1
|
Pal R, Mukherjee S, Khan A, Nathani M, Maji S, Tandey R, Das S, Patra A, Mandal V. A critical appraisal on the involvement of plant-based extracts as neuroprotective agents (2012-2022): an effort to ease out decision-making process for researchers. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9367-9415. [PMID: 38985312 DOI: 10.1007/s00210-024-03266-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 06/28/2024] [Indexed: 07/11/2024]
Abstract
The purpose of this review study is to provide a condensed compilation of 164 medicinal plants that have been investigated for their neuroprotective aspects by researchers between the years 2012 and 2022 which also includes a recent update of 2023-2024. After using certain keywords to retrieve the data from SCOPUS, it was manually sorted to eliminate any instances of duplication. The article is streamlined into three major segments. The first segment takes a dig into the current global trend and attempts to decrypt vital information related to plant names, families, plant parts used, and neurological disorders investigated. The second segment of the article makes an attempt to present a comprehensive insight into the various mechanistic pathways through which phytochemicals can intervene to exert neuroprotection. The final segment of the manuscript is a bibliometric appraisal of all researches conducted. The study is based on 256 handpicked articles based on decided inclusion criteria. Illustrative compilation of various pathways citing their activation and deactivation channels are also presented with possible hitting points of various phytochemicals. The present study employed Microsoft Excel 2019 and VOS viewer as data visualisation tools.
Collapse
Affiliation(s)
- Riya Pal
- Department of Pharmacy, Guru Ghasidas Central University, Bilaspur, C.G, 495009, India
| | - Souvik Mukherjee
- Department of Pharmacy, Guru Ghasidas Central University, Bilaspur, C.G, 495009, India
| | - Altamash Khan
- Department of Pharmacy, Guru Ghasidas Central University, Bilaspur, C.G, 495009, India
| | - Mansi Nathani
- Department of Pharmacy, Guru Ghasidas Central University, Bilaspur, C.G, 495009, India
| | - Sayani Maji
- Department of Pharmacy, Guru Ghasidas Central University, Bilaspur, C.G, 495009, India
| | - Roshni Tandey
- Department of B. Pharm Ayurveda, Delhi Pharmaceutical Sciences and Research University, Sector-3, MB Road, Pushp Vihar, New Delhi, 110017, India
| | - Sinchan Das
- Department of Pharmacy, Guru Ghasidas Central University, Bilaspur, C.G, 495009, India
| | - Arjun Patra
- Department of Pharmacy, Guru Ghasidas Central University, Bilaspur, C.G, 495009, India
| | - Vivekananda Mandal
- Department of Pharmacy, Guru Ghasidas Central University, Bilaspur, C.G, 495009, India.
| |
Collapse
|
2
|
Li J, Yu Y, Zhang Y, Zhou Y, Ding S, Dong S, Jin S, Li Q. Flavonoids Derived from Chinese Medicine: Potential Neuroprotective Agents. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:1613-1640. [PMID: 39343989 DOI: 10.1142/s0192415x24500630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Due to their complex pathological mechanisms, neurodegenerative diseases have brought great challenges to drug development and clinical treatment. Studies have shown that many traditional Chinese medicines have neuroprotective pharmacological activities such as anti-inflammatory and anti-oxidation properties and have certain effects on improving the symptoms of neurodegenerative diseases and delaying disease progression. Flavonoids are the main active components of many traditional Chinese medicines for the treatment of neurodegenerative diseases. These compounds have a wide range of biological activities, including anti-inflammatory, anti-oxidative stress, regulation of autophagy balance, inhibition of apoptosis, and promotion of neuronal regeneration. This paper focuses on the neuroprotective effects of six common flavonoids: quercetin, rutin, luteolin, kaempferol, baicalein, and puerarin. It then systematically reviews their characteristics, mechanisms, and key signaling pathways, summarizes the common characteristics and laws of their neuroprotective effects, and discusses the significance of strengthening the research on the neuroprotective effects of these compounds, aiming to provide reference for more research and drug development of these substances as neuroprotective drugs.
Collapse
Affiliation(s)
- Jinhua Li
- Hangzhou Medical College, Xihu District, Hangzhou, Zhejiang, 310013, P. R. China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, P. R. China
| | - Ye Yu
- Hangzhou Medical College, Xihu District, Hangzhou, Zhejiang, 310013, P. R. China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, P. R. China
| | - Yanjie Zhang
- Hangzhou Medical College, Xihu District, Hangzhou, Zhejiang, 310013, P. R. China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, P. R. China
| | - Yilin Zhou
- Hangzhou Medical College, Xihu District, Hangzhou, Zhejiang, 310013, P. R. China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, P. R. China
| | - Shuxian Ding
- Hangzhou Medical College, Xihu District, Hangzhou, Zhejiang, 310013, P. R. China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, P. R. China
| | - Shuze Dong
- Hangzhou Medical College, Xihu District, Hangzhou, Zhejiang, 310013, P. R. China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, P. R. China
| | - Sainan Jin
- Hangzhou Medical College, Xihu District, Hangzhou, Zhejiang, 310013, P. R. China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, P. R. China
| | - Qin Li
- Hangzhou Medical College, Xihu District, Hangzhou, Zhejiang, 310013, P. R. China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, P. R. China
| |
Collapse
|
3
|
Zou Y, Pei J, Wan C, Liu S, Hu B, Li Z, Tang Z. Mechanism of scutellarin inhibition of astrocyte activation to type A1 after ischemic stroke. J Stroke Cerebrovasc Dis 2024; 33:107534. [PMID: 38219378 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 01/16/2024] Open
Abstract
OBJECTIVE The aim of this study was to investigate the effects of scutellarin on the activation of astrocytes into the A1 type following cerebral ischemia and to explore the underlying mechanism. METHODS In vivo, a mouse middle cerebral artery wire embolism model was established to observe the regulation of astrocyte activation to A1 type by scutellarin, and the effects on neurological function and brain infarct volume. In vitro, primary astrocytes were cultured to establish an oxygen-glucose deprivation model, and the mRNA and protein expression of C3, a specific marker of A1-type astrocytes pretreated with scutellarin, were examined. The neurons were cultured in vitro to detect the toxic effects of ischemia-hypoxia-activated A1 astrocyte secretion products on neurons, and to observe whether scutellarin could reduce the neurotoxicity of A1 astrocytes. To validate the signaling pathway-related proteins regulated by scutellarin on C3 expression in astrocytes. RESULTS The results showed that scutellarin treatment reduced the volume of cerebral infarcts and attenuated neurological deficits in mice caused by middle cerebral artery embolism. Immunofluorescence and Western blot showed that treatment with scutellarin down-regulated middle cerebral artery embolism and OGD/R up-regulated A1-type astrocyte marker C3. The secretory products of ischemia-hypoxia-activated A1-type astrocytes were toxic to neurons and induced an increase in neuronal apoptosis, and astrocytes treated with scutellarin reduced the toxic effects on neurons. Further study revealed that scutellarin inhibited the activation of NF-κB signaling pathway and thus inhibited the activation of astrocytes to A1 type.
Collapse
Affiliation(s)
- Yongwei Zou
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Wuhua District, Kunming, Yunnan Province, China
| | - Jingchun Pei
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Wuhua District, Kunming, Yunnan Province, China
| | - Cheng Wan
- Department of Medical Imaging, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shuangshuang Liu
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Wuhua District, Kunming, Yunnan Province, China
| | - Bin Hu
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Wuhua District, Kunming, Yunnan Province, China
| | - Zhigao Li
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Wuhua District, Kunming, Yunnan Province, China
| | - Zhiwei Tang
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Wuhua District, Kunming, Yunnan Province, China.
| |
Collapse
|
4
|
Tuo J, Peng Y, Linghu Y, Tao M, Huang S, Xu Z. Natural products regulate mitochondrial function in cognitive dysfunction-A scoping review. Front Pharmacol 2023; 14:1091879. [PMID: 36959855 PMCID: PMC10027783 DOI: 10.3389/fphar.2023.1091879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/21/2023] [Indexed: 03/09/2023] Open
Abstract
Medicines from natural products can not only treat neurodegenerative diseases but also improve the cognitive dysfunction caused by treatments with western medicines. This study reviews the literature related to the regulation of mitochondrial participation in cognitive function by natural products. In this study, we focused on English articles in PubMed, Web of Science, and Google Scholar, from 15 October 2017, to 15 October 2022. Fourteen studies that followed the inclusion criteria were integrated, analyzed, and summarized. Several studies have shown that natural products can improve or reduce cognitive dysfunction by ameliorating mitochondrial dysfunction. These results suggest that natural products may serve as new therapeutic targets for neurodegenerative diseases.
Collapse
Affiliation(s)
- Jinmei Tuo
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Nursing, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Yan Peng
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yushuang Linghu
- Department of Nursing, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ming Tao
- Department of Nursing, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Shiming Huang
- Department of Nursing, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zucai Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| |
Collapse
|
5
|
Chen HD, Jiang MZ, Zhao YY, Li X, Lan H, Yang WQ, Lai Y. Effects of breviscapine on cerebral ischemia-reperfusion injury and intestinal flora imbalance by regulating the TLR4/MyD88/NF-κB signaling pathway in rats. JOURNAL OF ETHNOPHARMACOLOGY 2023; 300:115691. [PMID: 36087844 DOI: 10.1016/j.jep.2022.115691] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The plant Erigeron breviscapus (Vant.) Hand.-Mazz.,a Chinese herbal medicine with multiple pharmacological effects and clinical applications, has been traditionally used in the treatment of paralysis caused by stroke and joint pain from rheumatism by the Yi minority people of Southwest China for generations.However, its mechanism involves many factors and has not been fully clarified. AIM OF THE STUDY Taking intestinal flora as the target, the protective effect of extract(breviscapine) of E. breviscapus on cerebral ischemia and its possible mechanism were discussed from the perspective of brain inflammatory pathway and intestinal CYP3A4, which depends on intestinal flora. MATERIALS AND METHODS In this study, we first verified the binding ability between major active ingredient of Erigeron breviscapus and the core target TLR4 protein by molecular docking using Vina software.We established a rat model of cerebral ischemia-reperfusion injury in vivo.The neurological function of rats was scored by Bederson score table, the cerebral infarction volume was detected by TTC staining, and the serum NSE level was detected by ELASA. 16S rRNA sequencing was used to detect the intestinal flora of rats in each group.The expression levels of cerebral TLR4/MyD88/NF-κB and CYP3A4 mRNA and protein in different intestinal segments were detected by qRT-PCR and Western blot. RESULTS Compared with the model group, the neurological injury score, infarct volume and serum NSE concentration of breviscapine low, medium and high dose groups and nimodipine groups decreased significantly. Meanwhile, breviscapine could significantly reduce the expression level of the TLR4/MyD88/NF-κB in brain tissue and CYP3A4 in different intestinal segments of rats with cerebral ischemia-reperfusion injury. In addition, breviscapine also significantly ameliorated intestinal flora dysbiosis of rats with cerebral ischemia-reperfusion injury. CONCLUSIONS Breviscapine can protect rats from cerebral ischemia-reperfusion injury by regulating intestinal flora, inhibiting brain TLR4/MyD88/NF-κB inflammatory pathway and intestinal CYP3A4 expression.
Collapse
Affiliation(s)
- Hai-Dong Chen
- College of Pharmacy, Dali University, Dali, 671000, Yunnan, People's Republic of China; Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from Western Yunnan (Cultivation), Dali, People's Republic of China
| | - Ming-Zhao Jiang
- College of Pharmacy, Dali University, Dali, 671000, Yunnan, People's Republic of China
| | - Ying-Ying Zhao
- College of Pharmacy, Dali University, Dali, 671000, Yunnan, People's Republic of China
| | - Xin Li
- College of Pharmacy, Dali University, Dali, 671000, Yunnan, People's Republic of China
| | - Hai Lan
- College of Pharmacy, Dali University, Dali, 671000, Yunnan, People's Republic of China; Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from Western Yunnan (Cultivation), Dali, People's Republic of China
| | - Wan-Qi Yang
- College of Pharmacy, Dali University, Dali, 671000, Yunnan, People's Republic of China; Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from Western Yunnan (Cultivation), Dali, People's Republic of China.
| | - Yong Lai
- College of Pharmacy, Dali University, Dali, 671000, Yunnan, People's Republic of China; Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from Western Yunnan (Cultivation), Dali, People's Republic of China.
| |
Collapse
|
6
|
Tawfeek SE, Shalaby AM, Alabiad MA, Albackoosh AAAA, Albakoush KMM, Omira MMA. Metanil yellow promotes oxidative stress, astrogliosis, and apoptosis in the cerebellar cortex of adult male rat with possible protective effect of scutellarin: A histological and immunohistochemical study. Tissue Cell 2021; 73:101624. [PMID: 34419739 DOI: 10.1016/j.tice.2021.101624] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/03/2021] [Accepted: 08/14/2021] [Indexed: 12/19/2022]
Abstract
Metanil yellow is a food dye that has harmful impacts on different body systems. Scutellarin has antioxidant, antiapoptotic, and anti-inflammatory activities. The aim of the current research was to study the effect of chronic administration of metanil yellow on the cerebellar cortex of rats and to evaluate the protective effect of scutellarin. Forty adult male rats were allocated into four groups: group I acted as control, group II was administrated scutellarin (100 mg/kg/day), group III was administrated metanil yellow (200 mg/kg/day), and group IV was administrated scutellarin and metanil yellow as in group II and group III. The agents were administered via oral gavage for 8 weeks. Metanil yellow induced a significant rise in the malondialdehyde coupled with a significant reduction in the superoxide dismutase and glutathione peroxidase. The Purkinje cells were irregular and shrunken with condensed nuclei. A significant elevation in glial fibrillary acidic protein (GFAP) and cleaved caspase-3 as well as a significant reduction of synaptophysin expression were revealed in comparison with the control group. Interestingly, few changes were noticed in rats given metanil yellow concomitant with scutellarin. In conclusion, scutellarin could protect against metanil yellow-induced alterations in the cerebellar cortex by reducing oxidative stress and minimizing gliosis.
Collapse
Affiliation(s)
- Shereen Elsayed Tawfeek
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Egypt; Anatomy Department, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Amany Mohamed Shalaby
- Histology and Cell Biology Department, Faculty of Medicine, Tanta University, Tanta, 31527, Egypt
| | - Mohamed Ali Alabiad
- Pathology Department, Faculty of Medicine, Zagazig University, Zagazig, 44519, Egypt.
| | | | | | | |
Collapse
|
7
|
Wu R, Liang Y, Xu M, Fu K, Zhang Y, Wu L, Wang Z. Advances in Chemical Constituents, Clinical Applications, Pharmacology, Pharmacokinetics and Toxicology of Erigeron breviscapus. Front Pharmacol 2021; 12:656335. [PMID: 34539390 PMCID: PMC8443777 DOI: 10.3389/fphar.2021.656335] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/06/2021] [Indexed: 12/25/2022] Open
Abstract
Dengzhanxixin (DZXX), the dried whole plant of Erigeron breviscapus (Vaniot) Hand.-Mazz., belonging to Compositae and first published in Materia Medica of South Yunnan by Lan Mao in the Ming Dynasty (1368 AD–1644 AD), is included in Medicinal Materials and Decoction Pieces of the 2020 edition of the Pharmacopeia of the People’s Republic of China. Its main chemical components are flavonoids that mainly include flavonoid, flavonols, dihydroflavones, flavonol glycosides, flavonoid glycosides, coffee acyl compounds, and other substances, such as volatile oil compounds, coumarins, aromatic acids, pentacyclic terpenoids, phytosterols, and xanthones. Among them, scutellarin and 1,5-dicoffeoylquininic acid are the main active components of DZXX. DZXX has pharmacological effects, such as improving cerebral and cerebrovascular ischemia, increasing blood flow, inhibiting platelet aggregation, promoting antithrombotic formation, improving microcirculation, reducing blood viscosity, protecting optic nerves, exhibiting anti-inflammatory properties, scavenging free radicals, and eliciting antioxidant activities. It is widely used in the treatment of cardiovascular and cerebrovascular ischemic diseases, kidney diseases, liver diseases, diabetic complications, and glaucoma. Pharmacokinetic studies have shown that the active components of DZXX have a low bioavailability and a high elimination rate in vivo. Nevertheless, its utilization can be improved through liposome preparation and combination with other drugs. Acute and subacute toxicity studies have shown that DZXX is a safe medicinal material widely used in clinical settings. However, its target and drug action mechanism are unclear because of the complexity of its composition. In this paper, the clinical application and pharmacological toxicology of DZXX are reviewed to provide a reference for further studying its active components and action mechanism.
Collapse
Affiliation(s)
- Ruixia Wu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Yan Liang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Min Xu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Ke Fu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Yangliu Zhang
- College of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Lei Wu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Zhang Wang
- College of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Sichuan, China
| |
Collapse
|
8
|
An H, Tao W, Liang Y, Li P, Li M, Zhang X, Chen K, Wei D, Xie D, Zhang Z. Dengzhanxixin Injection Ameliorates Cognitive Impairment Through a Neuroprotective Mechanism Based on Mitochondrial Preservation in Patients With Acute Ischemic Stroke. Front Pharmacol 2021; 12:712436. [PMID: 34526899 PMCID: PMC8435665 DOI: 10.3389/fphar.2021.712436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/17/2021] [Indexed: 11/22/2022] Open
Abstract
Acute ischemic stroke (AIS) is a global health burden and cognitive impairment is one of its most serious complication. Adequate interventions for AIS may have the potential to improve cognitive outcomes. In the present study, we selected Erigeron breviscapus (Vaniot) Hand.-Mazz. injection (Dengzhanxixin injection, DZXI), a widely used Chinese herbal injection, in contrast to edaravone as the positive control drug to test its potential to ameliorates neurological and cognitive impairments caused by AIS. We performed a 2-week randomized trial with these two drugs in AIS patients presenting mild to moderate cognitive impairments. Neuropsychological tests and MRI examinations showed that DZXI attenuated the neurological and cognitive impairments of patients and protected the grey matter in specific regions from ischemic damage. Notably, DZXI exerted better effects than edaravone in some neuropsychological tests, probably due to the protective effect of DZXI on grey matter. To explore the therapeutic mechanisms, we carried out an experiment with a middle cerebral artery occlusion rat model. We found that DZXI decreased the infarct volume and increased the survival of neuronal cells in the ischemic penumbra; furthermore, DZXI modulated the mitochondrial respiratory chain process and preserved the mitochondrial structure in the brain tissue. Overall, our data suggested that the administration of DZXI is effective at ameliorating neurological and cognitive impairments in AIS, and the underlying mechanisms are related to the protective effects of DZXI on cerebral neurons and neuronal mitochondria.
Collapse
Affiliation(s)
- Haiting An
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,BABRI Centre, Beijing Normal University, Beijing, China
| | - Wuhai Tao
- Center for Brain Disorders and Cognitive Sciences, Shenzhen University, Shenzhen, China
| | - Ying Liang
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Peng Li
- Institute of Basic Medicine Research, Xi Yuan Hospital affiliated to China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,BABRI Centre, Beijing Normal University, Beijing, China
| | - Xiaxia Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,BABRI Centre, Beijing Normal University, Beijing, China
| | - Kewei Chen
- Banner Good Samaritan PET Center, Banner Alzheimer's Institute, Phoenix, AZ, United States
| | - Dongfeng Wei
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Daojun Xie
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Zhanjun Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,BABRI Centre, Beijing Normal University, Beijing, China
| |
Collapse
|
9
|
Xu H, Wang E, Chen F, Xiao J, Wang M. Neuroprotective Phytochemicals in Experimental Ischemic Stroke: Mechanisms and Potential Clinical Applications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6687386. [PMID: 34007405 PMCID: PMC8102108 DOI: 10.1155/2021/6687386] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/10/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
Ischemic stroke is a challenging disease with high mortality and disability rates, causing a great economic and social burden worldwide. During ischemic stroke, ionic imbalance and excitotoxicity, oxidative stress, and inflammation are developed in a relatively certain order, which then activate the cell death pathways directly or indirectly via the promotion of organelle dysfunction. Neuroprotection, a therapy that is aimed at inhibiting this damaging cascade, is therefore an important therapeutic strategy for ischemic stroke. Notably, phytochemicals showed great neuroprotective potential in preclinical research via various strategies including modulation of calcium levels and antiexcitotoxicity, antioxidation, anti-inflammation and BBB protection, mitochondrial protection and antiapoptosis, autophagy/mitophagy regulation, and regulation of neurotrophin release. In this review, we summarize the research works that report the neuroprotective activity of phytochemicals in the past 10 years and discuss the neuroprotective mechanisms and potential clinical applications of 148 phytochemicals that belong to the categories of flavonoids, stilbenoids, other phenols, terpenoids, and alkaloids. Among them, scutellarin, pinocembrin, puerarin, hydroxysafflor yellow A, salvianolic acids, rosmarinic acid, borneol, bilobalide, ginkgolides, ginsenoside Rd, and vinpocetine show great potential in clinical ischemic stroke treatment. This review will serve as a powerful reference for the screening of phytochemicals with potential clinical applications in ischemic stroke or the synthesis of new neuroprotective agents that take phytochemicals as leading compounds.
Collapse
Affiliation(s)
- Hui Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen 508060, China
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | | | - Feng Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen 508060, China
| | - Jianbo Xiao
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Mingfu Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen 508060, China
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
10
|
Fan H, Lin P, Kang Q, Zhao ZL, Wang J, Cheng JY. Metabolism and Pharmacological Mechanisms of Active Ingredients in Erigeron breviscapus. Curr Drug Metab 2021; 22:24-39. [PMID: 33334284 DOI: 10.2174/1389200221666201217093255] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/14/2020] [Accepted: 10/26/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Erigeron breviscapus (Vant.) Hand-Mazz. is a plant species in the Compositae family. More than ten types of compounds-such as flavonoids, caffeinate esters, and volatile oils-have been identified in Erigeron breviscapus; however, it remains unknown as to which compounds are associated with clinical efficacy. In recent years, flavonoids and phenolic acids have been considered as the main effective components of Erigeron breviscapus. The metabolism and mechanisms of these compounds in vivo have been extensively studied to improve our understanding of the drug. METHODS In the present review, we summarize the relationships among these compounds, their metabolites, and their pharmacodynamics. Many methods have been implemented to improve the separation and bioavailability of these compounds from Erigeron breviscapus. RESULTS In China, Erigeron breviscapus has been used for many years. In recent years, through the study of its metabolism and the mechanisms of its effective components, the effects of Erigeron breviscapus in the treatment of various diseases have been extensively studied. Findings have indicated that Erigeron breviscapus improves cardiovascular and cerebrovascular function and that one of its ingredients, scutellarin, has potential value in the treatment of Alzheimer's disease, cancer, diabetic vascular complications, and other conditions. In addition, phenolic acid compounds and their metabolites also play an important role in anti-oxidation, anti-inflammation, and improving blood lipids. CONCLUSION Erigeron breviscapus plays an important role in the prevention and treatment of cardiovascular/ cerebrovascular diseases, neuroprotection, and cancer through many different mechanisms of action. Further investigation of its efficacious components and metabolites may provide more possibilities for the clinical application of traditional Chinese medicine and the development of novel drugs.
Collapse
Affiliation(s)
- Hua Fan
- Liaoning Inspection, Examination & Certification Centre, Shenyang110036, China
| | - Peng Lin
- Liaoning Inspection, Examination & Certification Centre, Shenyang110036, China
| | - Qiang Kang
- Liaoning Inspection, Examination & Certification Centre, Shenyang110036, China
| | - Zhi-Long Zhao
- Liaoning Inspection, Examination & Certification Centre, Shenyang110036, China
| | - Ji Wang
- Liaoning Inspection, Examination & Certification Centre, Shenyang110036, China
| | - Jia-Yi Cheng
- Liaoning University of Traditional Chinese Medicine, Shenyang110847, China
| |
Collapse
|
11
|
Amirzargar N, Heidari-Soureshjani S, Yang Q, Abbaszadeh S, Khaksarian M. Neuroprotective Effects of Medicinal Plants in Cerebral Hypoxia and Anoxia: A Systematic Review. ACTA ACUST UNITED AC 2020. [DOI: 10.2174/2210315509666190820103658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background:
Hypoxia and anoxia are dangerous and sometimes irreversible complications
in the central nervous system (CNS), which in some cases lead to death.
Objective:
The aim of this review was to investigate the neuroprotective effects of medicinal plants
in cerebral hypoxia and anoxia.
Methods:
The word hypox*, in combination with some herbal terms such as medicinal plant, phyto*
and herb*, was used to search for relevant publications indexed in the Institute for Scientific Information
(ISI) and PubMed from 2000-2019.
Results:
Certain medicinal plants and herbal derivatives can exert their protective effects in several
ways. The most important mechanisms are the inhibition of inducible nitric oxide synthase (iNOS),
production of NO, inhibition of both hypoxia-inducible factor 1α and tumor necrosis factor-alpha activation,
and reduction of extracellular glutamate, N-Methyl-D-aspartic and intracellular Ca (2+). In
addition, they have an antioxidant activity and can adjust the expression of genes related to oxidant
generation or antioxidant capacity. These plants can also inhibit lipid peroxidation, up-regulate superoxide
dismutase activity and inhibit the content of malondialdehyde and lactate dehydrogenase.
Moreover, they also have protective effects against cytotoxicity through down-regulation of the proteins
that causes apoptosis, anti-excitatory activity, inhibition of apoptosis signaling pathway, reduction
of pro-apoptotic proteins, and endoplasmic reticulum stress that causes apoptosis during hypoxia,
increasing anti-apoptotic protein, inhibition of protein tyrosine kinase activation, decreasing
proteases activity and DNA fragmentation, and upregulation of mitochondrial cytochrome oxidase.
Conclusion:
The results indicated that medicinal plants and their compounds mainly exert their neuroprotective
effects in hypoxia via regulating proteins that are related to antioxidant, anti-apoptosis
and anti-inflammatory activities.
Collapse
Affiliation(s)
- Nasibeh Amirzargar
- Department of Neurology, Rofeydeh Rehabilitation Hospital, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | | | - Qian Yang
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany
| | - Saber Abbaszadeh
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mojtaba Khaksarian
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
12
|
Zhao Y, Yang J, Li C, Zhou G, Wan H, Ding Z, Wan H, Zhou H. Role of the neurovascular unit in the process of cerebral ischemic injury. Pharmacol Res 2020; 160:105103. [PMID: 32739425 DOI: 10.1016/j.phrs.2020.105103] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/17/2022]
Abstract
Cerebral ischemic injury exhibits both high morbidity and mortality worldwide. Traditional research of the pathogenesis of cerebral ischemic injury has focused on separate analyses of the involved cell types. In recent years, the neurovascular unit (NVU) mechanism of cerebral ischemic injury has been proposed in modern medicine. Hence, more effective strategies for the treatment of cerebral ischemic injury may be provided through comprehensive analysis of brain cells and the extracellular matrix. However, recent studies that have investigated the function of the NVU in cerebral ischemic injury have been insufficient. In addition, the metabolism and energy conversion of the NVU depend on interactions among multiple cell types, which make it difficult to identify the unique contribution of each cell type. Therefore, in the present review, we comprehensively summarize the regulatory effects and recovery mechanisms of four major cell types (i.e., astrocytes, microglia, brain-microvascular endothelial cells, and neurons) in the NVU under cerebral ischemic injury, as well as discuss the interactions among these cell types in the NVU. Furthermore, we discuss the common signaling pathways and signaling factors that mediate cerebral ischemic injury in the NVU, which may help to provide a theoretical basis for the comprehensive elucidation of cerebral ischemic injury.
Collapse
Affiliation(s)
- Yu Zhao
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Jiehong Yang
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Chang Li
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Guoying Zhou
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Haofang Wan
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Zhishan Ding
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Haitong Wan
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China.
| | - Huifen Zhou
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China.
| |
Collapse
|
13
|
Yao YY, Ling EA, Lu D. Microglia mediated neuroinflammation - signaling regulation and therapeutic considerations with special reference to some natural compounds. Histol Histopathol 2020; 35:1229-1250. [PMID: 32662061 DOI: 10.14670/hh-18-239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Neuroinflammation plays a central role in multiple neurodegenerative diseases and neurological disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), cerebral ischemic injury etc. In this connection, microglia, the key players in the central nervous system, mediate the inflammatory response process. In brain injuries, activated microglia can clear the cellular debris and invading pathogens and release neurotrophic factors; however, prolonged microglia activation may cause neuronal death through excessive release of inflammatory mediators. Therefore, it is of paramount importance to understand the underlying molecular mechanisms of microglia activation to design an effective therapeutic strategy to alleviate neuronal injury. Recent studies have shown that some natural compounds and herbal extracts possess anti-inflammatory properties that may suppress microglial activation and ameliorate neuroinflammation and hence are neuroprotective. In this review, we will update some of the common signaling pathways that regulate microglia activation. Among the various signaling pathways, the Notch-1, mitogen-activated protein kinases (MAPKs), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) have been reported to exacerbate microglia mediated neuroinflammation that is implicated in different neuropathological diseases. The search for natural compounds or agents, specifically those derived from natural herbal extracts such as Gastrodin, scutellarin, RG1 etc. has been the focus of many of our recent studies because they have been found to regulate microglia activation. The pharmacological effects of these agents and their potential mechanisms for regulating microglia activation are systematically reviewed here for a fuller understanding of their biochemical action and therapeutic potential for treatment of microglia mediated neuropathological diseases.
Collapse
Affiliation(s)
- Yue-Yi Yao
- Technology Transfer Center, Kunming Medical University, Kunming, China
| | - Eng-Ang Ling
- Department of Anatomy, Young Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Di Lu
- Technology Transfer Center, Kunming Medical University, Kunming, China.
| |
Collapse
|
14
|
Hu MZ, Zhou ZY, Zhou ZY, Lu H, Gao M, Liu LM, Song HQ, Lin AJ, Wu QM, Zhou HF, Li L, Wang X, Cai YF. Effect and Safety of Hydroxysafflor Yellow A for Injection in Patients with Acute Ischemic Stroke of Blood Stasis Syndrome: A Phase II, Multicenter, Randomized, Double-Blind, Multiple-Dose, Active-Controlled Clinical Trial. Chin J Integr Med 2020; 26:420-427. [PMID: 32361934 DOI: 10.1007/s11655-020-3094-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2020] [Indexed: 12/26/2022]
Abstract
OBJECTIVE To assess the effect and safety of Hydroxysafflor Yellow A for Injection (HSYAI) in treating patients with acute ischemic stroke (AIS) and blood stasis syndrome (BSS). METHODS A multicenter, randomized, double-blind, multiple-dose, active-controlled phase II trial was conducted at 9 centers in China from July 2013 to September 2015. Patients with moderate or severe AIS and BSS were randomly assigned to low-, medium-, high-dose HSYAI groups (25, 50 and 70 mg/d HSYAI by intravenous infusion, respectively), and a control group (Dengzhan Xixin Injection (, DZXXI) 30 mL/d by intravenous infusion), for 14 consecutive days. The primary outcome was the Modified Rankin Scale (mRS) score ⩽1 at days 90 after treatment. The secondary outcomes included the National Institute of Health Stroke Scale (NIHSS) score ⩽1, Barthel Index (BI) score ⩾95, and BSS score reduced ⩾30% from baseline at days 14, 30, 60, and 90 after treatment. The safety outcomes included any adverse events during 90 days after treatment. RESULTS Of the 266 patients included in the effectiveness analysis, 66, 67, 65 and 68 cases were in the low-, medium-, and high-dose HSYAI and control groups, respectively. The proportions of patients in the medium- and high-dose HSYAI groups with mRS score ⩽1 at days 90 after treatment were significantly larger than the control group (P<0.05). The incidences of favorable outcomes of NIHSS and BI at days 90 after treatment as well as satisfactory improvement of BSS at days 30 and 60 after treatment in the medium- and high-dose HSYAI groups were all significantly higher than the control group (P<0.05). No significant difference was reported among the 4 groups in any specific adverse events (P>0.05). CONCLUSIONS HSYAI was safe and well-tolerated at all doses for treating AIS patients with BSS. The medium (50 mg/d) or high dose (75 mg/d) might be the optimal dose for a phase III trial. (Registration No. ChiCTR-2000029608).
Collapse
Affiliation(s)
- Ming-Zhe Hu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zi-Yi Zhou
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Zhong-Yu Zhou
- Department of Acupuncture and Moxibustion, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China
| | - Hui Lu
- Department of Neurology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 530011, China
| | - Min Gao
- Department of Neurology, Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou, 510095, China
| | - Long-Min Liu
- Department of Traditional Chinese Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Hai-Qing Song
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - An-Ji Lin
- Department of Traditional Chinese Medicine, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, 361001, China
| | - Qing-Ming Wu
- Department of Acupuncture and Moxibustion, The Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, 410005, China
| | - Hong-Fei Zhou
- Department of Neurology, The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, 110032, China
| | - Lei Li
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xia Wang
- Youcare Pharmaceutical Group Dingcheng Branch, Beijing, 100176, China
| | - Ye-Feng Cai
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.
| |
Collapse
|
15
|
Protection of the Geum japonicum Thunb. var. chinense extracts against oxygen-glucose deprivation and re-oxygenation induced astrocytes injury via BDNF/PI3K/Akt/CREB pathway. Biomed Pharmacother 2020; 127:110123. [PMID: 32361162 DOI: 10.1016/j.biopha.2020.110123] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/25/2020] [Accepted: 03/25/2020] [Indexed: 11/21/2022] Open
Abstract
Geum japonicum Tunb. var. chinense (GJ) is a traditional Chinese medicine usually used for the alleviation of dizziness and headache. Previous studies have reported that the GJ extracts could alleviate cerebral I/R injury by reducing apoptosis in vivo. To further elucidate the positive role and underlying mechanism of the GJ extracts in cerebral I/R injury, the current study investigated the effects of the GJ extracts on oxygen-glucose deprivation and re-oxygenation (OGD/R)-induced astrocytes injury in light of BDNF/PI3K/Akt/CREB signaling pathway with seropharmacological method. In the present study, the LC-MS profiling of the GJ extracts, obtain by reflux extraction, led to the identification of three possible active components were 5-desgalloylstachyurin, tellimagrandin II (TG II) and 3,4,5-Trihydroxybenzaldehyde (THBA). Drug-containing serum was collected from rats given different doses of the GJ extracts (0, 1.75 g/kg, 7 g/kg). Data indicated that the GJ extracts could increase the cell viability and decrease apoptosis and the expression of glial fibrillary acidic protein (GFAP) in OGD/R-induced astrocytes. In addition, the detection of apoptosis-related factors showed that the GJ extracts could obviously increase the expression of Bcl-2 and reduce the expression of Bax, Caspase-3 and cleaved-Caspase-3. Furthermore, the GJ extracts markedly increased the expression of BDNF, TrkB, PI3K, p-Akt and p-CREB. All these effects of the GJ extracts could be significantly reversed by LY294002, an inhibitor of PI3K. These data indicated that the GJ extracts could protect astrocytes against OGD/R-induced injury by inhibiting astrocytes reactivity and apoptosis, owing to the activation of the BDNF/PI3K/Akt/CREB pathway. The results support the application of the GJ extracts in the treatment of ischemic stroke and other ischemic encephalopathy.
Collapse
|
16
|
Shi J, Sun C, Huang H, Lin W, Gao J, Lin Y, Zhang Z, Huo X, Tian X, Yu Z, Zhang B, Ma X. β-Glucuronidase- and OATP2B1-mediated drug interaction of scutellarin in Dengzhan Xixin Injection: A formulation aspect. Drug Dev Res 2020; 81:609-619. [PMID: 32220026 DOI: 10.1002/ddr.21661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/05/2020] [Accepted: 03/11/2020] [Indexed: 12/26/2022]
Abstract
Scutellarin is the major and active constituent of Dengzhan Xixin Injection (DZXX), a traditional Chinese medicine prepared from the aqueous extract of Erigeron breviscapus and widely used for the treatment of various cerebrovascular diseases in clinic. In present study, the possible pharmacokinetic differences of scutellarin after intravenous administration of scutellarin alone or DZXX were explored. Additional, the potential roles of β-glucuronidase (GLU) and OATP2B1 in drug-drug interaction (DDI) between scutellarin and constituents of DZXX were further evaluated in vitro. The plasma concentration, urinary and biliary excretion of scutellarin in rats after administration of DZXX, were significantly higher than those received scutellarin, while pharmacokinetic profile of Apigenin 7-O-glucuronide (AG) in rats was similar no matter AG or DZXX group. Furthermore, higher concentration in brain and plasma, however, lower level of scutellarin in intestine were observed after intravenous administration of DZXX. Finally, AG and caffeoylquinic acid esters were found to significantly inhibit GLU and OATP2B1 in vitro, which might explain, at least in part, the pharmacokinetic DDI between scutellarin and other chemical constituents in DZXX. The findings provided deep insight into the prescription-formulating principle in DZXX for treating the cerebrovascular diseases.
Collapse
Affiliation(s)
- Jinxin Shi
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China.,Institute of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Chengpeng Sun
- Institute of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Huilian Huang
- Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Wenhui Lin
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Jian Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yanhe Lin
- Yunnan Biovalley Pharmaceutical Company, Kunming, China
| | - Zhanjun Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Xiaokui Huo
- Institute of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Xiangge Tian
- Institute of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Zhenlong Yu
- Institute of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Baojing Zhang
- Institute of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Xiaochi Ma
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.,State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| |
Collapse
|
17
|
Bawari S, Tewari D, Argüelles S, Sah AN, Nabavi SF, Xu S, Vacca RA, Nabavi SM, Shirooie S. Targeting BDNF signaling by natural products: Novel synaptic repair therapeutics for neurodegeneration and behavior disorders. Pharmacol Res 2019; 148:104458. [DOI: 10.1016/j.phrs.2019.104458] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/13/2019] [Accepted: 09/15/2019] [Indexed: 12/12/2022]
|
18
|
Salvianolate lyophilized injection (SLI) strengthens blood-brain barrier function related to ERK1/2 and Akt signaling pathways. Brain Res 2019; 1720:146295. [DOI: 10.1016/j.brainres.2019.06.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/05/2019] [Accepted: 06/14/2019] [Indexed: 02/06/2023]
|
19
|
Ibrahim MAA, Elwan WM, Elgendy HA. Role of Scutellarin in Ameliorating Lung Injury in a Rat Model of Bilateral Hind Limb Ischemia–Reperfusion. Anat Rec (Hoboken) 2019; 302:2070-2081. [DOI: 10.1002/ar.24175] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/24/2019] [Accepted: 04/01/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Marwa A. A. Ibrahim
- Histology and Cell Biology Department, Faculty of MedicineTanta University Tanta Egypt
| | - Walaa M. Elwan
- Histology and Cell Biology Department, Faculty of MedicineTanta University Tanta Egypt
| | - Hanan A. Elgendy
- Anatomy and Embryology Department, Faculty of MedicineMansoura University Mansoura Egypt
| |
Collapse
|
20
|
Wang Y, Ren J, Sun Q, Zhang Z, Lin Y, Deng S, Wang C, Huo X, Sun C, Tian X, Zhang B, Feng L, Ma X. Organic anion transporter 3 (OAT3)-mediated transport of dicaffeoylquinic acids and prediction of potential drug-drug interaction. Eur J Pharm Sci 2019; 133:95-103. [DOI: 10.1016/j.ejps.2019.03.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/03/2019] [Accepted: 03/26/2019] [Indexed: 01/10/2023]
|
21
|
Hosseini R, Moosavi F, Silva T, Rajaian H, Hosseini SY, Bina S, Saso L, Miri R, Borges F, Firuzi O. Modulation of ERK1/2 and Akt Pathways Involved in the Neurotrophic Action of Caffeic Acid Alkyl Esters. Molecules 2018; 23:molecules23123340. [PMID: 30562988 PMCID: PMC6321311 DOI: 10.3390/molecules23123340] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/09/2018] [Accepted: 12/13/2018] [Indexed: 11/21/2022] Open
Abstract
Neurodegenerative diseases affect millions of human lives all over the world. The number of afflicted patients is rapidly growing, and disease-modifying agents are urgently needed. Caffeic acid, an important member of the hydroxycinnamic acid family of polyphenols, has considerable neurotrophic effects. We have previously shown how caffeate alkyl ester derivatives significantly promote survival and differentiation in neuronal cells. In this study, the mechanisms by which these ester derivatives exert their neurotrophic effects are examined. A series of eight caffeic acid esters with different alkyl chain lengths, ranging from methyl (CAF1) to dodecyl esters (CAF8), were synthesized and studied for their influence on neurotrophic signaling pathways. Caffeate esters did not induce tropomyosin-receptor kinase A (TrkA) phosphorylation, which was assessed by immunoblotting up to a concentration of 25 µM. NIH/3T3 cells overexpressing TrkA were generated to further examine phosphorylation of this receptor tyrosine kinase. None of the esters induced TrkA phosphorylation in these cells either. Assessment of the effect of caffeate derivatives on downstream neurotrophic pathways by immunoblotting showed that the most potent esters, decyl caffeate (CAF7) and dodecyl caffeate (CAF8) caused extracellular signal-regulated kinase (ERK1/2) and Akt serine threonine kinase phosphorylation in PC12 cells at 5 and 25 µM concentrations. In conclusion, this study shows that caffeate esters exert their neurotrophic action by modulation of ERK1/2 and Akt signaling pathways in neuronal cells, and further demonstrates the potential therapeutic implications of these derivatives for neurodegenerative diseases.
Collapse
Affiliation(s)
- Razieh Hosseini
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz 71348-5373, Iran.
- Department of Pharmacology, School of Veterinary Medicine, Shiraz University, Shiraz 71441-69155, Iran.
| | - Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz 71348-5373, Iran.
- Department of Pharmacology, School of Veterinary Medicine, Shiraz University, Shiraz 71441-69155, Iran.
| | - Tiago Silva
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal.
| | - Hamid Rajaian
- Department of Pharmacology, School of Veterinary Medicine, Shiraz University, Shiraz 71441-69155, Iran.
| | - Seyed Younes Hosseini
- Department of Bacteriology and Virology, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran.
| | - Samaneh Bina
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz 71348-5373, Iran.
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, 00185 Rome, Italy.
| | - Ramin Miri
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz 71348-5373, Iran.
| | - Fernanda Borges
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal.
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz 71348-5373, Iran.
| |
Collapse
|
22
|
Shi Y, Peng XH, Li X, Luo GP, Wu MF. Neuroprotective role of dexmedetomidine pretreatment in cerebral ischemia injury via ADRA2A-mediated phosphorylation of ERK1/2 in adult rats. Exp Ther Med 2018; 16:5201-5209. [PMID: 30546415 PMCID: PMC6256861 DOI: 10.3892/etm.2018.6878] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/27/2018] [Indexed: 12/29/2022] Open
Abstract
Neuroprotective effects of dexmedetomidine (Dex) have been reported in various models of brain injury. However, to our knowledge, the neuroprotective mechanism of Dex pretreatment in rats remains unknown. The aim of the present study was to detect the expression of the α2A adrenergic receptor (ADRA2A) in focal ischemic brain tissues and to investigate the protective role and corresponding mechanism of Dex pretreatment in cerebral ischemia in rats. A hypoxia/reoxygenation (H/R) cell model in primary cultured astrocytes and a focal cerebral ischemia/reperfusion (I/R) model in adult rats were used. The expression of ADRA2A and extracellular signal-regulated kinases 1 and 2 (ERK1/2) in the primary cultured astrocytes and rat brain ischemic tissues was detected in the different conditions prior to and following Dex pretreatment using western blotting. The H/R model of primary cultured astrocytes and the focal cerebral I/R model in adult rats were successfully constructed. Under the normal oxygen conditions, 500 ng/ml Dex pretreatment increased the expression of ADRA2A and phosphorylated (p)-ERK1/2 in the astrocytes compared with in the control group. Hypoxic culture for 6 h and then reoxygenation for 24 h decreased the levels of p-ERK1/2 in the astrocytes compared with those in control group. This decrease was prevented by Dex pretreatment for 3 h. The hypoxic culture and then reoxygenation increased the expression of ADRA2A. Similarly, compared with those prior to Dex treatment, the levels of ADRA2A and p-ERK1/2 in the brain ischemic tissues following Dex treatment were increased. The levels of ADRA2A and p-ERK1/2 were 0.72±0.23 and 0.66±0.25 following Dex treatment, compared with 0.76±0.22 and 0.31±0.18, respectively, prior to Dex treatment. The effect of Dex pretreatment increasing p-ERK1/2 expression was attenuated by AG1478 pretreatment. In summary, Dex appeared to promote phosphorylation of ERK1/2 in astrocytes under H/R. As a specific agonist of ADRA2A, Dex may activate phosphorylation of ERK1/2 via ADRA2A in astrocytes. Thus, the neuroprotective role of Dex pretreatment against cerebral ischemic injury may function via ADRA2A-mediated phosphorylation of ERK1/2.
Collapse
Affiliation(s)
- Yanyan Shi
- Department of Anesthesia, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430033, P.R. China
| | - Xiao-Hong Peng
- Department of Anesthesia, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430033, P.R. China
| | - Xia Li
- Department of Anesthesia, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430033, P.R. China
| | - Gao-Ping Luo
- Department of Anesthesia, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430033, P.R. China
| | - Ming-Fu Wu
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
23
|
Wang L, Ma Q. Clinical benefits and pharmacology of scutellarin: A comprehensive review. Pharmacol Ther 2018; 190:105-127. [PMID: 29742480 DOI: 10.1016/j.pharmthera.2018.05.006] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
24
|
Zeng YQ, Cui YB, Gu JH, Liang C, Zhou XF. Scutellarin Mitigates Aβ-Induced Neurotoxicity and Improves Behavior Impairments in AD Mice. Molecules 2018; 23:molecules23040869. [PMID: 29642616 PMCID: PMC6017345 DOI: 10.3390/molecules23040869] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 04/02/2018] [Accepted: 04/06/2018] [Indexed: 01/29/2023] Open
Abstract
Alzheimer’s disease (AD) is pathologically characterized by excessive accumulation of amyloid-beta (Aβ) within extracellular spaces of the brain. Aggregation of Aβ has been shown to trigger oxidative stress, inflammation, and neurotoxicity resulting in cognitive dysfunction. In this study, we use models of cerebral Aβ amyloidosis to investigate anti-amyloidogenic effects of scutellarin in vitro and in vivo. Our results show that scutellarin, through binding to Aβ42, efficiently inhibits oligomerization as well as fibril formation and reduces Aβ oligomer-induced neuronal toxicity in cell line SH-SY5Y. After nine months of treatment in APP/PS1 double-transgenic mice, scutellarin significantly improves behavior, reduces soluble and insoluble Aβ levels in the brain and plasma, decreases Aβ plaque associated gliosis and levels of proinflammatory cytokines TNF-α and IL-6, attenuates neuroinflammation, displays anti-amyloidogenic effects, and highlights the beneficial effects of intervention on development or progression of AD-like neuropathology.
Collapse
Affiliation(s)
- Yue-Qin Zeng
- Key Laboratory of Stem Cells and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650500, China.
| | - Yin-Bo Cui
- Department of Biochemistry, College of Basic Medicine, Kunming Medical University, Kunming 650500, China.
| | - Juan-Hua Gu
- Key Laboratory of Stem Cells and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650500, China.
| | - Chen Liang
- Key Laboratory of Stem Cells and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650500, China.
| | - Xin-Fu Zhou
- Key Laboratory of Stem Cells and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650500, China.
- School of Pharmacy and Medical Sciences, Sansom Institute, University of South Australia, Adelaide 5001, SA, Australia.
| |
Collapse
|
25
|
Sun JB, Li Y, Cai YF, Huang Y, Liu S, Yeung PK, Deng MZ, Sun GS, Zilundu PL, Hu QS, An RX, Zhou LH, Wang LX, Cheng X. Scutellarin protects oxygen/glucose-deprived astrocytes and reduces focal cerebral ischemic injury. Neural Regen Res 2018; 13:1396-1407. [PMID: 30106052 PMCID: PMC6108207 DOI: 10.4103/1673-5374.235293] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Scutellarin, a bioactive flavone isolated from Scutellaria baicalensis, has anti-inflammatory, anti-neurotoxic, anti-apoptotic and anti-oxidative effects and has been used to treat cardiovascular and cerebrovascular diseases in China. However, the mechanisms by which scutellarin mediates neuroprotection in cerebral ischemia remain unclear. The interaction between scutellarin and nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) was assessed by molecular docking study, which showed that scutellarin selectively binds to NOX2 with high affinity. Cultures of primary astrocytes isolated from the cerebral cortex of neonatal Sprague-Dawley rats were pretreated with 2, 10 or 50 μM scutellarin for 30 minutes. The astrocytes were then subjected to oxygen/glucose deprivation by incubation for 2 hours in glucose-free Dulbecco's modified Eagle's medium in a 95% N2/5% CO2 incubator, followed by simulated reperfusion for 22 hours. Cell viability was assessed by cell counting kit-8 assay. Expression levels of NOX2, connexin 43 and caspase-3 were assessed by western blot assay. Reactive oxygen species were measured spectrophotometrically. Pretreatment with 10 or 50 μM scutellarin substantially increased viability, reduced the expression of NOX2 and caspase-3, increased the expression of connexin 43, and diminished the levels of reactive oxygen species in astrocytes subjected to ischemia-reperfusion. We also assessed the effects of scutellarin in vivo in the rat transient middle cerebral artery occlusion model of cerebral ischemia-reperfusion injury. Rats were given intraperitoneal injection of 100 mg/kg scutellarin 2 hours before surgery. The Bederson scale was used to assess neurological deficit, and 2,3,5-triphenyltetrazolium chloride staining was used to measure infarct size. Western blot assay was used to assess expression of NOX2 and connexin 43 in brain tissue. Enzyme-linked immunosorbent assay was used to detect 8-hydroxydeoxyguanosine (8-OHdG), 4-hydroxy-2-nonenal (4-HNE) and 3-nitrotyrosin (3-NT) in brain tissue. Immunofluorescence double staining was used to determine the co-expression of caspase-3 and NeuN. Pretreatment with scutellarin improved the neurological function of rats with focal cerebral ischemia, reduced infarct size, diminished the expression of NOX2, reduced levels of 8-OHdG, 4-HNE and 3-NT, and reduced the number of cells co-expressing caspase-3 and NeuN in the injured brain tissue. Furthermore, we examined the effect of the NOX2 inhibitor apocynin. Apocynin substantially increased connexin 43 expression in vivo and in vitro. Collectively, our findings suggest that scutellarin protects against ischemic injury in vitro and in vivo by downregulating NOX2, upregulating connexin 43, decreasing oxidative damage, and reducing apoptotic cell death.
Collapse
Affiliation(s)
- Jing-Bo Sun
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine; Department of Second Institute of Clinical Medicine, Guangzhou University of Traditional Chinese Medicine; Guangdong Provincial Academy of Chinese Medical Sciences; Guangdong Provincial Chinese Emergency Key Laboratory, Guangzhou, Guangdong Province, China
| | - Yan Li
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine; Department of Second Institute of Clinical Medicine, Guangzhou University of Traditional Chinese Medicine; Guangdong Provincial Academy of Chinese Medical Sciences; Guangdong Provincial Chinese Emergency Key Laboratory, Guangzhou, Guangdong Province, China
| | - Ye-Feng Cai
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine; Department of Second Institute of Clinical Medicine, Guangzhou University of Traditional Chinese Medicine; Guangdong Provincial Academy of Chinese Medical Sciences; Guangdong Provincial Chinese Emergency Key Laboratory, Guangzhou, Guangdong Province, China
| | - Yan Huang
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine; Department of Second Institute of Clinical Medicine, Guangzhou University of Traditional Chinese Medicine; Guangdong Provincial Academy of Chinese Medical Sciences; Guangdong Provincial Chinese Emergency Key Laboratory, Guangzhou, Guangdong Province, China
| | - Shu Liu
- Department of Anatomy, An Hui Medical University, Hefei, Anhui Province, China
| | - Patrick Kk Yeung
- Department of Biomedical Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Min-Zhen Deng
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine; Department of Second Institute of Clinical Medicine, Guangzhou University of Traditional Chinese Medicine; Guangdong Provincial Academy of Chinese Medical Sciences; Guangdong Provincial Chinese Emergency Key Laboratory, Guangzhou, Guangdong Province, China
| | - Guang-Shun Sun
- Department of Preventive Medicine, School of Public Health, Zhong Shan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Prince Lm Zilundu
- Guangzhou Department of Anatomy, Zhong Shan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Qian-Sheng Hu
- Department of Preventive Medicine, School of Public Health, Zhong Shan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Rui-Xin An
- Guangzhou Department of Anatomy, Zhong Shan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Li-Hua Zhou
- Guangzhou Department of Anatomy, Zhong Shan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Li-Xin Wang
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine; Department of Second Institute of Clinical Medicine, Guangzhou University of Traditional Chinese Medicine; Guangdong Provincial Academy of Chinese Medical Sciences; Guangdong Provincial Chinese Emergency Key Laboratory, Guangzhou, Guangdong Province, China
| | - Xiao Cheng
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine; Department of Second Institute of Clinical Medicine, Guangzhou University of Traditional Chinese Medicine; Guangdong Provincial Academy of Chinese Medical Sciences; Guangdong Provincial Chinese Emergency Key Laboratory, Guangzhou, Guangdong Province, China
| |
Collapse
|
26
|
Sheng N, Zheng H, Xiao Y, Wang Z, Li M, Zhang J. Chiral separation and chemical profile of Dengzhan Shengmai by integrating comprehensive with multiple heart-cutting two-dimensional liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. J Chromatogr A 2017; 1517:97-107. [DOI: 10.1016/j.chroma.2017.08.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/25/2017] [Accepted: 08/12/2017] [Indexed: 10/19/2022]
|
27
|
Wang J, Xie Y, Zhao S, Zhang J, Chai Y, Li Y, Liao X. Dengzhanxixin injection for cerebral infarction: A systematic review and meta-analysis of randomized controlled trials. Medicine (Baltimore) 2017; 96:e7674. [PMID: 28796050 PMCID: PMC5556216 DOI: 10.1097/md.0000000000007674] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND No systematic review has been published in English of Dengzhanxixin (DZXX) injection for cerebral infarction. The aim of this systematic review was to assess the effects and safety of DZXX injection for cerebral infarction. METHODS Eight databases were searched from their inception. Randomized controlled trials (RCTs) related to DZXX for cerebral infarction in English or Chinese without restrictions on the publication status were included. Neurological deficit, quality of life, and response rates were analyzed. Adverse events were also investigated. RESULTS Twenty-three randomized controlled trials (RCTs) with 2291 participants were included. Meta-analysis showed that DZXX injection plus routine western therapy was better than routine western therapy alone for reducing neurologic deficit (MD -2.86, 95% CI -3.87 to -1.86), for improving quality of life (MD 9.48, 95% CI 8.34-10.63), and for improving response rates (RR 1.20, 95% CI 1.15-1.25). No serious adverse drug events (ADE) were reported. CONCLUSIONS DZXX injection may have a potential therapeutic effect for cerebral infarction in reducing neurologic deficit, improving life quality and response rates. However, we could not draw any definitive conclusions due to the insufficient evidences. More high-quality trials are needed to provide more strong evidence and to assess the safety of DZXX injection.
Collapse
Affiliation(s)
- Jia Wang
- Institute of Basic Research in Clinical Medicine
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences
| | - Yanming Xie
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences
| | | | - Jiangsong Zhang
- Zhejiang University of Traditional Chinese Medicine, Zhejiang, China
| | - Yan Chai
- Department of Epidemiology, University of California-Los Angeles, CA
| | - Yuanyuan Li
- Institute of Basic Research in Clinical Medicine
| | - Xing Liao
- Institute of Basic Research in Clinical Medicine
| |
Collapse
|
28
|
Gao C, Zhou Y, Jiang Z, Zhao Y, Zhang D, Cong X, Cao R, Li H, Tian W. Cytotoxic and chemosensitization effects of Scutellarin from traditional Chinese herb Scutellaria altissima L. in human prostate cancer cells. Oncol Rep 2017; 38:1491-1499. [PMID: 28737827 PMCID: PMC5549025 DOI: 10.3892/or.2017.5850] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 07/13/2017] [Indexed: 12/21/2022] Open
Abstract
Scutellaria altissima L. is a common traditional Chinese medicine used to treat inflammation in some countries. Scutellarin, an active major flavone glycoside isolated from the traditional Chinese medicine Scutellaria altissima L., has been shown to offer various beneficial biochemical effects on cerebrovascular diseases and inflammation. However, the antiproliferative effects of Scutellarin in prostate cancer and the underlying mechanism are not fully elucidated. In the present study, we aimed to ascertain whether Scutellarin inhibits cancer cell growth and to further explore the molecular mechanism. Scutellarin enhanced the sensitivity of prostate cancer cells to cisplatin. MTT assays revealed that cell viability was significantly decreased in the prostate cancer cells treated with Scutellarin. Flow cytometric analysis indicated that Scutellarin suppressed cell proliferation by promoting G2/M arrest and inducing apoptosis. We employed western blotting to delineate the underlying mechanisms involved in the G2/M arrest and apoptosis. Comet assay and γH2AX immunocytochemistry were used to detect levels of DNA damage in PC3 cells exposed to Scutellarin and/or cisplatin. Our data revealed that Scutellarin significantly induced prostate cancer cell apoptosis by activating the caspase cascade. An increase in the Bax/Bcl-2 ratio, depolarization of mitochondrial membrane potential and cell cycle arrest at G2/M phase were accompanied by the apoptosis induction. Additionally, Scutellarin altered the protein expression of cell cycle and apoptosis regulatory genes by downregulating Cdc2, cyclin B1 and Bcl-2 and upregulating caspase-3, caspase-9 and Bax in prostate cancer cells. Furthermore, Scutellarin sensitized PC3 cells to cisplastin treatment in a dose-dependent manner. Taken together, our data confirmed the cytotoxicity of Scutellarin against prostate cancer PC3 cells and provide new findings in regards to Scutellarin sensitizing prostate cancer cells to chemotherapy. Our findings suggest that Scutellarin has potential to be used as a novel antineoplastic therapeutic candidate for prostate cancer patients.
Collapse
Affiliation(s)
- Chen Gao
- College of Animal Science and Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, P.R. China
| | - Yinglu Zhou
- College of Animal Science and Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, P.R. China
| | - Zhongling Jiang
- College of Animal Science and Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, P.R. China
| | - Yuan Zhao
- Shu Lan Animal Husbandry Bureau, Shulan, Jilin 132600, P.R. China
| | - Dongjun Zhang
- Feicheng Animal Husbandry and Veterinary Bureau, Feicheng, Shandong 271600, P.R. China
| | - Xia Cong
- College of Animal Science and Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, P.R. China
| | - Rongfeng Cao
- College of Animal Science and Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, P.R. China
| | - Huatao Li
- College of Animal Science and Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, P.R. China
| | - Wenru Tian
- College of Animal Science and Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, P.R. China
| |
Collapse
|
29
|
Wang WW, Han JH, Wang L, Bao TH. Scutellarin may alleviate cognitive deficits in a mouse model of hypoxia by promoting proliferation and neuronal differentiation of neural stem cells. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2017; 20:272-279. [PMID: 28392899 PMCID: PMC5378964 DOI: 10.22038/ijbms.2017.8355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Objective(s): Scutellarin, a flavonoid extracted from the medicinal herb Erigeron breviscapus Hand-Mazz, protects neurons from damage and inhibits glial activation. Here we examined whether scutellarin may also protect neurons from hypoxia-induced damage. Materials and Methods: Mice were exposed to hypoxia for 7 days and then administered scutellarin (50 mg/kg/d) or vehicle for 30 days Cognitive impairment in the two groups was assessed using the Morris water maze test, cell proliferation in the hippocampus was compared using 5-bromo-2-deoxyuridine (BrdU) immunohistochemistry, and hippocampal levels of nestin and neuronal class III β-tubulin (Tuj-1) were measured using Western blotting. These results were validated in vitro by treating cultured neural stem cells (NSCs) with scutellarin (30 μM). Results: Treating mice with scutellarin shortened escape times and increased the number of platform crossings, it increased the number of BrdU-positive proliferating cells in the hippocampus, and it up-regulated expression of nestin and Tuj-1. Treating NSC cultures with scutellarin increased the number of proliferating cells and the proportion of cells differentiating into neurons instead of astrocytes. The increase in NSC proliferation was associated with phosphorylation of extracellular signal-regulated kinase (ERK) 1/2, while neuronal differentiation was associated with altered expression of differentiation-related genes. Conclusion: Scutellarin may alleviate cognitive impairment in a mouse model of hypoxia by promo-ting proliferation and neuronal differentiation of NSCs.
Collapse
Affiliation(s)
- Wei-Wei Wang
- Department of Cardiology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, PR China; Key Laboratory of Stem Cells and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, Yunnan, PR China; Department of Anatomy and Development Biology, Monash University, Clayton, vic 3800, Australia
| | - Jian-Hong Han
- The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, PR China
| | - Lin Wang
- The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, PR China
| | - Tian-Hao Bao
- The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, PR China; Mental Health Center of Kunming Medical University, Kunming City, Yunnan Province, PR China
| |
Collapse
|
30
|
Yao H, Huang X, Shi P, Lin Z, Zhu M, Liu A, Lin X, Tang Y. DPPH·-luminol chemiluminescence system and its application in the determination of scutellarin in pharmaceutical injections and rat plasma with flow injection analysis. LUMINESCENCE 2016; 32:588-595. [PMID: 27860193 DOI: 10.1002/bio.3225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/26/2016] [Accepted: 08/31/2016] [Indexed: 01/08/2023]
Abstract
In this article, a DPPH·-luminol chemiluminescence (CL) system was reported and the CL mechanism was discussed according to the CL kinetic properties after sequence injecting DPPH· into the DPPH·-luminol reaction mixture. It was observed that scutellarin could inhibit the CL response of the DPPH·-luminol system. Based on this observation, a simple and rapid flow injection CL method was developed for the determination of scutellarin using the inhibition effect in alkaline medium. The optimized chemical conditions for the CL reaction were 5 × 10-6 mol/L DPPH· and 1.0 × 10-4 mol/L luminol in 0.01 mol/L NaOH. Under optimized conditions, the CL intensity was inversely proportional to the concentration of scutellarin over the ranges 5-2000 and 40-3200 ng/ml in pharmaceutical injection and rat plasma, respectively. The limits of detection (S/N = 3) were 5 and 40 ng/ml in preparations and rat plasma, respectively. Furthermore, the precision, recovery and stability of the validated method were acceptable for the determination of scutellarin in both pharmaceutical injections and rat plasma. The presented method was successfully applied in the determination of scutellarin in pharmaceutical injections and real rat plasma samples.
Collapse
Affiliation(s)
- Hong Yao
- Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou, China.,Institute of Analytical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Xiaomei Huang
- Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou, China
| | - Peiying Shi
- Department of Traditional Chinese Medicine Resource and Bee Products, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhen Lin
- Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou, China
| | - Meilan Zhu
- Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou, China
| | - Ailin Liu
- Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou, China
| | - Xinhua Lin
- Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou, China
| | - Yuhai Tang
- Institute of Analytical Sciences, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
31
|
Zhang Q, Chen ZW, Zhao YH, Liu BW, Liu NW, Ke CC, Tan HM. Bone Marrow Stromal Cells Combined With Sodium Ferulate and n-Butylidenephthalide Promote the Effect of Therapeutic Angiogenesis via Advancing Astrocyte-Derived Trophic Factors After Ischemic Stroke. Cell Transplant 2016; 26:229-242. [PMID: 27772541 DOI: 10.3727/096368916x693536] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Being a potential candidate for stroke treatment, bone marrow-derived mesenchymal stem/stromal cells (BM-MSCs) have been demonstrated to be able to enhance angiogenesis and proliferation of reactive astrocytes, which subsequently leads to the amelioration of neurological injury. Increasing evidence further indicates that combining BM-MSCs with certain agents, such as simvastatin, may improve therapeutic effects. Sodium ferulate (SF) and n-butylidenephthalide (BP), two main components of Radix Angelica Sinensis, are proven to be important regulators of stem cells in cell migration, differentiation, and pluripotency maintenance. This study aimed to investigate whether combining BM-MSCs with SF and BP had better therapeutic effect in the treatment of stroke, and the underlying molecular basis for the therapeutic effects was also investigated. The results showed that combination treatment notably reduced neurological injury after stroke and increased the expression of astrocyte-derived vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor (BDNF), and von Willebrand factor-positive vascular density in the ischemic boundary zone as evaluated by immunofluorescence staining. After treatment with BM-MSCs plus SF and BP, astrocytes showed increased expression of VEGF and BDNF by upregulating protein kinase B/mammalian target of rapamycin (AKT/mTOR) expression in an oxygen- and glucose-deprived (OGD) environment. Human umbilical vein endothelial cells (HUVECs) incubated with the conditioned medium (CM) derived from OGD astrocytes treated with BM-MSCs plus SF and BP showed significantly increased migration and tube formation compared with those incubated with the CM derived from OGD astrocytes treated with BM-MSCs alone. These results demonstrate that combination treatment enhances the expression of astrocyte-derived VEGF and BDNF, which contribute to angiogenesis after cerebral ischemia, and the underlying mechanism is associated with activation of the astrocytic AKT/mTOR signaling pathway. Our study provides a potential therapeutic approach for ischemic stroke.
Collapse
|
32
|
Hosseini R, Moosavi F, Rajaian H, Silva T, Magalhães e Silva D, Soares P, Saso L, Edraki N, Miri R, Borges F, Firuzi O. Discovery of neurotrophic agents based on hydroxycinnamic acid scaffold. Chem Biol Drug Des 2016; 88:926-937. [DOI: 10.1111/cbdd.12829] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 06/13/2016] [Accepted: 07/11/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Razieh Hosseini
- Medicinal and Natural Products Chemistry Research Center; Shiraz University of Medical Sciences; Shiraz Iran
- Department of Pharmacology; School of Veterinary Medicine; Shiraz University; Shiraz Iran
| | - Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center; Shiraz University of Medical Sciences; Shiraz Iran
- Department of Pharmacology; School of Veterinary Medicine; Shiraz University; Shiraz Iran
| | - Hamid Rajaian
- CIQUP/Department of Chemistry and Biochemistry; Faculty of Sciences; University of Porto; Porto Portugal
| | - Tiago Silva
- CIQUP/Department of Chemistry and Biochemistry; Faculty of Sciences; University of Porto; Porto Portugal
| | - Diogo Magalhães e Silva
- CIQUP/Department of Chemistry and Biochemistry; Faculty of Sciences; University of Porto; Porto Portugal
| | - Pedro Soares
- CIQUP/Department of Chemistry and Biochemistry; Faculty of Sciences; University of Porto; Porto Portugal
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”; Sapienza University of Rome; Rome Italy
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center; Shiraz University of Medical Sciences; Shiraz Iran
| | - Ramin Miri
- Medicinal and Natural Products Chemistry Research Center; Shiraz University of Medical Sciences; Shiraz Iran
| | - Fernanda Borges
- CIQUP/Department of Chemistry and Biochemistry; Faculty of Sciences; University of Porto; Porto Portugal
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center; Shiraz University of Medical Sciences; Shiraz Iran
| |
Collapse
|
33
|
Scutellarin as a Potential Therapeutic Agent for Microglia-Mediated Neuroinflammation in Cerebral Ischemia. Neuromolecular Med 2016; 18:264-73. [PMID: 27103430 DOI: 10.1007/s12017-016-8394-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 04/04/2016] [Indexed: 12/26/2022]
Abstract
The cerebral ischemia is one of the most common diseases in the central nervous system that causes progressive disability or even death. In this connection, the inflammatory response mediated by the activated microglia is believed to play a central role in this pathogenesis. In the event of brain injury, activated microglia can clear the cellular debris and invading pathogens, release neurotrophic factors, etc., but in chronic activation microglia may cause neuronal death through the release of excessive inflammatory mediators. Therefore, suppression of microglial over-reaction and microglia-mediated neuroinflammation is deemed to be a therapeutic strategy of choice for cerebral ischemic damage. In the search for potential herbal extracts that are endowed with the property in suppressing the microglial activation and amelioration of neuroinflammation, attention has recently been drawn to scutellarin, a Chinese herbal extract. Here, we review the roles of activated microglia and the effects of scutellarin on activated microglia in pathological conditions especially in ischemic stroke. We have further extended the investigation with special reference to the effects of scutellarin on Notch signaling, one of the several signaling pathways known to be involved in microglial activation. Furthermore, in light of our recent experimental evidence that activated microglia can regulate astrogliosis, an interglial "cross-talk" that was amplified by scutellarin, it is suggested that in designing of a more effective therapeutic strategy for clinical management of cerebral ischemia both glial types should be considered collectively.
Collapse
|
34
|
Wang W, Ma X, Han J, Zhou M, Ren H, Pan Q, Zheng C, Zheng Q. Neuroprotective Effect of Scutellarin on Ischemic Cerebral Injury by Down-Regulating the Expression of Angiotensin-Converting Enzyme and AT1 Receptor. PLoS One 2016; 11:e0146197. [PMID: 26730961 PMCID: PMC4711585 DOI: 10.1371/journal.pone.0146197] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 12/14/2015] [Indexed: 01/08/2023] Open
Abstract
Background and Purpose Previous studies have demonstrated that angiotensin-converting enzyme (ACE) is involved in brain ischemic injury. In the present study, we investigated whether Scutellarin (Scu) exerts neuroprotective effects by down-regulating the Expression of Angiotensin-Converting Enzyme and AT1 receptor in a rat model of permanent focal cerebral ischemia. Methods Adult Sprague–Dawley rats were administrated with different dosages of Scu by oral gavage for 7 days and underwent permanent middle cerebral artery occlusion (pMCAO). Blood pressure was measured 7 days after Scu administration and 24 h after pMCAO surgery by using a noninvasive tail cuff method. Cerebral blood flow (CBF) was determined by Laser Doppler perfusion monitor and the neuronal dysfunction was evaluated by analysis of neurological deficits before being sacrificed at 24 h after pMCAO. Histopathological change, cell apoptosis and infarct area were respectively determined by hematoxylin–eosin staining, terminal deoxynucleotidyl transfer-mediated dUTP nick end labeling (TUNEL) analysis and 2,3,5-triphenyltetrazolium chloride staining. Tissue angiotensin II (Ang II) and ACE activity were detected by enzyme-linked immunosorbent assays. The expression levels of ACE, Ang II type 1 receptor (AT1R), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) were measured by Western blot and real-time PCR. ACE inhibitory activity of Scu in vitro was detected by the photometric determination. Results Scu treatment dose-dependently decreased neurological deficit score, infarct area, cell apoptosis and morphological changes induced by pMCAO, which were associated with reductions of ACE and AT1R expression and the levels of Ang II, TNF-α, IL-6, and IL-1β in ischemic brains. Scu has a potent ACE inhibiting activity. Conclusion Scu protects brain from acute ischemic injury probably through its inhibitory effect on the ACE/Ang II/AT1 axis, CBF preservation and proinflammation inhibition.
Collapse
Affiliation(s)
- Wenjuan Wang
- Pharmacy School, Shihezi University, Shihezi, China
- Department of Pharmacy, the First Division Hospital of Xinjiang Production and Construction Corps, Aksu, Xinjiang, China
| | - Xiaotang Ma
- Institute of Neurological Disease, Zhanjiang Medical College, Zhanjiang, Guangdong, China
| | - Jichun Han
- Pharmacy School, Shihezi University, Shihezi, China
| | | | - Huanhuan Ren
- Pharmacy School, Shihezi University, Shihezi, China
| | - Qunwen Pan
- Institute of Neurological Disease, Zhanjiang Medical College, Zhanjiang, Guangdong, China
| | - Chunli Zheng
- College of Life Sciences, Northwest A&F University, Yangling, Shanxi, China
| | - Qiusheng Zheng
- Pharmacy School, Shihezi University, Shihezi, China
- Binzhou Medical University, Yantai, China
- * E-mail:
| |
Collapse
|
35
|
Moosavi F, Hosseini R, Saso L, Firuzi O. Modulation of neurotrophic signaling pathways by polyphenols. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 10:23-42. [PMID: 26730179 PMCID: PMC4694682 DOI: 10.2147/dddt.s96936] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Polyphenols are an important class of phytochemicals, and several lines of evidence have demonstrated their beneficial effects in the context of a number of pathologies including neurodegenerative disorders such as Alzheimer’s and Parkinson’s disease. In this report, we review the studies on the effects of polyphenols on neuronal survival, growth, proliferation and differentiation, and the signaling pathways involved in these neurotrophic actions. Several polyphenols including flavonoids such as baicalein, daidzein, luteolin, and nobiletin as well as nonflavonoid polyphenols such as auraptene, carnosic acid, curcuminoids, and hydroxycinnamic acid derivatives including caffeic acid phentyl ester enhance neuronal survival and promote neurite outgrowth in vitro, a hallmark of neuronal differentiation. Assessment of underlying mechanisms, especially in PC12 neuronal-like cells, reveals that direct agonistic effect on tropomyosin receptor kinase (Trk) receptors, the main receptors of neurotrophic factors including nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) explains the action of few polyphenols such as 7,8-dihydroxyflavone. However, several other polyphenolic compounds activate extracellular signal-regulated kinase (ERK) and phosphoinositide 3-kinase (PI3K)/Akt pathways. Increased expression of neurotrophic factors in vitro and in vivo is the mechanism of neurotrophic action of flavonoids such as scutellarin, daidzein, genistein, and fisetin, while compounds like apigenin and ferulic acid increase cyclic adenosine monophosphate response element-binding protein (CREB) phosphorylation. Finally, the antioxidant activity of polyphenols reflected in the activation of Nrf2 pathway and the consequent upregulation of detoxification enzymes such as heme oxygenase-1 as well as the contribution of these effects to the neurotrophic activity have also been discussed. In conclusion, a better understanding of the neurotrophic effects of polyphenols and the concomitant modulations of signaling pathways is useful for designing more effective agents for management of neurodegenerative diseases.
Collapse
Affiliation(s)
- Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmacology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Razieh Hosseini
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmacology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
36
|
Tian X, Chang L, Ma G, Wang T, Lv M, Wang Z, Chen L, Wang Y, Gao X, Zhu Y. Delineation of Platelet Activation Pathway of Scutellarein Revealed Its Intracellular Target as Protein Kinase C. Biol Pharm Bull 2015; 39:181-91. [PMID: 26581323 DOI: 10.1248/bpb.b15-00511] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Erigeron breviscapus has been widely used in traditional Chinese medicine (TCM) and its total flavonoid component is commonly used to treat ischemic stroke, coronary heart disease, diabetes and hypertension. Scutellarin is the major ingredient of E. breviscapus and scutellarein is one of the main bioactive metabolites of scutellarin in vivo, but the latter's pharmacological activities have not been fully characterized. Provided evidence that could inhibit platelet aggregation, the effect of scutellarein on rat washed platelets and its underlying mechanisms were evaluated in our research. Scutellarein inhibited platelet adhesion and aggregation induced by multiple G protein coupled receptor agonists such as thrombin, U46619 and ADP, in a concentration-dependent manner. Furthermore, the mild effect of scutellarein on intracellular Ca(2+) mobilization and cyclic AMP (cAMP) level was observed. On the other hand, the role of scutellarein as potential protein kinase C (PKC) inhibitor was confirmed by PKC activity analysis and molecular docking. The phorbol myristate acetate-induced platelets aggregation assay with or without ADP implied that the scutellarein takes PKC(s) as its primary target(s), and acts on it in a reversible way. Finally, scutellarein as a promising agent exhibited a high inhibition effect on ADP-induced platelet aggregation among its analogues. This study clarifies the PKC-related signaling pathway involved in antiplatelet action of scutellarein, and may be beneficial for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Xiaoxuan Tian
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Scutellarin Alleviates Behavioral Deficits in a Mouse Model of Multiple Sclerosis, Possibly Through Protecting Neural Stem Cells. J Mol Neurosci 2015; 58:210-20. [PMID: 26514969 DOI: 10.1007/s12031-015-0660-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 09/24/2015] [Indexed: 12/14/2022]
Abstract
Scutellarin, a flavonoid extracted from an herbal medication (Erigeron breviscapus Hand-Mazz), has been shown to protect neurons against damage and to promote neurogenesis, and thus has therapeutic potential in the treatment of a variety of neurodegenerative diseases. Since neural stem cells (NSCs) could differentiate into myelin-producing oligodendrocytes, we speculate that scutellarin could also be used to treat multiple sclerosis (MS). In the current study, we examined potential effects of scutellarin using a mouse model of MS. Briefly, adult C57BL/6 mice exposed to cuprizone (8 mg/day through diet, for 6 consecutive weeks) randomly received scutellarin (50 mg/kg/day) or vehicle for 10 consecutive days. In the scutellarin-treated group, rotarod testing at the end of the treatment showed significant improvement of motor function (increased time to fall); myelin basic protein (MBP) staining of the corpus callosum revealed decreased demyelination; TUNEL staining followed by Nestin or Sox2 staining revealed increased number of NSCs and decreased rate of NSC apoptosis in the subventricular zone (SVZ) of the lateral ventricles (LV). In a series of experiments using cultured NSCs subjected to cuprizone injury, we confirmed the protective effects of scutellarin. At 30 μM, scutellarin increased the commitment of NSCs to the oligodendrocyte and neuronal lineages, as evidenced by NG2 chondroitin sulfate proteoglycan (NG2) and doublecortin (DCX) staining. Differentiation into astrocytes (as revealed by glial fibrillary acidic protein (GFAP) staining) was decreased. Maturation of the NSCs committed to the oligodendrocyte lineage, as evidenced by oligodendrocyte marker O4 antibody (O4) staining and MBP staining, was also promoted by scutellarin. Further analysis revealed that scutellarin might suppress the phosphorylation of p38 in cuprizone-induced NSCs. In summary, scutellarin could alleviate motor deficits in a mouse model for MS, possibly by inhibiting NSC apoptosis and promoting differentiation of NSCs to myelin-producing oligodendrocytes.
Collapse
|
38
|
Rezg R, Mornagui B, Santos JSDO, Dulin F, El-Fazaa S, Ben El-Haj N, Bureau R, Gharbi N. Protective effects of caffeic acid against hypothalamic neuropeptides alterations induced by malathion in rat. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:6198-6207. [PMID: 25404496 DOI: 10.1007/s11356-014-3824-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 11/05/2014] [Indexed: 06/04/2023]
Abstract
Exposure to pesticides is suspected to cause human health problems. Our study aimed to evaluate preventive effects of caffeic acid (3,4-dihydroxycinnamic acid) in the hypothalamus against malathion-induced neuropeptides gene expression alterations. Malathion at 100 mg/kg was administered intragastrically to rats alone or in combination with caffeic acid at 100 mg/kg during 4 weeks. A molecular expression of hypothalamic neuropeptides and plasmatic cholinesterase activity was investigated. Furthermore, we used in silico analysis, known as computational docking, to highlight the nature of acetylcholinesterase-malathion/caffeic acid interactions. Our findings showed differences in the responses and indicate that caffeic acid reversed malathion-induced decrease in corticotropin-releasing hormone mRNA but not brain-derived neurotrophic factor which presented an increased tendency. We suggest that caffeic acid can interact with acetylcholinesterase as the primary target of organophosphorus compounds. Results predict that caffeic acid can block partly the acetylcholinesterase gorge entrance via π-π stacking interaction with Tyr 124 and Trp 286 residues of the peripheral site leading to its stricture. Under this condition, we suggested that acetylcholine trafficking toward the catalytic site is ameliorated compared to malaoxon according to their sizes.
Collapse
Affiliation(s)
- Raja Rezg
- Laboratoire de Physiologie des Agressions, Département de Biologie, Faculté des Sciences de Tunis, Université El Manar, Tunis, Tunisie
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Yu XD, Zheng RB, Xie JH, Su JY, Huang XQ, Wang YH, Zheng YF, Mo ZZ, Wu XL, Wu DW, Liang YE, Zeng HF, Su ZR, Huang P. Biological evaluation and molecular docking of baicalin and scutellarin as Helicobacter pylori urease inhibitors. JOURNAL OF ETHNOPHARMACOLOGY 2015; 162:69-78. [PMID: 25557028 DOI: 10.1016/j.jep.2014.12.041] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 09/07/2014] [Accepted: 12/22/2014] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Baicalin and scutellarin are the principal bioactive components of Scutellaria baicalensis Georgi which has extensively been incorporated into heat-clearing and detoxification formulas for the treatment of Helicobacter pylori-related gastrointestinal disorders in traditional Chinese medicine. However, the mechanism of action remained to be defined. AIM OF THE STUDY To explore the inhibitory effect, kinetics and mechanism of Helicobacter pylori urease (the vital pathogenetic factor for Helicobacter pylori infection) inhibition by baicalin and scutellarin, for their therapeutic potential. MATERIALS AND METHODS The ammonia formations, indicator of urease activity, were examined using modified spectrophotometric Berthelot (phenol-hypochlorite) method. The inhibitory effect of baicalin and scutellarin was characterized with IC50 values, compared to acetohydroxamic acid (AHA), a well known Helicobacter pylori urease inhibitor. Lineweaver-Burk and Dixon plots for the Helicobacter pylori urease inhibition of baicalin and scutellarin was constructed from the kinetic data. SH-blocking reagents and competitive active site Ni(2+) binding inhibitors were employed for mechanism study. Molecular docking technique was used to provide some information on binding conformations as well as confirm the inhibition mode. Moreover, cytotoxicity experiment using Gastric Epithelial Cells (GES-1) was evaluated. RESULTS Baicalin and scutellarin effectively suppressed Helicobacter pylori urease in dose-dependent and time-independent manner with IC50 of 0.82±0.07 mM and 0.47±0.04 mM, respectively, compared to AHA (IC50=0.14±0.05 mM). Structure-activity relationship disclosed 4'-hydroxyl gave flavones an advantage to binding with Helicobacter pylori urease. Kinetic analysis revealed that the types of inhibition were non-competitive and reversible with inhibition constant Ki of 0.14±0.01 mM and 0.18±0.02 mM for baicalin and scutellarin, respectively. The mechanism of urease inhibition was considered to be blockage of the SH groups of Helicobacter pylori urease, since thiol reagents (L,D-dithiothreitol, L-cysteine and glutathione) abolished the inhibitory action and competitive active site Ni(2+) binding inhibitors (boric acid and sodium fluoride) carried invalid effect. Molecular docking study further supported the structure-activity analysis and indicated that baicalin and scutellarin interacted with the key residues Cys321 located on the mobile flap through S-H·π interaction, but did not interact with active site Ni(2+). Moreover, Baicalin (at 0.59-1.05 mM concentrations) and scutellarin (at 0.23-0.71 mM concentrations) did not exhibit significant cytotoxicity to GES-1. CONCLUSIONS Baicalin and scutellarin were non-competitive inhibitors targeting sulfhydryl groups especially Cys321 around the active site of Helicobacter pylori urease, representing potential to be good candidate for future research as urease inhibitor for treatment of Helicobacter pylori infection. Furthermore, our work gave additional scientific support to the use of Scutellaria baicalensis in traditional Chinese medicine (TCM) to treat gastrointestinal disorders.
Collapse
Affiliation(s)
- Xiao-Dan Yu
- College of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China
| | - Rong-Bo Zheng
- Guangzhou Wanglaoji Pharmaceutical Company Limited, Guangzhou, Guangdong 510450, P.R. China
| | - Jian-Hui Xie
- College of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510120, P.R. China
| | - Ji-Yan Su
- College of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China
| | - Xiao-Qi Huang
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, P.R. China
| | - Yong-Hong Wang
- Guangdong Institute of Microbiology, Guangzhou 510006, P.R. China
| | - Yi-Feng Zheng
- College of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China
| | - Zhi-Zhun Mo
- College of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China
| | - Xiao-Li Wu
- College of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China
| | - Dian-Wei Wu
- College of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China
| | - Ye-er Liang
- College of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China
| | - Hui-Fang Zeng
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, P.R. China.
| | - Zi-Ren Su
- College of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China; Dongguan Mathematical Engineering Academy of Chinese Medicine, Guangzhou, University of Chinese Medicine, Dongguan 523000, P.R. China
| | - Ping Huang
- College of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China.
| |
Collapse
|
40
|
Ju WZ, Zhao Y, Liu F, Wu T, Zhang J, Liu SJ, Zhou L, Dai GL, Xiong NN, Fang ZY. Clinical tolerability and pharmacokinetics of Erigerontis hydroxybenzene injection: results of a randomized phase I study in healthy Chinese volunteers. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2015; 22:319-325. [PMID: 25765839 DOI: 10.1016/j.phymed.2014.11.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 11/09/2014] [Accepted: 11/25/2014] [Indexed: 06/04/2023]
Abstract
Multiple phenolic compounds in the extract of Erigeron breviscapus synergistically contribute to the neurovascular protective effects. We conducted a phase I and pharmacokinetic study with the phenolic compound-enriched product extracted from Erigeron breviscapus, Erigerontis hydroxybenzenes injection (EHI), in healthy Chinese volunteers. A randomized, open-label, single-center, double-arm, dose-escalation study of EHI was conducted. The tolerability of intravenously EHI administrated in single- or multiple-dose (once daily for 7 days) was studied in 40 healthy Chinese volunteers and the pharmacokinetics of EHI was studied in additional 10 volunteers. The tolerated dose of intravenous infusion of EHI in healthy Chinese volunteers was 6 vials (equivalent to 90 mg bioactive phenolic compounds). The main limitations to dose escalation of EHI were transit changes in electrocardiogram and mild, transit increase in alanine aminotransferase. After intravenous administration of EHI, the average systemic clearance of multiple phenolic compounds of scutellarin, 1,3-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid, and 3,4-dicaffeoylquinic acid were 131, 29, 262, 112 L/h for male volunteers and 202, 28, 252, 117 L/h for female volunteers. The intervention of intravenous infusion of EHI in healthy Chinese volunteers was generally tolerated. The findings from this study provide data on the tolerability and pharmacokinetics of the extract from Erigeron breviscapus and support further trials.
Collapse
Affiliation(s)
- Wen-Zheng Ju
- Department of Clinical Pharmacology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| | - Yang Zhao
- Department of Pharmaceutical Sciences, University of Pittsburgh, PA, USA.
| | - Fang Liu
- Department of Clinical Pharmacology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Ting Wu
- Department of Clinical Pharmacology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jun Zhang
- Department of Clinical Pharmacology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Shi-Jia Liu
- Department of Clinical Pharmacology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Ling Zhou
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Guo-Liang Dai
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Ning-Ning Xiong
- Department of Clinical Pharmacology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhu-Yuan Fang
- Department of Clinical Pharmacology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Department of Cardiovascular Sciences, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
41
|
Genetic dys-regulation of astrocytic glutamate transporter EAAT2 and its implications in neurological disorders and manganese toxicity. Neurochem Res 2014; 40:380-8. [PMID: 25064045 DOI: 10.1007/s11064-014-1391-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/09/2014] [Accepted: 07/15/2014] [Indexed: 12/14/2022]
Abstract
Astrocytic glutamate transporters, the excitatory amino acid transporter (EAAT) 2 and EAAT1 (glutamate transporter 1 and glutamate aspartate transporter in rodents, respectively), are the main transporters for maintaining optimal glutamate levels in the synaptic clefts by taking up more than 90% of glutamate from extracellular space thus preventing excitotoxic neuronal death. Reduced expression and function of these transporters, especially EAAT2, has been reported in numerous neurological disorders, including amyotrophic lateral sclerosis, Alzheimer's disease, Parkinson's disease, schizophrenia and epilepsy. The mechanism of down-regulation of EAAT2 in these diseases has yet to be fully established. Genetic as well as transcriptional dys-regulation of these transporters by various modes, such as single nucleotide polymorphisms and epigenetics, resulting in impairment of their functions, might play an important role in the etiology of neurological diseases. Consequently, there has been an extensive effort to identify molecular targets for enhancement of EAAT2 expression as a potential therapeutic approach. Several pharmacological agents increase expression of EAAT2 via nuclear factor κB and cAMP response element binding protein at the transcriptional level. However, the negative regulatory mechanisms of EAAT2 have yet to be identified. Recent studies, including those from our laboratory, suggest that the transcriptional factor yin yang 1 plays a critical role in the repressive effects of various neurotoxins, such as manganese (Mn), on EAAT2 expression. In this review, we will focus on transcriptional epigenetics and translational regulation of EAAT2.
Collapse
|
42
|
In vitro inhibitory effects of scutellarin on six human/rat cytochrome P450 enzymes and P-glycoprotein. Molecules 2014; 19:5748-60. [PMID: 24802986 PMCID: PMC6271944 DOI: 10.3390/molecules19055748] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 04/25/2014] [Accepted: 04/25/2014] [Indexed: 02/08/2023] Open
Abstract
Inhibition of cytochrome P450 (CYP) and P-glycoprotein (P-gp) are regarded as the most frequent and clinically important pharmacokinetic causes among the various possible factors for drug-drug interactions. Scutellarin is a flavonoid which is widely used for the treatment of cardiovascular diseases. In this study, the in vitro inhibitory effects of scutellarin on six major human CYPs (CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A4) and six rat CYPs (CYP1A2, CYP2C7, CYP2C11, CYP2C79, CYP2D4, and CYP3A2) activities were examined by using liquid chromatography-tandem mass spectrometry. Meanwhile, the inhibitory effects of scutellarin on P-gp activity were examined on a human metastatic malignant melanoma cell line WM-266-4 by calcein-AM fluorometry screening assay. Results demonstrated that scutellarin showed negligible inhibitory effects on the six major CYP isoenzymes in human/rat liver microsomes with almost all of the IC50 values exceeding 100 μM, whereas it showed values of 63.8 μM for CYP2C19 in human liver microsomes, and 63.1 and 85.6 μM for CYP2C7 and CYP2C79 in rat liver microsomes, respectively. Scutellarin also showed weak inhibitory effect on P-gp. In conclusion, this study demonstrates that scutellarin is unlikely to cause any clinically significant herb-drug interactions in humans when co-administered with substrates of the six CYPs (CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A4) and P-gp.
Collapse
|