared with basal condition, which was countered by any of the experimental treatments. Moreover, the experimental treatments induced a significant increase in the levels of IL-4 and IL-10, compared to the level observed when stimulated with TPA. Therefore, the anti-inflammatory effect of Agave angustifolia, is associated with the presence of 3-O-[(6'-O-palmitoyl)-β-D-glucopyranosyl] sitosterol.
Collapse
Affiliation(s)
- Elizabeth Hernández-Valle
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social (IMSS), Argentina No. 1, Xochitepec, Morelos CP 62790, Mexico.
| | - Maribel Herrera-Ruiz
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social (IMSS), Argentina No. 1, Xochitepec, Morelos CP 62790, Mexico.
| | - Gabriela Rosas Salgado
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Leñeros s/n. Col. Volcanes, Cuernavaca, Morelos CP 62350, Mexico.
| | - Alejandro Zamilpa
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social (IMSS), Argentina No. 1, Xochitepec, Morelos CP 62790, Mexico.
| | - Martha Lucia Arenas Ocampo
- Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional (IPN), Km 6 carr. Yautepec-Jojutla, calle Ceprobi No. 6 col. San Isidro, Yautepec, Morelos CP 62731, Mexico.
| | - Antonio Jiménez Aparicio
- Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional (IPN), Km 6 carr. Yautepec-Jojutla, calle Ceprobi No. 6 col. San Isidro, Yautepec, Morelos CP 62731, Mexico.
| | - Jaime Tortoriello
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social (IMSS), Argentina No. 1, Xochitepec, Morelos CP 62790, Mexico.
| | - Enrique Jiménez-Ferrer
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social (IMSS), Argentina No. 1, Xochitepec, Morelos CP 62790, Mexico.
| |
Collapse
|
21
|
Kim MJ, Jeong HJ, Kim DW, Sohn EJ, Jo HS, Kim DS, Kim HA, Park EY, Park JH, Son O, Han KH, Park J, Eum WS, Choi SY. PEP-1-PON1 protein regulates inflammatory response in raw 264.7 macrophages and ameliorates inflammation in a TPA-induced animal model. PLoS One 2014; 9:e86034. [PMID: 24465855 PMCID: PMC3900452 DOI: 10.1371/journal.pone.0086034] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 12/04/2013] [Indexed: 12/30/2022] Open
Abstract
Paraoxonase 1 (PON1) is an antioxidant enzyme which plays a central role in various diseases. However, the mechanism and function of PON1 protein in inflammation are poorly understood. Since PON1 protein alone cannot be delivered into cells, we generated a cell permeable PEP-1-PON1 protein using protein transduction domains, and examined whether it can protect against cell death in lipopolysaccharide (LPS) or hydrogen peroxide (H2O2)-treated Raw 264.7 cells as well as mice with 12-O-tetradecanoyl phorbol-13-acetate (TPA)-induced skin inflammation. We demonstrated that PEP-1-PON1 protein transduced into Raw 264.7 cells and markedly protected against LPS or H2O2-induced cell death by inhibiting cellular reactive oxygen species (ROS) levels, the inflammatory mediator’s expression, activation of mitogen-activated protein kinases (MAPKs) and cellular apoptosis. Furthermore, topically applied PEP-1-PON1 protein ameliorates TPA-treated mice skin inflammation via a reduction of inflammatory response. Our results indicate that PEP-1-PON1 protein plays a key role in inflammation and oxidative stress in vitro and in vivo. Therefore, we suggest that PEP-1-PON1 protein may provide a potential protein therapy against oxidative stress and inflammation.
Collapse
Affiliation(s)
- Mi Jin Kim
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon, Gangwondo, Korea
| | - Hoon Jae Jeong
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon, Gangwondo, Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Kangnung-Wonju National University, Gangneung, Gangwondo, Korea
| | - Eun Jeong Sohn
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon, Gangwondo, Korea
| | - Hyo Sang Jo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon, Gangwondo, Korea
| | - Duk-Soo Kim
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan-Si, Chungcheonnamdo, Korea
| | - Hyun Ah Kim
- Division of Rheumatology, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Pyongchon, Kyunggido, Korea
| | - Eun Young Park
- Department of Biological Sciences, Sookmyung Women’s University, Seoul, Korea
| | - Jong Hoon Park
- Department of Biological Sciences, Sookmyung Women’s University, Seoul, Korea
| | - Ora Son
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon, Gangwondo, Korea
| | - Kyu Hyung Han
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon, Gangwondo, Korea
| | - Jinseu Park
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon, Gangwondo, Korea
| | - Won Sik Eum
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon, Gangwondo, Korea
- * E-mail: (WSE); (SYC)
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon, Gangwondo, Korea
- * E-mail: (WSE); (SYC)
| |
Collapse
|
22
|
Anti-inflammatory property of the ethanol extract of the root and rhizome of Pogostemon cablin (Blanco) Benth. ScientificWorldJournal 2013; 2013:434151. [PMID: 24385881 PMCID: PMC3872401 DOI: 10.1155/2013/434151] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 10/22/2013] [Indexed: 01/11/2023] Open
Abstract
The aim of this study was to investigate the anti-inflammatory property of the ethanol extract of the root and rhizome of Pogostemon cablin (ERP). The anti-inflammatory effect was evaluated using four animal models including xylene-induced mouse ear edema, acetic acid-induced mouse vascular permeability, carrageenan-induced mouse pleurisy, and carrageenan-induced mouse hind paw edema. Results indicated that oral administration of ERP (120, 240, and 480 mg/kg) significantly attenuated xylene-induced ear edema, decreased acetic acid-induced capillary permeability, inhibited carrageenan-induced neutrophils recruitment, and reduced carrageenan-induced paw edema, in a dose-dependent manner. Histopathologically, ERP (480 mg/kg) abated inflammatory response of the edema paw. Preliminary mechanism studies demonstrated that ERP decreased the level of MPO and MDA, increased the activities of anti-oxidant enzymes (SOD, GPx, and GRd), attenuated the productions of TNF-α, IL-1β, IL-6, PGE₂ and NO, and suppressed the activities of COX-2 and iNOS. This work demonstrates that ERP has considerable anti-inflammatory potential, which provided experimental evidences for the traditional application of the root and rhizome of Pogostemon cablin in inflammatory diseases.
Collapse
|
23
|
Debnath T, Park SR, Kim DH, Jo JE, Lim BO. Antioxidant and anti-inflammatory activity of Polygonatum sibiricum rhizome extracts. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2013. [DOI: 10.1016/s2222-1808(13)60074-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|