1
|
Liang Q, Liu X, Xu X, Chen Z, Luo T, Su Y, Xie C. Molecular Mechanisms and Therapeutic Perspectives of Luteolin on Diabetes and Its Complications. Eur J Pharmacol 2025:177691. [PMID: 40311831 DOI: 10.1016/j.ejphar.2025.177691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/13/2025] [Accepted: 04/29/2025] [Indexed: 05/03/2025]
Abstract
BACKGROUND Extensive preclinical studies have established luteolin, a flavonoid with potent antidiabetic activity, as a therapeutic candidate for preventing and managing various diabetic complications including cardiomyopathy, nephropathy, and osteopathy. This systematic review evaluates current evidence regarding luteolin's antidiabetic potential. AIM OF THE STUDY This study evaluates luteolin's efficacy in diabetes management through evidence synthesis, while critically assessing current research challenges and translational opportunities. METHODS A comprehensive literature search was conducted across Pubmed, Embase, Web of Science, and Google Scholar databases, encompassing articles published between 2000-2024. RESULTS Luteolin is a naturally occurring flavonoid that has strong antidiabetic properties. It regulates intestinal microenvironmental homeostasis, lipogenesis and catabolism, and the absorption of carbohydrates. It also modulates nine diabetic complications by reducing inflammation, oxidative stress, apoptosis, and autophagy. Luteolin's potential nutritional and physiological benefits notwithstanding, attention must be directed immediately to its bioavailability, innovative formulations, safety assessment, synergistic effects, and optimal dosage and time for supplementation. In particular, clinical studies are needed to validate efficacy and safety and provide a reliable scientific basis. CONCLUSION Luteolin may act as a pleiotropic molecule targeting multiple signaling cascades to exert antidiabetic bioactivity.
Collapse
Affiliation(s)
- Qingzhi Liang
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, China
| | - Xiaoqin Liu
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, China
| | - Xin Xu
- Department of Emergency, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, China
| | - Zhengtao Chen
- Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Ting Luo
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, China
| | - Yi Su
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, China
| | - Chunguang Xie
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, 610072, China; Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, China.
| |
Collapse
|
2
|
Yang P, Tian D, Han XY, Zou QJ, Ma LJ, Wei M, Yu M, Zou ZM. Optimal harvest period and quality control markers of cultivated Flos Chrysanthemi Indici using untargeted/targeted metabolomics, chemometric analysis and in vivo study. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118533. [PMID: 38971347 DOI: 10.1016/j.jep.2024.118533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/14/2024] [Accepted: 07/04/2024] [Indexed: 07/08/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Flos Chrysanthemi Indici (FCI), the flower of Chrysanthemum Indicum L., is a popular traditional Chinese medicine (TCM) for treatment of inflammatory diseases in China. FCI is also a functional food, and is widely used as herbal tea for clearing heat and detoxicating. AIM OF THE STUDY To explore quality control markers of FCI based on the optimal harvest period. MATERIALS AND METHODS First, UPLC-Q-TOF/MS based untargeted metabolomics was applied to explore the chemical profiles of FCIs collected at bud stages (BS), initial stages (IS), full bloom stages (FS) and eventual stages (ES) from eight cultivated regions in China. Subsequently, lipopolysaccharide (LPS)-induced RAW264.7 cell inflammatory model and carrageenan-induced rat paw edema model were used to confirm the anti-inflammatory effect of FCIs collected at IS/FS. Then, UPLC-PDA targeted metabolomics was used to quantitatively analyze 9 constituents with anti-inflammatory activity (7 flavonoids and 2 phenolic acids) changed significantly (VIP > 4) during flowering stages. Finally, ROC curves combined with PCA analysis based on the variation of 9 active constituents in FCIs from different flowering stages were applied to screen the quality markers of FCI. RESULTS FCIs at IS/FS had almost same chemical characteristics, but quite different from those at BS and ES. A total of 32 constituents in FCIs including flavonoids and phenolic acids were changed during flowering development. Most of the varied constituents had the highest or higher contents at IS/FS compared with those at ES, indicating that the optimal harvest period of FCI should be at IS/FS. FCI extract could effectively suppress nitric oxide (NO) production in LPS-induced RAW264.7 cells and regulate the abnormal levels of cytokines and PGE2 in carrageenan-induced paw edema model rat. The results of quantitatively analysis revealed that the variation trends of phenolic acids and flavonoids in FCIs were different during flowering development, but most of them had higher contents at IS/FS than those at ES in all FCIs collected from eight cultivated regions, except one sample from Anhui. Finally, linarin, luteolin, apigenin and 3,5-dicaffeoylquinic acid were selected as the Q-markers based on the contribution of their AUC values in ROC and clustering of PCA analysis. CONCLUSIONS Our study demonstrates the optimal harvest period of FCI and specifies the multi-constituents Q-markers of FCI based on the influence of growth progression on the active constituents using untargeted/targeted metabolomics. The findings not only greatly increase the utilization rate of FCI resources and improve quality control of FCI products, but also offer new strategy to identify the Q-markers of FCI.
Collapse
Affiliation(s)
- Peng Yang
- State Key Laboratory for Qualiny Ensurance and sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| | - Dong Tian
- State Key Laboratory for Qualiny Ensurance and sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| | - Xiao-Yu Han
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| | - Qing-Jun Zou
- China Resources Sanjiu Medical & Pharmaceutical Co., Ltd., Shenzhen, 518110, China.
| | - Liang-Ju Ma
- China Resources Sanjiu Medical & Pharmaceutical Co., Ltd., Shenzhen, 518110, China.
| | - Min Wei
- China Resources Sanjiu Medical & Pharmaceutical Co., Ltd., Shenzhen, 518110, China.
| | - Meng Yu
- State Key Laboratory for Qualiny Ensurance and sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| | - Zhong-Mei Zou
- State Key Laboratory for Qualiny Ensurance and sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
3
|
Uranishi R, Aedla R, Alsaadi DHM, Wang D, Kusakari K, Osaki H, Sugimura K, Watanabe T. Evaluation of Environmental Factor Effects on the Polyphenol and Flavonoid Content in the Leaves of Chrysanthemum indicum L. and Its Habitat Suitability Prediction Mapping. Molecules 2024; 29:927. [PMID: 38474439 DOI: 10.3390/molecules29050927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/24/2024] [Accepted: 02/05/2024] [Indexed: 03/14/2024] Open
Abstract
The leaves of Chrysanthemum indicum L. are known to have various bioactive compounds; however, industrial use is extremely limited. To overcome this situation by producing high-quality leaves with high bioactive content, this study examined the environmental factors affecting the phytochemical content and antioxidant activity using C. indicum leaves collected from 22 sites in Kochi Prefecture, Japan. Total phenolic and flavonoid content in the dry leaves ranged between 15.0 and 64.1 (mg gallic acid g-1) and 2.3 and 11.4 (mg quercetin g-1), while the antioxidant activity (EC50) of the 50% ethanol extracts ranged between 28.0 and 123.2 (µg mL-1) in 1,1-Diphenyl-2-picrylhydrazyl radical scavenging assay. Among the identified compounds, chlorogenic acid and 1,5-dicaffeoylquinic acid were the main constituents in C. indicum leaves. The antioxidant activity demonstrated a positive correlation with 1,5-dicaffeoylquinic acid (R2 = 0.62) and 3,5-dicaffeoylquinic acid (R2 = 0.77). The content of chlorogenic acid and dicaffeoylquinic acid isomers varied significantly according to the effects of exchangeable magnesium, cation exchange capacity, annual temperature, and precipitation, based on analysis of variance. The habitat suitability map using the geographical information system and the MaxEnt model predicted very high and high regions, comprising 3.2% and 10.1% of the total area, respectively. These findings could be used in future cultivation to produce high-quality leaves of C. indicum.
Collapse
Affiliation(s)
- Rei Uranishi
- Department of Medicinal Plant, Graduate School of Pharmaceutical Sciences, Kumamoto University, No. 5-1, Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Raju Aedla
- BVRIT HYDERABAD College of Engineering for Women, Nizampet Rd, Hyderabad 500090, Telangana, India
- Global Center for Natural Resources Sciences, Kumamoto University, No. 5-1, Oe Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Doaa H M Alsaadi
- Department of Medicinal Plant, Graduate School of Pharmaceutical Sciences, Kumamoto University, No. 5-1, Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Dongxing Wang
- Department of Medicinal Plant, Graduate School of Pharmaceutical Sciences, Kumamoto University, No. 5-1, Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Ken Kusakari
- Department of Medicinal Plant, Graduate School of Pharmaceutical Sciences, Kumamoto University, No. 5-1, Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Hirotaka Osaki
- Department of Medicinal Plant, Graduate School of Pharmaceutical Sciences, Kumamoto University, No. 5-1, Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Koji Sugimura
- Department of Medicinal Plant, Graduate School of Pharmaceutical Sciences, Kumamoto University, No. 5-1, Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
- Global Center for Natural Resources Sciences, Kumamoto University, No. 5-1, Oe Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Takashi Watanabe
- Department of Medicinal Plant, Graduate School of Pharmaceutical Sciences, Kumamoto University, No. 5-1, Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
- Global Center for Natural Resources Sciences, Kumamoto University, No. 5-1, Oe Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| |
Collapse
|
4
|
Long W, Zhang Q, Wang SR, Suo Y, Chen H, Bai X, Yang X, Zhou YP, Yang J, Fu H. Fast and non-destructive discriminating the geographical origin of Hangbaiju by hyperspectral imaging combined with chemometrics. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 284:121786. [PMID: 36087403 DOI: 10.1016/j.saa.2022.121786] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/14/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Hangbaiju is highly appreciated flower tea for its health benefits, and its quality and price are affected by geographical origin. Fast and accurate identification of the geographical origin of Hangbaiju is very significant for producers, consumers and market regulators. In this work, hyperspectral imaging combined with chemometrics, was used, for the first time, to explore and implement the geographical origin classification of Hangbaiju. The hyperspectral images in the spectral range of 410-2500 nm for 75 samples of five different origins were collected. As a versatile chemometrics tool, bagging classification tree-radial basis function (BAGCT-RBFN), compared with classification tree (CT), radial basis function network (RBFN), was applied to discriminate Hangbaiju samples from different origins. The results showed that BAGCT-RBFN based on optimal wavelengths yielded superior classification performances to CT and RBFN with full wavelengths. The recognition rates (RR) of the training and prediction sets by BAGCT-RBFN were 96.0 % and 92.0 %, respectively. Hyperspectral imaging combined with chemometric can be considered as a powerful, feasible and convenient tool for the classification of Hangbaiju samples from different origins. It promises to be a potential way for origin discriminant analysis and quality monitor in food fields.
Collapse
Affiliation(s)
- Wanjun Long
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China
| | - Qi Zhang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Si-Rui Wang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Yixin Suo
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China
| | - Hengye Chen
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China
| | - Xiuyun Bai
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China
| | - Xiaolong Yang
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China
| | - Yan-Ping Zhou
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China.
| | - Jian Yang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Haiyan Fu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China.
| |
Collapse
|
5
|
Duan X, Li J, Cui J, Wen H, Xin X, Aisa HA. A network pharmacology strategy combined with in vitro experiments to investigate the potential anti-inflammatory mechanism of Prunus cerasifera Ehrhart. J Food Biochem 2022; 46:e14396. [PMID: 36169283 DOI: 10.1111/jfbc.14396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/06/2022] [Accepted: 08/29/2022] [Indexed: 01/13/2023]
Abstract
This study aimed to investigate the anti-inflammatory activity of Prunus cerasifera Ehrhart (EHP). LC-MS/MS, network pharmacology, enzyme-linked immunosorbent assay (ELISA), and Western blot analysis methods were used to investigate the chemical composition and the anti-inflammatory mechanism of EHP. The LC-MS/MS results showed that flavonoids and phenolic acids were the major compounds in EHP. The network pharmacology analysis results indicated that EHP was related to TNF, inflammatory cytokine, and MAPK signaling pathway. ELISA and Western blot results showed that EHP impeded the increase in inflammatory factors, inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX-2), nuclear transcription factors κB (p65), MAPK pathway, pyrolytic relevant proteins nod-like receptor family pyrin domain-containing 3 (NLRP3), and interleukin-1β (IL-1β) induced by lipopolysaccharide (LPS) and activated the nuclear factor erythroid 2-related factor 2 (Nrf2)/hemeoxygenase-1 (HO-1) pathway. Therefore, this research highlighted the potential application of P. cerasifera in the development of anti-inflammatory foods that prevented inflammatory diseases. PRACTICAL APPLICATIONS: In recent years, many synthetic drugs with anti-inflammatory effect have the disadvantages of high price and side effects. Thus, the development of anti-inflammatory drugs from natural resources has its application value. In this study, LPS-stimulated RAW264.7 cells were used to establish inflammatory model to verify the anti-inflammatory effect of Prunus cerasifera (EHP). The results showed that P. cerasifera possessed anti-inflammatory activity through inhibiting pro-inflammatory cytokines secretion, NF-κB, MAPK pathway, and NLRP3 inflammasome activation. Therefore, P. cerasifera has the potential to develop into functional food to prevent the progress of various inflammatory-related diseases.
Collapse
Affiliation(s)
- Xiaomei Duan
- Key Laboratory of Chemistry of Plant Resources in Arid Regions, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jun Li
- Key Laboratory of Chemistry of Plant Resources in Arid Regions, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jingxue Cui
- Key Laboratory of Chemistry of Plant Resources in Arid Regions, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Huizheng Wen
- Key Laboratory of Chemistry of Plant Resources in Arid Regions, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xuelei Xin
- Key Laboratory of Chemistry of Plant Resources in Arid Regions, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Haji Akber Aisa
- Key Laboratory of Chemistry of Plant Resources in Arid Regions, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Anti-Gastritis and Anti-Lung Injury Effects of Pine Tree Ethanol Extract Targeting Both NF-κB and AP-1 Pathways. Molecules 2021; 26:molecules26206275. [PMID: 34684856 PMCID: PMC8538959 DOI: 10.3390/molecules26206275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/03/2021] [Accepted: 10/13/2021] [Indexed: 02/07/2023] Open
Abstract
An ethanol extract (Pd-EE) of Pinus densiflora Siebold and Zucc was derived from the branches of pine trees. According to the Donguibogam, pine resin has the effects of lowering the fever, reducing pain, and killing worms. The purpose of this study is to investigate whether Pd-EE has anti-inflammatory effects. During in vitro trials, NO production, as well as changes in the mRNA levels of inflammation-related genes and the phosphorylation levels of related proteins, were confirmed in RAW264.7 cells activated with lipopolysaccharide depending on the presence or absence of Pd-EE treatment. The activities of transcription factors were checked in HEK293T cells transfected with adapter molecules in the inflammatory pathway. The anti-inflammatory efficacy of Pd-EE was also estimated in vivo with acute gastritis and acute lung injury models. LC-MS analysis was conducted to identify the components of Pd-EE. This extract reduced the production of NO and the mRNA expression levels of iNOS, COX-2, and IL-6 in RAW264.7 cells. In addition, protein expression levels of p50 and p65 and phosphorylation levels of FRA1 were decreased. In the luciferase assay, the activities of NF-κB and AP-1 were lowered. In acute gastritis and acute lung injury models, Pd-EE suppressed inflammation, resulting in alleviated damage.
Collapse
|
7
|
Fakhri S, Tomas M, Capanoglu E, Hussain Y, Abbaszadeh F, Lu B, Hu X, Wu J, Zou L, Smeriglio A, Simal-Gandara J, Cao H, Xiao J, Khan H. Antioxidant and anticancer potentials of edible flowers: where do we stand? Crit Rev Food Sci Nutr 2021; 62:8589-8645. [PMID: 34096420 DOI: 10.1080/10408398.2021.1931022] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Edible flowers are attracting special therapeutic attention and their administration is on the rise. Edible flowers play pivotal modulatory roles on oxidative stress and related interconnected apoptotic/inflammatory pathways toward the treatment of cancer. In this review, we highlighted the phytochemical content and therapeutic applications of edible flowers, as well as their modulatory potential on the oxidative stress pathways and apoptotic/inflammatory mediators, resulting in anticancer effects. Edible flowers are promising sources of phytochemicals (e.g., phenolic compounds, carotenoids, terpenoids) with several therapeutic effects. They possess anti-inflammatory, anti-diabetic, anti-microbial, anti-depressant, anxiolytic, anti-obesity, cardioprotective, and neuroprotective effects. Edible flowers potentially modulate oxidative stress by targeting erythroid nuclear transcription factor-2/extracellular signal-regulated kinase/mitogen-activated protein kinase (Nrf2/ERK/MAPK), reactive oxygen species (ROS), nitric oxide (NO), malondialdehyde (MDA) and antioxidant response elements (AREs). As the interconnected pathways to oxidative stress, inflammatory mediators, including tumor necrosis factor (TNF)-α, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), interleukins (ILs) as well as apoptotic pathways such as Bcl-2-associated X protein (Bax), Bcl-2, caspase and cytochrome C are critical targets of edible flowers in combating cancer. In this regard, edible flowers could play promising anticancer effects by targeting oxidative stress and downstream dysregulated pathways.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Merve Tomas
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Istanbul, Turkey
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Yaseen Hussain
- Control release drug delivery system, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Fatemeh Abbaszadeh
- Department of Neuroscience, Faculty of Advanced Technologies in Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| | - Xiaolan Hu
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Taipa, Macao, China
| | - Jianlin Wu
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Taipa, Macao, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, China
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo -Ourense Campus, Ourense, Spain
| | - Hui Cao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo -Ourense Campus, Ourense, Spain
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo -Ourense Campus, Ourense, Spain
- Institute of Food Safety & Nutrition, Jinan University, Guangzhou, China
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| |
Collapse
|
8
|
Kim JK, Choi E, Hong YH, Kim H, Jang YJ, Lee JS, Choung ES, Woo BY, Hong YD, Lee S, Lee BH, Bach TT, Kim JH, Kim JH, Cho JY. Syk/NF-κB-targeted anti-inflammatory activity of Melicope accedens (Blume) T.G. Hartley methanol extract. JOURNAL OF ETHNOPHARMACOLOGY 2021; 271:113887. [PMID: 33539951 DOI: 10.1016/j.jep.2021.113887] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 05/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Melicope accedens (Blume) Thomas G. Hartley is a plant included in the family Rutaceae and genus Melicope. It is a native plant from Vietnam that has been used for ethnopharmacology. In Indonesia and Malaysia, the leaves of M. accedens are applied externally to decrease fever. AIM OF THE STUDY The molecular mechanisms of the anti-inflammatory properties of M. accedens are not yet understood. Therefore, we examined those mechanisms using a methanol extract of M. accedens (Ma-ME) and determined the target molecule in macrophages. MATERIALS AND METHODS We evaluated the anti-inflammatory effects of Ma-ME in lipopolysaccharide (LPS)-stimulated RAW264.7 cells and in an HCl/EtOH-triggered gastritis model in mice. To investigate the anti-inflammatory activity, we performed a nitric oxide (NO) production assay and ELISA assay for prostaglandin E2 (PGE2). RT-PCR, luciferase gene reporter assays, western blotting analyses, and a cellular thermal shift assay (CETSA) were conducted to identify the mechanism and target molecule of Ma-ME. The phytochemical composition of Ma-ME was analyzed by HPLC and LC-MS/MS. RESULTS Ma-ME suppressed the production of NO and PGE2 and the mRNA expression of proinflammatory genes (iNOS, IL-1β, and COX-2) in LPS-stimulated RAW264.7 cells without cytotoxicity. Ma-ME inhibited NF-κB activation by suppressing signaling molecules such as IκBα, Akt, Src, and Syk. Moreover, the CETSA assay revealed that Ma-ME binds to Syk, the most upstream molecule in the NF-κB signal pathway. Oral administration of Ma-ME not only alleviated inflammatory lesions, but also reduced the gene expression of IL-1β and p-Syk in mice with HCl/EtOH-induced gastritis. HPLC and LC-MS/MS analyses confirmed that Ma-ME contains various anti-inflammatory flavonoids, including quercetin, daidzein, and nevadensin. CONCLUSIONS Ma-ME exhibited anti-inflammatory activities in vitro and in vivo by targeting Syk in the NF-κB signaling pathway. Therefore, we propose that Ma-ME could be used to treat inflammatory diseases such as gastritis.
Collapse
Affiliation(s)
- Jin Kyeong Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Eunju Choi
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Yo Han Hong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Haeyeop Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Young-Jin Jang
- College of Veterinary Medicine, Chonbuk National University, Iksan, 54596, Republic of Korea.
| | - Jong Sub Lee
- DanjoungBio Co., Ltd., Wonju, 26303, Republic of Korea.
| | - Eui Su Choung
- DanjoungBio Co., Ltd., Wonju, 26303, Republic of Korea.
| | | | - Yong Deog Hong
- AMOREPACIFIC R&D Center, Yongin, 17074, Republic of Korea.
| | - Sarah Lee
- National Institute of Biological Resources, Environmental Research Complex, Incheon, 22689, Republic of Korea.
| | - Byoung-Hee Lee
- National Institute of Biological Resources, Environmental Research Complex, Incheon, 22689, Republic of Korea.
| | - Tran The Bach
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam.
| | - Ji Hye Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Jong-Hoon Kim
- College of Veterinary Medicine, Chonbuk National University, Iksan, 54596, Republic of Korea.
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
9
|
Tian D, Yang Y, Yu M, Han ZZ, Wei M, Zhang HW, Jia HM, Zou ZM. Anti-inflammatory chemical constituents of Flos Chrysanthemi Indici determined by UPLC-MS/MS integrated with network pharmacology. Food Funct 2021; 11:6340-6351. [PMID: 32608438 DOI: 10.1039/d0fo01000f] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Flos Chrysanthemi Indici (FCI), the flower of Chrysanthemum indicum L., is a common functional food and a well-known traditional Chinese medicine (TCM) for the treatment of inflammatory diseases. Previous studies have revealed that FCI has anti-inflammatory activity, but little is known about its anti-inflammatory chemical profile. In this study, the potential anti-inflammatory constituents of FCI were investigated by ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) combined with the network pharmacology approach, and further confirmed on a LPS activated RAW264.7 macrophage model. As a result, a total of forty-two compounds, including thirty-two flavonoids, nine phenolic acids and one sesquiterpene, were identified. Among them, fourteen compounds including eight flavonoids (11, 17, 24, 28, 32, 39, 41 and 42) and six caffeoylquinic acids (3, 4, 5, 13, 15 and 20) were recognized as potential key anti-inflammatory constituents of FCI through network pharmacology analysis, because they accounted for 92% of the relative peak area in the UPLC-Q-TOF/MS chromatogram and acted on 87 of 97 the inflammatory targets of FCI. However, only 16 targets were shared between the flavonoids and caffeoylquinic acids, indicative of both acting on more different targets. Further the anti-inflammatory effects of the fourteen constituents were validated with the decreased levels of NO, TNF-α, IL-6 and PGE2 in RAW264.7 macrophage cells treated with LPS. Our results indicated that both flavonoids and caffeoylquinic acids were responsible for the anti-inflammatory effect of FCI through synergetic actions on multi-targets. Moreover, 3,5-dicaffeoylquinic acid (15), luteolin (24) and linarin (28) were the most important active constituents of FCI and could be selected as chemical markers for quality control of FCI. Overall, the findings not only explore the anti-inflammatory chemical constituents of FCI, but also provide novel insights into the effective constituents and mechanism of TCMs.
Collapse
Affiliation(s)
- Dong Tian
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Yong Yang
- Guizhou University of Traditional Chinese Medicine, Huaxi District, Guiyang City, Guizhou 563000, China
| | - Meng Yu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Zheng-Zhou Han
- China Resources Sanjiu Medical & Pharmaceutical Co., Ltd, Shenzhen 518110, China
| | - Min Wei
- China Resources Sanjiu Medical & Pharmaceutical Co., Ltd, Shenzhen 518110, China
| | - Hong-Wu Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Hong-Mei Jia
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Zhong-Mei Zou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
10
|
Taher RF, Raslan MA, Masoud MA, Nassar MI, Aboutabl ME. HPLC-ESI/MS profiling, phytoconstituent isolation and evaluation of renal function, oxidative stress and inflammation in gentamicin-induced nephrotoxicity in rats of Ficus spragueana Mildbr. & Burret. Biomed Chromatogr 2021; 35:e5135. [PMID: 33818792 DOI: 10.1002/bmc.5135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/26/2021] [Accepted: 04/01/2021] [Indexed: 12/29/2022]
Abstract
Ficus spragueana Mildbr. & Burret (family Moraceae) was reported to have various biological activities. However, its activity in treatment of renal injury has not been investigated yet. The current study aimed to evaluate the effects of F. spragueana leaf extract on nephrotoxicity caused by gentamicin. Gentamicin is an important broad-spectrum antibiotic; nevertheless, it exhibits serious nephrotoxic adverse effects. HPLC-ESI/MS spectrometric analysis of the extract revealed the presence of 37 phenolic compounds. Moreover, five compounds were isolated from the leaf extract, and identified on the basis of spectroscopic analysis. The isolated compounds were syringic acid (1), p-coumaric acid (2), 3',5' O-dicaffeoylquinic acid (3), luteolin-8-C-β-D glucopyranoside (orientin) (4) and 8-methoxy kaempferol-3-O-[α-L-rhamnopyranosyl (1→2) β-D-glucopyranoside] (5). The gentamicin-induced nephrotoxicity model was used to evaluate the protective effect of F. spragueana on renal toxicity biomarkers throughout the development of acute kidney injury. Administration of extract led to improvement in kidney function through inhibition of kidney injury molecule-1, creatinine, blood urea nitrogen and total bilirubin, as well as decreasing the inflammatory markers interlukin1-beta and myeloperoxidase. Furthermore, it reduced the oxidative stress by increasing reduced glutathione and total antioxidant capacity levels while decreasing malondialdehyde and nitric oxide content, and improved renal histopathological injuries.
Collapse
Affiliation(s)
- Rehab F Taher
- Natural Compounds Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (ID 60014618), Giza, Egypt
| | - Mona A Raslan
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (ID 60014618), Giza, Egypt
| | - Marwa A Masoud
- Pharmacology Department, National Organization for Drug Control and Research, Egyptian Drug Authority, Giza, Egypt
| | - Mahmoud I Nassar
- Natural Compounds Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (ID 60014618), Giza, Egypt
| | - Mona E Aboutabl
- Medicinal and Pharmaceutical Chemistry Department (Pharmacology Group), Pharmaceutical and Drug Industries Research Division, National Research Centre (ID 60014618), Giza, Egypt
| |
Collapse
|
11
|
Sharma D, Chaubey P, Suvarna V. Role of natural products in alleviation of rheumatoid arthritis-A review. J Food Biochem 2021; 45:e13673. [PMID: 33624882 DOI: 10.1111/jfbc.13673] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 02/03/2021] [Accepted: 02/07/2021] [Indexed: 12/15/2022]
Abstract
Rheumatoid arthritis (RHA) is one of the most prevalent complex, chronic, inflammatory diseases, manifested by elevated oxidative stress and inflammatory biomarkers. Prolonged administration of NSAIDs, steroids, and DMARDs, used in the treatment of RHA, is associated with deleterious side effects. This necessitates the urge of new and safe approaches for RHA management, based on the complementary and alternative system of medicine. Documented evidences have suggested that supplementation with nutritional, dietary, and herbal components; can play a crucial role as an adjuvant, in the alleviation of the RHA symptoms, through their influence on the pathological inflammatory processes. Dietary phenolic compounds, flavonoids, carotenoids, and alkaloids with their ability to modulate prooxidant and pro-inflammatory pathways, have been effective in delaying the arthritic disease progression. Moreover, in scientific explorations, herbs containing phenolic compounds, alkaloids, carotenoids flavonoids, spices such as ginger, turmeric, Ayurvedic formulations, different diets such as Mediterranean diet, vegan diet, beverages, and oils such as sesame oil, rice bran oil, vitamins, and probiotics are proven to modulate the action of inflammatory molecules, involved in RHA pathology. Subsequently, the purpose of this review article is to summarize various in vitro, in vivo, and clinical studies in RHA, which have documented remarkable insights into the anti-inflammatory, antioxidant, analgesic, and immunomodulatory, bone erosion preventing properties of dietary, nutritional, and herbal components with the focus on their molecular level mechanisms involved in RHA. Even though major findings were derived from in vitro studies, several in vivo and clinical studies have established the use of diet, herbal, and nutritional management in RHA treatment. PRACTICAL APPLICATIONS: Thickening of the synovial membrane, bone erosion, and cartilage destruction is known to trigger rheumatoid arthritis causing inflammation and pain in bone joints. Continuous intake of NSAIDs, steroids, and DMARD therapy are associated with detrimental side effects. These side effects can be overcome by the use of dietary, nutritional, and herbal interventions based on the complementary and alternative therapy. This concept portrays the food components and other natural components having the potential to promote health, improve general well-being, and reduce the risk of RHA.
Collapse
Affiliation(s)
- Dhvani Sharma
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Pramila Chaubey
- College of Pharmacy, Shaqra University, Kingdom of Saudi Arabia, Saudi Arabia
| | - Vasanti Suvarna
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| |
Collapse
|
12
|
Merecz-Sadowska A, Sitarek P, Śliwiński T, Zajdel R. Anti-Inflammatory Activity of Extracts and Pure Compounds Derived from Plants via Modulation of Signaling Pathways, Especially PI3K/AKT in Macrophages. Int J Mol Sci 2020; 21:ijms21249605. [PMID: 33339446 PMCID: PMC7766727 DOI: 10.3390/ijms21249605] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
The plant kingdom is a source of important therapeutic agents. Therefore, in this review, we focus on natural compounds that exhibit efficient anti-inflammatory activity via modulation signaling transduction pathways in macrophage cells. Both extracts and pure chemicals from different species and parts of plants such as leaves, roots, flowers, barks, rhizomes, and seeds rich in secondary metabolites from various groups such as terpenes or polyphenols were included. Selected extracts and phytochemicals control macrophages biology via modulation signaling molecules including NF-κB, MAPKs, AP-1, STAT1, STAT6, IRF-4, IRF-5, PPARγ, KLF4 and especially PI3K/AKT. Macrophages are important immune effector cells that take part in antigen presentation, phagocytosis, and immunomodulation. The M1 and M2 phenotypes are related to the production of pro- and anti-inflammatory agents, respectively. The successful resolution of inflammation mediated by M2, or failed resolution mediated by M1, may lead to tissue repair or chronic inflammation. Chronic inflammation is strictly related to several disorders. Thus, compounds of plant origin targeting inflammatory response may constitute promising therapeutic strategies.
Collapse
Affiliation(s)
- Anna Merecz-Sadowska
- Department of Computer Science in Economics, University of Lodz, 90-214 Lodz, Poland
- Correspondence: (A.M.-S.); (T.Ś.)
| | - Przemysław Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, 90-151 Lodz, Poland;
| | - Tomasz Śliwiński
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
- Correspondence: (A.M.-S.); (T.Ś.)
| | - Radosław Zajdel
- Department of Medical Informatics and Statistics, Medical University of Lodz, 90-645 Lodz, Poland;
| |
Collapse
|
13
|
Zheng S, Baak JP, Li S, Xiao W, Ren H, Yang H, Gan Y, Wen C. Network pharmacology analysis of the therapeutic mechanisms of the traditional Chinese herbal formula Lian Hua Qing Wen in Corona virus disease 2019 (COVID-19), gives fundamental support to the clinical use of LHQW. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 79:153336. [PMID: 32949888 PMCID: PMC7474845 DOI: 10.1016/j.phymed.2020.153336] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/24/2020] [Accepted: 09/04/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND The traditional Chinese Medicine (TCM) herbal formula Lian Hua Qing Wen (LHQW) improves the results of COVID-19 treatment. Three very recent studies analyzed with network pharmacology some working mechanisms of LHQW. However, we used more techniques and also included Angiotensin converting enzyme 2 (ACE2) (a SARS-CoV receptor, possibly the viral entry point in alveolar lung cells) and the immune system, as cytokine storm is essential in the late phase. PURPOSE Extensive detailed Network Pharmacology analysis of the LHQW- treatment mechanism in COVID-19. METHODS TCM-herb-meridian and protein interaction network (PIN) of LHQW, based on LHQW herbs meridian information and the protein-protein interaction (PPI) information of the LHQW-component targets. Hub and topological property analyses to obtain crucial targets and construct the crucial LHQW-PIN. Functional modules determination using MCODE, GO and KEGG pathway analysis of biological processes and pathway enrichment. Intersection calculations between the LHQW-proteins and ACE2 co-expression-proteins. RESULTS LHQW herbs have relationships to Stomach-, Heart-, Liver- and Spleen-systems, but most (10 of the 13 herbs) to the Lung system, indicating specific effects in lung diseases. The crucial LHQW PIN has the scale-free property, contains 2,480 targets, 160,266 PPIs and thirty functional modules. Six modules are enriched in leukocyte-mediated immunity, the interferon-gamma-mediated signaling pathway, immune response regulating signaling pathway, interleukin 23 mediated signaling pathway and Fc gamma receptor-mediated phagocytosis (GO analysis). These 6 are also enriched in cancer, immune system-, and viral infection diseases (KEGG). LHQW shared 189 proteins with ACE2 co-expression proteins. CONCLUSIONS Detailed network analysis shows, that LHQW herbal TCM treatment modulates the inflammatory process, exerts antiviral effects and repairs lung injury. Moreover, it also relieves the "cytokine storm" and improves ACE2-expression-disorder-caused symptoms. These innovative findings give a rational pharmacological basis and support for treating COVID-19 and possibly other diseases with LHQW.
Collapse
Affiliation(s)
- Shichao Zheng
- Chengdu University of Traditional Chinese Medicine, Chengdu 61711137, China
| | - Jan P Baak
- Stavanger University Hospital, 4068 Stavanger, Norway; Dr. Med Jan Baak AS, 4056 Tananger, Norway.
| | - Shuang Li
- Chengdu University of Traditional Chinese Medicine, Chengdu 61711137, China
| | - Wenke Xiao
- Chengdu University of Traditional Chinese Medicine, Chengdu 61711137, China
| | - Hong Ren
- Chengdu University of Traditional Chinese Medicine, Chengdu 61711137, China
| | - Huan Yang
- Chengdu University of Traditional Chinese Medicine, Chengdu 61711137, China
| | - Yanxiong Gan
- Chengdu University of Traditional Chinese Medicine, Chengdu 61711137, China; China Pharmaceutical University, Nanjing 210009, China.
| | - Chuanbiao Wen
- Chengdu University of Traditional Chinese Medicine, Chengdu 61711137, China.
| |
Collapse
|
14
|
Cao X, Xiong X, Xu Z, Zeng Q, He S, Yuan Y, Wang Y, Yang X, Su D. Comparison of phenolic substances and antioxidant activities in different varieties of chrysanthemum flower under simulated tea making conditions. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00394-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Shao Y, Sun Y, Li D, Chen Y. Chrysanthemum indicum L.: A Comprehensive Review of its Botany, Phytochemistry and Pharmacology. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:871-897. [PMID: 32431180 DOI: 10.1142/s0192415x20500421] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chrysanthemum indicum L. (C. indicum L.), a member of the Compositae family, is a perennial plant that has been used as a traditional medicine for more than 2000 years in China and is widely used for the treatment of Pemphigus, swelling, pain, and scrofula. To date, more than 190 chemical constituents have been isolated and identified from this plant, including flavonoids, terpenoids, phenylpropanoids, and phenolic acids. Numerous modern studies have shown that extracts or monomeric compounds from C. indicum L. have several pharmacological activities, such as anti-inflammatory anti-oxidation, antipathogenic microorganism, anticancer, immune regulation, and hepatoprotective effects. However, resource availability, the research on the mechanism, and quality control are still insufficient, which deserves further efforts. In this paper, the advances in botany, phytochemistry, and pharmacology of C. indicum L were reviewed. We hope that this review can provide important information for traditional Chinese medicine, phytochemistry, synthetic and medicinal chemistry researchers for making full use of C. indicum L. resource.
Collapse
Affiliation(s)
- Yanhao Shao
- School of Pharmaceutical Sciences, Guangxi University of Chinese Medicine, Nanning 530200, P. R. China
| | - Yunda Sun
- School of Pharmaceutical Sciences, Guangxi University of Chinese Medicine, Nanning 530200, P. R. China
| | - Ding Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Yiping Chen
- School of Pharmaceutical Sciences, Guangxi University of Chinese Medicine, Nanning 530200, P. R. China.,Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Nanning 530200, P. R. China
| |
Collapse
|
16
|
Sorbaria kirilowii Ethanol Extract Exerts Anti-Inflammatory Effects In Vitro and In Vivo by Targeting Src/Nuclear Factor (NF)-κB. Biomolecules 2020; 10:biom10050741. [PMID: 32397672 PMCID: PMC7277364 DOI: 10.3390/biom10050741] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
Inflammation is a fundamental process for defending against foreign antigens that involves various transcriptional regulatory processes as well as molecular signaling pathways. Despite its protective roles in the human body, the activation of inflammation may also convey various diseases including autoimmune disease and cancer. Sorbaria kirilowii is a plant originating from Asia, with no anti-inflammatory activity reported. In this paper, we discovered an anti-inflammatory effect of S. kirilowii ethanol extract (Sk-EE) both in vivo and in vitro. In vitro effects of Sk-EE were determined with lipopolysaccharide (LPS)-stimulated RAW264.7 cells, while ex vivo analysis was performed using peritoneal macrophages of thioglycollate (TG)-induced mice. Sk-EE significantly reduced the nitric oxide (NO) production of induced macrophages and inhibited the expression of inflammation-related cytokines and the activation of transcription factors. Moreover, treatment with Sk-EE also decreased the activation of proteins involved in nuclear factor (NF)-κB signaling cascade; among them, Src was a prime target of Sk-EE. For in vivo assessment of the anti-inflammatory effect of Sk-EE, HCl/EtOH was given by the oral route to mice for gastritis induction. Sk-EE injection dose-dependently reduced the inflammatory lesion area of the stomach in gastritis-induced mice. Taking these results together, Sk-EE exerts its anti-inflammatory activity by regulating intracellular NF-κB signaling pathways and also shows an authentic effect on reducing gastric inflammation.
Collapse
|
17
|
Heat-Clearing Chinese Medicines in Lipopolysaccharide-Induced Inflammation. Chin J Integr Med 2020; 26:552-559. [DOI: 10.1007/s11655-020-3256-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2019] [Indexed: 01/20/2023]
|
18
|
Li Y, Wang J, Zhong S, Li J, Du W. Scutellarein inhibits the development of colon cancer via CDC4‑mediated RAGE ubiquitination. Int J Mol Med 2020; 45:1059-1072. [PMID: 32124957 PMCID: PMC7053863 DOI: 10.3892/ijmm.2020.4496] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 01/13/2020] [Indexed: 12/28/2022] Open
Abstract
Scutellarein has been identified to serve an anti-tumor function in human colon cancer, but the underlying mechanisms remain largely unclear. The present study further investigated the effect and mechanism of scutellarein, extracted from wild chrysanthemum, in the progression of colon cancer. MTT, clone formation, flow cytometry and tumor-bearing mice assays were used to detect cell viability, clone formation, apoptosis and tumorigenesis, respectively. Western blot and quantitative PCR assays were performed for protein and mRNA expression detection. The results revealed that, compared with the control group, scutellarein treatment significantly inhibited the viability and induced the apoptosis of colon cancer cells (P<0.05), with significant decreases in receptor for advanced glycosylation end products (RAGE) protein expression and stability and an increase in RAGE ubiquitination (P<0.05). However, the effects of scutellarein exerted in cell apoptosis and viability were rescued by RAGE overexpression, and accelerated by RAGE knockdown. Additionally, it was observed that scutellarein treatment induced a significant increase in the expression of cell division control protein 4 (CDC4) compared with the control group (P<0.05), which was then verified to interact with RAGE protein and mediate its ubiquitination. Overexpression of CDC4 inhibited colon cancer cell viability and promoted the apoptosis of SW480 and T84 cells, whereas this function was weakened when RAGE was overexpressed. Furthermore, CDC4 downregulation significantly neutralized scutellarein functions in promoting cell apoptosis and inhibiting cell viability and tumorigenesis in colon cancer cells compared with the scutellarein group (P<0.05). In conclusion, the present study revealed that scutellarein inhibited the development of colon cancer through upregulating CDC4-mediated RAGE ubiquitination.
Collapse
Affiliation(s)
- Yuanzhi Li
- Traditional Chinese Medicine Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Jundong Wang
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610000, P.R. China
| | - Sen Zhong
- Department of Infection, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610000, P.R. China
| | - Jun Li
- Traditional Chinese Medicine Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Weiliang Du
- Traditional Chinese Medicine Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
19
|
Choi E, Kim MY, Cho JY. Anti-inflammatory activities of Canarium subulatum Guillaumin methanol extract operate by targeting Src and Syk in the NF-κB pathway. JOURNAL OF ETHNOPHARMACOLOGY 2019; 238:111848. [PMID: 30951845 DOI: 10.1016/j.jep.2019.111848] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/24/2019] [Accepted: 03/31/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Canarium subulatum Guillaumin is an herbal medicinal plant native to Southeast Asia. Ethnopharmacological evidence suggests that plants of the genus Canarium cure a variety of inflammatory diseases. AIM OF THE STUDY The pharmacological mechanisms of C. subulatum Guillaumin remain poorly understood. In this study, we investigate inflammatory mechanisms and target molecules using C. subulatum Guillaumin methanol extract (Cs-ME) in inflammatory reactions managed by macrophages. MATERIALS AND METHODS To identify the anti-inflammatory activities of Cs-ME, lipopolysaccharide (LPS)-stimulated macrophages and a murine HCl/EtOH-induced gastritis model were chosen. The luciferase reporter gene assay, Western blot analysis, overexpression strategy, and the cellular thermal shift assay (CETSA) were employed to investigate the molecular mechanisms and target enzymes of Cs-ME. The active ingredients of this extract were also determined by HPLC. RESULTS Released levels of nitric oxide (NO) and mRNA expression levels of iNOS and IL-6 were downregulated by Cs-ME without exhibiting cytotoxicity. This extract inhibited MyD88-induced promoter activity and the nuclear translocation of nuclear factor (NF)-κB. Moreover, we found that Cs-ME reduced the phosphorylation of NF-κB upstream signaling molecules including IκBα, IKKα/β, Src, and Syk in LPS-stimulated macrophage-like RAW264.7 cells. The results of Western blot and CETSA confirmed that Src and Syk are anti-inflammatory targets of Cs-ME. In addition, orally injected Cs-ME alleviated HCl/EtOH-induced gastric ulcers in mice. HPLC analysis indicated that quercetin, luteolin, and kaempferol are major active components of this extract with anti-inflammatory activity. CONCLUSIONS Cs-ME exhibits anti-inflammatory effects in vitro and in vivo by targeting Src and Syk in the NF-κB signaling pathway. Consequently, Cs-ME could be developed as an anti-inflammatory herbal medicine.
Collapse
Affiliation(s)
- Eunju Choi
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Mi-Yeon Kim
- School of Systems Biomedical Science, Soongsil University, Seoul, 06978, Republic of Korea.
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
20
|
Protium javanicum Burm. Methanol Extract Attenuates LPS-Induced Inflammatory Activities in Macrophage-Like RAW264.7 Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:2910278. [PMID: 31118953 PMCID: PMC6500672 DOI: 10.1155/2019/2910278] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/11/2019] [Accepted: 04/10/2019] [Indexed: 02/07/2023]
Abstract
Protium javanicum Burm. f. is a medicinal plant used in traditional medicine. Gum and oleoresins from this plant have been used as anti-inflammatory agents for treating ulcers, headaches, eyelid inflammation, and rheumatic pain. However, its anti-inflammatory mechanism of action is still unknown. To better understand the mechanism, we used lipopolysaccharide- (LPS-) treated RAW264.7 cells to measure inflammatory mediators with the Griess assay and to identify target signaling molecules by immunoblot analysis. In this study, we report that the Protium javanicum methanol extract (Pj-ME) plays an important role in suppressing nitric oxide (NO) levels without cytotoxicity. The effect of Pj-ME in LPS-induced expression leads to reduced inflammatory cytokine expression, specifically inducible nitric oxide synthase (iNOS), cyclooxygenase (COX-2), and tumor necrosis factor (TNF-α). Pj-ME significantly inhibited LPS-induced protein expression of the nuclear factor-kappa B (NF-κB) signaling pathway in a time-dependent manner. Syk and Src were identified as putative signaling molecules of Pj-ME-mediated anti-inflammatory activity, which were inhibited by Pj-ME. We demonstrated that Pj-ME controls the STAT3 signaling pathway by suppressing STAT3 and JAK phosphorylation and also downregulates the gene expression of IL-6. Therefore, these results elucidate Pj-ME as a novel anti-inflammatory naturally derived drug with anti-inflammatory and antioxidant properties which may be subject to therapeutic and prognostic relevance.
Collapse
|
21
|
Jeong SG, Kim S, Kim HG, Kim E, Jeong D, Kim JH, Yang WS, Oh J, Sung GH, Hossain MA, Lee J, Kim JH, Cho JY. Mycetia cauliflora methanol extract exerts anti-inflammatory activity by directly targeting PDK1 in the NF-κB pathway. JOURNAL OF ETHNOPHARMACOLOGY 2019; 231:1-9. [PMID: 30415059 DOI: 10.1016/j.jep.2018.11.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 11/04/2018] [Accepted: 11/05/2018] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mycetia cauliflora Reinw. (Rubiaceae) has been used as a traditional remedy to ameliorate clinical signs of inflammatory diseases, including pain, inflammation, ulcers, and wounds. Among the Mycetia subfamilies, the molecular and cellular mechanisms of Mycetia longifolia (Rubiaceae) have been studied. However, those of Mycetia cauliflora are not clearly understood. Comprehensive investigation of this plant is necessary to evaluate its potential for ethnopharmacological use. MATERIALS and methods: The activities of Mycetia cauliflora methanol extract (Mc-ME) on the secretion of inflammatory mediators, the mRNA expression of proinflammatory cytokines, and identification of its molecular targets were elucidated using lipopolysaccharide (LPS)-induced macrophage-like cells. Moreover, the suppressive actions of Mc-ME were examined in an LPS-induced peritonitis mouse model. RESULTS At nontoxic concentrations, Mc-ME downregulated the release of nitric oxide (NO), the mRNA expression of inducible nitric oxide synthase (iNOS), and the mRNA expression of interleukin (IL)-1β from LPS-activated RAW264.7 cells. This extract also inhibited the nuclear translocation of p65 and p50 and the phosphorylation of IκBα, IKK, and AKT. Western blot analysis and in vitro kinase assays confirmed that phosphoinositide-dependent kinase-1 (PDK1) is the direct immunopharmacological target of Mc-ME effect. In addition, Mc-ME significantly reduced inflammatory signs in an animal model of acute peritonitis. These effects were associated with decreased NO production and decreased AKT phosphorylation. CONCLUSION Our results suggest that Mc-ME displays anti-inflammatory actions in LPS-treated macrophage-like cells and in an animal model of acute inflammatory disease. These actions are preferentially managed by targeting PDK1 in the nuclear factor (NF)-κB signaling pathway.
Collapse
Affiliation(s)
- Seong-Gu Jeong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sunggyu Kim
- Research and Business Foundation, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Han Gyung Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Eunji Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Deok Jeong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ji Hye Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Woo Seok Yang
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Junsang Oh
- Institute for Bio-Medical Convergence, International St. Mary's Hospital and College of Medicine, Catholic Kwandong University, Incheon, Republic of Korea
| | - Gi-Ho Sung
- Institute for Bio-Medical Convergence, International St. Mary's Hospital and College of Medicine, Catholic Kwandong University, Incheon, Republic of Korea
| | - Mohammad Amjad Hossain
- College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Republic of Korea
| | - Jongsung Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Jong-Hoon Kim
- College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Republic of Korea.
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
22
|
B-ring-homo-tonghaosu, isolated from Chrysanthemum morifolium capitulum, acts as a peroxisome proliferator-activated receptor-γ agonist. J Nat Med 2019; 73:497-503. [DOI: 10.1007/s11418-019-01290-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 02/07/2019] [Indexed: 01/11/2023]
|
23
|
Zang J, Ma S, Wang C, Guo G, Zhou L, Tian X, Lv M, Zhang J, Han B. Screening for active constituents in Turkish galls against ulcerative colitis by mass spectrometry guided preparative chromatography strategy: in silico, in vitro and in vivo study. Food Funct 2019; 9:5124-5138. [PMID: 30256363 DOI: 10.1039/c8fo01439f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Turkish galls have been reported to exhibit remedial effects in ulcerative colitis (UC). However, the active constituents of Turkish galls for the treatment of UC remain unclear. The objective of this study was to screen for anti-inflammatory active constituents and clarify their associated molecular mechanisms. Therefore, systems pharmacology was developed to predict the relationship between constituents and the corresponding targets as well as pathways. In addition, mass spectrometry-guided preparative chromatography technique was used for preparing constituents to evaluate the anti-inflammatory activities and the therapeutic efficacy against UC. In silico, active constituents exhibited a remedial effect on UC possibly by regulating multiple pathways and attacking multiple targets, of which those involved mainly in the NF-κB pathway were selected for verification. In vitro, 5 categories of constituents were screened as active constituents by comparing the cytotoxicity and detecting the level of the pro-inflammatory factors of 9 category constituents. In vivo, dextran sulfate sodium (DSS)-induced UC was significantly ameliorated in active constituents-fed mice. The results indicated that the active fraction comprising methyl gallate, digallic acid, di-O-galloyl-β-d-glucose, and tri-O-galloyl-β-d-glucose primarily contributed to the treatment of UC. Moreover, active fraction could also inhibit the phosphorylation level of IKKβ, thus inhibiting the downstream NF-κB signaling pathway. The approach developed in this study not only clarifies the anti-inflammation effect of Turkish galls but also provides a beneficial reference for the discovery of the base material and functional mechanism of this herbal medicine.
Collapse
Affiliation(s)
- Jie Zang
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan/School of Pharmacy/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education/School of Medicine, Shihezi University, Xinjiang Shihezi 832003, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Hong YH, Yi YS, Han SY, Aziz N, Kim HG, Park SH, Hossain MA, Baik KS, Choi SY, Lee J, Kim JH, Cho JY. Morinda citrifolia noni water extract enhances innate and adaptive immune responses in healthy mice, ex vivo, and in vitro. Phytother Res 2019; 33:676-689. [PMID: 30632216 DOI: 10.1002/ptr.6256] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 12/24/2022]
Abstract
Although Morinda citrifolia (noni) has long been used in traditional medicines for human diseases, its molecular and cellular mechanism of immunostimulatory ability to improve human health under normal healthy conditions is not fully elucidated. This study aimed to investigate the in vitro and in vivo immunostimulatory activity of M. citrifolia fruit water extract treated with enzymes (Mc-eWE). In vitro studies revealed that Mc-eWE stimulated the cells by inducing nitric oxide (NO) production and the expression of inflammatory cytokines, such as interleukin (IL)-1β, IL-6, IL-12, tumor necrosis factor-alpha (TNF-α), and interferon-gamma (IFN-γ). The immunostimulatory activity was mediated by activation of NF-κB and AP-1. Ex vivo studies showed that Mc-eWE stimulated splenocytes isolated from mice by inducing NO production and expression of immunostimulatory cytokines and by downregulating the expression of the immunosuppressive cytokine IL-10 without cytotoxicity. In vivo demonstrated that Mc-eWE induced immunostimulation by modulating populations of splenic immune cells, especially by increasing the population of IFN-γ+ NK cells. Mc-eWE enhanced the expression of inflammatory genes and immunostimulatory cytokines and inhibited the expression of IL-10 in the mouse splenocytes and sera. Taken together, these results suggest that Mc-eWE plays an immunostimulatory role by activating innate and adaptive immune responses.
Collapse
Affiliation(s)
- Yo Han Hong
- Department of Integrative Biotechnology and Biomedical Institute for Convergence (BICS), Sungkyunkwan University, Suwon, Republic of Korea
| | - Young-Su Yi
- Department of Pharmaceutical Engineering, Cheongju University, Cheongju, Republic of Korea
| | - Sang Yun Han
- Department of Integrative Biotechnology and Biomedical Institute for Convergence (BICS), Sungkyunkwan University, Suwon, Republic of Korea
| | - Nur Aziz
- Department of Integrative Biotechnology and Biomedical Institute for Convergence (BICS), Sungkyunkwan University, Suwon, Republic of Korea
| | - Han Gyung Kim
- Department of Integrative Biotechnology and Biomedical Institute for Convergence (BICS), Sungkyunkwan University, Suwon, Republic of Korea
| | - Sang Hee Park
- Department of Biocosmetics, Sungkyunkwan University, Suwon, Republic of Korea
| | | | - Kwang Soo Baik
- Functional Ingredient Development Team, Nutribiotech Co., Ltd., Seoul, Republic of Korea
| | - Su Young Choi
- Functional Ingredient Development Team, Nutribiotech Co., Ltd., Seoul, Republic of Korea
| | - Jongsung Lee
- Department of Integrative Biotechnology and Biomedical Institute for Convergence (BICS), Sungkyunkwan University, Suwon, Republic of Korea
| | - Jong-Hoon Kim
- College of Veterinary Medicine, Chonbuk National University, Iksan, Republic of Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology and Biomedical Institute for Convergence (BICS), Sungkyunkwan University, Suwon, Republic of Korea.,Department of Biocosmetics, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
25
|
Aziz N, Kim MY, Cho JY. Anti-inflammatory effects of luteolin: A review of in vitro, in vivo, and in silico studies. JOURNAL OF ETHNOPHARMACOLOGY 2018; 225:342-358. [PMID: 29801717 DOI: 10.1016/j.jep.2018.05.019] [Citation(s) in RCA: 377] [Impact Index Per Article: 53.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 05/16/2018] [Accepted: 05/16/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Luteolin (3', 4', 5,7-tetrahydroxyflavone) has been identified as commonly present in plants. Plants with a high luteolin content have been used ethnopharmacologically to treat inflammation-related symptoms. Both isolated luteolin and extracts from luteolin-rich plants have been studied using various models and exhibited anti-inflammatory activity. AIM OF THE REVIEW This paper uses recent research findings with a broad range of study models to describe the anti-inflammatory activity of luteolin, particularly its mechanisms at the molecular level; provide guidance for future research; and evaluate the feasibility of developing luteolin into an anti-inflammatory drug. MATERIALS AND METHODS We summarize reports about the anti-inflammatory activity of luteolin published since 2009, which we found in MEDLINE/PubMed, Scopus, Web of Knowledge, and Google Scholar. To acquire broad information, we extended our search to online FDA documents. RESULTS Luteolin is a flavonoid commonly found in medicinal plants and has strong anti-inflammatory activity in vitro and in vivo. Some of its derivatives, such as luteolin-7-O-glucoside, have also shown anti-inflammatory activity. The action mechanism of luteolin varies, but Src in the nuclear factor (NF)-κB pathway, MAPK in the activator protein (AP)- 1 pathway, and SOCS3 in the signal transducer and activator of transcription 3 (STAT3) pathway are its major target transcription factors. A clinical trial with a formulation containing luteolin showed excellent therapeutic effect against inflammation-associated diseases. CONCLUSION In silico, in vitro, in vivo, and clinical studies strongly suggest that the major pharmacological mechanism of luteolin is its anti-inflammatory activity, which derives from its regulation of transcription factors such as STAT3, NF-κB, and AP-1. Much work remains to ensure the safety, quality, and efficacy of luteolin before it can be used to treat inflammation-related diseases in humans.
Collapse
Affiliation(s)
- Nur Aziz
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Mi-Yeon Kim
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea.
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
26
|
Lee JO, Choi E, Shin KK, Hong YH, Kim HG, Jeong D, Hossain MA, Kim HS, Yi YS, Kim D, Kim E, Cho JY. Compound K, a ginsenoside metabolite, plays an antiinflammatory role in macrophages by targeting the AKT1-mediated signaling pathway. J Ginseng Res 2018; 43:154-160. [PMID: 30662304 PMCID: PMC6323178 DOI: 10.1016/j.jgr.2018.10.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/01/2018] [Accepted: 10/18/2018] [Indexed: 11/23/2022] Open
Abstract
Background Compound K (CK) is an active metabolite of ginseng saponin, ginsenoside Rb1, that has been shown to have ameliorative properties in various diseases. However, its role in inflammation and the underlying mechanisms are poorly understood. In this report, the antiinflammatory role of CK was investigated in macrophage-like cells. Methods The CK-mediated antiinflammatory mechanism was explored in RAW264.7 and HEK293 cells that were activated by lipopolysaccharide (LPS) or exhibited overexpression of known activation proteins. The mRNA levels of inflammatory genes and the activation levels of target proteins were identified by quantitative and semiquantitative reverse transcription polymerase chain reaction and Western blot analysis. Results CK significantly inhibited the mRNA expression of inducible nitric oxide synthase and tumor necrosis factor-α and morphological changes in LPS-activated RAW264.7 cells under noncytotoxic concentrations. CK downregulated the phosphorylation of AKT1, but not AKT2, in LPS-activated RAW264.7 cells. Similarly, CK reduced the AKT1 overexpression-induced expression of aldehyde oxidase 1, interleukin-1β, interferon-β, and tumor necrosis factor-α in a dose-dependent manner. Conclusion Our results suggest that CK plays an antiinflammatory role during macrophage-mediated inflammatory actions by specifically targeting the AKT1-mediated signaling pathway.
Collapse
Affiliation(s)
- Jeong-Oog Lee
- Department of Aerospace Information Engineering, Bio-Inspired Aerospace Information Laboratory, Konkuk University, Seoul, Republic of Korea
| | - Eunju Choi
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Kon Kuk Shin
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yo Han Hong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Han Gyung Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Deok Jeong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Mohammad Amjad Hossain
- Department of Veterinary Physiology, College of Medicine, Chonbuk National University, Iksan, Republic of Korea
| | - Hyun Soo Kim
- Basic Research & Innovation Division, R&D Center, Amorepacific Corporation, Yongin, Republic of Korea
| | - Young-Su Yi
- Department of Pharmaceutical Engineering, Cheongju University, Cheongju, Republic of Korea
| | - Donghyun Kim
- Basic Research & Innovation Division, R&D Center, Amorepacific Corporation, Yongin, Republic of Korea
| | - Eunji Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
27
|
Han SY, Yi YS, Jeong SG, Hong YH, Choi KJ, Hossain MA, Hwang H, Rho HS, Lee J, Kim JH, Cho JY. Ethanol Extract of Lilium Bulbs Plays an Anti-Inflammatory Role by Targeting the IKK
α
/
β
-Mediated NF-
κ
B Pathway in Macrophages. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:1281-1296. [PMID: 30149753 DOI: 10.1142/s0192415x18500672] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Lilium bulbs have long been used as Chinese traditional medicines to alleviate the symptoms of various human inflammatory diseases. However, mechanisms of Lilium bulb-mediated anti-inflammatory activity and the bioactive components in Lilium bulbs remain unknown. In the present study, the anti-inflammatory activity of Lilium bulbs and the underlying mechanism of action were investigated in macrophages using Lilium bulb ethanol extracts (Lb-EE). In a dose-dependent manner, Lb-EE inhibited nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW264.7 cells and bone marrow-derived macrophages (BMDMs) without causing significant cytotoxicity. Lb-EE also down-regulated mRNA expression of inflammatory genes in LPS-stimulated RAW264.7 cells, which included inducuble nitric oxide synthase (iNOS), cyclooxygenase-2 (COX2), and tumor necrosis factor-α (TNF-α ). Furthermore, Lb-EE markedly restored LPS-induced morphological changes in RAW264.7 cells to a normal morphology. HPLC analysis identified quercetin, luteolin, and kaempferol as bioactive components contained in Lb-EE. Mechanistic studies in LPS-stimulated RAW264.7 cells revealed that Lb-EE suppressed MyD88- and TRIF-induced NF-κ B transcriptional activation and the nuclear translocation of NF-κ B transcription factors. Moreover, Lb-EE inhibited IKKα /β -induced activation of the NF-κ B signaling pathway and IKK inhibition significantly reduced NO production in LPS-stimulated RAW264.7 cells. Taken together, these results suggest that Lb-EE plays an anti-inflammatory role by targeting IKKα /β -mediated activation of the NF-κ B signaling pathway during macrophage-mediated inflammatory responses.
Collapse
Affiliation(s)
- Sang Yun Han
- * Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Young-Su Yi
- † Department of Pharmaceutical Engineering, Cheongju University, Cheongju 28503, Republic of Korea
| | - Seong-Gu Jeong
- * Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yo Han Hong
- * Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Kang Jun Choi
- ‡ Horticultural Research Division, Gangwondo Provincial Agricultural Research and Extension Services, Chuncheon 24226, Republic of Korea
| | - Mohammad Amjad Hossain
- § Department of Veterinary Physiology, College of Medicine, Chonbuk National University, Iksan 54596, Republic of Korea
| | - Hyunsik Hwang
- * Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ho Sik Rho
- ¶ Department of Chemical Engineering, College of Engineering, Suwon University, Suwon 18323, Republic of Korea
| | - Jongsung Lee
- * Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jong-Hoon Kim
- § Department of Veterinary Physiology, College of Medicine, Chonbuk National University, Iksan 54596, Republic of Korea
| | - Jae Youl Cho
- * Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|