1
|
Guo R, Wang CL, Cao XJ, Yao XJ, Qiao X, Meng YT, Zhang T, Zhang Q. Rare oxoisoaporphine alkaloids from Menispermum dauricum with potential anti-inflammatory activity. PHYTOCHEMISTRY 2024; 225:114170. [PMID: 38830388 DOI: 10.1016/j.phytochem.2024.114170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/29/2024] [Accepted: 06/01/2024] [Indexed: 06/05/2024]
Abstract
Eleven alkaloids including four previously undescribed oxoisoaporphine alkaloids, menisoxoisoaporphines A-D (1-4), four known analogues (5-8), and three aporphine alkaloids (9-11), were isolated and identified from the rhizomes of Menispermum dauricum. Their structures were elucidated by extensive spectroscopic data and single-crystal X-ray diffraction analyses. Among them, compounds 1 and 4 were the first samples of oxoisoaporphine with C-6 isopentylamino moiety, and 2 was a rare C-4 methylation product of oxoisoaporphine alkaloid. The in vitro anti-inflammatory activity of compounds 1-11 was performed by evaluating the inhibition of NO level in LPS-induced RAW264.7 macrophages. Among them, compound 4 exhibited the most potent NO inhibition activity with an IC50 value of 1.95 ± 0.33 μM. The key structure-activity relationships of those oxoisoaporphine alkaloids for anti-inflammatory effects have been summarized.
Collapse
Affiliation(s)
- Rui Guo
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan, 030001, China
| | - Cun-Lin Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan, 030001, China
| | - Xiao-Juan Cao
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan, 030001, China
| | - Xiao-Juan Yao
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan, 030001, China
| | - Xin Qiao
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan, 030001, China
| | - Ya-Tian Meng
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan, 030001, China
| | - Tong Zhang
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan, 030001, China
| | - Qiong Zhang
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
2
|
Liu W, Yu Y, Hou T, Wei H, Lv F, Shen A, Liu Y, Wang J, Fu D. N-desmethyldauricine from Menispermum dauricum DC suppresses triple-negative breast cancer growth in 2D and 3D models by downregulating the NF-κB signaling pathway. Chem Biol Interact 2024; 398:111113. [PMID: 38908813 DOI: 10.1016/j.cbi.2024.111113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 06/07/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
Triple negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, for which targeted therapy regimens are lacking. The traditional Chinese medicine Menispermum dauricum DC (M. dauricum) and its compounds have been reported to have antitumor activity against various cancers; however, their anti-TNBC activity is unknown. In this work, dauricine and N-desmethyldauricine from M. dauricum were separated and identified to have anti-TNBC via a multi-component bioactivity and structure-guided method. The cell counting kit 8 assay showed that dauricine and N-desmethyldauricine inhibited the proliferation of four tested TNBC cell lines, with half maximal inhibitory concentration values ranging from 5.01 μM to 13.16 μM. Further research suggested that N-desmethyldauricine induced cell apoptosis, arrested cell cycle progression in the G0/G1 phase, and inhibited cell migration. Western blot analysis revealed that the proapoptotic protein cleaved-poly-ADP-ribose polymerase 1 was upregulated, and the G0/G1 phase-related proteins cyclin-dependent kinase 2 and cyclin D1 and the migration-related protein matrix metallopeptidase 9 were downregulated. Furthermore, N-desmethyldauricine decreased the protein expression of p65, an important subunit of nuclear factor kappa-beta (NF-κB). Moreover, an antiproliferation assay of three-dimensional (3D) tumor spheroids showed that N-desmethyldauricine diminished cell‒cell adhesion and suppressed the growth of TNBC 3D spheroids. Taken together, these findings indicate that N-desmethyldauricine inhibited the proliferation of TNBC cells and decreased the expression of p65 in the NF-κB pathway.
Collapse
Affiliation(s)
- Wenting Liu
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Yan Yu
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Tao Hou
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang, 220000, China
| | - Hongli Wei
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Fangbin Lv
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang, 220000, China
| | - Aijin Shen
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang, 220000, China
| | - Yanfang Liu
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang, 220000, China
| | - Jixia Wang
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang, 220000, China.
| | - Dongmei Fu
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China.
| |
Collapse
|
3
|
Zhou J, Wang J, Wang J, Li D, Hou J, Li J, Bai Y, Gao J. An inulin-type fructan CP-A from Codonopsis pilosula attenuates experimental colitis in mice by promoting autophagy-mediated inactivation of NLRP3 inflammasome. Chin J Nat Med 2024; 22:249-264. [PMID: 38553192 DOI: 10.1016/s1875-5364(24)60556-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Indexed: 04/02/2024]
Abstract
Inulin-type fructan CP-A, a predominant polysaccharide in Codonopsis pilosula, demonstrates regulatory effects on immune activity and anti-inflammation. The efficacy of CP-A in treating ulcerative colitis (UC) is, however, not well-established. This study employed an in vitro lipopolysaccharide (LPS)-induced colonic epithelial cell model (NCM460) and an in vivo dextran sulfate sodium (DSS)-induced colitis mouse model to explore CP-A's protective effects against experimental colitis and its underlying mechanisms. We monitored the clinical symptoms in mice using various parameters: body weight, disease activity index (DAI), colon length, spleen weight, and histopathological scores. Additionally, molecular markers were assessed through enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (qRT-PCR), immunofluorescence (IF), immunohistochemistry (IHC), and Western blotting assays. Results showed that CP-A significantly reduced reactive oxygen species (ROS), tumor necrosis factor-alpha (TNF-α), and interleukins (IL-6, IL-1β, IL-18) in LPS-induced cells while increasing IL-4 and IL-10 levels and enhancing the expression of Claudin-1, ZO-1, and occludin proteins in NCM460 cells. Correspondingly, in vivo findings revealed that CP-A administration markedly improved DAI, reduced colon shortening, and decreased the production of myeloperoxidase (MPO), malondialdehyde (MDA), ROS, IL-1β, IL-18, and NOD-like receptor protein 3 (NLRP3) inflammasome-associated genes/proteins in UC mice. CP-A treatment also elevated glutathione (GSH) and superoxide dismutase (SOD) levels, stimulated autophagy (LC3B, P62, Beclin-1, and ATG5), and reinforced Claudin-1 and ZO-1 expression, thereby aiding in intestinal epithelial barrier repair in colitis mice. Notably, the inhibition of autophagy via chloroquine (CQ) diminished CP-A's protective impact against colitis in vivo. These findings elucidate that CP-A's therapeutic effect on experimental colitis possibly involves mitigating intestinal inflammation through autophagy-mediated NLRP3 inflammasome inactivation. Consequently, inulin-type fructan CP-A emerges as a promising drug candidate for UC treatment.
Collapse
Affiliation(s)
- Jiangtao Zhou
- School of Pharmaceutical Science, Shanxi Medical University, Jinzhong 030600, China
| | - Jun Wang
- School of Pharmaceutical Science, Shanxi Medical University, Jinzhong 030600, China
| | - Jiajing Wang
- School of Pharmaceutical Science, Shanxi Medical University, Jinzhong 030600, China
| | - Deyun Li
- School of Pharmaceutical Science, Shanxi Medical University, Jinzhong 030600, China
| | - Jing Hou
- School of Pharmaceutical Science, Shanxi Medical University, Jinzhong 030600, China
| | - Jiankuan Li
- School of Pharmaceutical Science, Shanxi Medical University, Jinzhong 030600, China
| | - Yun'e Bai
- School of Pharmaceutical Science, Shanxi Medical University, Jinzhong 030600, China
| | - Jianping Gao
- School of Pharmaceutical Science, Shanxi Medical University, Jinzhong 030600, China.
| |
Collapse
|
4
|
Xue H, Mei C, Wang F, Tang X. Relationship among Chinese herb polysaccharide (CHP), gut microbiota, and chronic diarrhea and impact of CHP on chronic diarrhea. Food Sci Nutr 2023; 11:5837-5855. [PMID: 37823142 PMCID: PMC10563694 DOI: 10.1002/fsn3.3596] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/13/2023] [Accepted: 07/22/2023] [Indexed: 10/13/2023] Open
Abstract
Chronic diarrhea, including diarrhea-predominant irritable bowel syndrome (IBS-D), osmotic diarrhea, bile acid diarrhea, and antibiotic-associated diarrhea, is a common problem which is highly associated with disorders of the gut microbiota composition such as small intestinal bacterial overgrowth (SIBO) and so on. A growing number of studies have supported the view that Chinese herbal formula alleviates the symptoms of diarrhea by modulating the fecal microbiota. Chinese herbal polysaccharides (CHPs) are natural polymers composed of monosaccharides that are widely found in Chinese herbs and function as important active ingredients. Commensal gut microbiota has an extensive capacity to utilize CHPs and play a vital role in degrading polysaccharides into short-chain fatty acids (SCFAs). Many CHPs, as prebiotics, have an antidiarrheal role to promote the growth of beneficial bacteria and inhibit the colonization of pathogenic bacteria. This review systematically summarizes the relationship among gut microbiota, chronic diarrhea, and CHPs as well as recent progress on the impacts of CHPs on the gut microbiota and recent advances on the possible role of CHPs in chronic diarrhea.
Collapse
Affiliation(s)
- Hong Xue
- Digestive Laboratory of Traditional Chinese Medicine Research Institute of Spleen and Stomach DiseasesXiyuan Hospital, China Academy of Chinese Medical SciencesBeijingChina
| | - Chun‐Feng Mei
- Digestive Laboratory of Traditional Chinese Medicine Research Institute of Spleen and Stomach DiseasesXiyuan Hospital, China Academy of Chinese Medical SciencesBeijingChina
| | - Feng‐Yun Wang
- Digestive Laboratory of Traditional Chinese Medicine Research Institute of Spleen and Stomach DiseasesXiyuan Hospital, China Academy of Chinese Medical SciencesBeijingChina
| | - Xu‐Dong Tang
- Digestive Laboratory of Traditional Chinese Medicine Research Institute of Spleen and Stomach DiseasesXiyuan Hospital, China Academy of Chinese Medical SciencesBeijingChina
| |
Collapse
|
5
|
Lv L, Chen Z, Bai W, Hao J, Heng Z, Meng C, Wang L, Luo X, Wang X, Cao Y, He J. Taurohyodeoxycholic acid alleviates trinitrobenzene sulfonic acid induced ulcerative colitis via regulating Th1/Th2 and Th17/Treg cells balance. Life Sci 2023; 318:121501. [PMID: 36801213 DOI: 10.1016/j.lfs.2023.121501] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/21/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023]
Abstract
AIMS Taurohyodeoxycholic acid (THDCA), a natural 6α-hydroxylated bile acid, exhibits intestinal anti-inflammatory effects. This study aimed to explore the efficacy of THDCA on ulcerative colitis and to reveal its mechanisms of action. MAIN METHODS Colitis was induced by intrarectal administration of trinitrobenzene sulfonic acid (TNBS) to mice. Mice in the treatment group were gavage THDCA (20, 40, and 80 mg/kg/day) or sulfasalazine (500 mg/kg/day) or azathioprine (10 mg/kg/day). The pathologic markers of colitis were comprehensively assessed. The levels of Th1-/Th2-/Th17-/Treg-related inflammatory cytokines and transcription factors were detected by ELISA, RT-PCR, and Western blotting. The balance of Th1/Th2 and Th17/Treg cells was analyzed by Flow cytometry. KEY FINDINGS THDCA significantly alleviated colitis by improving the body weight, colon length, spleen weight, histological characteristics, and MPO activity of colitis mice. THDCA reduced the secretion of Th1-/Th17-related cytokines (IFN-γ, IL-12p70, IL-6, IL-17A, IL-21, IL-22, and TNF-α) and the expressions of transcription factors (T-bet, STAT4, RORγt, and STAT3), but increase the production of Th2-/Treg-related cytokines (IL-4, IL-10, and TGF-β1) and the expressions of transcription factors (GATA3, STAT6, Foxp3, and Smad3) in the colon. Meanwhile, THDCA inhibited the expressions of IFN-γ, IL-17A, T-bet, and RORγt, but improved the expression of IL-4, IL-10, GATA3, and Foxp3 in the spleen. Furthermore, THDCA restored the proportion of Th1, Th2, Th17, and Treg cells, and balanced the Th1/Th2 and Th17/Treg immune response of colitis mice. SIGNIFICANCE THDCA can alleviate TNBS-induced colitis via regulating Th1/Th2 and Th17/Treg balance, which may represent a promising treatment for patients with colitis.
Collapse
Affiliation(s)
- Le Lv
- Biomedicine Key Laboratory of Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, China
| | - Ziyang Chen
- Biomedicine Key Laboratory of Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, China
| | - Wenhui Bai
- Biomedicine Key Laboratory of Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, China
| | - Jiahui Hao
- Biomedicine Key Laboratory of Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, China
| | - Zhengang Heng
- Biomedicine Key Laboratory of Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, China
| | - Caijin Meng
- Biomedicine Key Laboratory of Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, China
| | - Lin Wang
- Biomedicine Key Laboratory of Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, China
| | - Xianglan Luo
- Biomedicine Key Laboratory of Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, China
| | - Xinmiao Wang
- Biomedicine Key Laboratory of Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, China
| | - Yanjun Cao
- Biomedicine Key Laboratory of Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, China
| | - Jiao He
- Biomedicine Key Laboratory of Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, China.
| |
Collapse
|
6
|
Daurisoline alleviated experimental colitis in vivo and in vitro: Involvement of NF-κB and Wnt/β-Catenin pathway. Int Immunopharmacol 2022; 108:108714. [PMID: 35366641 DOI: 10.1016/j.intimp.2022.108714] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/07/2022] [Accepted: 03/16/2022] [Indexed: 11/24/2022]
Abstract
Daurisoline (DS) is one of the most abundant alkaloids extracted from the rhizome of Menispermum Dauricum DC, which is traditionally used to treat inflammatory diseases, especially intestinal inflammation. In this study, we established lipopolysaccharide (LPS)-induced RAW 264.7 macrophages in vitro and Dextran sulfate sodium (DSS)-induced colitis mice model in vivo to investigate the anti-inflammatory effect of DS and its underlying mechanisms. Disease activity index (DAI) was detected during drug intervention. The colon length, macroscopic changes and histopathological scores were adopted to observe the physiological status and the colon injury. The apoptosis of intestinal mucosa was detected using TUNEL. In addition, involved molecular indicators were measured by ELISA kits, RT-qPCR, immunofluorescence (IF), immunohistochemistry (IHC) and western blotting. The vitro experiments indicated that DS significantly suppressed the production of Nitric oxide (NO), reactive oxygen species (ROS) and glutathione (GSH), as well as inhibited the expression of NF-κB signaling pathway in RAW 264.7 cells induced by LPS. Consistent with the vitro experimental results, different doses of DS significantly reduced the incidence of diarrhea, DAI, shortening of the colon, visible damage and histological damage in DSS-induced colitis mice. Moreover, DS treatment decreased the levels of pro-inflammatory mediators cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2) and interleukin (IL)-1β, and increased the anti-inflammatory cytokines IL-4 and IL-10 in colon tissues. RT-qPCR, western blotting and immunofluorescence analyses further demonstrated that DS inhibits the expression of Wnt/β-Catenin pathway. We reported for the first time that DS may be an active ingredient in treating ulcerative colitis. Its mechanism might be related to the regulation of the NF-κB and Wnt/β-Catenin signaling pathway.
Collapse
|
7
|
Wei HL, Han Y, Zhou H, Hou T, Yao YM, Wen CM, Wang CR, Wang JX, Shen AJ, Zhang XL, Li H, Liu YF. Isoquinoline alkaloid dimers with dopamine D1 receptor activities from Menispermum dauricum DC. PHYTOCHEMISTRY 2022; 194:113015. [PMID: 34798412 DOI: 10.1016/j.phytochem.2021.113015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/20/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
A phytochemical investigation on chemical constituents from the rhizomes of Menispermum dauricum DC. identified eight undescribed dimeric alkaloids with structurally diverse monomeric isoquinoline. Alkaloid structures were elucidated by a combination of spectroscopic data analyses and time-dependent density functional theory (TDDFT) ECD calculation. The isolates were evaluated for inhibitory effect on dopamine D1 receptor and compound 1 exhibited potent D1 receptor antagonistic activity with an IC50 value of 8.4 ± 2.0 μM.
Collapse
Affiliation(s)
- Hong-Li Wei
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yang Han
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Han Zhou
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Tao Hou
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Yu-Min Yao
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Chun-Mei Wen
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, People's Republic of China
| | - Chao-Ran Wang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Ji-Xia Wang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Ai-Jin Shen
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Xiu-Li Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215006, People's Republic of China
| | - Hao Li
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, People's Republic of China
| | - Yan-Fang Liu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China; Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, People's Republic of China.
| |
Collapse
|
8
|
Deng B, Jiang XL, Tan ZB, Cai M, Deng SH, Ding WJ, Xu YC, Wu YT, Zhang SW, Chen RX, Kan J, Zhang EX, Liu B, Zhang JZ. Dauricine inhibits proliferation and promotes death of melanoma cells via inhibition of Src/STAT3 signaling. Phytother Res 2021; 35:3836-3847. [PMID: 33792976 DOI: 10.1002/ptr.7089] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 02/07/2021] [Accepted: 02/12/2021] [Indexed: 12/12/2022]
Abstract
Melanoma is the most common type of skin cancer. Signal transducer and activator of transcription 3 (STAT3) signaling has been demonstrated to be a therapeutic target for melanoma. Dauricine (Dau), an alkaloid compound isolated from the root of Menispermum dauricum DC., has shown tumor-suppressing effects in multiple human cancers, but its potential in melanoma remains unexplored. In this study, we demonstrated that Dau significantly inhibited the viability and proliferation of A375 and A2058 melanoma cells. Death of melanoma cells was also markedly promoted by Dau. Moreover, Dau inhibited phosphorylation-mediated activation of STAT3 and Src in a dose-dependent manner. Notably, constitutive activation of Src partially abolished the antiproliferative and cytotoxic activities of Dau on melanoma cells. Molecular docking showed that Dau could dock on the kinase domain of Src with a binding energy of -10.42 kcal/mol. Molecular dynamics simulations showed that Src-Dau binding was stable. Surface plasmon resonance imaging analysis also showed that Dau has a strong binding affinity to Src. In addition, Dau suppressed the growth of melanoma cells and downregulated the activation of Src/STAT3 in a xenograft model in vivo. These data demonstrated that Dau inhibits proliferation and promotes cell death in melanoma cells by inhibiting the Src/STAT3 pathways.
Collapse
Affiliation(s)
- Bo Deng
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.,Department of Oncology, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiao-Li Jiang
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.,Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, China
| | - Zhang-Bin Tan
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Min Cai
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Sui-Hui Deng
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Wen-Jun Ding
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - You-Cai Xu
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Yu-Ting Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Shuang-Wei Zhang
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Rui-Xue Chen
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Jun Kan
- Department of Oncology, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - En-Xin Zhang
- Department of Oncology, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bin Liu
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Jing-Zhi Zhang
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
9
|
Zhang H, Wang X, Guo Y, Liu X, Zhao X, Teka T, Lv C, Han L, Huang Y, Pan G. Thirteen bisbenzylisoquinoline alkaloids in five Chinese medicinal plants: Botany, traditional uses, phytochemistry, pharmacokinetic and toxicity studies. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113566. [PMID: 33166629 DOI: 10.1016/j.jep.2020.113566] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/13/2020] [Accepted: 11/05/2020] [Indexed: 06/11/2023]
Abstract
RELEVANCE Bisbenzylisoquinoline (BBIQ) alkaloids are generally present in plants of Berberidaceae, Monimiaceae and Ranunculaceae families in tropical and subtropical regions. Some species of these families are used in traditional Chinese medicine, with the effects of clearing away heat and detoxification, promoting dampness and defecation, and eliminating sores and swelling. This article offers essential data focusing on 13 representative BBIQ compounds, which are mainly extracted from five plants. The respective botany, traditional uses, phytochemistry, pharmacokinetics, and toxicity are summarized comprehensively. In addition, the ADME prediction of the 13 BBIQ alkaloids is compared and analyzed with the data obtained. MATERIALS AND METHODS We have conducted a systematic review of the botanical characteristics, traditional uses, phytochemistry, pharmacokinetics and toxicity of BBIQ alkaloids based on literatures collected from PubMed, Web of Science and Elsevier during 1999-2020. ACD/Percepta software was utilized to predict the pharmacokinetic parameters of BBIQ alkaloids and their affinity with enzymes and transporters. RESULTS Botany, traditional uses, phytochemistry, pharmacokinetic and toxicity of 13 alkaloids, namely, tetrandrine, dauricine, curine, trilobine, isotrilobine, cepharanthine, daurisoline, thalicarpine, thalidasine, isotetrandrine, liensinine, neferine and isoliensinine, have been summarized in this paper. It can't be denied that these alkaloids are important material basis of pharmacological effects of family Menispermaceae and others, and for traditional and local uses which has been basically reproduced in the current studies. The 13 BBIQ alkaloids in this paper showed strong affinity and inhibitory effect on P-glycoprotein (P-gp), with poor oral absorption and potent binding ability with plasma protein. BBIQ alkaloids represented by tetrandrine play a key role in regulating P-gp or reversing multidrug resistance (MDR) in a variety of tumors. The irrationality of their usage could pose a risk of poisoning in vivo, including renal and liver toxicity, which are related to the formation of quinone methide during metabolism. CONCLUSION Although there is no further clinical evaluation of BBIQ alkaloids as MDR reversal agents, their effects on P-gp should not be ignored. Considering their diverse distribution, pharmacokinetic characteristics and toxicity reported during clinical therapy, the quality standards in different plant species and the drug dosage remain unresolved problems.
Collapse
Affiliation(s)
- Han Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin-301617, China
| | - Xiaoming Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin-301617, China
| | - Yaqing Guo
- Tianjin University of Traditional Chinese Medicine, Tianjin-301617, China
| | - Xiaomei Liu
- Tianjin University of Traditional Chinese Medicine, Tianjin-301617, China
| | - Xizi Zhao
- Tianjin University of Traditional Chinese Medicine, Tianjin-301617, China
| | - Tekleab Teka
- Tianjin University of Traditional Chinese Medicine, Tianjin-301617, China
| | - Chunxiao Lv
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin-300250, China
| | - Lifeng Han
- Tianjin University of Traditional Chinese Medicine, Tianjin-301617, China.
| | - Yuhong Huang
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin-300250, China
| | - Guixiang Pan
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin-300250, China.
| |
Collapse
|
10
|
Yu T, Li Z, Xu L, Yang M, Zhou X. Anti-inflammation effect of Qingchang suppository in ulcerative colitis through JAK2/STAT3 signaling pathway in vitro and in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2021; 266:113442. [PMID: 33027643 DOI: 10.1016/j.jep.2020.113442] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/22/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qingchang Suppository (QCS) is a Traditional Chinese Medicine formula (TCM) for Ulcerative Colitis (UC), which has been used for the treatment of UC for more than 30 years with therapeutic effect. This formula is optimized from a classic formula called "Qingdai San". Although some experiments have shown QCS effective for UC, its mechanism on UC is still unclear and needs to be clarified. AIM OF THE STUDY To investigate the usage of QCS in our hospital, clarify the main compounds in QCS and their anti-inflammation effect both in vivo and in vitro. MATERIALS AND METHODS Prescription analysis was performed in the clinical department and pharmacology network prediction was predicted for relative signal pathways. 2,4,6-Trinitrobenzenesulfonic acid (TNBS)-induced colitis rats and Lipopolysaccharide (LPS)-induced Caco-2 cell as an inflammatory model were used to evaluate the effect of QCS. RESULTS QCS and its herbs were associated with inflammatory and immunological diseases. QCS and its ingredients showed little toxicity on Caco-2 cell and could down-regulate the level of Interleukin-6 (IL-6) and expression of signal transducer and activator of transcription 3 (P-STAT3 Tyr705) in LPS-induced Caco-2 cell. In an animal experiment, QCS and its ingredients (indigo and gallic acid) could alleviate the symptoms of TNBS-induced colitis of rats, significantly decrease pro-inflammatory factors and anti-inflammatory factors as well as inhibit the expressions of P-STAT3 and Tyr705. CONCLUSION QCS and its components could improve UC by anti-inflammation. JAK2/STAT3 pathway might be the possible signaling pathway.
Collapse
Affiliation(s)
- Tianyuan Yu
- Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Zicheng Li
- Shanghai Pu Dong Hospital, Shanghai, China
| | - Liwei Xu
- Suzhou Hospital of Traditional Chinese Medicine, China
| | - Ming Yang
- Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Xin Zhou
- Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
11
|
Ren W, Wu H, Tian Z, Zhang W, Dong W, Jiang H, Liu Y. Phytochemical and chemotaxonomic study on the dried rhizome of Menispermum dauricum DC. BIOCHEM SYST ECOL 2021. [DOI: 10.1016/j.bse.2020.104189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Wei J, Shao J, Li Y, Li Y. A sensitive HPLC-FLD method for the quantification of 6-O-demethylmenisporphine isolated from Menispermi Rhizoma in rat plasma. J Anal Sci Technol 2021. [DOI: 10.1186/s40543-020-00255-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
To investigate the pharmacokinetics of 6-O-demethylmenisporphine, an oxoisoaporphine alkaloid with significant anti-tumor activities and isolated from Menispermi Rhizoma, a novel and sensitive HPLC assay was established for 6-O-demethylmenisporphine quantification in rat plasma.
Methods
Peak responses were detected by a highly selective and sensitive fluorescence detector with 426-nm excitation and 514-nm emission wavelengths. Curcumin was employed as the internal standard (IS). A Capcell Pak C18 column (150 mm × 4.6 mm i.d., 5 μm) and an isocratic elution procedure with a flow rate of 1.0 mL/min were used to exclude the endogenous interfering substance. Acetonitrile-water (68:32, v/v) containing 1% formic acid was employed as mobile phase. A 7-point calibration curve that covered the concentration range of 10–2500 ng/mL was constructed.
Results
A good linearity was observed with a correlation coefficient (r) of 0.9993. The lower limit of quantification for 6-O-demethylmenisporphine was 10 ng/mL. The mean recoveries of analyte in rat plasma exceeded 80.5%. The precision at four concentration levels was within 11.3% and the accuracy ranged from − 7.6 to 6.7%.
Conclusion
Using this new HPLC-FLD method, the investigation of plasma samples from rats following oral dosing of neat compound and Menispermi Rhizoma extract was successfully conducted. The results will provide a reference for the evaluation of preclinical safety of 6-O-demethylmenisporphine.
Collapse
|
13
|
Wang Y, Liu K, Qi Z, Chen T, Yu W, Jiang Y, Li G, Xiao H. Therapeutic Mechanism and Effect of Camptothecin on Dextran Sodium Sulfate-Induced Ulcerative Colitis in Mice. J Immunol Res 2021; 2021:5556659. [PMID: 33987448 PMCID: PMC8093050 DOI: 10.1155/2021/5556659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/25/2021] [Accepted: 04/08/2021] [Indexed: 12/30/2022] Open
Abstract
Camptothecin (CPT) is a cytotoxic quinoline alkaloid isolated from the bark and branches of the Chinese tree Camptotheca acuminata. CPT inhibits topoisomerase I. It possesses various antitumor activities and is mainly used in the treatment of colon, ovarian, liver, and bone cancers as well as leukemia. CPT inhibits the expressions of inflammatory genes and can prevent death from chronic inflammation. Therefore, we investigated the effect of CPT treatment in ulcerative colitis (UC) using DSS-induced UC mouse model; after that, we explored its potential mechanisms. Here, we found that CPT exerted protection on DSS-induced UC in rats. In addition, the administration prominently reduced the disease activity index as well as colon length of the model rats and remarkably reduced the inflammatory cytokines. Further, CPT significantly reduced several vital proinflammatory proteins in LPS-induced RAW264.7 cells. In summary, our findings demonstrate that CPT is hopefully to act as a therapeutic agent for UC.
Collapse
Affiliation(s)
- Yizhuo Wang
- 1Department of Cancer Center, First Hospital of Jilin University, Changchun 130000, China
| | - Kunjian Liu
- 2Department of Anorectal, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun 130021, China
| | - Zhiyong Qi
- 3Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Tong Chen
- 3Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Wei Yu
- 3Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Yang Jiang
- 3Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Guofeng Li
- 2Department of Anorectal, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun 130021, China
| | - Huijie Xiao
- 3Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| |
Collapse
|
14
|
Wei J, Yu Y, Li Y, Shao J, Li J, Li L, Li Y. Pharmacokinetics, tissue distribution and excretion of 6-O-demethylmenisporphine, a bioactive oxoisoaporphine alkaloid from Menispermi Rhizoma, as determined by a HPLC-MS/MS method. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1156:122297. [PMID: 32829132 PMCID: PMC7395816 DOI: 10.1016/j.jchromb.2020.122297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/15/2020] [Accepted: 07/30/2020] [Indexed: 12/19/2022]
Abstract
6-O-demethylmenisporphine, a major active oxoisoaporphine alkaloid isolated from Menispermi Rhizoma, has been confirmed to possess significant bioactivities, including anti-cancer and anti-hypoxia effects. However, few researches on quantifying 6-O-demethylmenisporphine in biosamples have been performed. In this research, a sensitive HPLC-MS/MS approach for determining 6-O-demethylmenisporphine in various biological matrices (plasma, tissue, urine, bile and feces) of rat has been constructed. Carbamazepine was chosen as the internal standard (IS). All biosamples were prepared using a simple one-step acetonitrile precipitation. A Capcell Pak C18 column coupled with an isocratic mobile phase consisted of acetonitrile (0.1% formic acid)-water (90:10, v/v), was employed to separate 6-O-demethylmenisporphine from endogenous interferences. Peak responses were detected by multiple reaction monitoring (MRM) transitions with m/z 308.0 → 264.9 for 6-O-demethylmenisporphine and m/z 237.0 → 194.1 for IS in positive-ion mode. The approach exhibited perfect linearity over a range of 5-2000 ng/mL for plasma and 2-1000 ng/mL for various tissue, urine, bile and feces. The lower limit of quantification (LLOQ) for analyte among different biological samples ranged from 2 ng/mL to 5 ng/mL. The newly established method was simple, efficient and sensitive, which was successfully applied to investigate the absorption, distribution, and excretion of 6-O-demethylmenisporphine after oral dosing to rats. The results indicated that 6-O-demethylmenisporphine could be well absorbed into blood circulation and widely distributed in various tissues after oral dosing, the oral bioavailability was up to 51.52%. Meanwhile, it was widely metabolized in vivo and eliminated as the metabolites, the unconverted form was excreted mainly by feces route. The bioavailability, tissue distribution and excretion characteristics of 6-O-demethylmenisporphine were firstly revealed, which will provide references for further development of 6-O-demethylmenisporphine as an anti-tumor drug candidate.
Collapse
Affiliation(s)
- Jinxia Wei
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Yingying Yu
- Department of Health Service, Logistics College of Chinese People' s Armed Police Forces, Tianjin 300309, China
| | - Yanan Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jia Shao
- Department of Pharmacy, Tianjin First Center Hospital, Tianjin 300192, China
| | - Jianyu Li
- Department of Health Service, Logistics College of Chinese People' s Armed Police Forces, Tianjin 300309, China
| | - Lingzhi Li
- Department of Health Service, Logistics College of Chinese People' s Armed Police Forces, Tianjin 300309, China
| | - Yubo Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
15
|
Chemical constituents from the rhizome of Menispermum dauricum DC. and their chemotaxonomic significance. BIOCHEM SYST ECOL 2020. [DOI: 10.1016/j.bse.2020.104047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Arunachalam K, Damazo AS, Macho A, Lima JCDS, Pavan E, Figueiredo FDF, Oliveira DM, Cechinel-Filho V, Wagner TM, Martins DTDO. Piper umbellatum L. (Piperaceae): Phytochemical profiles of the hydroethanolic leaf extract and intestinal anti-inflammatory mechanisms on 2,4,6 trinitrobenzene sulfonic acid induced ulcerative colitis in rats. JOURNAL OF ETHNOPHARMACOLOGY 2020; 254:112707. [PMID: 32112897 DOI: 10.1016/j.jep.2020.112707] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 02/12/2020] [Accepted: 02/21/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Piper umbellatum L. leaves, commonly found in the Amazon, Cerrado and Atlantic rain forest regions of Brazil, are widely used as a traditional medicine to treat gastrointestinal disorders and inflammation, among others diseases. Also, previous scientific studies demonstrated that P. umbellatum has gastroprotective and anti-inflammatory activity. AIM To investigate the phytochemical profiles and the intestinal anti-inflammatory effect of the hydroethanolic extract of P. umbellatum (HEPu) leaf on ulcerative colitis in rats. MATERIALS AND METHODS In this study, the chemical composition of HEPu was analyzed by gas chromatography-mass spectrometry (GC-MS) and liquid chromatography coupled to mass spectrometry (LC/MS). Also, this work studied the effects of HEPu on ulcerative colitis induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS, 30 mg/mL in 20% ethanol) by intrarectal administration in rats. Simultaneously, animals were pre-treated orally with HEPu (30, 100 and 300 mg/kg), mesalazine (500 mg/kg), or vehicle. At the end of the experimental period, clinical signs of ulcerative colitis were evaluated by determination of weight loss, gross appearance, ulcer area and histological changes. Reduced glutathione (GSH), lipoperoxides (MDA) and nitric oxide (NO) levels, and superoxide dismutase (SOD), myeloperoxidase (MPO) and catalase (CAT) activities were determined in colon tissues. Also, pro-inflammatory mediators such as tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL- 1β) were quantified by immunoassay on the surface of fluorescent-coded magnetic beads (Luminex MagPix System). RESULTS GC-MS analysis showed the presence of 17 different phytochemical compounds in the HEPu. LC/MS analyses revealed the presence of compounds in HEPu as protocatechuic acid, ferulic acid, kaempferol, rosmarinic acid, apigenin and ursolic acid. Treatment with HEPu significantly ameliorated weight loss, macroscopic damage, ulcerated area and histopathological changes such as sub-mucosal edema, cell infiltration, ulceration and necrosis (p < 0.001). Furthermore, HEPu (30, 100, and 300 mg/kg, p.o) inhibited the levels of oxidative parameters, such as MPO (49%, 53%, and 62%, p < 0.001), NO (20%, 19%, 22%, p < 0.01), and MDA (75%, 83%, 70%, p < 0.001), whereas increased the antioxidant activities such as SOD (208%, 192%, 64%, p < 0.001), GSH (94%, 75%, 49%, p < 0.01), and CAT (92%, 69%, 108%, p < 0.01). The extract also inhibited the pro-inflammatory cytokines TNF-α (81%, 85%, 85%, p < 0.001) and IL-1β (95%, 79%, 89%, p < 0.001) levels. CONCLUSION Together, these results revealed that P. umbellatum L. is a promising source of metabolites to be used in the treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Karuppusamy Arunachalam
- Área de Farmacologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, MT, Brazil
| | - Amilcar Sabino Damazo
- Área de Histologia e Biologia Celular, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, MT, Brazil
| | - Antonio Macho
- Programa de Pós-graduação em Ciências Médicas, Faculdade de Medicina, Universidade de Brasília (UnB), Brasília, DF, Brazil
| | - Joaquim Corsino da Silva Lima
- Área de Farmacologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, MT, Brazil
| | - Eduarda Pavan
- Área de Farmacologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, MT, Brazil
| | - Fabiana de Freitas Figueiredo
- Área de Farmacologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, MT, Brazil
| | - Darley Maria Oliveira
- Instituto de Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Campus Sinop-MT, Brazil
| | - Valdir Cechinel-Filho
- Programa de Pós-Graduação em Ciências Farmacêuticas e Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil
| | - Theodoro Marcel Wagner
- Programa de Pós-Graduação em Ciências Farmacêuticas e Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil
| | - Domingos Tabajara de Oliveira Martins
- Área de Farmacologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, MT, Brazil.
| |
Collapse
|