1
|
Fernandes DA, Gomes BA, Mendonça SC, Pinheiro CDC, Sanchez EOF, Leitão SG, Fuly AL, Leitão GG. Alkaloids from Siparuna (Siparunaceae) are predicted as the inhibitors of proteolysis and plasma coagulation caused by snake venom and potentially counteract phospholipase A 2 activity of Bothrops jararaca. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118349. [PMID: 38762214 DOI: 10.1016/j.jep.2024.118349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Snakebite envenomation (SBE) is the world's most lethal neglected tropical disease. Bothrops jararaca is the species that causes the greatest number of SBEs in the South and Southeastern of Brazil. The main symptoms are local (inflammation, edema, hemorrhage, and myonecrosis) and systemic (hemorrhage, hemostatic alterations with consumptive coagulopathy, and death) effects. Species of the genus Siparuna, Siparunaceae, are used in folk and traditional medicine to treat SBE. However, limited information is available concerning Brazilian Siparuna species against SBE. AIM OF THE STUDY To investigate the correlation between the compounds present in the extracts of five Siparuna species as potential agents against proteolytic activity, plasma coagulation, and phospholipase A2 (PLA2) activity caused by B. jararaca venom, using data obtained by UHPLC-MS/MS, biological activity, and multivariate statistics. MATERIALS AND METHODS The ethanol extracts from leaves of S. ficoides, S. decipiens, S. glycycarpa, S. reginae, and S. cymosa were fractionated by liquid-liquid extraction using different solvents of increasing polarity (hexane, dichloromethane, ethyl acetate, and n-butanol), affording their respective extracts, totaling 25 samples that were assayed through in vitro plasma coagulation and proteolytic activity assays. Moreover, the extracts were analyzed by UHPLC-MS/MS, using electrospray ionization (ESI) and atmospheric-pressure chemical ionization (APCI) in negative and positive ionization modes. The data was processed in MZmine v. 2.53 and evaluated by multivariate statistical tests (PLS) using the software UnscramblerX v. 10.4. These data were also used to build molecular networks (GNPS), and some ions of interest could be annotated using the library of molecules on the GNPS platform. RESULTS A total of 19 extracts inhibited B. jararaca-induced plasma coagulation, with emphasis on S. cymosa and S. reginae (800 s). The inhibition of the proteolytic activity was also promising, ranging from 16% (S. glycycarpa) to 99% (S. cymosa, S. decipiens, and S. reginae). In addition, most extracts from S. cymosa and S. reginae inhibited 70-90% of PLA2 activity. Based on data from positive mode APCI analyses, it was possible to obtain a statistic model with reliable predictive capacity which exhibited an average R2 of 0.95 and a Q2 of 0.88, indicating a robust fit. This process revealed five ions, identified as the alkaloids: coclaurine (1), stepholidine (2) O-methylisopiline (3), nornantenine (4) and laurolitsine (5). This is the first study to evidence the potential antivenom of alkaloids from Siparuna species. CONCLUSIONS Altogether, our results give support to the popular use of Siparuna extracts in SBE accidents, suggesting their potential as an alternative or complementary strategy against envenoming by B. jararaca venom. The predicted ions in the chemometric analysis for the assayed activities can also be correlated with the blocking activity and encourage the continuation of this study for possible isolation and testing of individual compounds on the used models.
Collapse
Affiliation(s)
- Diégina Araújo Fernandes
- Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde, Bloco H, Rio de Janeiro/RJ, 21941-902, Brazil.
| | - Brendo Araujo Gomes
- Programa de Pós-Graduação em Biotecnologia Vegetal e Bioprocessos, Universidade Federal do Rio de Janeiro, Rio de Janeiro/RJ, 21941-902, Brazil.
| | - Simony Carvalho Mendonça
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Bloco A2, Rio de Janeiro/RJ, 21941-902, Brazil.
| | - Camila de Castro Pinheiro
- Programa de Pós-Graduação em Ciências Biomédicas - Fisiologia e Farmacologia, Universidade Federal Fluminense, Niteroi/RJ, 24210-130, Brazil.
| | - Eladio Oswaldo Flores Sanchez
- Laboratório de Bioquímica de Proteínas de Animais Venenosos, Centro de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte/MG, 30510-010, Brazil.
| | - Suzana Guimarães Leitão
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Bloco A2, Rio de Janeiro/RJ, 21941-902, Brazil.
| | - André Lopes Fuly
- Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niteroi/RJ, 24210-201, Brazil.
| | - Gilda Guimarães Leitão
- Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde, Bloco H, Rio de Janeiro/RJ, 21941-902, Brazil.
| |
Collapse
|
2
|
Rajendiran P, Naidu R, Othman I, Zainal Abidin SA. Identification of antigenic proteins from the venom of Malaysian snakes using immunoprecipitation assay and tandem mass spectrometry (LC-MS/MS). Heliyon 2024; 10:e37243. [PMID: 39286227 PMCID: PMC11403504 DOI: 10.1016/j.heliyon.2024.e37243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024] Open
Abstract
Snake envenomation poses a significant risk to Malaysians and country visitors. Malaysia witnesses an estimated 650 snake bites per 100,000 population annually. The primary treatment for snake envenomation involves administering antivenom derived from horses, despite its drawbacks, such as anaphylactic reactions and serum sickness. Identifying the venom proteome is crucial for understanding and predicting the clinical implications of envenomation and developing effective treatments targeting specific venom proteins. In this study, we employ an immunoprecipitation assay followed by LC-MS/MS to identify antigenic proteins in five common venomous snakes in Malaysia compassing of two families which are pit vipers, (Calloselasma rhodostoma and Cryptelytrops purpureomaculatus) and cobras (Ophiophagus hannah, Naja kaouthia, and Naja sumatrana). The immunoprecipitation assay utilises a 2 % agarose gel, allowing antigenic proteins to diffuse and bind with antibodies in the antivenom. The antivenom utilised in this research was procured from the Queen Saovabha Memorial Institute (QSMI), Thailand, including king cobra antivenom (KCAV), cobra antivenom (CAV), Malayan pit viper antivenom (MPAV), Russell's viper antivenom (RPAV), hematopolyvalent antivenom (HPAV), neuropolyvalent antivenom (NPAV), banded krait antivenom (BKAV), and Malayan krait antivenom (MKAV). The protein identified through these interactions which are exclusive to the cobras are three-finger toxins (3FTXs) while snake C-type lectins (Snaclecs) are unique to the pit vipers. Common protein that are present in both families are L-amino acid oxidase (LAAO), Phospholipase A2 (PLA2), and snake venom metalloproteinase (SVMP). Identifying these proteins is vital for formulating a broad-spectrum antivenom applicable across multiple species.
Collapse
Affiliation(s)
- Preetha Rajendiran
- Jeffrey Cheah School of Medicine of Health Sciences, Jalan Lagoon Selatan, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine of Health Sciences, Jalan Lagoon Selatan, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine of Health Sciences, Jalan Lagoon Selatan, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
- Proteomics and Metabolomics Platform, Jeffrey Cheah School of Medicine and Health Sciences, Jalan Lagoon Selatan, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Syafiq Asnawi Zainal Abidin
- Jeffrey Cheah School of Medicine of Health Sciences, Jalan Lagoon Selatan, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
- Proteomics and Metabolomics Platform, Jeffrey Cheah School of Medicine and Health Sciences, Jalan Lagoon Selatan, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
3
|
Dossou AJ, Fandohan AB, Omara T, Chippaux JP. Comprehensive Review of Epidemiology and Treatment of Snakebite Envenomation in West Africa: Case of Benin. J Trop Med 2024; 2024:8357312. [PMID: 38623180 PMCID: PMC11018376 DOI: 10.1155/2024/8357312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/17/2024] Open
Abstract
Snakebite envenomation (SBE) constitutes a public health, social, and economic problem affecting poor communities in intertropical and subtropical regions. This review sought to synthesize literature on snakebite envenomation in Benin to highlight research perspectives and strategies for better management of the menace. A literature search performed in multidisciplinary electronic databases showed that the prevalence of SBE is high in Benin, but the incidences, associated morbidities, and mortalities are greatly underestimated. Most snake envenomations are by Echis ocellatus in Northern Benin during the rainy season. Adults involved in agricultural activities are the most affected. The absence of antivenin serum in the most affected areas explains the preference for alternative and traditional medicine as the first-line treatment for SBE in Benin. In conclusion, it would be imperative to revitalize the snakebite reporting system in order to have better epidemiological data and to develop a sustainable national strategy for the control and management of snakebite envenomation.
Collapse
Affiliation(s)
- Ayékotchami Jacques Dossou
- Research Unit in Forestry and Conservation of Bioresources, National University of Agriculture, School of Tropical Forestry, BP 43, Kétou, Benin
| | - Adandé Belarmain Fandohan
- Research Unit in Forestry and Conservation of Bioresources, National University of Agriculture, School of Tropical Forestry, BP 43, Kétou, Benin
| | - Timothy Omara
- Department of Chemistry, College of Natural Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda
| | | |
Collapse
|
4
|
Vera-Palacios AL, Sacoto-Torres JD, Hernández-Altamirano JA, Moreno A, Peñuela-Mora MC, Salazar-Valenzuela D, Mogollón NGS, Almeida JR. A First Look at the Inhibitory Potential of Urospatha sagittifolia (Araceae) Ethanolic Extract for Bothrops atrox Snakebite Envenomation. Toxins (Basel) 2022; 14:496. [PMID: 35878234 PMCID: PMC9315696 DOI: 10.3390/toxins14070496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 12/03/2022] Open
Abstract
Bothrops atrox snakebites are a relevant problem in the Amazon basin. In this biodiverse region, the ethnomedicinal approach plays an important role as an alternative to antivenom therapy. Urospatha sagittifolia (Araceae) is a plant used for this purpose; however, its neutralizing properties have not been scientifically accessed. To fill this gap, we investigated the ability of U. sagittifolia to modulate the catalytic activity of Bothrops atrox venom, and their toxic consequences, such as local damage and lethality. The venom profile of B. atrox was assessed by chromatography and electrophoresis. Inhibition of the three main enzymatic and medically important toxins from the venom was evaluated using synthetic substrates and quantified by chromogenic activity assays. Additionally, the neutralization of lethality, hemorrhage and edema were investigated by in vivo assays. The possible interactions between venom proteins and plant molecules were visualized by polyacrylamide gel electrophoresis. Finally, the phytochemical constituents present in the ethanolic extract were determined by qualitative and quantitative analyses. The ethanolic extract reduced the activity of the three main enzymes of venom target, achieving ranges from 19% to 81% of inhibition. Our in vivo venom neuralizations assays showed a significant inhibition of edema (38.72%) and hemorrhage (42.90%). Additionally, lethality was remarkably counteracted. The highest extract ratio evaluated had a 75% survival rate. Our data support the biomedical value of U. sagittifolia as a source of natural enzyme inhibitors able to neutralize catalytically active B. atrox venom toxins and their toxic effects.
Collapse
Affiliation(s)
- Antonio L. Vera-Palacios
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Km 8 Via Muyuna, Tena 150101, Ecuador; (A.L.V.-P.); (J.D.S.-T.); (J.A.H.-A.); (N.G.S.M.)
| | - Juan D. Sacoto-Torres
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Km 8 Via Muyuna, Tena 150101, Ecuador; (A.L.V.-P.); (J.D.S.-T.); (J.A.H.-A.); (N.G.S.M.)
| | - Josselin A. Hernández-Altamirano
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Km 8 Via Muyuna, Tena 150101, Ecuador; (A.L.V.-P.); (J.D.S.-T.); (J.A.H.-A.); (N.G.S.M.)
| | - Andres Moreno
- Facultad de Ingeniería en Sistemas, Electrónica e Industrial, Universidad Técnica de Ambato, Ambato 180207, Ecuador;
| | - Maria C. Peñuela-Mora
- Grupo de Ecosistemas Tropicales y Cambio Global, Universidad Regional Amazónica Ikiam, Km 8 Via Muyuna, Tena 150101, Ecuador;
| | - David Salazar-Valenzuela
- Centro de Investigación de la Biodiversidad y Cambio Climático (BioCamb) e Ingeniería en Biodiversidad y Recursos Genéticos, Facultad de Ciencias de Medio Ambiente, Universidad Tecnológica Indoamérica, Quito 180103, Ecuador;
| | - Noroska G. S. Mogollón
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Km 8 Via Muyuna, Tena 150101, Ecuador; (A.L.V.-P.); (J.D.S.-T.); (J.A.H.-A.); (N.G.S.M.)
| | - José R. Almeida
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Km 8 Via Muyuna, Tena 150101, Ecuador; (A.L.V.-P.); (J.D.S.-T.); (J.A.H.-A.); (N.G.S.M.)
| |
Collapse
|
5
|
Deshpande AM, Sastry KV, Bhise SB. A Contemporary Exploration of Traditional Indian Snake Envenomation Therapies. Trop Med Infect Dis 2022; 7:108. [PMID: 35736986 PMCID: PMC9227218 DOI: 10.3390/tropicalmed7060108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 12/31/2022] Open
Abstract
Snakebite being a quick progressing serious situation needs immediate and aggressive therapy. Snake venom antiserum is the only approved and effective treatment available, but for selected snake species only. The requirement of trained staff for administration and serum reactions make the therapy complicated. In tropical countries where snakebite incidence is high and healthcare facilities are limited, mortality and morbidities associated with snake envenomation are proportionately high. Traditional compilations of medical practitioners' personal journals have wealth of plant-based snake venom antidotes. Relatively, very few plants or their extractives have been scientifically investigated for neutralization of snake venom or its components. None of these investigations presents enough evidence to initiate clinical testing of the agents. This review focuses on curating Indian traditional snake envenomation therapies, identifying plants involved and finding relevant evidence across modern literature to neutralize snake venom components. Traditional formulations, their method of preparation and dosing have been discussed along with the investigational approach in modern research and their possible outcomes. A safe and easily administrable small molecule of plant origin that would protect or limit the spread of venom and provide valuable time for the victim to reach the healthcare centre would be a great lifesaver.
Collapse
Affiliation(s)
- Adwait M. Deshpande
- Sinhgad Institute of Pharmaceutical Sciences, 309/310, Kusgaon (BK), Lonavala 410401, India;
| | - K. Venkata Sastry
- Alliance Institute of Advanced Pharmaceutical & Health Sciences, Patel Nagar, Kukatpally, Hyderabad 500085, India;
| | - Satish B. Bhise
- Sinhgad Institute of Pharmaceutical Sciences, 309/310, Kusgaon (BK), Lonavala 410401, India;
- Arogyalabh Foundation, Bibvewadi, Pune 411037, India
| |
Collapse
|
6
|
Lu Y, Guo Y, Liang X, Huang H, Ling X, Su Z, Liang Y. The recognition of aristolochic acid I based on fluorescence quenching of bovine serum albumin-stabilized gold nanoclusters. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1963-1972. [PMID: 35531633 DOI: 10.1039/d2ay00492e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Aristolochic acid I (AAI) is one of the nephrotoxic derivatives present in genera Aristolochia and Asarum. Although some detection strategies for monitoring AAI have been reported, the application of these methods is limited because they involve tedious preparation and require professional operation. In this work, bovine serum albumin (BSA) has been introduced as a reducing agent and stabilizing agent to synthesize gold nanoclusters with strong red fluorescence for the rapid and effective detection of AAI. Under excitation at 328 nm, the fluorescence intensity at the maximum emission wavelength of the bovine serum albumin-stabilized gold nanoclusters (BSA-AuNCs) decreased with the addition of AAI, and the degree of quenching showed a linear relationship with the concentration of AAI from 0.1-12.8 μg mL-1. The obtained BSA-AuNCs were stable, and quenching in the presence of AAI could be achieved within 10 seconds. Here, we have focused on the application of these gold nanoclusters as an optical sensing material for AAI in rat urine samples, including a discussion on the detection mechanism. The detection result of the fluorescent probe was consistent with that of the HPLC method. In view of this reality, the reported protein-AuNCs sensing platform can serve as a convenient detection strategy in toxicological analyses.
Collapse
Affiliation(s)
- Yating Lu
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China.
- Department of Pharmacy, The Fifth Affiliated Hospital of Guangxi Medical University, The First People's Hospital of Nanning, Nanning, China
| | - Yue Guo
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China.
| | - Xiao Liang
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China.
| | - Huimin Huang
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China.
| | - Xue Ling
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China.
| | - Zhiheng Su
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China.
| | - Yonghong Liang
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
7
|
Islam ATMR, Hasan MM, Islam MT, Tanaka N. Ethnobotanical study of plants used by the Munda ethnic group living around the Sundarbans, the world's largest mangrove forest in southwestern Bangladesh. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114853. [PMID: 34822959 DOI: 10.1016/j.jep.2021.114853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Indigenous knowledge of medicinal plants is an integral part of the primary health care (PHC) system in almost every society. For more than two centuries, Munda, a small ethnic group in Bangladesh, has lived around the Sundarbans, the world's largest mangrove forest. This mangrove is rich in biodiversity but is threatened by global climate change. Information on the therapeutic use of plants by Munda ethnic minorities remains completely unknown. Therefore, it needs urgent documentation. AIM OF THE STUDY The purpose of the study is (1) to search and compile data on the diversity of medicinal plants used by the Munda people for PHC needs, and (2) Quantitative analysis of these data to identify important medicinal plants and diseases related to treatment by this species. MATERIAL AND METHODS We conducted repeated field surveys and interviews among 79 Munda informants to collect ethnobotanical data. Informants were selected through random sampling techniques and interviewed using an open and semi-structured questionnaire. We reported the primary (absolute) data as use reports (URs) with frequency citation (FC). The International Classification of Primary Care-2 (ICPC-2) was followed to categorize the therapeutic use of medicinal plants, and quantitative analysis was performed using the FC and informant consensus factor (ICF). RESULTS The present study explored and compiled a total of 3199 medicinal URs for 98 medicinal plant species to treat 132 ailment conditions under sixteen (16) ICPC-2 pathological groups. The highest URs (948) were noted for the digestive (D) group treated by 69 plant species, where the highest ICF value was measured for the social problem (Z) disease category (ICF: 1.00). Of the recorded medicinal plants, 17 were identified as true Mangrove (MNG), 24 as Mangrove Associates (MNA), and 57 as Non-Mangrove (NMG) species. Fabaceae (13 species) represented the leading family, followed by Lamiaceae and Compositae (5 species). Herbs (43%) have shown dominant life forms, and the leaves (41%) were frequently used plant parts. The most commonly cited preparation method was juice (24%), and the prevalent mode of administration was oral (62%). Azadirachta indica A. Juss. was the most widely used therapeutic plant species based on FC (39) values. The comparative literature review study reveals that the practices of 15 plants and their ethnomedicinal use by the Munda people are still entirely unexplored and newly reported in Bangladesh. Additionally, therapeutic use of 2 species, Brownlowia tersa (L.) Kosterm., and Dalbergia candenatensis (Dennst.) Prain has not been previously reported worldwide. In addition, 51 plant species (52%) of the total plants studied enlisted on the IUCN Red List of Threatened Species. CONCLUSION To our knowledge, this is the first ethnobotanical study on the Munda ethnic group in Bangladesh. This study indicates that Munda people still rely on medicinal plants for PHC and have a rich and varied traditional knowledge about the therapeutic use of plants. This study also warns of the high risk of the current availability status of plants in the study area. Therefore, this study calls for urgent steps to protect and conserve high-risk plants that can be done by taking both in-situ and ex-situ measures. In addition, further phytochemical and pharmacological investigations of the important medicinal plants cited in the study have been suggested.
Collapse
Affiliation(s)
- A T M Rafiqul Islam
- Department of Botany, Faculty of Bio-Sciences, University of Barishal, Barishal, 8254, Bangladesh; Center for Gene Science, Hiroshima University, 1-4-2 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527, Japan; Department of Molecular Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8530, Japan.
| | - Md Mahadiy Hasan
- Department of Botany, Faculty of Bio-Sciences, University of Barishal, Barishal, 8254, Bangladesh.
| | - Md Tahidul Islam
- Department of Botany, Faculty of Bio-Sciences, University of Barishal, Barishal, 8254, Bangladesh.
| | - Nobukazu Tanaka
- Center for Gene Science, Hiroshima University, 1-4-2 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527, Japan; Department of Molecular Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8530, Japan.
| |
Collapse
|
8
|
Liaqat A, Mallhi TH, Khan YH, Khokhar A, Chaman S, Ali M. Anti-Snake Venom Property of Medicinal Plants: A Comprehensive Review of Literature. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e191124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
| | | | | | | | - Sadia Chaman
- University of Veterinary and Animal Sciences, Pakistan
| | | |
Collapse
|
9
|
Lin CE, Lin PY, Yang WC, Huang YS, Lin TY, Chen CM, Chen HS, Lee JA, Chen SM. Evaluation of the nephrotoxicity and safety of low-dose aristolochic acid, extending to the use of Xixin (Asurum), by determination of methylglyoxal and d-lactate. JOURNAL OF ETHNOPHARMACOLOGY 2021; 272:113945. [PMID: 33617966 DOI: 10.1016/j.jep.2021.113945] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/18/2021] [Accepted: 02/14/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Most Aristolochiaceae plants are prohibited due to aristolochic acid nephropathy (AAN), except Xixin (Asarum spp.). Xixin contains trace amounts of aristolochic acid (AA) and is widely used in Traditional Chinese Medicine. Methylglyoxal and d-lactate are regarded as biomarkers for nephrotoxicity. AIM OF THE STUDY The use of Xixin (Asarum spp.) is essential and controversial. This study aimed to evaluate tubulointerstitial injury and interstitial renal fibrosis by determining urinary methylglyoxal and d-lactate after withdrawal of low-dose AA in a chronic mouse model. MATERIALS AND METHODS C3H/He mice in the AA group (n = 24/group) were given ad libitum access to distilled water containing 3 μg/mL AA (0.5 mg/kg/day) for 56 days and drinking water from days 57 to 84. The severity of tubulointerstitial injury and fibrosis were evaluated using the tubulointerstitial histological score (TIHS) and Masson's trichrome staining. Urinary and serum methylglyoxal were determined by high-performance liquid chromatography (HPLC); urinary d-lactate were determined by column-switching HPLC. RESULTS After AA withdrawal, serum methylglyoxal in the AA group increased from day 56 (429.4 ± 48.3 μg/L) to 84 (600.2 ± 99.9 μg/L), and peaked on day 70 (878.3 ± 171.8 μg/L; p < 0.05); TIHS and fibrosis exhibited similar patterns. Urinary methylglyoxal was high on day 56 (3.522 ± 1.061 μg), declined by day 70 (1.583 ± 0.437 μg) and increased by day 84 (2.390 ± 0.130 μg). Moreover, urinary d-lactate was elevated on day 56 (82.10 ± 18.80 μg) and higher from day 70 (201.10 ± 90.82 μg) to 84 (193.28 ± 61.32 μg). CONCLUSIONS Methylglyoxal is induced after AA-induced tubulointerstitial injury, so methylglyoxal excretion and metabolism may be a detoxification and repair strategy. A low cumulative AA dose is the key factor that limits tubulointerstitial injury and helps to repair. Thus, AA-containing herbs, especially Xixin, should be used at low doses for short durations (less than one month).
Collapse
Affiliation(s)
- Chia-En Lin
- School of Pharmacy, College of Pharmacy, Taipei Medical University, No.250 Wu-Hsing Street, Taipei, 110, Taiwan.
| | - Po-Yeh Lin
- School of Pharmacy, College of Pharmacy, Taipei Medical University, No.250 Wu-Hsing Street, Taipei, 110, Taiwan.
| | - Wen-Chi Yang
- School of Pharmacy, College of Pharmacy, Taipei Medical University, No.250 Wu-Hsing Street, Taipei, 110, Taiwan.
| | - Yu-Shen Huang
- School of Pharmacy, College of Pharmacy, Taipei Medical University, No.250 Wu-Hsing Street, Taipei, 110, Taiwan.
| | - Tzu-Yao Lin
- School of Pharmacy, College of Pharmacy, Taipei Medical University, No.250 Wu-Hsing Street, Taipei, 110, Taiwan.
| | - Chien-Ming Chen
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei, Taiwan.
| | - Hung-Shing Chen
- Graduate Institute of Electro-optical Engineering, National Taiwan University of Science and Technology, No.43, Keelung Rd., Sec.4, Da'an Dist., Taipei, Taiwan.
| | - Jen-Ai Lee
- School of Pharmacy, College of Pharmacy, Taipei Medical University, No.250 Wu-Hsing Street, Taipei, 110, Taiwan.
| | - Shih-Ming Chen
- School of Pharmacy, College of Pharmacy, Taipei Medical University, No.250 Wu-Hsing Street, Taipei, 110, Taiwan.
| |
Collapse
|
10
|
Dey A, Hazra AK, Mukherjee A, Nandy S, Pandey DK. Chemotaxonomy of the ethnic antidote Aristolochia indica for aristolochic acid content: Implications of anti-phospholipase activity and genotoxicity study. JOURNAL OF ETHNOPHARMACOLOGY 2021; 266:113416. [PMID: 32980485 DOI: 10.1016/j.jep.2020.113416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/02/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aristolochia indica L. (Aristolochiaceae) is a common medicinal plant described in many traditional medicine as well as in Ayurveda used against snakebites. Besides, the plant has also been reported traditionally against fever, rheumatic arthritis, madness, liver ailments, dyspepsia, oedema, leishmaniasis, leprosy, dysmenorrhoea, sexual diseases etc. The plant is known to contain its major bioactive constituent aristolochic acid (AA) known for its anti-snake venom, abortifacient, antimicrobial and antioxidant properties. MATERIALS AND METHODS This present work describes a validated, fast and reproducible high performance thin layer chromatography (HPTLC) method to estimate AA from the roots of 20 chemotypes of A. indica procured from 20 diverse geographical locations from the state of West Bengal, India. Further, an evidence-based approach was adopted to investigate the reported anti-venom activity of the aqueous extracts of the A. indica roots by assessing its phospholipase A2 (PLA2) inhibitory properties since PLA2 is a major component of many snake-venoms. Finally, the cytotoxicity and genotoxicity of the aqueous root extract of the Purulia (AI 1) chemotype were assessed at various concentrations using Allium cepa root meristematic cells. RESULTS The highest amount of AA (7643.67 μg/g) was determined in the roots of A. indica chemotype collected from Purulia district followed by the chemotypes collected from Murshidabad, Jalpaiguri and Birbhum districts (7398.34, 7345.09 and 6809.97 μg/g respectively). This study not only determines AA in the plants to select pharmacologically elite chemotypes of A. indica, but it also identifies high AA producing A. indica for further domestication and propagation of the plants for pharmacological and industrial applications. The method was validated via analyzing inter-day and intra-day precision, repeatability, reproducibility, instrumental precision, limit of detection (LOD) and limit of quantification (LOQ) and specificity. Chemotypes with high AA content exhibited superior anti-PLA2 activity by selectively inhibiting human-group PLA2. Moreover, A. indica root extract significantly inhibited mitosis in Allium cepa root tips as a potent clastogen. CONCLUSIONS The present quick, reproducible and validated HPTLC method provides an easy tool to determine AA in natural A. indica plant populations as well as in food and dietary supplements, a potential antivenin at one hand and a possible cause of aristolochic acid nephropathy (AAN) at another. Besides, the cytotoxic and mitotoxic properties of the root extracts should be used with caution especially for oral administration.
Collapse
Affiliation(s)
- Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, India.
| | - Alok Kumar Hazra
- IRDM Faculty Centre, Ramakrishna Mission Ashrama, Kolkata, India
| | | | - Samapika Nandy
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Devendra Kumar Pandey
- Department of Biotechnology, Lovely Faculty of Technology and Sciences, Lovely Professional University, Phagwara, India.
| |
Collapse
|
11
|
Modak BK, Gorai P, Pandey DK, Dey A, Malik T. An evidence based efficacy and safety assessment of the ethnobiologicals against poisonous and non-poisonous bites used by the tribals of three westernmost districts of West Bengal, India: Anti-phospholipase A2 and genotoxic effects. PLoS One 2020; 15:e0242944. [PMID: 33253320 PMCID: PMC7703885 DOI: 10.1371/journal.pone.0242944] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/12/2020] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION To explore the ethnobiological wisdom of the tribals of three western districts of West Bengal, India against poisonous and non-poisonous bites and stings, a quantitative approach was adopted. These age-old yet unexplored knowledge can be utilized in finding lead-molecules against poisonous and non-poisonous animal-bites. Further, an evidence-based approach is needed to assess the venom-neutralization ability of plants by experimental studies. MATERIALS AND METHODS During 2008-2009 and 2012-2017, 11 ethnomedicinal surveys were carried out to explore the use of medicinal flora and fauna via conducting open semi-structured interviews with 47 traditional healers (THs) or informants. The retrieved dataset was statistically evaluated using seven quantitative-indexes: use-value (UV), informants'-consensus-factor (ICF), fidelity-level (FL), relative-importance (RI), cultural importance-index (CI), index of agreement on remedies (IAR) and cultural agreement-index (CAI). Anti-phospholipaseA2 (PLA2) properties of selected plant extracts were also examined. In addition, the cytotoxicity and genotoxicity of the water extract of the plants showing high FL as well as significant PLA2 inhibitory potential were investigated using Allium cepa root tip assay. RESULTS A total of 41 traditional-formulations (TFs) containing 40 plant species (of 39 genera from 28 families) and 3 animal species were prescribed by the THs. Fabaceae exhibited most number of medicinal plants. Piper nigrum (1.78) and Apis cerana indica and Crossopriza lyoni (both 0.21) exhibited the highest UV among the plants and the animals respectively. Stinging of centipede and dog/cat/hyena bite displayed highest ICF (1.00 each). Among the plants, the maximum RI (0.91) and CI (4.98) values were observed for Aristolochia indica. IAR (1.00) was recorded maximum for Achyranthes aspera, Gloriosa superba, Lycopodium cernuum, Smilax zeylanica and Streblus asper. Maximum CAI value was noted for Piper nigrum (5.5096). Among the animals, Apis cerana indica (0.31) and Crossopriza lyoni (1.52) displayed the highest RI and CI values respectively. Crossopriza lyoni (0.99) and Apis cerana indica (1.3871) exhibited maximum IAR and CAI values respectively. Plants showing higher FL exhibited higher anti-PLA2 activity via selective inhibition of human-group PLA2. In addition, Allium cepa root tip assay has indicated the safety and/or toxicity of the plant parts prescribed by the THs. Root water extracts of Aristolochia indica and Gloriosa superba exhibited significant genotoxicity and cytotoxicity. CONCLUSIONS Three western districts of West Bengal is the natural abode for many tribal and non-tribal communities. A noteworthy correlation was established between the plants used against poisonous-bites and their anti-PLA2 activity. A few plant parts used by the THs also exhibited high toxicity. Such alternative medical practices serve as the only option in these underprivileged and backward areas during medical-exigencies.
Collapse
Affiliation(s)
- Biplob Kumar Modak
- Department of Zoology, Sidho-Kanho-Birsha University, Lagda, West Bengal, India
| | - Partha Gorai
- Department of Zoology, Sidho-Kanho-Birsha University, Lagda, West Bengal, India
| | - Devendra Kumar Pandey
- Department of Biotechnology, Lovely Faculty of Technology and Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| | - Tabarak Malik
- Department of Medical Biochemistry, College of Medicine & Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
12
|
Green Synthesis, Characterization & Antibacterial Studies of Silver (Ag) and Zinc Oxide (Zno) Nanoparticles. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.3.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Green synthesis nanoparticles were considered as an alternative effective resource instead of chemically engineered metal oxide nanoparticles. Using leaf extracts for green synthesis, essential for the reduction and oxidation process of the metals. Phyllanthus niruri (L.) and Aristolochia indica (L.) leaf extracts were used to synthesize yellowish brown coloured silver (Ag) and white coloured zinc oxide (ZnO) nanoparticles. Synthesized green nanoparticles characterized by different spectroscopic analysis (XRD, XPS, FTIR, PL) and TEM. Characterization results confirmed the particles morphology, size, structure and also their optical and photonic properties. Three different concentrations of Ag and ZnO NPs were analysed against three (gram positive) and five (gram negative) bacteria. Increased levels of green synthesized Ag and ZnO NPs showed increased zone of inhibition than amoxicillin (positive control). Our study proved that the green synthesized Ag and ZnO NPs showed similar unique physical and chemical properties with metal oxide nanoparticles but less toxic while their discharge into the ecosystem.
Collapse
|
13
|
Structural and Biological Investigation of Green Synthesized Silver and Zinc Oxide Nanoparticles. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01727-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Gómez-Betancur I, Gogineni V, Salazar-Ospina A, León F. Perspective on the Therapeutics of Anti-Snake Venom. Molecules 2019; 24:E3276. [PMID: 31505752 PMCID: PMC6767026 DOI: 10.3390/molecules24183276] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 01/22/2023] Open
Abstract
Snakebite envenomation is a life-threatening disease that was recently re-included as a neglected tropical disease (NTD), affecting millions of people in tropical and subtropical areas of the world. Improvement in the therapeutic approaches to envenomation is required to palliate the morbidity and mortality effects of this NTD. The specific therapeutic treatment for this NTD uses snake antivenom immunoglobulins. Unfortunately, access to these vital drugs is limited, principally due to their cost. Different ethnic groups in the affected regions have achieved notable success in treatment for centuries using natural sources, especially plants, to mitigate the effects of snake envenomation. The ethnopharmacological approach is essential to identify the potential metabolites or derivatives needed to treat this important NTD. Here, the authors describe specific therapeutic snakebite envenomation treatments and conduct a review on different strategies to identify the potential agents that can mitigate the effects of the venoms. The study also covers an increased number of literature reports on the ability of natural sources, particularly plants, to treat snakebites, along with their mechanisms, drawbacks and future perspectives.
Collapse
Affiliation(s)
- Isabel Gómez-Betancur
- Ophidism-Scorpionism Program, Faculty of Pharmaceutical and Food Sciences, University of Antioquia UdeA, Medellín 1226, Colombia.
| | - Vedanjali Gogineni
- Analytical Department, Cambrex Pharmaceuticals, Charles City, IA 50616, USA.
| | - Andrea Salazar-Ospina
- Research group in Pharmacy Regency Technology, Faculty of Pharmaceutical and Food Sciences University of Antioquia UdeA, Medellín 1226, Colombia.
| | - Francisco León
- College of Pharmacy, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
15
|
Yirgu A, Chippaux JP. Ethnomedicinal plants used for snakebite treatments in Ethiopia: a comprehensive overview. J Venom Anim Toxins Incl Trop Dis 2019; 25:e20190017. [PMID: 31428140 PMCID: PMC6682375 DOI: 10.1590/1678-9199-jvatitd-2019-0017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/07/2019] [Indexed: 12/01/2022] Open
Abstract
Traditional medicine plays an important role in the daily lives of people living in rural parts of Ethiopia. Despite the fact that Ethiopia has a long history of using traditional medicinal plants as an alternative medicine source, there is no checklist compiling these plants used for snakebite treatment. This review collected and compiled available knowledge on and practical usage of such plants in the country. A literature review on medicinal plants used to treat snakebites was conducted from 67 journal articles, PhD dissertation and MSc theses available online. Data that summarize scientific and folk names, administration methods, plant portion used for treatment and method of preparation of recipes were organized and analyzed based on citation frequency. The summarized results revealed the presence of 184 plant species distributed among 67 families that were cited for treating snakebite in Ethiopia. In this literature search, no single study was entirely dedicated to the study of traditional medicinal plants used for the treatment of snakebite in Ethiopia. Most of the species listed as a snakebite remedy were shrubs and climbers (44%) followed by herbs (33%) and trees (23%). Fabaceae was the most predominant family with the greatest number of species, followed by Solanaceae and Vitaceae. Remedies are mainly prepared from roots and leaves, through decoctions, infusions, powders and juices. Most remedies were administered orally (69%). The six most frequently mentioned therapeutically important plants were Nicotiana tabacum, Solanum incanum, Carissa spinanrum, Calpurnia aurea, Croton macrostachyus and Cynodon dactylon. Authors reviewed the vegetal substances involved in snakebite management and their action mode. In addition to screening the biologically active ingredients and pharmacological activities of these plant materials, future studies are needed to emphasize the conservation and cultivation of important medicinal plants of the country.
Collapse
Affiliation(s)
- Abraham Yirgu
- Central Ethiopia Environment and Forest Research Center, Addis
Ababa, Ethiopia
| | - Jean-Philippe Chippaux
- MERIT, IRD, Paris Descartes University, Sorbonne Paris Cité, Paris,
France
- Centre de Recherche Translationnelle, Institut Pasteur, Paris,
France
| |
Collapse
|
16
|
Li S, Wu X, Song S, Zheng Q, Kuang H. Development of ic-ELISA and an immunochromatographic strip assay for the detection of aristolochic acid Ⅰ. FOOD AGR IMMUNOL 2019. [DOI: 10.1080/09540105.2018.1551331] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Shaozhen Li
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
- Collaborative Innovation center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
| | - Xiaoling Wu
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
- Collaborative Innovation center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
| | - Shanshan Song
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
- Collaborative Innovation center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
| | | | - Hua Kuang
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
- Collaborative Innovation center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
| |
Collapse
|
17
|
OLIVEIRA SIMONEQ, KRATZ JADELM, CHAVES VITORC, GUIMARÃES TATIANAR, COSTA DANIELLET, DIMITRAKOUDI SAPFO, VONTZALIDOU ARGYRO, BORDIGNON SÉRGIOA, SIMIONATO CESARP, STEINDEL MÁRIO, REGINATTO FLÁVIOH, SIMÕES CLÁUDIAM, SCHENKEL ELOIRP. Chemical Constituents and Pharmacology properties of Aristolochia triangularis: a south brazilian highly-consumed botanical with multiple bioactivities. ACTA ACUST UNITED AC 2019; 91:e20180621. [DOI: 10.1590/0001-3765201920180621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/06/2018] [Indexed: 11/22/2022]
Affiliation(s)
| | | | | | | | | | - SAPFO DIMITRAKOUDI
- School of Pharmacy, National and Kapodistrian University of Athens, Greece
| | - ARGYRO VONTZALIDOU
- School of Pharmacy, National and Kapodistrian University of Athens, Greece
| | | | | | | | | | - CLÁUDIA M.O. SIMÕES
- Universidade Federal de Santa Catarina, Brazil; Universidade Federal de Santa Catarina, Brazil
| | | |
Collapse
|
18
|
Dechbumroong P, Aumnouypol S, Denduangboripant J, Sukrong S. DNA barcoding of Aristolochia plants and development of species-specific multiplex PCR to aid HPTLC in ascertainment of Aristolochia herbal materials. PLoS One 2018; 13:e0202625. [PMID: 30125304 PMCID: PMC6101415 DOI: 10.1371/journal.pone.0202625] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/07/2018] [Indexed: 01/28/2023] Open
Abstract
The anecdotal evidence is outstanding on the uses of Aristolochia plants as traditional medicines and dietary supplements in many regions of the world. However, herbal materials derived from Aristolochia species have been identified as potent human carcinogens since the first case of severe renal disease after ingesting these herbal preparations. Any products containing Aristolochia species have thus been banned on many continents, including Europe, America and Asia. Therefore, the development of a method to identify these herbs is critically needed for customer safety. The present study evaluated DNA barcoding of the rbcL, matK, ITS2 and trnH-psbA regions among eleven Aristolochia species collected in Thailand. Polymorphic sites were observed in all four DNA loci. Among those eleven Aristolochia species, three species (A. pierrei, A. tagala and A. pothieri) are used as herbal materials in Thai folk medicine, namely, in Thai "Krai-Krue". "Krai-Krue" herbs are interchangeably used as an admixture in Thai traditional remedies without specific knowledge of their identities. A species-specific multiplex PCR based on nucleotide polymorphisms in the ITS2 region was developed as an identification tool to differentiate these three Aristolochia species and to supplement the HPTLC pattern in clarifying the origins of herbal materials. The combination of multiplex PCR and HPTLC profiling achieves accurate herbal identification with the goal of protecting consumers from the health risks associated with product substitution and contamination.
Collapse
Affiliation(s)
- Piroonrat Dechbumroong
- Research Unit of DNA Barcoding of Thai Medicinal Plants, Department of Pharmacognosy and Pharmaceutical Botany, Chulalongkorn University Drug and Health Products Innovation Promotion Center, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Surattana Aumnouypol
- Research Unit of DNA Barcoding of Thai Medicinal Plants, Department of Pharmacognosy and Pharmaceutical Botany, Chulalongkorn University Drug and Health Products Innovation Promotion Center, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | | | - Suchada Sukrong
- Research Unit of DNA Barcoding of Thai Medicinal Plants, Department of Pharmacognosy and Pharmaceutical Botany, Chulalongkorn University Drug and Health Products Innovation Promotion Center, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
19
|
Rody HVS, Gontijo DDC, Coelho VPDM, Ventrella MC, Pádua RMD, Fietto LG, Leite JPV. Mutagenic activity and chemical composition of phenolic-rich extracts of leaves from two species of Ficus medicinal plants. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:861-872. [PMID: 30036158 DOI: 10.1080/15287394.2018.1498420] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/04/2018] [Accepted: 07/05/2018] [Indexed: 06/08/2023]
Abstract
Plant species from the Ficus genus are widely used as food, and in folk medicine as anti-inflammatory, antioxidant and anticancer agents, although some of these species are known to produce adverse effects. The aim of this study was to determine and compare the chemical composition as well as in vitro antioxidant and mutagenic activity of the aqueous extracts of leaves from F. adhatodifolia and F. obtusiuscula. Phytochemical screening using thin-layer chromatography identified 6 classes of secondary metabolites in the extracts. Total phenolic content was estimated by the Folin-Ciocalteau method and the phenolic profile was determined by UPLC-DAD-ESI/MS/MS. Antioxidant activities were evaluated by the DPPH radical assay and by the β-carotene/linoleic acid system. Mutagenic activity was measured by the Salmonella typhimurium reverse mutation test with 4 strains, in both the presence and absence of metabolic activation. Flavonoids, coumarins, and tannins were detected in both extracts, and 6 major derivatives were identified as flavone compounds. Antioxidant activities were demonstrated for both extracts, while F. obtusiuscula contained higher concentrations of phenolic compounds. Mutagenic activity of the TA97 strain without metabolic activation was observed for both tested extracts, as well as the TA102 strain with metabolic activation. In addition, the extract of F. adhatodifolia was shown to be mutagenic to the TA102 strain without metabolic activation. Evidence indicates that the use of teas obtained from these two plant extracts in folk medicine may raise concerns and needs further investigation as a result of potential pro-oxidant mutagenic effects in the absence or presence of metabolic activation.
Collapse
Affiliation(s)
- Hugo Vianna Silva Rody
- a Departamento de Bioquímica e Biologia Molecular , Universidade Federal de Viçosa , Viçosa , Brazil
| | - Douglas da Costa Gontijo
- b Departamento de Ciências Farmacêuticas , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| | | | | | - Rodrigo Maia de Pádua
- b Departamento de Ciências Farmacêuticas , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| | - Luciano Gomes Fietto
- a Departamento de Bioquímica e Biologia Molecular , Universidade Federal de Viçosa , Viçosa , Brazil
| | - João Paulo Viana Leite
- a Departamento de Bioquímica e Biologia Molecular , Universidade Federal de Viçosa , Viçosa , Brazil
| |
Collapse
|
20
|
Bhattacharjee P, De D, Bhattacharyya D. Degradation of fibrin-β amyloid co-aggregate: A novel function attributed to ubiquitin. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2018; 1865:1465-1478. [PMID: 30031899 DOI: 10.1016/j.bbamcr.2018.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/17/2018] [Accepted: 07/17/2018] [Indexed: 12/28/2022]
Abstract
Human placental extract contains numerous bioactive components that are effective wound healing, antimicrobial and anti-inflammatory agents. During our investigation on the therapeutic potency of human placental extract, we have purified ubiquitin-like molecules that showed strong fibrino(geno)lytic activity. Further investigation confirmed similar potency of ubiquitin purified from adult human erythrocyte. Additionally, ubiquitin efficiently degraded disordered amyloid β 42 peptide (Aβ42) aggregate and fibrin-Aβ42 co-aggregate in vitro and reduced co-aggregate induced cytotoxicity in SH-SY5Y human neuroblastoma cells as compared to plasmin. Ubiquitin also degraded abnormal co-aggregates of fibrin with other plasma proteins such as fibronectin, albumin, lysozyme, tranthyretin and α-synuclein. To elucidate the mechanism of degradation, synthetic peptides (ADG, GKT, DQQ, QRL, LIF, AGK, HLVL) derived from ubiquitin template as well as synthetic ubiquitin (8565.32 Da) were employed. Synthetic ubiquitin completely degraded preformed Aβ 42 aggregate and fibrin-Aβ42 co-aggregate, whereas, the smaller synthetic peptides showed varying degrees of degradation. These observations attribute a novel function of ubiquitin that may be used for degrading abnormal fibrin clots in human body. Thorough investigation might unfold a novel molecular mechanism of ubiquitin in protein homeostasis.
Collapse
Affiliation(s)
- Payel Bhattacharjee
- Division of Structural Biology and Bioinformatics, CSIR - Indian Institute of Chemical Biology, 4, Raja S. C. Mallick Road, Jadavpur, Kolkata 700032, India
| | - Debashree De
- Division of Structural Biology and Bioinformatics, CSIR - Indian Institute of Chemical Biology, 4, Raja S. C. Mallick Road, Jadavpur, Kolkata 700032, India
| | - Debasish Bhattacharyya
- Division of Structural Biology and Bioinformatics, CSIR - Indian Institute of Chemical Biology, 4, Raja S. C. Mallick Road, Jadavpur, Kolkata 700032, India; Department of Zoology, Tripura University, Suryamaninagar, West Tripura 799022, India.
| |
Collapse
|
21
|
Gowda R, Rajaiah R, Angaswamy N, Krishna S, Bannikuppe Sannanayak V. Biochemical and pharmacological characterization of Trimersurus malabaricus snake venom. J Cell Biochem 2018. [PMID: 29528146 DOI: 10.1002/jcb.26782] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Trimeresurus malabaricus is a venomous pit viper species endemic to southwestern part of India. In earlier reports, we have shown that envenomation by T. malabaricus venom leading to strong local tissue damage but the mechanism of action is not clearly revealed. Local tissue damage affected by T. malabaricus venom is of great importance since the poison has serious systemic effects including death in the case of multiple attacks. The present study details the major manifestations of T. malabaricus venom and the induction of local tissue damage, which suggests that most toxins are present in the form of hydrolytic enzymes. Hydrolytic activity of the enzymes was measured and the data indicated that protease and phospholipase A2 activity was high which is responsible for local tissue damage. Furthermore, the role of hydrolytic enzymes in the induction of pathological events such as hemorrhage, edema, myotoxicity, and blood coagulation examination were assessed through animal models.
Collapse
Affiliation(s)
- Raghavendra Gowda
- Department of Pharmacology, Penn State College of Medicine, Penn State University, Hershey, Pennsylvania
| | - Rajesh Rajaiah
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru, Karnataka, India
| | - Nataraj Angaswamy
- Department of Pharmacology, Penn State College of Medicine, Penn State University, Hershey, Pennsylvania
| | - Sharath Krishna
- Department of Natural Sciences, Central State University, Wilberforce, Ohio
| | | |
Collapse
|
22
|
Lin CE, Chang WS, Lee JA, Chang TY, Huang YS, Hirasaki Y, Chen HS, Imai K, Chen SM. Proteomics analysis of altered proteins in kidney of mice with aristolochic acid nephropathy using the fluorogenic derivatization-liquid chromatography-tandem mass spectrometry method. Biomed Chromatogr 2018; 32. [PMID: 29088495 DOI: 10.1002/bmc.4127] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/03/2017] [Accepted: 10/18/2017] [Indexed: 01/22/2023]
Abstract
Aristolochic acid (AA) causes interstitial renal fibrosis, called aristolochic acid nephropathy (AAN). There is no specific indicator for diagnosing AAN, so this study aimed to investigate the biomarkers for AAN using a proteomics method. The C3H/He female mice were given ad libitum AA-distilled water (0.5 mg/kg/day) and distilled water for 56 days in the AA and normal groups, respectively. The AA-induced proteins in the kidney were investigated using a proteomics study, including fluorogenic derivatization with 7-chloro-N-[2-(dimethylamino)ethyl]-2,1,3-benzoxadiazole-4-sulfonamide, followed by high-performance liquid chromatography analysis and liquid chromatography tandem mass spectrometry with a MASCOT database searching system. There were two altered proteins, thrombospondin type 1 (TSP1) and G protein-coupled receptor 87 (GPR87), in the kidney of AA-group mice on day 56. GPR87, a tumorigenesis-related protein, is reported for the first time in the current study. The renal interstitial fibrosis was certainly induced in the AA-group mice under histological examination. Based on the results of histological examination and the proteomics study, this model might be applied to AAN studies in the future. TSP1 might be a novel biomarker for AAN, and the further role of GPR87 leading to AA-induced tumorigenesis should be researched in future studies.
Collapse
Affiliation(s)
- Chia-En Lin
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Wen-Shin Chang
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Jen-Ai Lee
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Ting-Ya Chang
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Yu-Shen Huang
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Yoshiro Hirasaki
- Department of Japanese-oriental Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hung-Shing Chen
- Graduate Institute of Electro-optical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Kazuhiro Imai
- Research Institute of Pharmaceutical Sciences, Musashino University, Tokyo, Japan
| | - Shih-Ming Chen
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
23
|
Steffy K, Shanthi G, Maroky AS, Selvakumar S. Enhanced antibacterial effects of green synthesized ZnO NPs using Aristolochia indica against Multi-drug resistant bacterial pathogens from Diabetic Foot Ulcer. J Infect Public Health 2017; 11:463-471. [PMID: 29150378 DOI: 10.1016/j.jiph.2017.10.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/11/2017] [Accepted: 10/12/2017] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Increased incidence of Multi-drug resistance in microorganisms has become the greatest challenge in the treatment of Diabetic Foot Ulcer (DFU) and urges the need of a new antimicrobial agent. In this study, we determined the bactericidal effects of ZnO nanoparticles (ZnO NPs) green synthesized from Aristolochia indica against Multi-drug Resistant Organisms (MDROs) isolated from pus samples of DFU patients attending in a tertiary care hospital in South India. METHODS ZnO NPs were characterized by UV-vis-DRS spectroscopy, Atomic Force Microscopy (AFM), Transmission Electron Microscopy (TEM) and for its zeta potential value. MIC/MBC assays were performed to determine bactericidal or bacteriostatic effects. Time-kill assays, Protein leakage and Flow cytometric analysis evaluated bacterial cell death at 1x MIC and 2x MIC concentrations of ZnO NPs. RESULTS ZnO NPs of size 22.5nm with a zeta potential of -21.9±1mV exhibited remarkable bactericidal activity with MIC/MBC ranging from 25 to 400μg/ml with a significant reduction in viable count from 2h onwards. Protein leakage and Flow cytometric analysis confirmed bacterial cell death due to ZnO NPs. CONCLUSION This study concluded that green synthesis protocol offers reliable, eco-friendly approach towards the development of antimicrobial ZnO NPs to combat antibiotic drug resistance.
Collapse
Affiliation(s)
- Katherin Steffy
- Division of Microbiology, Rajah Muthiah Medical College, Annamalai University, Chidambaram 608002, Tamil Nadu, India.
| | - Ganesan Shanthi
- Division of Microbiology, Rajah Muthiah Medical College, Annamalai University, Chidambaram 608002, Tamil Nadu, India
| | - Anson S Maroky
- Department of Pharmacy, Faculty of Engineering and Technology, Annamalai University, Chidambaram 608002, Tamil Nadu, India
| | - Sachidanandan Selvakumar
- Department of Zoology, Faculty of Science, Annamalai University, Chidambaram 608002, Tamil Nadu, India
| |
Collapse
|
24
|
Bhattacharjee P, Bera I, Chakraborty S, Ghoshal N, Bhattacharyya D. Aristolochic acid and its derivatives as inhibitors of snake venom L-amino acid oxidase. Toxicon 2017; 138:1-17. [PMID: 28803055 DOI: 10.1016/j.toxicon.2017.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/18/2017] [Accepted: 08/03/2017] [Indexed: 02/02/2023]
Abstract
Snake venom L-amino acid oxidase (LAAO) exerts toxicity by inducing hemorrhage, pneumorrhagia, pulmonary edema, cardiac edema, liver cell necrosis etc. Being well conserved, inhibitors of the enzyme may be synthesized using the template of the substrate, substrate binding site and features of the catalytic site of the enzyme. Previous findings showed that aristolochic acid (AA), a major constituent of Aristolochia indica, inhibits Russell's viper venom LAAO enzyme activity since, AA interacts with DNA and causes genotoxicity, derivatives of this compound were synthesized by replacing the nitro group to reduce toxicity while retaining the inhibitory potency. The interactions of AA and its derivatives with LAAO were followed by inhibition kinetics and surface plasmon resonance. Similar interactions with DNA were followed by absorption spectroscopy and atomic force microscopy. LAAO-induced cytotoxicity was evaluated by generation of reactive oxygen species (ROS), cell viability assays, confocal and epifluorescence microscopy. The hydroxyl (AA-OH) and chloro (AA-Cl) derivatives acted as inhibitors of LAAO but did not interact with DNA. The derivatives significantly reduced LAAO-induced ROS generation and cytotoxicity in human embryonic kidney (HEK 293) and hepatoma (HepG2) cell lines. Confocal images indicated that AA, AA-OH and AA-Cl interfered with the binding of LAAO to the cell membrane. AA-OH and AA-Cl significantly inhibited LAAO activity and reduced LAAO-induced cytotoxicity.
Collapse
Affiliation(s)
- Payel Bhattacharjee
- Division of Structural Biology and Bioinformatics, CSIR -Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, India.
| | - Indrani Bera
- Division of Structural Biology and Bioinformatics, CSIR -Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Subhamoy Chakraborty
- Division of Structural Biology and Bioinformatics, CSIR -Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Nanda Ghoshal
- Division of Structural Biology and Bioinformatics, CSIR -Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Debasish Bhattacharyya
- Division of Structural Biology and Bioinformatics, CSIR -Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, India.
| |
Collapse
|
25
|
Félix-Silva J, Silva-Junior AA, Zucolotto SM, Fernandes-Pedrosa MDF. Medicinal Plants for the Treatment of Local Tissue Damage Induced by Snake Venoms: An Overview from Traditional Use to Pharmacological Evidence. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2017; 2017:5748256. [PMID: 28904556 PMCID: PMC5585606 DOI: 10.1155/2017/5748256] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 07/09/2017] [Indexed: 01/21/2023]
Abstract
Snakebites are a serious problem in public health due to their high morbimortality. Most of snake venoms produce intense local tissue damage, which could lead to temporary or permanent disability in victims. The available specific treatment is the antivenom serum therapy, whose effectiveness is reduced against these effects. Thus, the search for complementary alternatives for snakebite treatment is relevant. There are several reports of the popular use of medicinal plants against snakebites worldwide. In recent years, many studies have been published giving pharmacological evidence of benefits of several vegetal species against local effects induced by a broad range of snake venoms, including inhibitory potential against hyaluronidase, phospholipase, proteolytic, hemorrhagic, myotoxic, and edematogenic activities. In this context, this review aimed to provide an updated overview of medicinal plants used popularly as antiophidic agents and discuss the main species with pharmacological studies supporting the uses, with emphasis on plants inhibiting local effects of snake envenomation. The present review provides an updated scenario and insights into future research aiming at validation of medicinal plants as antiophidic agents and strengthens the potentiality of ethnopharmacology as a tool for design of potent inhibitors and/or development of herbal medicines against venom toxins, especially local tissue damage.
Collapse
Affiliation(s)
- Juliana Félix-Silva
- Laboratório de Tecnologia & Biotecnologia Farmacêutica (TecBioFar), Faculdade de Farmácia, Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Arnóbio Antônio Silva-Junior
- Laboratório de Tecnologia & Biotecnologia Farmacêutica (TecBioFar), Faculdade de Farmácia, Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Silvana Maria Zucolotto
- Grupo de Pesquisa em Produtos Naturais Bioativos (PNBio), Laboratório de Farmacognosia, Faculdade de Farmácia, Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Matheus de Freitas Fernandes-Pedrosa
- Laboratório de Tecnologia & Biotecnologia Farmacêutica (TecBioFar), Faculdade de Farmácia, Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN, Brazil
| |
Collapse
|
26
|
Hosseinkhani A, Falahatzadeh M, Raoofi E, Zarshenas MM. An Evidence-Based Review on Wound Healing Herbal Remedies From Reports of Traditional Persian Medicine. J Evid Based Complementary Altern Med 2017; 22:334-343. [PMID: 27330012 PMCID: PMC5871189 DOI: 10.1177/2156587216654773] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 05/06/2016] [Accepted: 05/19/2016] [Indexed: 12/22/2022] Open
Abstract
Research on wound healing agents is a developing area in biomedical sciences. Traditional Persian medicine is one of holistic systems of medicine providing valuable information on natural remedies. To collect the evidences for wound-healing medicaments from traditional Persian medicine sources, 5 main pharmaceutical manuscripts in addition to related contemporary reports from Scopus, PubMed, and ScienceDirect were studied. The underlying mechanisms were also saved and discussed. Totally, 65 herbs used in traditional Persian medicine for their wound healing properties was identified. Related anti-inflammatory, antioxidant, antimicrobial, and wound-healing activities of those remedies were studied. Forty remedies had at least one of those properties and 10 of the filtered plants possessed all effects. The medicinal plants used in wound healing treatment in traditional Persian medicine could be a good topic for further in vivo and clinical research. This might lead to development of effective products for wound treatment.
Collapse
Affiliation(s)
- Ayda Hosseinkhani
- Research center for traditional medicine and history of medicine, Shiraz University of medical sciences, Shiraz, Iran
| | - Maryam Falahatzadeh
- Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elahe Raoofi
- Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad M. Zarshenas
- Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
27
|
Giovannini P, Howes MJR. Medicinal plants used to treat snakebite in Central America: Review and assessment of scientific evidence. JOURNAL OF ETHNOPHARMACOLOGY 2017; 199:240-256. [PMID: 28179114 DOI: 10.1016/j.jep.2017.02.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 02/02/2017] [Accepted: 02/03/2017] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Every year between 1.2 and 5.5 million people worldwide are victims of snakebites, with about 400,000 left permanently injured. In Central America an estimated 5500 snakebite cases are reported by health centres, but this is likely to be an underestimate due to unreported cases in rural regions. The aim of this study is to review the medicinal plants used traditionally to treat snakebites in seven Central American countries: Belize, Costa Rica, El Salvador, Guatemala, Honduras, Nicaragua and Panama. MATERIALS AND METHODS A literature search was performed on published primary data on medicinal plants of Central America and those specifically pertaining to use against snakebites. Plant use reports for traditional snakebite remedies identified in primary sources were extracted and entered in a database, with data analysed in terms of the most frequent numbers of use reports. The scientific evidence that might support the local uses of the most frequently reported species was also examined. RESULTS A total of 260 independent plant use reports were recorded in the 34 sources included in this review, encompassing 208 species used to treat snakebite in Central America. Only nine species were reported in at least three studies: Cissampelos pareira L., Piper amalago L., Aristolochia trilobata L., Sansevieria hyacinthoides (L.) Druce, Strychnos panamensis Seem., Dorstenia contrajerva L., Scoparia dulcis L., Hamelia patens Jacq., and Simaba cedron Planch. Genera with the highest number of species used to treat snakebite were Piper, Aristolochia, Hamelia, Ipomoea, Passiflora and Peperomia. The extent of the scientific evidence available to understand any pharmacological basis for their use against snakebites varied between different plant species. CONCLUSION At least 208 plant species are traditionally used to treat snakebite in Central America but there is a lack of clinical research to evaluate their efficacy and safety. Available pharmacological data suggest different plant species may target different symptoms of snakebites, such as pain or anxiety, although more studies are needed to further evaluate the scientific basis for their use.
Collapse
Affiliation(s)
- Peter Giovannini
- Natural Capital and Plant Health Department, Royal Botanic Gardens Kew, Wakehurst Place, Ardingly, West Sussex RH17 6TN, UK.
| | - Melanie-Jayne R Howes
- Natural Capital and Plant Health Department, Jodrell Laboratory, Royal Botanic Gardens Kew, Richmond, Surrey TW9 3AB, UK; Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, Franklin-Wilkins Building, King's College London, 150 Stamford Street, London SE1 9NH, UK
| |
Collapse
|
28
|
Colin P, Seisen T, Mathieu R, Shariat SF, Rouprêt M. Lynch syndrome and exposure to aristolochic acid in upper-tract urothelial carcinoma: its clinical impact? Transl Androl Urol 2016; 5:648-654. [PMID: 27785421 PMCID: PMC5071192 DOI: 10.21037/tau.2016.03.18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The purpose of the current review was to describe the clinical risk for Lynch syndrome (LS) after exposure to aristolochic acid (AA) in cases of upper urinary-tract urothelial carcinoma (UTUC). A systematic review of the scientific literature was performed using the Medline database (National Library of Medicine, PubMed) using the following keywords: epidemiology, risk factor, AA, Balkan nephropathy (BNe), LS, hereditary cancer, hereditary non-polyposis colorectal cancer (HNPCC), mismatch repair genes, urothelial carcinomas, upper urinary tract, renal pelvis, ureter, Amsterdam criteria, genetic counselling, mismatch repair genes, genetic instability, microsatellite, and Bethesda guidelines. LS is a specific risk for UTUC, which is the third most frequent cancer (in its tumor spectrum) after colon and uterine lesions. Mutation of the MSH2 gene is the most commonly described cause of UTUC in LS. Diagnosis is based on clinical suspicion and is guided by Bethesda and Amsterdam criteria. It is secondarily confirmed by immunohistochemical analyses of the tumor and a search for gene mutations. The presence of LS in patients with UTUC is a favorable prognosis factor for survival during follow-ups. AA is a specific environmental risk factor for UTUC and tubulo-interstitial nephropathy. It has been involved in the development of nephropathies in link with the Balkan disease and intake of Chinese herbal medicine. More broadly, the use of traditional plant medicines from the genus Aristolochia has created worldwide public-health concerns. UTUCs share common risk factors with other urothelial carcinomas such as tobacco or occupational exposure. However, these tumors have also specific risk factors such as AA exposure and LS that clinicians should be aware of because of their clinical implication in further management and follow-up.
Collapse
Affiliation(s)
- Pierre Colin
- Department of Urology, Hôpital Privé de La Louvière, Générale de Santé, Lille, France
| | - Thomas Seisen
- Academic Department of Urology, Assitance Publique-Hopitaux de Paris, Hopital Pitié-Salpétrière, Paris, F-75013, France; ; UPMC Univ Paris 06, GRC5, ONCOTYPE-Uro, Institut Universitaire de Cancérologie, F-75005, Paris, France
| | - Romain Mathieu
- Department of Urology, Medical University of Vienna, Vienna, Austria
| | | | - Morgan Rouprêt
- Academic Department of Urology, Assitance Publique-Hopitaux de Paris, Hopital Pitié-Salpétrière, Paris, F-75013, France; ; UPMC Univ Paris 06, GRC5, ONCOTYPE-Uro, Institut Universitaire de Cancérologie, F-75005, Paris, France
| |
Collapse
|
29
|
Abstract
INTRODUCTION Centipedes are one of the oldest and most successful lineages of venomous terrestrial predators. Despite their use for centuries in traditional medicine, centipede venoms remain poorly studied. However, recent work indicates that centipede venoms are highly complex chemical arsenals that are rich in disulfide-constrained peptides that have novel pharmacology and three-dimensional structure. Areas covered: This review summarizes what is currently known about centipede venom proteins, with a focus on disulfide-rich peptides that have novel or unexpected pharmacology that might be useful from a therapeutic perspective. The authors also highlight the remarkable diversity of constrained three-dimensional peptide scaffolds present in these venoms that might be useful for bioengineering of drug leads. Expert opinion: Like most arthropod predators, centipede venoms are rich in peptides that target neuronal ion channels and receptors, but it is also becoming increasingly apparent that many of these peptides have novel or unexpected pharmacological properties with potential applications in drug discovery and development.
Collapse
Affiliation(s)
- Eivind A B Undheim
- a Institute for Molecular Bioscience , The University of Queensland , St Lucia , Australia.,b Centre for Advanced Imaging , The University of Queensland , St Lucia , Australia
| | - Ronald A Jenner
- c Department of Life Sciences , Natural History Museum , London , UK
| | - Glenn F King
- a Institute for Molecular Bioscience , The University of Queensland , St Lucia , Australia
| |
Collapse
|
30
|
Wijesinghe W, Pilapitiya S, Hettiarchchi P, Wijerathne B, Siribaddana S. Regulation of herbal medicine use based on speculation? A case from Sri Lanka. J Tradit Complement Med 2016; 7:269-271. [PMID: 28417096 PMCID: PMC5388078 DOI: 10.1016/j.jtcme.2016.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 06/15/2016] [Accepted: 06/22/2016] [Indexed: 11/28/2022] Open
Abstract
Chronic Kidney Disease of Unknown aetiology is a significant public health problem in Sri Lanka. The final report by the WHO mission recommended regulation of herbal medicines containing aristolochic acid, which is an established nephrotoxin. The use of Complimentary and Alternative Medicine (CAM) has a history of more than 2500 years in Sri Lanka. Aristolochia species are rarely used in Ayurveda and traditional medicine in Sri Lanka. Before regulating the analysis of herbal preparations using Aristolochia, collecting data from CAM practitioners regarding the use of Aristolochia is necessary. Analysis of Ayurveda pharmacopeia shows the doses used are negligible and some preparations are used for external applications.
Collapse
Affiliation(s)
| | - Senaka Pilapitiya
- Department of Medicine, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Saliyapura, Sri Lanka
| | - Priyani Hettiarchchi
- Department of Biological Sciences, Faculty of Applied Sciences, Rajarata University of Sri Lanka, Mihintale, Sri Lanka
| | - Buddhika Wijerathne
- Department of Community Medicine, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Saliyapura, Sri Lanka
| | - Sisira Siribaddana
- Department of Medicine, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Saliyapura, Sri Lanka
| |
Collapse
|
31
|
de Moura VM, da Silva WCR, Raposo JDA, Freitas-de-Sousa LA, Dos-Santos MC, de Oliveira RB, Veras Mourão RH. The inhibitory potential of the condensed-tannin-rich fraction of Plathymenia reticulata Benth. (Fabaceae) against Bothrops atrox envenomation. JOURNAL OF ETHNOPHARMACOLOGY 2016; 183:136-142. [PMID: 26940901 DOI: 10.1016/j.jep.2016.02.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 02/12/2016] [Accepted: 02/28/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ethnobotanical studies have shown that Plathymenia reticulata Benth. (Fabaceae) has been widely used in cases of snake envenomation, particularly in Northern Brazil. In light of this, the aim of this study was to evaluate the inhibitory potential of the condensed-tannin-rich fraction obtained from the bark of P. reticulata against the main biological activities induced by Bothrops atrox venom (BaV). MATERIALS AND METHODS The chemical composition of the aqueous extract of P. reticulata (AEPr) was first investigated by thin-layer chromatography (TLC) and the extract was then fractionated by column chromatography on Sephadex LH-20. This yielded five main fractions (Pr1, Pr2, Pr3, Pr4 and Pr5), which were analyzed by colorimetry to determine their concentrations of total phenolics, total tannins and condensed tannins and to assess their potential for blocking the phospholipase activity of BaV. The Pr5 fraction was defined as the fraction rich in condensed tannins (CTPr), and its inhibitory potential against the activities of the venom was evaluated. CTPr was evaluated in different in vivo and in vitro experimental protocols. The in vivo protocols consisted of (1) pre-incubation (venom:CTPr, w/w), (2) pre-treatment (orally administered) and (3) post-treatment (orally administered) to evaluate the effect on the hemorrhagic and edematogenic activities of BaV; in the in vitro protocol the effect on phospholipase and coagulant activity using pre-incubation in both tests was evaluated. RESULTS There was statistically significant inhibition (p<0.05) of hemorrhagic activity by CTPr when the pre-incubation protocol was used [55% (1:5, w/w) and 74% (1:10, w/w)] and when pre-treatment with doses of 50 and 100mg/kg was used (19% and 13%, respectively). However, for the concentrations tested, there was no statistically significant inhibition in the group subjected to post-treatment administered orally. CTPr blocked 100% of phospholipase activity and 63.3% (1:10, w/w) of coagulant activity when it was pre-incubated with BaV. There was a statistically significant reduction (p<0.05) in edema induced by BaV in the oral protocols. Maximum inhibition was 95% (pre-treatment). CONCLUSION Our findings indicate that CTPr could be a good source of natural inhibitors of the components of snake venom responsible for inducing local inflammation.
Collapse
Affiliation(s)
- Valéria Mourão de Moura
- Programa Multi-institucional de Pós-graduação em Biotecnologia, Laboratório de Imunoquímica, Instituto de Ciências Biológicas, Universidade Federal do Amazonas-UFAM, Av. Rodrigo Octávio Jordão Ramos, 6.200, 69077-000 Manaus, AM, Brazil.
| | - Wania Cristina Rodrigues da Silva
- Programa de Pós-graduação em Recursos Naturais da Amazônia, Laboratório de Bioprospecção e Biologia Experimental, Universidade Federal do Oeste do Pará-UFOPA, rua Vera Paz, s/n, Salé, Santarém, PA 68035-110, Brazil
| | - Juliana D A Raposo
- Programa de Pós-graduação em Química, Universidade Federal do Pará-UFPA, Rua Augusto Corrêa, 66075-110 Belém, PA, Brazil
| | - Luciana A Freitas-de-Sousa
- Programa de Pós-graduação em Toxinologia, Instituto Butantan, Av. Vital Brazil, 1500, 05503-900 São Paulo, SP, Brazil
| | - Maria Cristina Dos-Santos
- Programa Multi-institucional de Pós-graduação em Biotecnologia, Laboratório de Imunoquímica, Instituto de Ciências Biológicas, Universidade Federal do Amazonas-UFAM, Av. Rodrigo Octávio Jordão Ramos, 6.200, 69077-000 Manaus, AM, Brazil
| | - Ricardo Bezerra de Oliveira
- Programa de Pós-graduação em Recursos Naturais da Amazônia, Laboratório de Bioprospecção e Biologia Experimental, Universidade Federal do Oeste do Pará-UFOPA, rua Vera Paz, s/n, Salé, Santarém, PA 68035-110, Brazil
| | - Rosa Helena Veras Mourão
- Programa de Pós-graduação em Recursos Naturais da Amazônia, Laboratório de Bioprospecção e Biologia Experimental, Universidade Federal do Oeste do Pará-UFOPA, rua Vera Paz, s/n, Salé, Santarém, PA 68035-110, Brazil
| |
Collapse
|
32
|
Bhattacharjee P, Bhattacharyya D. An Enzyme from Aristolochia indica Destabilizes Fibrin-β Amyloid Co-Aggregate: Implication in Cerebrovascular Diseases. PLoS One 2015; 10:e0141986. [PMID: 26545113 PMCID: PMC4636252 DOI: 10.1371/journal.pone.0141986] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 10/15/2015] [Indexed: 11/26/2022] Open
Abstract
Fibrinogen and β-amyloid (Aβ) peptide independently form ordered aggregates but in combination, they form disordered structures which are resistant to fibrinolytic enzymes like plasmin and cause severity in cerebral amyloid angiopathy (CAA). A novel enzyme of 31.3 kDa has been isolated from the root of the medicinal plant Aristolochia indica that showed fibrinolytic as well as fibrin-Aβ co-aggregate destabilizing properties. This enzyme is functionally distinct from plasmin. Thrombolytic action of the enzyme was demonstrated in rat model. The potency of the plant enzyme in degrading fibrin and fibrin-plasma protein (Aβ, human serum albumin, lysozyme, transthyretin and fibronectin) co-aggregates was demonstrated by atomic force microscopy, scanning electron microscopy and confocal microscopy that showed better potency of the plant enzyme as compared to plasmin. Moreover, the plant enzyme inhibited localization of the co-aggregate inside SH-SY5Y human neuroblastoma cells and also co-aggregate induced cytotoxicity. Plasmin was inefficient in this respect. In the background of limited options for fragmentation of these co-aggregates, the plant enzyme may appear as a potential proteolytic enzyme.
Collapse
Affiliation(s)
- Payel Bhattacharjee
- Division of Structural Biology and Bioinformatics, CSIR -Indian Institute of Chemical Biology, Jadavpur, Kolkata, 700032, India
- * E-mail: (DB); (PB)
| | - Debasish Bhattacharyya
- Division of Structural Biology and Bioinformatics, CSIR -Indian Institute of Chemical Biology, Jadavpur, Kolkata, 700032, India
- * E-mail: (DB); (PB)
| |
Collapse
|
33
|
Kumar RB, Suresh MX, Priya BS. Pharmacophore modeling, in silico screening, molecular docking and molecular dynamics approaches for potential alpha-delta bungarotoxin-4 inhibitors discovery. Pharmacogn Mag 2015; 11:S19-28. [PMID: 26109766 PMCID: PMC4461960 DOI: 10.4103/0973-1296.157670] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 10/14/2014] [Accepted: 05/27/2015] [Indexed: 11/25/2022] Open
Abstract
Background: The alpha-delta bungartoxin-4 (α-δ-Bgt-4) is a potent neurotoxin produced by highly venomous snake species, Bungarus caeruleus, mainly targeting neuronal acetylcholine receptors (nAchRs) and producing adverse biological malfunctions leading to respiratory paralysis and mortality. Objective: In this study, we predicted the three-dimensional structure of α-δ-Bgt-4 using homology modeling and investigated the conformational changes and the key residues responsible for nAchRs inhibiting activity. Materials and Methods: From the selected plants, which are traditionally used for snake bites, the active compounds are taken and performed molecular interaction studies and also used for modern techniques like pharmacophore modeling and mapping and absorption, distribution, metabolism, elimination and toxicity analysis which may increase the possibility of success. Results: Moreover, 100's of drug-like compounds were retrieved and analyzed through computational virtual screening and allowed for pharmacokinetic profiling, molecular docking and dynamics simulation. Conclusion: Finally the top five drug-like compounds having competing level of inhibition toward α-δ-Bgt-4 toxin were suggested based on their interaction with α-δ-Bgt-4 toxin.
Collapse
Affiliation(s)
- R Barani Kumar
- Department of Bioinformatics, Sathyabama University, Chennai, Tamil Nadu, India
| | - M Xavier Suresh
- Department of Bioinformatics, Sathyabama University, Chennai, Tamil Nadu, India
| | - B Shanmuga Priya
- Department of Bioinformatics, Sathyabama University, Chennai, Tamil Nadu, India
| |
Collapse
|
34
|
Ethnopharmacological survey of medicinal plants used by traditional healers and indigenous people in chittagong hill tracts, bangladesh, for the treatment of snakebite. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:871675. [PMID: 25878719 PMCID: PMC4386694 DOI: 10.1155/2015/871675] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 01/15/2015] [Indexed: 12/27/2022]
Abstract
Snakebites are common in tropical countries like Bangladesh where most snakebite victims dwell in rural areas. Among the management options after snakebite in Bangladesh, snake charmers (Ozha in Bengali language) are the first contact following a snakebite for more than 80% of the victims and they are treated mostly with the help of some medicinal plants. Our aim of the study is to compile plants used for the treatment of snakebite occurrence in Bangladesh. The field survey was carried out in a period of almost 3 years. Fieldwork was undertaken in Chittagong Hill Tracts, Bangladesh, including Chittagong, Rangamati, Bandarban, and Khagrachari. Open-ended and semistructured questionnaire was used to interview a total of 110 people including traditional healers and local people. A total of 116 plant species of 48 families were listed. Leaves were the most cited plant part used against snake venom. Most of the reported species were herb in nature and paste mostly used externally is the mode of preparation. The survey represents the preliminary information of certain medicinal plants having neutralizing effects against snake venoms, though further phytochemical investigation, validation, and clinical trials should be conducted before using these plants as an alternative to popular antivenom.
Collapse
|
35
|
Singh N, Bhattacharyya D. Collagenases in an ether extract of bacterial metabolites used as an immunostimulator induces TNF-α and IFN-γ. Int Immunopharmacol 2014; 23:211-21. [PMID: 25203593 DOI: 10.1016/j.intimp.2014.08.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 08/27/2014] [Accepted: 08/27/2014] [Indexed: 10/24/2022]
Abstract
Non-specific immunostimulation by bacterial extracts and their components are widely accepted for the prevention and treatment of several infectious diseases. An ether extract of the metabolites of ß-streptococcus, Staphylcoccus albus, Staphylcoccus aureus, Escherichia coli, Haemophilus influenza, Moraxella caterhalis, Salmonella typhi (standard O & H), Salmonella paratyphi (A & B) and Diptheroid bacilli along with bile lipids is used as a licensed drug for immunostimulation. While characterizing the drug, we observed gelatinolytic/collagenolytic activity in the ether extract by zymography. This activity was contributed by each bacterial species as observed by collagen zymography of individual extract. Immuno-blot also confirmed the presence of collagenases in the pooled extract whose activity was estimated to be 0.081 U/ml ± 0.005 by DQ-gelatin assay. The enzyme was purified by immuno-affinity chromatography. Homogeneity of the preparation was demonstrated by SDS-PAGE and SE-HPLC. Degradation of collagen by purified collagenases was visualized by atomic force microscopy and transmission electron microscopy wherein, fragmentation of collagen leading to loss of network structure occurred under physiological conditions. Results indicated that purified collagenases can trigger the release of pro-inflammatory cytokines TNF-α and IFN-γ in-vitro and in-vivo without inducing detectable stress and toxicity on both models. The findings suggest that bacterial collagenases remain stable and biological functional in an organic solvent validating its potential for industrial and medical applications as the enzymes are key regulators of inflammatory and immune responses.
Collapse
Affiliation(s)
- Namrata Singh
- Division of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India.
| | - Debasish Bhattacharyya
- Division of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
36
|
Mitra J, Bhattacharyya D. Phosphodiesterase from Daboia russelli russelli venom: purification, partial characterization and inhibition of platelet aggregation. Toxicon 2014; 88:1-10. [PMID: 24932740 DOI: 10.1016/j.toxicon.2014.06.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 05/30/2014] [Accepted: 06/05/2014] [Indexed: 11/29/2022]
Abstract
Phosphodiesterases (PDEs) belong to a super-family of enzymes that have multiple roles in the metabolism of extracellular nucleotides and regulation of nucleotide-based intercellular signalling. A PDE from Russell's viper (Daboia russelli russelli) venom (DR-PDE) was purified by gel filtration, ion exchange and affinity chromatographies. Homogeneity of the preparation was verified by SDS-PAGE, SE-HPLC and mass spectrometry. It was free from 5'-nucleotidase, alkaline phosphatase and protease activities. Identity of the enzyme was ensured from partial sequence homology with other PDEs. DR-PDE was inactivated by polyvalent anti-venom serum and metal chelators. The enzyme was partially inhibited by the root extracts of four medicinal plants but remained unaffected by inhibitors of intracellular PDEs. DR-PDE hydrolyses ADP and thus, strongly inhibits ADP-induced platelet aggregation in human platelet rich plasma. This study leads to better understanding of a component of Russell's viper venom that affects homoeostatic system of the victim.
Collapse
Affiliation(s)
- Jyotirmoy Mitra
- Division of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Debasish Bhattacharyya
- Division of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India.
| |
Collapse
|
37
|
Poon SL, McPherson JR, Tan P, Teh BT, Rozen SG. Mutation signatures of carcinogen exposure: genome-wide detection and new opportunities for cancer prevention. Genome Med 2014; 6:24. [PMID: 25031618 PMCID: PMC4062065 DOI: 10.1186/gm541] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Exposure to environmental mutagens is an important cause of human cancer, and measures to reduce mutagenic and carcinogenic exposures have been highly successful at controlling cancer. Until recently, it has been possible to connect the chemical characteristics of mutagens to actual mutations observed in human tumors only indirectly. Now, next-generation sequencing technology enables us to observe in detail the DNA-sequence-level effects of well-known mutagens, such as ultraviolet radiation and tobacco smoke, as well as endogenous mutagenic processes, such as those involving activated DNA cytidine deaminases (APOBECs). We can also observe the effects of less well-known but potent mutagens, including those recently found to be present in some herbal remedies. Crucially, we can now tease apart the superimposed effects of several mutational exposures and processes and determine which ones occurred during the development of individual tumors. Here, we review advances in detecting these mutation signatures and discuss the implications for surveillance and prevention of cancer. The number of sequenced tumors from diverse cancer types and multiple geographic regions is growing explosively, and the genomes of these tumors will bear the signatures of even more diverse mutagenic exposures. Thus, we envision development of wide-ranging compendia of mutation signatures from tumors and a concerted effort to experimentally elucidate the signatures of a large number of mutagens. This information will be used to link signatures observed in tumors to the exposures responsible for them, which will offer unprecedented opportunities for prevention.
Collapse
Affiliation(s)
- Song Ling Poon
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, 11 Hospital Drive, Singapore 169610, Singapore
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore
| | - John R McPherson
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore
- Duke-NUS Centre for Computational Biology, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore
| | - Patrick Tan
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 11 Hospital Drive, Singapore 169610, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Life Sciences, 28 Medical Drive, Singapore 117456, Singapore
- Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore
| | - Bin Tean Teh
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, 11 Hospital Drive, Singapore 169610, Singapore
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore
| | - Steven G Rozen
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore
- Duke-NUS Centre for Computational Biology, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore
| |
Collapse
|