1
|
Ke F, Zhang R, Chen R, Guo X, Song C, Gao X, Zeng F, Liu Q. The role of Rhizoma Paridis saponins on anti-cancer: The potential mechanism and molecular targets. Heliyon 2024; 10:e37323. [PMID: 39296108 PMCID: PMC11407946 DOI: 10.1016/j.heliyon.2024.e37323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/07/2024] [Accepted: 09/01/2024] [Indexed: 09/21/2024] Open
Abstract
Cancer is a disease characterized by uncontrolled cell proliferation, leading to excessive growth and invasion that can spread to other parts of the body. Traditional Chinese medicine has made new advancements in the treatment of cancer, providing new perspectives and directions for cancer treatment. Rhizoma Paridis is a widely used Chinese herbal medicine with documented anti-cancer effects dating back to ancient times. Modern research has shown that Rhizoma Paridis saponins (RPS) have various pharmacological activities. RPS can inhibit cancer in multiple ways, such as suppressing tumor growth, inducing cell cycle arrest, promoting cell apoptosis, enhancing cell autophagy, inducing ferroptosis, reducing inflammation, inhibiting angiogenesis, as well as inhibiting metastasis and invasion, and these findings demonstrate the potent anti-cancer activity of RPS. Polyphyllin I, polyphyllin II, polyphyllin VI, and polyphyllin VII have been widely reported as the main active ingredients with anti-cancer properties. Polyphyllin D, polyphyllin E, and polyphyllin G have also been confirmed to possess strong anti-cancer activity in recent years. Therefore, this review dives deep into the molecular mechanisms underlying the anti-cancer effects of RPS to serve as a valuable reference for future scientific research and their potential applications in cancer treatment.
Collapse
Affiliation(s)
- Famin Ke
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Ranqi Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Rui Chen
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Xiurong Guo
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Can Song
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Xiaowei Gao
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Fancai Zeng
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China
| | - Qiuyu Liu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| |
Collapse
|
2
|
Hao KX, Shen CY, Jiang JG. Sedative and hypnotic effects of Polygala tenuifolia willd. saponins on insomnia mice and their targets. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117618. [PMID: 38141791 DOI: 10.1016/j.jep.2023.117618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polygala tenuifolia Willd. has been widely used in the treatment of cancer, forgetfulness, depression and other diseases. AIM OF REVIEW The purpose of this study was to investigate the sleep-enhancing effect and mechanism of P. tenuifolia saponins (PTS). MATERIALS AND METHODS The total saponin (YZ-I) and purified saponin (YZ-II) fractions were extracted and ICR mice model of insomnia was established by p-chlorophenylalanine (PCPA) induction to observe anxiety and depression behaviors. Effects of YZ-I and YZ-II on the levels of neurotransmitters, hormones, and inflammation cytokines were detected by ELISA, RT-qPCR and western blotting. RESULTS The results showed that YZ-I and YZ-II reduced the immobility time of mice and prolonged the sleep time of mice and significantly increased the concentrations of 5-HT, NE, PGD2, IL-1β and TNF-α. YZ-I and YZ-II regulated GABAARα2, GABAARα3, GAD65/67, 5-HT1A and 5-HT2A, while regulated the levels of inflammatory cytokines such as DPR, PGD2, iNOS and TNF-α to exert sedative and hypnotic effects. CONCLUSION PTS are mainly achieved sedative and hypnotic effects by altering serotonergic, GABAergic and immune systems, but the effects and mechanisms of action of YZ-I were different from YZ-II.
Collapse
Affiliation(s)
- Ke-Xin Hao
- College of Food and Bioengineering, South China University of Technology, Guangzhou, 510640, China
| | - Chun-Yan Shen
- College of Food and Bioengineering, South China University of Technology, Guangzhou, 510640, China; Southern Medical University, School of Traditional Chinese Medicine, Guangzhou 510515, China
| | - Jian-Guo Jiang
- College of Food and Bioengineering, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
3
|
Li W, Zhang Y, Zhao J, Yang T, Xie J. L-carnitine modified nanoparticles target the OCTN2 transporter to improve the oral absorption of jujuboside B. Eur J Pharm Biopharm 2024; 196:114185. [PMID: 38280469 DOI: 10.1016/j.ejpb.2024.114185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/11/2024] [Accepted: 01/21/2024] [Indexed: 01/29/2024]
Abstract
As a bioactive saponin derived from the seeds of Ziziphus jujuba Mill. var. spinosa (Bunge) Hu ex H. F. Chow, jujuboside B (JuB) shows great potential in anti-anxiety, anti-depression and improving learning and memory function. However, its oral bioavailability is very poor. In this study, a novel drug-loading nanoparticles system was prepared with polyethylene glycol and polylactic-co-glycolic acid copolymer (PEG-PLGA), and further modified with L-carnitine (LC) to target intestinal organic cation/carnitine transporter 2 (OCTN2) to improve the oral absorption of JuB. Under the optimized preparation conditions, the particle sizes of obtained JuB-PEG-PLGA nanoparticles (B-NPs) and LC modified B-NPs (LC-B-NPs) were 110.67 ± 11.37 nm and 134.00 ± 2.00 nm with the entrapment efficiency (EE%) 73.46 ± 1.26 % and 76.01 ± 2.10 %, respectively. The pharmacokinetics in SD rats showed that B-NPs and LC-B-NPs increased the bioavailability of JuB to 134.33 % and 159.04 % respectively. In Caco-2 cell model, the prepared nanoparticles significantly increased cell uptake of JuB, which verified the pharmacokinetic results. The absorption of LC-B-NPs mainly depended on OCTN2 transporter, and Na+ played an important role. Caveolin and clathrin were involved in the endocytosis of the two nanoparticles. In conclusion, both B-NPs and LC-B-NPs can improve the oral absorption of JuB, and the modification of LC can effectively target the OCTN2 transporter.
Collapse
Affiliation(s)
- Wei Li
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, People's Republic of China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China
| | - Yanqing Zhang
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, People's Republic of China.
| | - Jing Zhao
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, People's Republic of China
| | - Tan Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China
| | - Junbo Xie
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China.
| |
Collapse
|
4
|
The interaction between polyphyllin I and SQLE protein induces hepatotoxicity through SREBP-2/HMGCR/SQLE/LSS pathway. J Pharm Anal 2023; 13:39-54. [PMID: 36820075 PMCID: PMC9937801 DOI: 10.1016/j.jpha.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/21/2022] Open
Abstract
Polyphyllin I (PPI) and polyphyllin II (PII) are the main active substances in the Paris polyphylla. However, liver toxicity of these compounds has impeded their clinical application and the potential hepatotoxicity mechanisms remain to be elucidated. In this work, we found that PPI and PII exposure could induce significant hepatotoxicity in human liver cell line L-02 and zebrafish in a dose-dependent manner. The results of the proteomic analysis in L-02 cells and transcriptome in zebrafish indicated that the hepatotoxicity of PPI and PII was associated with the cholesterol biosynthetic pathway disorders, which were alleviated by the cholesterol biosynthesis inhibitor lovastatin. Additionally, 3-hydroxy-3-methy-lglutaryl CoA reductase (HMGCR) and squalene epoxidase (SQLE), the two rate-limiting enzymes in the cholesterol synthesis, selected as the potential targets, were confirmed by the molecular docking, the overexpression, and knockdown of HMGCR or SQLE with siRNA. Finally, the pull-down and surface plasmon resonance technology revealed that PPI could directly bind with SQLE but not with HMGCR. Collectively, these data demonstrated that PPI-induced hepatotoxicity resulted from the direct binding with SQLE protein and impaired the sterol-regulatory element binding protein 2/HMGCR/SQLE/lanosterol synthase pathways, thus disturbing the cholesterol biosynthesis pathway. The findings of this research can contribute to a better understanding of the key role of SQLE as a potential target in drug-induced hepatotoxicity and provide a therapeutic strategy for the prevention of drug toxic effects with similar structures in the future.
Collapse
|
5
|
Li J, Jia J, Zhu W, Chen J, Zheng Q, Li D. Therapeutic effects on cancer of the active ingredients in rhizoma paridis. Front Pharmacol 2023; 14:1095786. [PMID: 36895945 PMCID: PMC9989034 DOI: 10.3389/fphar.2023.1095786] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Cancer is a major threat to human health, with high mortality and a low cure rate, continuously challenging public health worldwide. Extensive clinical application of traditional Chinese medicine (TCM) for patients with poor outcomes of radiotherapy and chemotherapy provides a new direction in anticancer therapy. Anticancer mechanisms of the active ingredients in TCM have also been extensively studied in the medical field. As a type of TCM against cancer, Rhizoma Paridis (Chinese name: Chonglou) has important antitumor effects in clinical application. The main active ingredients of Rhizoma Paridis (e.g., total saponins, polyphyllin I, polyphyllin II, polyphyllin VI, and polyphyllin VII) have shown strong antitumor activities in various cancers, such as breast cancer, lung cancer, colorectal cancer, hepatocellular carcinoma (HCC), and gastric cancer. Rhizoma Paridis also has low concentrations of certain other active ingredients with antitumor effects, such as saponins polyphyllin E, polyphyllin H, Paris polyphylla-22, gracillin, and formosanin-C. Many researchers have studied the anticancer mechanism of Rhizoma Paridis and its active ingredients. This review article describes research progress regarding the molecular mechanism and antitumor effects of the active ingredients in Rhizoma Paridis, suggesting that various active ingredients in Rhizoma Paridis may be potentially therapeutic against cancer.
Collapse
Affiliation(s)
- Jie Li
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Jinhao Jia
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Weiwei Zhu
- Clinical Trial Agency, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, China
| | - Jianfei Chen
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Qiusheng Zheng
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Defang Li
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, China
| |
Collapse
|
6
|
Wang G, Yan M, Hao R, Lv P, Wang Y, Man S, Gao W. Q-marker identification of Paris polyphylla var. yunnanensis (Franch.) Hand.-Mazz. in pulmonary metastasis of liver cancer mice. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115311. [PMID: 35461989 DOI: 10.1016/j.jep.2022.115311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/07/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rhizoma Paridis saponins (RPS) as the mainly active components of Paris polyphylla var. yunnanensis (Franch.) Hand.-Mazz., possess tumor therapeutic potential. However, the anti-tumor material basis of RPS in liver cancer pulmonary metastasis remains poorly understood. The objective of this study was to identify the distribution and anti-cancer effects of RPS in liver cancer pulmonary metastatic model. MATERIALS AND METHODS In this study, a mouse liver cancer pulmonary metastasis model was established to determine the distribution of different saponins in the tissues by UPLC-MS and plasma protein binding rate. RESULTS As a result, RPS prolonged the survival time and inhibited the pulmonary metastasis in H22 injected mice through its underlying mechanism. UPLC-MS identified saponins from RPS such as PVII, PH, PVI, PII, gracillin and PI in tissues, which may be regarded as the Q-markers in RPS. Surprisingly, the concentration of PI, PII and gracillin as diosgenyl saponins was higher than that of pennogenyl saponins in the liver and lung. Besides, plasma protein binding rate of PII was higher than that of PVII. CONCLUSION These findings suggested that PVII, PH, PVI, PI, PII and gracillin are regarded as the Q-markers of RPS in liver cancer pulmonary metastasis. The concentration of PI, PII and gracillin as diosgenyl saponins was higher than that of pennogenyl saponins in the liver and lung. It would be helpful for understanding the importance of RPS with anticancer activities in the future.
Collapse
Affiliation(s)
- Genbei Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, Tianjin, 300072, China; State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China; Tasly Academy, Tasly Holding Group Co., Ltd., No.2 Pujihe East Road, Tasly TCM Garden, Beichen District, Tianjin, 300410, China
| | - Mengyao Yan
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Ruijia Hao
- Tasly Academy, Tasly Holding Group Co., Ltd., No.2 Pujihe East Road, Tasly TCM Garden, Beichen District, Tianjin, 300410, China
| | - Panpan Lv
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Yu Wang
- Tasly Academy, Tasly Holding Group Co., Ltd., No.2 Pujihe East Road, Tasly TCM Garden, Beichen District, Tianjin, 300410, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, Tianjin, 300072, China.
| |
Collapse
|
7
|
Thapa CB, Paudel MR, Bhattarai HD, Pant KK, Devkota HP, Adhikari YP, Pant B. Bioactive secondary metabolites in Paris polyphylla Sm. and their biological activities: A review. Heliyon 2022; 8:e08982. [PMID: 35243100 PMCID: PMC8881664 DOI: 10.1016/j.heliyon.2022.e08982] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/01/2021] [Accepted: 02/14/2022] [Indexed: 11/28/2022] Open
Abstract
Paris polyphylla Sm. is an important medicinal plant used to treat a variety of diseases through traditional medicine systems such as Ayurveda, Tibetan traditional medicines, Chinese traditional medicines, and others around the world. The IUCN red list has designated it as "vulnerable" due to a decline in wild population by over-exploitation, habitat degradation, illegal collection for trade and traditional use. This review paper aims to summarize the bioactive secondary metabolites in Paris polyphylla. Paris saponins or steroidal saponins are the main bioactive chemical constituents from this plant that account for more than 80% of the total compounds. For instance, polyphyllin D, diosgenin, paris saponins I, II, VI, VII, and H are steroidal saponins having anticancer activity comparable to synthetic anticancer medicines. Antioxidant, anticancer, anti-leishmaniasis, antibacterial, antifungal, anthelmintic, antityrosinase, and antiviral effects of extracts and pure compounds were also demonstrated in vivo and in vitro. In conclusion, this review summarizes the bioactive components from the P. polyphylla which will be useful to researchers and scientists, and for the development of potential drugs.
Collapse
Affiliation(s)
- Chandra Bahadur Thapa
- Central Department of Botany, Tribhuvan University, Kirtipur, Nepal
- Butwal Multiple Campus, Tribhuvan University, Butwal, Nepal
| | - Mukti Ram Paudel
- Central Department of Botany, Tribhuvan University, Kirtipur, Nepal
| | | | | | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | | | - Bijaya Pant
- Central Department of Botany, Tribhuvan University, Kirtipur, Nepal
- Corresponding author.
| |
Collapse
|
8
|
Liu Y, Cao Y, Kai H, Han Y, Huang M, Gao L, Qiao H. Polyphyllin E inhibits proliferation, migration and invasion of ovarian cancer cells by down-regulating the AKT/NF-κB pathway. Biol Pharm Bull 2022; 45:561-568. [DOI: 10.1248/bpb.b21-00691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yinglei Liu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Nantong University
| | - Yang Cao
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Nantong University
| | - Haili Kai
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Nantong University
| | - Yuwen Han
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Nantong University
| | - Menghui Huang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Nantong University
| | - Liusijie Gao
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Nantong University
| | - Haifeng Qiao
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Nantong University
| |
Collapse
|
9
|
Wang G, Hao R, Liu Y, Wang Y, Man S, Gao W. Tissue distribution, metabolism and absorption of Rhizoma Paridis Saponins in the rats. JOURNAL OF ETHNOPHARMACOLOGY 2021; 273:114038. [PMID: 33746004 DOI: 10.1016/j.jep.2021.114038] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/09/2021] [Accepted: 03/13/2021] [Indexed: 05/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Paris polyphylla var yunnanensis as a traditional Chinese medicine has been used in the treatment of liver disease for thousands of years. Rhizoma Paridis saponins (RPS) were the main active ingredients in Paris polyphylla with an excellent antitumor effect. However, metabolic and distribution of RPS has not been known. AIM OF THE STUDY The objective of this study was to research metabolic and distribution of RPS. MATERIALS AND METHODS In this study, the separation and simultaneous determination of RPS in rat plasma and tissues were developed and validated by LC-MS/MS. The permeability and recovery of RPS were tested by Caco-2. S9 assay suggested the metabolic mode of RPS in rats. RESULTS After oral administration of RPS, the metabolic compound like diosgenin was detected in different tissues although there was none in RPS. The concentration of PI, PII, PVI, PVII, PH and gracillin in the spleen was the highest among these organs. The content of diosgenin were the highest in lung and brain. Caco-2 test indicated that PI, PII, PVI and PVII were low permeability and low recovery. Efflux ratio indicated that PVI should be a potential P-gp substrate. Potential P-gp substrate may be PVI. S9 assay suggested that RPS possess slow metabolic and moderate metabolic compounds. CONCLUSIONS Integrated LC-MS/MS analysis of serum samples, together with Caco-2 and S9 assays provided a theoretical basis for the application of RPS in the future.
Collapse
Affiliation(s)
- Genbei Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, Tianjin, 300072, China; Tasly Academy, Tasly Holding Group Co., Ltd., No.2 Pujihe East Road, Tasly TCM Garden, Beichen District, Tianjin, 300410, China; State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Ruijia Hao
- Tasly Academy, Tasly Holding Group Co., Ltd., No.2 Pujihe East Road, Tasly TCM Garden, Beichen District, Tianjin, 300410, China
| | - Yu Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Yu Wang
- Tasly Academy, Tasly Holding Group Co., Ltd., No.2 Pujihe East Road, Tasly TCM Garden, Beichen District, Tianjin, 300410, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, Tianjin, 300072, China.
| |
Collapse
|
10
|
Yue J, Huang H, Wang Y. A practical method superior to traditional spectral identification: Two-dimensional correlation spectroscopy combined with deep learning to identify Paris species. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105731] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Integrative analysis of proteomic and metabonomics data for identification of pathways related to Rhizoma Paridis-induced hepatotoxicity. Sci Rep 2020; 10:6540. [PMID: 32300172 PMCID: PMC7162872 DOI: 10.1038/s41598-020-63632-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/03/2020] [Indexed: 12/21/2022] Open
Abstract
Clinical reports on hepatotoxicity that arise from Rhizoma Paridis have recently received widespread attention. Because the hepatotoxicity mechanism is little understood, this research strived to investigate the hepatotoxicity mechanism of Rhizoma Paridis extracts based on iTRAQ quantitative proteomics and metabonomics. The extraction solutions were administrated to rats for 7 days by gavage, and the hepatotoxicity was assessed through quantification of biochemical indexes and Oil red O staining. Additionally, the mechanism of hepatotoxicity was investigated by metabonomics based upon GC-MS and iTRAQ quantitative proteomics. The biochemical and histopathological analysis stood out that Rhizoma Paridis extract could induce liver injury, which was proved by the formation of fat droplets, the changes of mitochondrial structure, and biochemical parameters. The iTRAQ proteomics and metabonomics revealed that Rhizoma Paridis-induced hepatotoxicity was chiefly connected with the abnormal activity of mitochondrion function, which brought about oxidative stress injuries and inflammation, finally causing cell apoptosis. Collectively, we have provided previously uncharacterized hepatotoxic mechanism induced by Rhizoma Paridis and a reference to ensure its safe use in the future.
Collapse
|
12
|
Zhao C, Wang M, Jia Z, Li E, Zhao X, Li F, Lin R. Similar hepatotoxicity response induced by Rhizoma Paridis in zebrafish larvae, cell and rat. JOURNAL OF ETHNOPHARMACOLOGY 2020; 250:112440. [PMID: 31786445 DOI: 10.1016/j.jep.2019.112440] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 11/10/2019] [Accepted: 11/27/2019] [Indexed: 06/10/2023]
Abstract
Rhizoma Paridis, as a Traditional Chinese Medicine (TCM), has been used in clinic for thousands of years. Recently, the hepatic toxicity was reported in some published articles while its hepatotoxicity mechanisms have not been well established. Therefore, the present study was performed to determine the effect of Rhizoma Paridis treatment on the lipid deposition and metabolism, oxidative stress and mitochondrial dysfunction, and explore the underlying molecular mechanism through L02 cell, rat and zebrafish larvae. Rhizoma Paridis could diminish cell activity and cell proliferation, brought on cell apoptosis and elevated the levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) compared with the control group, as evaluated in cell cultures. Rhizoma Paridis could result in the change of the liver structure and the liver function in the rat model and zebrafish larvae. Our results showed that Rhizoma Paridis could increase hepatic lipid accumulation, which was similar to the previous study and probably exerted toxic effect through intensive fatty acid lipogenesis, inhibition of fat degradation. Meanwhile, this experiment highlighted the importance of the oxidative stress, mitochondrial dysfunction, ER function, and the inflammation response in Rhizoma Paridis-induced disorder of hepatic lipid metabolism, which proposed a novel mechanism for interpretation of Rhizoma Paridis exposure inducing the disorder of lipid metabolism in vertebrates. Furthermore, the result of this experiment suggested that the toxicity response of zebrafish larvae was similar to the conventional model with a significant advantage.
Collapse
Affiliation(s)
- Chongjun Zhao
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Mingshuang Wang
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Zhe Jia
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Erwen Li
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Xia Zhao
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Farong Li
- Key Laboratory of Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an, 710062, China.
| | - Ruichao Lin
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China.
| |
Collapse
|
13
|
Wang W, Liu Y, Sun M, Sai N, You L, Dong X, Yin X, Ni J. Hepatocellular Toxicity of Paris Saponins I, II, VI and VII on Two Kinds of Hepatocytes-HL-7702 and HepaRG Cells, and the Underlying Mechanisms. Cells 2019; 8:cells8070690. [PMID: 31324003 PMCID: PMC6678998 DOI: 10.3390/cells8070690] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 01/28/2023] Open
Abstract
Rhizoma paridis is a popularly-used Chinese medicine in clinics, based on the pharmacodynamic properties of its saponin components. The four main saponins in Rhizoma paridis are designated saponins I, II, VI, and VII. At present, much attention is focused on the anticancer effect of Rhizoma paridis which is manifested in its cytotoxicity to various cancer cells. The purpose of this study was to investigate the hepatocellular toxicities of the four saponins in Rhizoma paridis and the relative intensities of their cytotoxic effects. It was found that the four saponins were cytotoxic to two types of hepatocytes-HL-7702 and HepaRG cells. The cytotoxicities of the four saponins to the two cell models were compared. One of the most cytotoxic saponins was Rhizoma paridis saponin I (PSI). This was used to determine the mechanism of hepatocellular toxicity. Results from MTT assays demonstrated that the four saponins induced apoptosis of the two hepatocyte models in a dose-dependent and time-dependent manner. In addition, fluorescent 4′,6-diamidino-2-phenylindole (DAPI) staining was used to observe the morphological changes of HepaRG cells after saponin administration. Further, as the concentration increased, PSI-induced lactate dehydrogenase (LDH) release from HepaRG cells increased gradually. In addition, PSI enhanced the levels of reactive oxygen species (ROS) and blocked the S and G2 phases of the cell cycle in HepaRG cells. A western blot indicated that PSI upregulated the protein expression levels of p53, p21, and Fas. Furthermore, the PSI-induced changes in the p53 protein increased the Bax/bcl-2 ratio, resulting in enhancement of the release of mitochondrial cytochrome c, activation of caspases-3, -8, and -9, poly-ADP ribose polymerase (PARP), and ultimately apoptosis. Increased Fas protein activated caspase-8, which led to the activation of caspase-3 and its downstream PARP protein, resulting in cell apoptosis. These results indicate that PSI induced apoptosis in HepaRG cells through activation of ROS and death receptor pathways. The results obtained in this study suggest that the hepatocellular toxicity of saponins in Rhizoma paridis should be considered during the clinical application of this drug. In addition, they provide a reference for future anti-cancer studies on Rhizoma paridis.
Collapse
Affiliation(s)
- Wenping Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Yi Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Mingyi Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Na Sai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Longtai You
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Xiaoxv Dong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Xingbin Yin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Jian Ni
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100102, China.
| |
Collapse
|
14
|
Han Y, Pan L, Ran S, Song Y, Sun FF, Wang YZ, Hong Y. Rhizoma Paridis saponins ameliorates hepatic fibrosis in rats by downregulating expression of angiogenesis‑associated growth factors. Mol Med Rep 2019; 19:3548-3554. [PMID: 30864692 PMCID: PMC6471138 DOI: 10.3892/mmr.2019.10006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 12/18/2018] [Indexed: 02/07/2023] Open
Abstract
Previously, we demonstrated that Rhizoma Paridis saponins (RPS), the major active component of Rhizoma Paridis, may exhibit hepatoprotective effects. The present study aimed to identify the potential mechanism of RPS on hepatic injury and improvement in hepatic fibrosis (HF). A HF model was created in Sprague-Dawley rats by administration of carbon tetrachloride. RPS was administered for treatment following creation of the HF model. The protein and mRNA expression of vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), extracellular signal-regulated kinase (ERK)1/2 and α-smooth muscle actin (SMA) was detected by reverse transcription quantitative polymerase chain reaction and western blot analysis. RPS was demonstrated to improve hepatic inflammation and decrease HF severity according to hematoxylin and eosin and Masson trichrome staining. Following RPS treatment, the level of alanine aminotransferase, aspartate aminotransferase and malondialdehyde, and expression levels of the mRNA and protein of VEGF, ERK1/2, PDGF and α-SMA in the model group was decreased. By contrast, the content of glutathione-PX and superoxide dismutase was increased. These data suggest that RPS may treat HF primarily through downregulation of the expression levels of the mRNA and phosphorylated VEGF, ERK1/2, PDGF and α-SMA proteins.
Collapse
Affiliation(s)
- Yanquan Han
- Grade 3 Laboratory of Traditional Chinese Medicine Preparation, The First Affiliated Hospital, Anhui University of Chinese Medicine, State Administration of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Lingyu Pan
- Grade 3 Laboratory of Traditional Chinese Medicine Preparation, The First Affiliated Hospital, Anhui University of Chinese Medicine, State Administration of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Shan Ran
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Yan Song
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Fang-Fang Sun
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Yong-Zhong Wang
- Grade 3 Laboratory of Traditional Chinese Medicine Preparation, The First Affiliated Hospital, Anhui University of Chinese Medicine, State Administration of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Yan Hong
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| |
Collapse
|
15
|
Molecular Mechanisms of Apoptosis in HepaRG Cell Line Induced by Polyphyllin VI via the Fas Death Pathway and Mitochondrial-Dependent Pathway. Toxins (Basel) 2018; 10:toxins10050201. [PMID: 29762502 PMCID: PMC5983257 DOI: 10.3390/toxins10050201] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 05/08/2018] [Accepted: 05/10/2018] [Indexed: 12/27/2022] Open
Abstract
Polyphyllin VI, which is an active saponin, is mainly isolated from traditional medicinal plant Paris polyphylla, which causes liver damage in rats. In the present study, we aimed to explore the potential cytotoxicity of polyphyllin VI on the growth of HepaRG cells and to determine the molecular mechanism. The results revealed that polyphyllin VI changed cell morphology and induced apoptosis in HepaRG cells. Flow cytometric assay displayed that polyphyllin VI promoted the generation of reactive oxygen species (ROS), depolarized the mitochondrial membrane potential (MMP), and induced S phase cell cycle arrest by decreasing the expression of cyclin A2 and CDK2, while significantly increasing the expression of p21 protein. Polyphyllin VI induced the release of cytochrome c from the mitochondria to the cytosol and activated Fas, caspase-3, -8, -9, and PARP proteins. Pretreatment with NAC and Z-VAD-FMK (ROS scavenger and caspase inhibitor, respectively) on HepaRG cells increased the percentage of viable cells, which indicated that polyphyllin VI induced cell apoptosis through mitochondrial pathway by the generation of ROS and Fas death-dependent pathway. All of the effects are in dose- and time-dependent manners. Taken together, these findings emphasize the necessity of risk assessment to polyphyllin VI and offer an insight into polyphyllin VI-induced apoptosis of HepaRG cells.
Collapse
|
16
|
Wang Y, Liu Y, Wang G, Han L, Xia T, Liu Z, Man S, Gao W, Liu C. Effects of Rhizoma Parisdis total saponins and its main compounds on gastric emptying via regulating muscarinic receptors in vitro and in vivo. RSC Adv 2017. [DOI: 10.1039/c7ra03898d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The aim of this study was to explore the inhibitory effect of Rhizoma Parisdis total Saponins (RPS) and the main monomer compounds (polyphyllin I, II, VI and H) on gastric emptying and gastrointestinal motilityin vitroandin vivo.
Collapse
Affiliation(s)
- Yu Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency
- School of Pharmaceutical Science and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Yuanxue Liu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency
- School of Pharmaceutical Science and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Genbei Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency
- School of Pharmaceutical Science and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Liying Han
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency
- School of Pharmaceutical Science and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Ting Xia
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency
- School of Pharmaceutical Science and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Zhen Liu
- College of Biotechnology
- Tianjin University of Science & Technology
- Tianjin 300193
- China
| | - Shuli Man
- College of Biotechnology
- Tianjin University of Science & Technology
- Tianjin 300193
- China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency
- School of Pharmaceutical Science and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Changxiao Liu
- The State Key Laboratories of Pharmacodynamics and Pharmacokinetics
- Tianjin
- China
| |
Collapse
|
17
|
Man S, Qiu P, Li J, Zhang L, Gao W. Global metabolic profiling for the study of Rhizoma Paridis saponins-induced hepatotoxicity in rats. ENVIRONMENTAL TOXICOLOGY 2017; 32:99-108. [PMID: 26590097 DOI: 10.1002/tox.22215] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/26/2015] [Accepted: 11/01/2015] [Indexed: 06/05/2023]
Abstract
Rhizoma Paridis saponins (RPS) is a traditional Chinese medicine (TCM) from the plant Paris polyphylla var. yunnanensis (Fr.) Hand.-Mazz. Despite its potentially clinical utility such as anticancer and anti-inflammation, it has slight side effects and toxicity as previous report. In this work, 90-day administration of RPS induced liver injury. 1 H-NMR- and GC/MS-based metabonomic analyses in conjunction with histopathological examinations, blood biochemistry and hepatic phase I and II enzymes assays were performed to evaluate the toxic mechanisms of RPS induced in rats. As a result, oral administration of RPS possessed certain liver toxicity in SD rats. 1 H-NMR and GC/MS data indicated that RPS inhibited the oxidation of fatty acids, glycolysis, and TCA cycle pathway, and disturbed glycine, serine, and threonine metabolism. Low expression of TG, T-CHO, and LDL-C and high levels of ALT and AST indicated that chronic exposure to RPS caused hepatocyte damage, synthesis dysfunction, and transportation failure of lipoproteins. In addition, RPS downregulated the mRNA levels of CYP1A2, CYP2E1, and UGTs. In conclusion, we used metabonomics approach to study the toxicity of RPS for the first time. This research demonstrated that metabonomics method was a promising tool to study and diagnose TCM-induced toxicity. © 2015 Wiley Periodicals, Inc. Environ Toxicol 32: 99-108, 2017.
Collapse
Affiliation(s)
- Shuli Man
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
- Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Peiyu Qiu
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Jing Li
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Liming Zhang
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Wenyuan Gao
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
- Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
18
|
Man S, Li J, Liu J, Chai H, Liu Z, Wang J, Gao W. Curcumin alleviated the toxic reaction of Rhizoma Paridis saponins in a 45-day subchronic toxicological assessment of rats. ENVIRONMENTAL TOXICOLOGY 2016; 31:1935-1943. [PMID: 26390842 DOI: 10.1002/tox.22194] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 08/30/2015] [Accepted: 09/02/2015] [Indexed: 06/05/2023]
Abstract
Rhizoma Paridis saponins (RPS), as steroid saponins, are the main components in Paris polyphylla. Curcumin (diferuloylmethane) is the most important component in the spice turmeric. In our previous research, RPS exhibited side effects such as nausea, vomiting, diarrhea, and so forth. Combination with curcumin not only alleviated the toxicity and gastric stimulus induced by RPS, but also improved the quality life of mice bearing tumor cells and enhanced their anticancer effect. This study evaluated subchronic toxicity of 45th dietary of RPS and curcumin on histopathology, biochemistry, and antioxidant index. As a result, RPS-treatment caused a slight liver injury (the elevation of serum AST, alkaline phosphatase (AKP), alanine transaminase (ALT), and gamma glutamyl transpeptidase (γ-GT), histopathological changes in liver section), oxidative stress (the enhancement of reactive oxygen species (ROS), malondialdehyde (MDA), and 8-hydroxy-2-deoxyguanosine (8-OHdG), separation of thioredoxin (Trx) and thioredoxin-interacting protein (TXNIP), but enhancement of heme oxygenase-1 (HO-1), glutathione S-transferase (GST), and nuclear factor-regulated factor 2 (Nrf2)), and inflammation (up-regulation of cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), and nuclear factor kappaB (NF-κB)). However, these changes were alleviated through co-treatment with curcumin. In conclusion, our work provided useful data for further research and new drug exploration of RPS and curcumin. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1935-1943, 2016.
Collapse
Affiliation(s)
- Shuli Man
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
- Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Jing Li
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Jing Liu
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Hongyan Chai
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Zhen Liu
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Jiaming Wang
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Wenyuan Gao
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
- Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
19
|
Combination treatment with Rhizoma Paridis and Rhizoma Curcuma longa extracts and 10-hydroxycamptothecin enhances the antitumor effect in H22 tumor model by increasing the plasma concentration. Biomed Pharmacother 2016; 83:627-634. [DOI: 10.1016/j.biopha.2016.07.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/14/2016] [Accepted: 07/14/2016] [Indexed: 12/11/2022] Open
|
20
|
Utilization of metabonomics to identify serum biomarkers in murine H22 hepatocarcinoma and deduce antitumor mechanism of Rhizoma Paridis saponins. Chem Biol Interact 2016; 256:55-63. [PMID: 27369806 DOI: 10.1016/j.cbi.2016.06.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/27/2016] [Accepted: 06/27/2016] [Indexed: 01/01/2023]
Abstract
Murine H22 hepatocarcinoma model is so popular to be used for the preclinical anticancer candidate's evaluation. However, the metabolic biomarkers of this model were not identified. Meanwhile, Rhizoma Paridis saponins (RPS) as natural products have been found to show strong antitumor activity, while its anti-cancer mechanism is not clear. To search for potential metabolite biomarkers of this model, serum metabonomics approach was applied to detect the variation of metabolite biomarkers and the related metabolism genes and signaling pathway were used to deduce the antitumor mechanisms of RPS. As a result, ten serum metabolites were identified in twenty-four mice including healthy mice, non-treated cancer mice, RPS-treated cancer mice and RPS-treated healthy mice. RPS significantly decreased tumor weight correlates to down-regulating lactate, acetate, N-acetyl amino acid and glutamine signals (p < 0.05), which were marked metabolites screened according to the very important person (VIP), loading plot and receiver operating characteristic curve (ROC) tests. For the analysis of metabolic enzyme related genes, RPS reversed the aerobic glycolysis through activating tumor suppressor p53 and PTEN, and suppressed FASN to inhibit lipogenesis. What's more, RPS repressed Myc and GLS expression and decreased glutamine level. The regulating PI3K/Akt/mTOR and HIF-1α/Myc/Ras networks also participated in these metabolic changes. Taken together, RPS suppressed ATP product made the tumor growth slow, which indicated a good anti-cancer effect and new angle for understanding the mechanism of RPS. In conclusion, this study demonstrated that the utility of (1)H NMR metabolic profiles taken together with tumor weight and viscera index was a promising screening tool for evaluating the antitumor effect of candidates. In addition, RPS was a potent anticancer agent through inhibiting cancer cellular metabolism to suppress proliferation in hepatoma H22 tumor murine, which promoted the application of RPS in the future.
Collapse
|
21
|
Li J, Man S, Qiu P, Fan W, Zhang L, Gao W. Toxicological risks of Rhizoma paridis saponins in rats involved NF-κB and Nrf2 signaling. RSC Adv 2016. [DOI: 10.1039/c5ra27521k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The aim of the study is to evaluate the safety of long-term use of Rhizoma paridis saponins (RPS).
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Industrial Microbiology
- Ministry of Education
- College of Biotechnology
- Tianjin University of Science & Technology
- Tianjin
| | - Shuli Man
- Key Laboratory of Industrial Microbiology
- Ministry of Education
- College of Biotechnology
- Tianjin University of Science & Technology
- Tianjin
| | - Peiyu Qiu
- Key Laboratory of Industrial Microbiology
- Ministry of Education
- College of Biotechnology
- Tianjin University of Science & Technology
- Tianjin
| | - Wei Fan
- Key Laboratory of Industrial Microbiology
- Ministry of Education
- College of Biotechnology
- Tianjin University of Science & Technology
- Tianjin
| | - Liming Zhang
- Key Laboratory of Industrial Microbiology
- Ministry of Education
- College of Biotechnology
- Tianjin University of Science & Technology
- Tianjin
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency
- School of Pharmaceutical Science and Technology
- Tianjin University
- Tianjin
- China
| |
Collapse
|
22
|
Turmeric enhancing anti-tumor effect of Rhizoma paridis saponins by influencing their metabolic profiling in tumors of H22 hepatocarcinoma mice. Pathol Res Pract 2015; 211:948-54. [PMID: 26471217 DOI: 10.1016/j.prp.2015.09.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 08/15/2015] [Accepted: 09/09/2015] [Indexed: 11/21/2022]
Abstract
Rhizoma Paridis saponins combined with turmeric (RT) showed well anti-hepatocarcinoma activities in our previous research. The aim of this study was to investigate the progression of the biochemical response to RT and capture metabolic variations during intragastric administration of their compatibility. In the experiment, histopathological examination and (1)H NMR method were developed and validated for the metabolic profiling of RT intervention in H22 tumor growth. Data were analyzed with principal components analysis (PCA) and partial least-squares discrimination analysis (PLS-DA). As a result, Rhizoma paridis saponins (RPS) or RT induced inflammatory cell infiltration in tumors. RT also mediated the tumor microenvironment to promote anti-tumor immunity of mice. RT significantly inhibited tumor growth rate through suppressing levels of amino acids containing alanine, asparagine, glutamine, putrescine, and sarcosine, lipid compounds, and carbohydrates like myo-inositol and arabinose in the tumor tissues. In conclusion, these results uncovered unexpectedly poor nutritional conditions in the RT-treated tumor tissues whose effect was stronger than RPS's. Therefore, RT could be a novel anticancer agent that targets on cancer metabolism through starving tumors reducing viability of cancer cells.
Collapse
|
23
|
Stefanowicz-Hajduk J, Bartoszewski R, Bartoszewska S, Kochan K, Adamska A, Kosiński I, Ochocka JR. Pennogenyl Saponins from Paris quadrifolia L. Induce Extrinsic and Intrinsic Pathway of Apoptosis in Human Cervical Cancer HeLa Cells. PLoS One 2015; 10:e0135993. [PMID: 26295969 PMCID: PMC4546673 DOI: 10.1371/journal.pone.0135993] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 07/28/2015] [Indexed: 11/19/2022] Open
Abstract
Pennogenyl saponins are the active compounds of large number of plant species and consequently many polyherbal formulations. Hence, great interest has been shown in their characterization and in the investigation of their pharmacological and biological properties, especially anticancer. This present study reports on the evaluation of cytotoxic effects and explanation of the molecular mechanisms of action of the two pennogenyl saponins (PS 1 and PS 2) isolated from Paris quadrifolia L. rhizomes on human cervical adenocarcinoma cell line HeLa. To determine the viability of the cells treated with the compounds we used real-time cell proliferation analysis and found that the pennogenyl saponins PS 1 and PS 2 strongly inhibited the tumor cells growth with IC50 values of 1.11 ± 0.04 μg/ml and 0.87 ± 0.05 μg/ml, respectively. The flow cytometry analysis indicated that the two compounds induced apoptosis in a dose-dependent manner and decreased mitochondrial membrane potential in HeLa cells in the early stage of apoptosis. Quantitative PCR and Western Blot analysis showed that the two saponins significantly increased mRNA expression of FADD and BID as well as induced caspase-8 via increased of procaspase-8 processing in the treated cells. The results of this study suggest that both the extrinsic death receptor and intrinsic mitochondrial pathways are involved in the programmed cell death.
Collapse
Affiliation(s)
| | - Rafal Bartoszewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Sylwia Bartoszewska
- Department of Inorganic Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - Kinga Kochan
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Anna Adamska
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Igor Kosiński
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - J. Renata Ochocka
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
24
|
Yan S, Tian S, Kang Q, Xia Y, Li C, Chen Q, Zhang S, Li Z. Rhizoma Paridis Saponins Suppresses Tumor Growth in a Rat Model of N-Nitrosomethylbenzylamine-Induced Esophageal Cancer by Inhibiting Cyclooxygenases-2 Pathway. PLoS One 2015; 10:e0131560. [PMID: 26147856 PMCID: PMC4493120 DOI: 10.1371/journal.pone.0131560] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 05/27/2015] [Indexed: 11/19/2022] Open
Abstract
Rhizoma Paridis Saponins (RPS), a natural compound purified from Rhizoma Paridis, has been found to inhibit cancer growth in vitro and in animal models of cancer. However, its effects on esophageal cancer remain unexplored. The purpose of this study was to investigate the effects of RPS on tumor growth in a rat model of esophageal cancer and the molecular mechanism underlying the effects. A rat model of esophageal cancer was established by subcutaneous injection of N-nitrosomethylbenzylamine (NMBA, 1mg/kg) for 10 weeks. RPS (350 mg/kg or 100mg/kg) was administered by oral gavage once daily for 24 weeks starting at the first NMBA injection. RPS significantly reduced the size and number of tumors in the esophagus of rats exposed to NMBA and inhibited the viability, migration, and invasion of esophageal cancer cells EC9706 and KYSE150 in a dose dependent manner (all P < 0.01). Flow cytometry revealed that RPS induced apoptosis and cell cycle G2/M arrest in the esophageal cancer cells. The expression of cyclooxygenases-2 (COX-2) and Cyclin D1 in rat esophageal tissues and the esophageal cancer cells were also significantly reduced by RPS (all P < 0.01). Consistently, RPS also significantly decreased the release of prostaglandin E2, a downstream molecule of COX-2, in a dose-dependent manner (P < 0.01). Our study suggests that RPS inhibit esophageal cancer development by promoting apoptosis and cell cycle arrest and inhibiting the COX-2 pathway. RPS might be a promising therapeutic agent for esophageal cancer.
Collapse
Affiliation(s)
- Shu Yan
- Departments of Pharmacology, Nankai Hospital, Tianjin, P. R. China
| | - Shuxia Tian
- Departments of Pharmacology, Nankai Hospital, Tianjin, P. R. China
| | - Qingwei Kang
- Departments of Pharmacology, Nankai Hospital, Tianjin, P. R. China
| | - Yafei Xia
- Departments of Pharmacology, Nankai Hospital, Tianjin, P. R. China
| | - Caixia Li
- Institute of Integrative Medicine Therapy for Acute Abdominal Diseases of Tianjin, Nankai Hospital, Tianjin, P. R. China
| | - Qing Chen
- Department of Pharmacology, Taizhou Hospital, Taizhou City, Zhejiang Province, P.R. China
| | - Shukun Zhang
- Institute of Integrative Medicine Therapy for Acute Abdominal Diseases of Tianjin, Nankai Hospital, Tianjin, P. R. China
| | - Zhigang Li
- Department of Thoracic Surgery, Nankai Hospital, Nankai District, Tianjin, P. R. China
- * E-mail:
| |
Collapse
|
25
|
Liu Z, Gao W, Man S, Zhang Y, Li H, Wu S, Zhang J, Liu C. Synergistic effects of Rhizoma Paridis and Rhizoma Curcuma longa on different animal tumor models. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 38:31-40. [PMID: 24873749 DOI: 10.1016/j.etap.2014.04.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 04/20/2014] [Accepted: 04/24/2014] [Indexed: 06/03/2023]
Abstract
Rhizoma Paridis saponins (RPS) with a good antitumor effect in clinical use showed low bioavailability and toxicity. Combination of Rhizoma Curcuma longa with RPS, which called LouHuang preparation (LH), not only overcame the RPS limitations but also improved its anticancer effect. The median lethal dose (LD₅₀) of LH in mice was 3410.9 mg/kg by oral acute toxicity test. LH relieved the inhibition of RPS on the gastric emptying (70.13 ± 4.80% vs. 49.12 ± 8.06%). As for the antitumor effect, the tumor weight/volume inhibition rate, tumor volume growth rate, and water/food efficiency ratio were calculated. LH had the highest inhibition ratio of 57.07 ± 2.97% for H22 model, 43.22 ± 0.72% for S180 model, and 46.8 ± 0.97% for EAC model, which were higher than RPS. Compared to ZiLongJin (ZLJ), a marked antitumor drug in China, LH also had the higher inhibition rate for tumor weight and tumor volume growth, which weaker than CTX. The water/food efficiency ratio reflected the difference of the quality life of the mice bearing tumor cells or not. CTX attenuated body weight gain and increased food efficiency ratio compared to control group. LH did not affect the body weight or water/food intake. The active part of LH was RPS and turmeric polysaccharides with the inhibition of 58% and 47% on H22 and S180 tumor models. The research provided theoretical and practical basis for LH application.
Collapse
Affiliation(s)
- Zhen Liu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Shuli Man
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300193, China
| | - Yao Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Hongfa Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Shanshan Wu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Jingze Zhang
- Department of Pharmacy, Logistics College of Chinese People's Armed Police Forces, Tianjin 300162, China
| | - Changxiao Liu
- The State Key Laboratories of Pharmacodynamics and Pharmacokinetics, Tianjin, China
| |
Collapse
|
26
|
Qiu Y, Yang H, Lei B. Effects of Three Commonly Used Anesthetics on Intraocular Pressure in Mouse. Curr Eye Res 2013; 39:365-9. [DOI: 10.3109/02713683.2013.845224] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
27
|
Liu Z, Gao W, Jing S, Zhang Y, Man S, Wang Y, Zhang J, Liu C. Correlation among cytotoxicity, hemolytic activity and the composition of steroidal saponins from Paris L. JOURNAL OF ETHNOPHARMACOLOGY 2013; 149:422-430. [PMID: 23850834 DOI: 10.1016/j.jep.2013.06.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 05/16/2013] [Accepted: 06/20/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cytotoxicity and hemolysis of saponins were the characteristic activities. Many researches have been devoted to the synthesis of saponins devoid of the hemolysis by structure-activity relationship studies. However, saponins contained in the plants were not fully researched on the two activities such as Parissteroidal saponins. Paris steroidal saponins as the active compounds of Paris plants have multiple effects. MATERIALS AND METHODS In the present study, we investigated the cytotoxicity and hemolytic activity of Paris plants collected from twelve places in China. The contents of nine known steroidal saponins in the plants were determined simultaneously using HPLC-ELSD method. The two activities are not related to the contents of saponins. RESULTS As the results of hemolysis of saponins shown, the hemolysis was positive related to the sugar chain. The membrane toxicity suggested that the integration of saponins with the membrane in erythrocyte was correlated to the kinds of saponins and the hemolysis of disosgenyl saponins were stronger than that of pennogenyl glycosides. CONCLUSIONS These results provided information about the hemolysis and cytotoxicity of Paris steroidal saponins, which may be useful for their synthesis devoid of hemolysis toxicity.
Collapse
Affiliation(s)
- Zhen Liu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Man S, Li Y, Fan W, Gao W, Liu Z, Li N, Zhang Y, Liu C. Curcuma increasing antitumor effect of Rhizoma paridis saponins through absorptive enhancement of paridis saponins. Int J Pharm 2013; 454:296-301. [DOI: 10.1016/j.ijpharm.2013.06.079] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 06/14/2013] [Accepted: 06/29/2013] [Indexed: 11/15/2022]
|
29
|
Liu Z, Wang J, Gao W, Man S, Wang Y, Liu C. Preparative separation and purification of steroidal saponins in Paris polyphylla var. yunnanensis by macroporous adsorption resins. PHARMACEUTICAL BIOLOGY 2013; 51:899-905. [PMID: 23570519 DOI: 10.3109/13880209.2013.770537] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
CONTEXT Saponins are active compounds in natural products. Many researchers have tried to find the method for knowing their concentration in herbs. Some methods, such as solid-liquid extraction and solvent extraction, have been developed. However, the extraction methods of the steroidal saponins from Paris polyphylla Smith var. yunnanensis (Liliaceae) are not fully researched. OBJECTIVE To establish a simple extraction method for the separation of steroidal saponins from the rhizomes of P. polyphylla Smith var. yunnanensis. MATERIALS AND METHODS Macroporous adsorption resins were used for the separation of steroidal saponins. To select the most suitable resins, seven kinds of macroporous resins were selected in this study. The static adsorption and desorption tests on macroporous resins were determined. Also, we optimized the temperature and the ethanol concentration in the extraction method by the contents of five kinds of saponins. Then, we compared the extraction method with two other methods. RESULTS D101 resin demonstrated the best adsorption and desorption properties for steroidal saponins. Its adsorption data fits best to the Freundlich adsorption model. The contents of steroidal saponins in the product were 4.83-fold increased with recovery yields of 85.47%. DISCUSSION AND CONCLUSION The process achieved simple and effective enrichment and separation for steroidal saponins. The method provides a scientific basis for large-scale preparation of steroidal saponins from the Rhizoma Paridis and other plants.
Collapse
Affiliation(s)
- Zhen Liu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | | | | | | | | | | |
Collapse
|