1
|
Yang B, Wang C, Chen X, Zhai H, Wu Y, Cui M, Wu J, Li W, Hua B. In silico and animal studies on the anti-cancer mechanisms of Shaoyao Decoction against colitis-associated colorectal cancer. JOURNAL OF ETHNOPHARMACOLOGY 2025; 345:119444. [PMID: 39929402 DOI: 10.1016/j.jep.2025.119444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/08/2025] [Accepted: 02/03/2025] [Indexed: 03/15/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE It is well known that Shaoyao Decoction (SYD), as a commonly used formula of traditional Chinese medicine (TCM), has a beneficial effect on the treatment of ulcerative colitis (UC). It is found that SYD can also prevent colitis-associated colorectal cancer (CAC). However, its potential anti-cancer mechanism is still waiting to be revealed. AIM OF THE STUDY The aim of this study is to investigate the underlying mechanisms of SYD in inhibiting CAC through silico analysis as well as animal experiment validation. MATERIALS AND METHODS The primary active compounds, potential therapeutic targets and intervening signaling pathways, which SYD might inhibit the CAC process were predicted by network pharmacology analysis combined with our previous research result of high performance liquid chromatography (HPLC). We attempted to validate the acquired hub targets from molecular docking combined with the Gene Expression Profiling Interactive Analysis (GEPIA), the Human Protein Atlas (HPA), and the cBioPortal database comprehensively. Subsequently, an animal model of CAC mice induced by azoxymethane (AOM) and dextran sulfate sodium (DSS) was constructed and treated with SYD for 14 weeks, and tumor-related physical indicators were evaluated after sacrificed. In addition, samples of colon tissues were obtained for histologic and protein level studies to verify the predicted mechanism. RESULTS We obtained 166 active ingredients of SYD and predicted 148 potential targets through network pharmacology analysis, among which quercetin, berberine, kaempferol, wogonin and naringenin were selected as core drug ingredients, and TP53, AKT1, CASP3, PTGS2 and CCND1 were identified and included into the range of core targets. GO and KEGG analyses suggested that the PI3K-Akt signaling pathway might hold a crucial role in CAC prevention and treatment by promoting apoptosis and inhibiting tumor proliferation. In the animal experiment, both SYD and SASP treatments improved the inflammatory condition and pathological damage of the colon tissues in mice. After treatments with SYD and SASP, it was found that decreases of Cyclin D1 and Survivin expression levels and increases of p53 and Cleaved caspase-3 expression levels could be mediated by decreasing the phosphorylation levels of PI3K and Akt proteins in the colon tissues of mice. CONCLUSION The results of our study provide supports that SYD effectively inhibits CAC based on modulating PI3K-Akt signaling pathway to suppress tumor proliferation process as well as to promote tumor apoptosis process.
Collapse
Affiliation(s)
- Bingwei Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China; Graduate School, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Chenglei Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China; Graduate School, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Xue Chen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China; Graduate School, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Haoyu Zhai
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China; Graduate School, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ying Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China; Graduate School, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Muyao Cui
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China; Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jiahe Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China; Graduate School, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Weidong Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Baojin Hua
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| |
Collapse
|
2
|
Jin Y, Liu H, Wang Y, Zhang R, Wang Q, Wang Y, Cui H, Wang X, Bian Y. Pathogenesis and treatment of colitis-associated colorectal cancer: Insights from Traditional Chinese Medicine. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119096. [PMID: 39532222 DOI: 10.1016/j.jep.2024.119096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/11/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Inflammatory Bowel Disease (IBD) is an inflammatory intestinal disease, and with prolonged illness duration, the annual risk of IBD progressing to colitis-associated colorectal cancer (CAC) gradually increases. In recent years, there has been a noticeable trend towards the application of traditional Chinese medicine (TCM) in the treatment of CAC. AIM OF THIS REVIEW This comprehensive review summarizes the pathogenesis of CAC and details the therapeutic benefits of TCM in treating CAC, including various TCM prescriptions and ingredients, establishing the theoretical foundation for the application of TCM in CAC treatment. METHODS We assessed literature published before March 24, 2024, from several databases, including Web of Science, PubMed, Scopus and Google Scholar. The keywords used include "traditional Chinese medicine", "traditional Chinese medicine prescriptions", "traditional Chinese medicine ingredients", "herbal medicine", "colitis-associated colorectal cancer", "inflammatory bowel disease", "colorectal cancer" and "colitis-cancer transformation". We conducted a comprehensive collection and collation of pertinent scientific articles from various databases, focusing on the efficacy of TCM in the prevention and treatment of "colitis-cancer transformation". RESULTS This paper provides a concise summary and thorough analysis of twenty-eight prescriptions and ingredients of TCM for the prevention and treatment of CAC, based on existing experimental and clinical research. There are positive signs that TCM can effectively prevent and treat the "colitis-cancer transformation" through repairing the intestinal mucosal barrier, correcting intestinal flora imbalance, and regulating intestinal immune responses. CONCLUSION TCM possesses comprehensive regulatory advantages that are multifaceted, multilevel, and multitarget. It has a definite curative effect in the prevention and treatment of CAC. It is essential to enhance the clinical efficacy of TCM in the prevention and treatment of CAC based on syndrome differentiation and treatment, with the assistance of modern medicine.
Collapse
Affiliation(s)
- Yutong Jin
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Haizhao Liu
- Department of Integrated Traditional Chinese and Western Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300192, China
| | - Yuhui Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Ruixuan Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Qiaochu Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300073, China
| | - Yao Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Huantian Cui
- First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China.
| | - Xiangling Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yuhong Bian
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
3
|
Wang M, Wang X. Chemoprotective Potential of Cyanidin-3-Glucoside Against 1,2-Dimethylhydrazine-Induced Colorectal Cancer: Modulation of NF-κB and Bcl-2/Bax/Caspase Pathway. J Biochem Mol Toxicol 2025; 39:e70125. [PMID: 39843995 DOI: 10.1002/jbt.70125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/30/2024] [Accepted: 12/21/2024] [Indexed: 01/24/2025]
Abstract
Colorectal cancer (CRC) represents a significant global health challenge, with approximately 1.8 million new cases diagnosed annually and a mortality toll exceeding 881,000 lives each year. This study aimed to evaluate the chemoprotective efficacy of Cyanidin-3-glucoside (C3G) in a rat model of CRC induced by 1,2-dimethylhydrazine (DMH). Rats were stratified into groups and administered C3G at doses of 10 and 15 mg/kg following DMH exposure to initiate CRC. Key parameters, including organ weights, tumor burdens, and biochemical markers, were meticulously assessed. Administration of C3G significantly restored body weight while reducing the weights of colon and spleen tissues. Moreover, C3G treatment substantially suppressed tumor incidence and weight in DMH-induced CRC rats. Biochemical analysis revealed that C3G markedly reduced levels of CFA, CA19.9, LDH, and nitric oxide (NO). It also modulated lipid profiles, antioxidant activities, and the expression of both Phase I and II enzymes. Inflammatory mediators, including TNF-α, IL-1β, IL-1α, IL-2, IL-4, IL-6, IL-10, IL-12, and IL-17, were significantly downregulated. Notably, C3G inhibited inflammatory markers such as COX-2, PGE2, iNOS, and NF-κB while promoting Caspase-3, -6, and -9 activity. Furthermore, it regulated the Bax/Bcl-2 apoptotic axis, reducing the Bcl-2/Bax ratio. Cyanidin-3-glucoside demonstrated potent chemopreventive effects against colorectal cancer in this experimental model. Its mechanism of action is likely mediated through modulation of NF-κB and the Bcl-2/Bax/Caspase pathway, suggesting its potential as a therapeutic agent in CRC management.
Collapse
Affiliation(s)
- Miao Wang
- Department of Gastroenterology, The Second Hospital of Heilongjiang Province, Harbin City, Heilongjiang Province, China
| | - Xiaoyong Wang
- Department of Gastroenterology, The Second Hospital of Heilongjiang Province, Harbin City, Heilongjiang Province, China
| |
Collapse
|
4
|
Kamal R, Awasthi A, Paul P, Mir MS, Singh SK, Dua K. Novel drug delivery systems in colorectal cancer: Advances and future prospects. Pathol Res Pract 2024; 262:155546. [PMID: 39191194 DOI: 10.1016/j.prp.2024.155546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/10/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
Colorectal cancer (CRC) is an abnormal proliferation of cells within the colon and rectum, leading to the formation of polyps and disruption of mucosal functions. The disease development is influenced by a combination of factors, including inflammation, exposure to environmental mutagens, genetic alterations, and impairment in signaling pathways. Traditional treatments such as surgery, radiation, and chemotherapy are often used but have limitations, including poor solubility and permeability, treatment resistance, side effects, and post-surgery issues. Novel Drug Delivery Systems (NDDS) have emerged as a superior alternative, offering enhanced drug solubility, precision in targeting cancer cells, and regulated drug release. Thereby addressing the shortcomings of conventional therapies and showing promise for more effective CRC management. The present review sheds light on the pathogenesis, signaling pathways, biomarkers, conventional treatments, need for NDDS, and application of NDDS against CRC. Additionally, clinical trials, ongoing clinical trials, marketed formulations, and patents on CRC are also covered in the present review.
Collapse
Affiliation(s)
- Raj Kamal
- Department of Quality Assurance, ISF College of Pharmacy, Moga, Punjab 142001, India; School of Pharmacy, Desh Bhagat University, Mandi Gobindgarh, Punjab 147301, India
| | - Ankit Awasthi
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab 142001, India; Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Priyanka Paul
- Department of Pharmaceutical Science, PCTE Group of Institute, Ludhiana, Punjab, India
| | - Mohammad Shabab Mir
- School of Pharmacy, Desh Bhagat University, Mandi Gobindgarh, Punjab 147301, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
5
|
Hu M, Yuan L, Zhu J. The Dual Role of NRF2 in Colorectal Cancer: Targeting NRF2 as a Potential Therapeutic Approach. J Inflamm Res 2024; 17:5985-6004. [PMID: 39247839 PMCID: PMC11380863 DOI: 10.2147/jir.s479794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024] Open
Abstract
Colorectal cancer (CRC), as the third most common bisexual cancer worldwide, requires urgent research on its underlying mechanisms and intervention methods. NRF2 is an important transcription factor involved in the regulation of redox homeostasis, protein degradation, DNA repair, and other cancer processes, playing an important role in cancer. In recent years, the complex role of NRF2 in CRC has been continuously revealed: on the one hand, it exhibits a chemopreventive effect on cancer by protecting normal cells from oxidative stress, and on the other hand, it also exhibits a protective effect on malignant cells. Therefore, this article explores the dual role of NRF2 and its related signaling pathways in CRC, including their chemical protective properties and promoting effects in the occurrence, development, metastasis, and chemotherapy resistance of CRC. In addition, this article focuses on exploring the regulation of NRF2 in CRC ferroptosis, as well as NRF2 drug modulators (activators and inhibitors) targeting CRC, including natural products, compounds, and traditional Chinese medicine formulations.
Collapse
Affiliation(s)
- Mengyun Hu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Lingling Yuan
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Jie Zhu
- Hospital of Chengdu University of Traditional Chinese Medicine, Oncology Department II, Chengdu, People's Republic of China
| |
Collapse
|
6
|
Zhang Y, Han L, Dong J, Yuan Z, Yao W, Ji P, Hua Y, Wei Y. Shaoyao decoction improves damp-heat colitis by activating the AHR/IL-22/STAT3 pathway through tryptophan metabolism driven by gut microbiota. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117874. [PMID: 38342152 DOI: 10.1016/j.jep.2024.117874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The efficacy of Shaoyao Decoction (SYD), a traditional Chinese medicine prescription, in treating damp-heat colitis is established, but its underlying mechanism remains to be elucidated. AIM OF THE STUDY Our study aims to investigate the effect and mechanism of action of SYD in treating damp-heat colitis. MATERIALS AND METHODS A mouse model of damp-heat colitis was induced and treated with SYD via gavage for seven days. The therapeutic efficacy of SYD was assessed through clinical indicators and histopathological examinations. The inflammatory factors and oxidative stress parameters were detected by ELISA and biochemical kits. We also analyzed alterations in the gut microbiome via 16 S rRNA gene sequencing and quantified serum indole derivatives using targeted tryptophan metabolomics. Western blotting and immunofluorescence were used to detect the expressions of AHR, CYP1A1, STAT3 and tight junction (TJ) proteins. The ELISA kit was utilized to detect the content of antibacterial peptides (Reg3β and Reg3γ) in colon. The immunohistochemistry was employed to detect the expressions of proliferating cell nuclear antigen (PCNA) protein. RESULTS SYD effectively alleviated symptoms in mice with damp-heat colitis, including body weight loss, shortened colon, elevated DAI, enlarged spleen, and damage to the intestinal mucosa. SYD notably reduced IL-6, TNF-α, IL-1β and MDA levels in colon tissues, while increasing IL-10 and T-AOC levels. Furthermore, SYD mitigated gut microbiota disturbance, restored microbial tryptophan metabolite production (such as IA, IAA, and IAld), notably increased the protein levels of AHR, CYP1A1 and p-STAT3 in colon tissue, and elevated the IL-22 level. Moreover, the expression levels of Reg3β, Reg3γ, occludin, ZO-1 and PCNA were increased in SYD group. CONCLUSION Our study showed that SYD ameliorates damp-heat colitis by restructuring gut microbiota structure, enhancing the metabolism of tryptophan associated with gut microbiota to activate the AHR/IL-22/STAT3 pathway, thereby recovering damaged intestinal mucosa. This research offers novel insights into the therapeutic mechanisms of SYD on damp-heat colitis.
Collapse
Affiliation(s)
- Yahui Zhang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Luoxia Han
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiaqi Dong
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Ziwen Yuan
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Wanling Yao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Peng Ji
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Yongli Hua
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Yanming Wei
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
7
|
Wei X, Leng X, Li G, Wang R, Chi L, Sun D. Advances in research on the effectiveness and mechanism of Traditional Chinese Medicine formulas for colitis-associated colorectal cancer. Front Pharmacol 2023; 14:1120672. [PMID: 36909166 PMCID: PMC9995472 DOI: 10.3389/fphar.2023.1120672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Inflammatory bowel disease (IBD) can progress into colitis-associated colorectal cancer (CAC) through the inflammation-cancer sequence. Although the mechanism of carcinogenesis in IBD has not been fully elucidated, the existing research indicates that CAC may represent a fundamentally different pathogenesis pattern of colorectal cancer. At present, there is no proven safe and effective medication to prevent IBD cancer. In recent years, Chinese medicine extracts and Chinese medicine monomers have been the subject of numerous articles about the prevention and treatment of CAC, but their clinical application is still relatively limited. Traditional Chinese Medicine (TCM) formulas are widely applied in clinical practice. TCM formulas have demonstrated great potential in the prevention and treatment of CAC in recent years, although there is still a lack of review. Our work aimed to summarize the effects and potential mechanisms of TCM formulas for the prevention and treatment of CAC, point out the issues and limitations of the current research, and provide recommendations for the advancement of CAC research in the future. We discovered that TCM formulas regulated many malignant biological processes, such as inflammation-mediated oxidative stress, apoptosis, tumor microenvironment, and intestinal microecology imbalance in CAC, through a review of the articles published in databases such as PubMed, SCOPUS, Web of Science, Embase, and CNKI. Several major signal transduction pathways, including NF-κB, STAT3, Wnt/β-catenin, HIF-1α, and Nrf2, were engaged. TCM formula may be a promising treatment candidate to control the colitis-cancer transformation, however further high-quality research is required.
Collapse
Affiliation(s)
- Xiunan Wei
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaohui Leng
- Weifang Traditional Chinese Hospital, Weifang, China
| | - Gongyi Li
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ruting Wang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lili Chi
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dajuan Sun
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
8
|
Ali FE, Ibrahim IM, Ghogar OM, Abd-alhameed EK, Althagafy HS, Hassanein EH. Therapeutic interventions target the NLRP3 inflammasome in ulcerative colitis: Comprehensive study. World J Gastroenterol 2023; 29:1026-1053. [PMID: 36844140 PMCID: PMC9950862 DOI: 10.3748/wjg.v29.i6.1026] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/29/2023] [Accepted: 01/29/2023] [Indexed: 02/10/2023] Open
Abstract
One of the significant health issues in the world is the prevalence of ulcerative colitis (UC). UC is a chronic disorder that mainly affects the colon, beginning with the rectum, and can progress from asymptomatic mild inflammation to extensive inflammation of the entire colon. Understanding the underlying molecular mechanisms of UC pathogenesis emphasizes the need for innovative therapeutic approaches based on identifying molecular targets. Interestingly, in response to cellular injury, the NLR family pyrin domain containing 3 (NLRP3) inflammasome is a crucial part of the inflammation and immunological reaction by promoting caspase-1 activation and the release of interleukin-1β. This review discusses the mechanisms of NLRP3 inflammasome activation by various signals and its regulation and impact on UC.
Collapse
Affiliation(s)
- Fares E.M Ali
- Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Islam M. Ibrahim
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Osama M Ghogar
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Esraa K. Abd-alhameed
- Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 12345, Egypt
| | - Hanan S. Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah 12345, Saudi Arabia
| | - Emad H.M. Hassanein
- Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| |
Collapse
|
9
|
Wang XJ, Zhang D, Yang YT, Li XY, Li HN, Zhang XP, Long JY, Lu YQ, Liu L, Yang G, Liu J, Hong J, Wu HG, Ma XP. Suppression of microRNA-222-3p ameliorates ulcerative colitis and colitis-associated colorectal cancer to protect against oxidative stress via targeting BRG1 to activate Nrf2/HO-1 signaling pathway. Front Immunol 2023; 14:1089809. [PMID: 36776858 PMCID: PMC9911687 DOI: 10.3389/fimmu.2023.1089809] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
Oxidative stress is an important pathogenic factor in ulcerative colitis (UC) and colitis-associated colorectal cancer (CAC), further impairing the entire colon. Intestinal epithelial cells (IECs) are crucial components of innate immunity and play an important role in maintaining intestinal barrier function. Recent studies have indicated that microRNA-222-3p (miR-222-3p) is increased in colon of UC and colorectal cancer (CRC) patients, and miR-222-3p is a crucial regulator of oxidative stress. However, whether miR-222-3p influences IEC oxidative stress in UC and CAC remains unknown. This study investigated the effect of miR-222-3p on the regulation of IEC oxidative stress in UC and CAC. An in vitro inflammation model was established in NCM460 colonic cells, mouse UC and CAC models were established in vivo, and IECs were isolated. The biological role and mechanism of miR-222-3p-mediated oxidative stress in UC and CAC were determined. We demonstrated that miR-222-3p expression was notably increased in dextran sulfate sodium (DSS)-induced NCM460 cells and IECs from UC and CAC mice. In vitro, these results showed that the downregulation of miR-222-3p reduced oxidative stress, caspase-3 activity, IL-1β and TNF-α in DSS-induced NCM460 cells. We further identified BRG1 as the target gene of miR-222-3p, and downregulating miR-222-3p alleviated DSS-induced oxidative injury via promoting BRG1-mediated activation Nrf2/HO-1 signaling in NCM460 cells. The in vivo results demonstrated that inhibiting miR-222-3p in IECs significantly relieved oxidative stress and inflammation in the damaged colons of UC and CAC mice, as evidenced by decreases in ROS, MDA, IL-1β and TNF-α levels and increases in GSH-Px levels. Our study further demonstrated that inhibiting miR-222-3p in IECs attenuated oxidative damage by targeting BRG1 to activate the Nrf2/HO-1 signaling. In summary, inhibiting miR-222-3p in IECs attenuates oxidative stress by targeting BRG1 to activate the Nrf2/HO-1 signaling, thereby reducing colonic inflammation and tumorigenesis.
Collapse
Affiliation(s)
- Xue-jun Wang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Dan Zhang
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan-ting Yang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-ying Li
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hong-na Li
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-peng Zhang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jun-yi Long
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yun-qiong Lu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Liu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang Yang
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Liu
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jue Hong
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huan-gan Wu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-peng Ma
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
10
|
Luo Y, Wu J, Liu Y, Shen Y, Zhu F, Wu J, Hu Y. Metabolomics Study of Shaoyao Plants Decoction on the Proximal and Distal Colon in Mice with Dextran Sulfate Sodium-Induced Colitis by UPLC-Q-TOF-MS. Drug Des Devel Ther 2022; 16:4343-4364. [PMID: 36583115 PMCID: PMC9792814 DOI: 10.2147/dddt.s384607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Purpose Shaoyao decoction (SYD) is a traditional Chinese medicine used to treat ulcerative colitis (UC). The exact mechanism of action of SYD in UC treatment is still unclear. Here, we examined the therapeutic effects of SYD in mice with dextran sulfate sodium (DSS)-induced colitis and explored the underlying mechanism. Methods The experimental group was divided into normal control, UC, and SYD treatment groups. The UC model of C57BL/6 mice was induced using 3% (w/v) DSS for 7 days. SYD was orally administered for 7 days. The proximal and distal colonic metabolic profiles were detected using quadrupole-time-of-flight mass spectrometry-based untargeted metabolomics. Results SYD significantly increased weight, reduced disease activity index scores, and ameliorated colon length shortening and pathological damage in mice. In the distal colon, SYD increased the abundance of phosphatidic acid and lysophosphatidylethanolamine and decreased the abundance of lactosylceramide, erythrodiol 3-palmitate, and lysophosphatidylcholine. In the proximal colon, SYD increased the abundance of palmitic acid, cyclonormammein, monoacylglyceride, 13S-hydroxyoctadecadienoic acid, and ceanothine C and decreased the abundance of tetracosahexaenoic acid, phosphatidylserine, and diglyceride. Conclusion Our findings revealed that SYD could alleviate UC by regulating metabolic dysfunction, which provides a reference for further studies on SYD.
Collapse
Affiliation(s)
- Yiting Luo
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Jin Wu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Yingchao Liu
- Academic Affairs Office, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Yan Shen
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Fangyuan Zhu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Jiaqian Wu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Yuyao Hu
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China,Correspondence: Yuyao Hu, The Second Affiliated Hospital of Zhejiang Chinese Medical University, 318 Chaowang Road, Hangzhou, People’s Republic of China, Email
| |
Collapse
|
11
|
Li J, Tian X, Liu J, Mo Y, Guo X, Qiu Y, Liu Y, Ma X, Wang Y, Xiong Y. Therapeutic material basis and underling mechanisms of Shaoyao Decoction-exerted alleviation effects of colitis based on GPX4-regulated ferroptosis in epithelial cells. Chin Med 2022; 17:96. [PMID: 35974396 PMCID: PMC9380349 DOI: 10.1186/s13020-022-00652-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/05/2022] [Indexed: 11/10/2022] Open
Abstract
Background Shaoyao Decoction (SYD) is a canonical herbal medicine prescription formulated by Liu Wan-Su in AD 1186. SYD has been widely used to treat inflammatory bowel disease by clearing heat and damp, removing stasis toxin in the intestine; however, the precise mechanisms and therapeutic material basis remain largely unclear. In the present study, we measured the effects of SYD on colitis symptom, epithelial barrier function, epithelial ferroptosis, colonic protein and mRNA expression of glutathione peroxidase 4 (GPX4) in colitis model, and determined whether SYD restored barrier loss in colitis by modulation of GPX4-regulated ferroptosis pathway. Methods Colitis was established by infusion with 1 mL 2,4,6-trinitrobenzene sulfonic acid (TNBS) dissolved in ethanol (40% v/v) in rats at a 125 mg/kg dose. Ferroptosis in epithelial cells was determined by flow cytometer. GPX4 promoter-firefly luciferase fusion construct was transfected to Caco-2 cell to determine GPX4 transcription. MS analysis was used to identified ingredients in SYD. Results Different doses of SYD significantly alleviated colitis, decreased ferroptosis in epithelial cells, knockout of GPX4 significantly reversed SYD-induced alleviation effects on colitis, restoration of epithelial barrier function, and epithelial ferroptosis. Wogonoside, wogonin, palmatine, paeoniflorin and liquiritin were identified as active ingredients of SYD-exerted alleviation effects of colitis based on GPX4 agonistic transcription. Conclusion SYD alleviated chemically induced colitis by activation of GPX4, inhibition of ferroptosis in epithelial cells and further restoration of barrier function. Wogonoside, wogonin, palmatine, paeoniflorin and liquiritin were identified as the key therapeutic material basis of SYD-exerted anti-colitis effects. The findings provide a scientific basis for the therapeutic effect of SYD on colitis. Supplementary Information The online version contains supplementary material available at 10.1186/s13020-022-00652-1.
Collapse
Affiliation(s)
- Juan Li
- Central Laboratory, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Xiangge Tian
- Department of Pharmacy, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Jinming Liu
- Central Laboratory, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Yuying Mo
- Central Laboratory, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Xiaoyi Guo
- Central Laboratory, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Yang Qiu
- Central Laboratory, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Yuejian Liu
- Central Laboratory, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Xiaochi Ma
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, 116023, China
| | - Yan Wang
- College of Integrative Medicine, Dalian Medical University, Dalian, 116044, China.
| | - Yongjian Xiong
- Central Laboratory, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China. .,College of Integrative Medicine, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
12
|
Huang J, Zhou M, Zhang H, Fang Y, Chen G, Wen J, Liu L. Characterization of the mechanism of Scutellaria baicalensis on reversing radio-resistance in colorectal cancer. Transl Oncol 2022; 24:101488. [PMID: 35872478 PMCID: PMC9307497 DOI: 10.1016/j.tranon.2022.101488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/30/2022] [Accepted: 07/09/2022] [Indexed: 12/09/2022] Open
Abstract
Scutellaria baicalensis (SB) has been shown to improve the therapeutic effects of colorectal cancer (CRC) and perform well for reversing radio-resistance in different cancers. However, its potential function and mechanism related to radio-resistance in CRC has not been explored. A radio-resistant human CRC cell line (HCT116R) was applied. A network pharmacological analysis was performed to reveal the potential mechanism of SB for reversing radio-resistance in CRC, and computational pathological analysis was applied to indicate the clinicopathological significance of the key targets. Then, our hypothesis was further verified by molecular docking. The network pharmacology analysis showed that wogonin is the key compound of SB for reversing the radio-resistance of CRC. A Kyoto Encyclopedia of Genes and Genomes analysis showed that the genes for SB that reverse radio-resistance in CRC are mainly involved in steroid hormone biosynthesis. An enrichment analysis pointed out that Sulfotransferase family 2B member 1 (SULT2B1) is a potentially vital gene. SULT2B1 was demonstrated as being highly expressed in CRC and upregulated in radio-resistant rectal tissues or cell lines. A CCK-8 and clone formation test showed that the viability and clone formation ability of HCT116R were significantly decreased by wogonin combined with radiotherapy, compared to radiotherapy alone. By contrast, flow cytometry revealed that the apoptosis of HCT116R was significantly increased when wogonin treatment combined with radiotherapy, compared with radiotherapy alone. Molecular docking verification indicated that SULT2B1 and wogonin have a good binding ability. Taken together, SULT2B1 may be the potential drug target in treating radio-resistant CRC. Wogonin may be the core compound of SB for reversing radio-resistance in CRC by targeting SULT2B1.
Collapse
Affiliation(s)
- Jinmei Huang
- Department of Drug Toxicology, College of Pharmacy of Guangxi Medical University, Nanning 530021, PR China.
| | - Ming Zhou
- Department of Pharmacy, Wuhan Pulmonary Hospital, Wuhan, PR China.
| | - Huan Zhang
- Department of Pharmacy, Wuhan Pulmonary Hospital, Wuhan, PR China.
| | - Yeying Fang
- Department of Radiotherapy, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, PR China.
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, PR China.
| | - Jiaying Wen
- Department of Radiotherapy, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, PR China.
| | - LiMin Liu
- Department of Drug Toxicology, College of Pharmacy of Guangxi Medical University, Nanning 530021, PR China.
| |
Collapse
|
13
|
Li Z, Gao Y, Du L, Yuan Y, Huang W, Fu X, Huang Y, Zhang X, You F, Li S. Anti-inflammatory and anti-apoptotic effects of Shaoyao decoction on X-ray radiation-induced enteritis of C57BL/6 mice. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115158. [PMID: 35245630 DOI: 10.1016/j.jep.2022.115158] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 01/24/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As a typical heat-clearing prescription, Shaoyao decoction (SYD) has a robust function of clearing viscera heat for the treatment of several intestinal discomfort symptoms. Clinical evidence indicated that it had the potential to cure radiation enteritis. However, its underlying mechanisms remain unclear. AIM OF THE STUDY The present study was designed to probe the protective effects and the involved mechanisms of SYD on X-ray radiation-induced enteritis of C57BL/6 mice. MATERIALS AND METHODS X-ray irradiation were used to establish the radiation enteritis model. Forty-eight male C57BL/6 mice (20 ± 2 g) were randomly divided into six groups: the control group, model group, dexamethasone group (DEX, 0.12 mg/kg) and SYD groups (0.12, 0.24 and 0.36 g/mL), respectively. All mice (except the control group) were intragastrically administrated for a continuous 7 days. H&E and Masson staining were employed to evaluate the morphological and collagen fibers changes of the colon. ELISA was performed to assess the levels of MDA, SOD, COX, LPS, IL-6, IL-1β and TNF-α in serum. Moreover, TUNEL fluorescence, western blot and qRT-PCR were used to detect the levels of apoptosis-related proteins and genes of Dclk-1, ATM, MRE-11, Bcl-2, Bax, Caspase-3, and Cyto-c. Furthermore, immunofluorescent staining was applied to detect the protein levels of p53 and Claudin-1 in colon. RESULTS Treatment with SYD decreased the exfoliated and necrotic epithelial cells and prevent the proliferate from damaged fibrous tissue in the crypt layer of mucos. The levels of serum peroxidation and pro-inflammatory cytokines (MDA, COX, LPS, IL-6, IL-1β and TNF-α) were obviously inhibited, while SOD sharply increased in serum after administration. Moreover, SYD can significantly ameliorate the apoptosis of colon cells, evidenced by the reduced positive expression of TUNEL staining. Meanwhile, the results of qRT-PCR and western blot demonstrated that SYD can dramatically stimulate the expression of genes and proteins Dclk-1, ATM and MRE-11, thus promoting the expression of mitochondrial pro-apoptotic proteins Bax, Caspase-3 and Cyto-c, while increasing the level of anti-apoptotic protein Bcl-2. Furthermore, immunofluorescence revealed that SYD can notably decreased the protein level of p53 while reverse the reduction of Claudin-1. CONCLUSIONS These results indicated that radiation enteritis in C57BL/6 mice can be ameliorated by treatment with SYD. The potential protection mechanisms may be involved in ameliorating tissue fibrosis by decreasing inflammatory and apoptotic events.
Collapse
Affiliation(s)
- Zhuohong Li
- Oncology Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Ying Gao
- Oncology Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Lei Du
- Oncology Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Ye Yuan
- Oncology Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Wenbo Huang
- Oncology Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Xi Fu
- Oncology Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Yongliang Huang
- Pharmacy Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Xufan Zhang
- Nuclear Medicine Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Fengming You
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Shijie Li
- Oncology Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| |
Collapse
|
14
|
Ge H, Xu C, Chen H, Liu L, Zhang L, Wu C, Lu Y, Yao Q. Traditional Chinese Medicines as Effective Reversals of Epithelial-Mesenchymal Transition Induced-Metastasis of Colorectal Cancer: Molecular Targets and Mechanisms. Front Pharmacol 2022; 13:842295. [PMID: 35308223 PMCID: PMC8931761 DOI: 10.3389/fphar.2022.842295] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/28/2022] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common type of cancer worldwide. Distant metastasis is the major cause of cancer-related mortality in patients with CRC. Epithelial-mesenchymal transition (EMT) is a critical process triggered during tumor metastasis, which is also the main impetus and the essential access within this duration. Therefore, targeting EMT-related molecular pathways has been considered a novel strategy to explore effective therapeutic agents against metastatic CRC. Traditional Chinese medicines (TCMs) with unique properties multi-target and multi-link that exert their therapeutic efficacies holistically, which could inhibit the invasion and metastasis ability of CRC cells via inhibiting the EMT process by down-regulating transforming growth factor-β (TGF-β)/Smads, PI3K/Akt, NF-κB, Wnt/β-catenin, and Notch signaling pathways. The objective of this review is to summarize and assess the anti-metastatic effect of TCM-originated bioactive compounds and Chinese medicine formulas by mediating EMT-associated signaling pathways in CRC therapy, providing a foundation for further research on the exact mechanisms of action through which TCMs affect EMT transform in CRC.
Collapse
Affiliation(s)
- Hongzhang Ge
- Department of Integrated Traditional Chinese and Western Medicine, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Integration of Chinese and Western Medicine Oncology, Zhejiang Cancer Hospital, Hangzhou, China
- Key Laboratory of Head and Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou, China
| | - Chao Xu
- Department of Integrated Traditional Chinese and Western Medicine, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Integration of Chinese and Western Medicine Oncology, Zhejiang Cancer Hospital, Hangzhou, China
- Key Laboratory of Head and Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou, China
| | - Haitao Chen
- Department of Integrated Traditional Chinese and Western Medicine, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Integration of Chinese and Western Medicine Oncology, Zhejiang Cancer Hospital, Hangzhou, China
- Key Laboratory of Head and Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou, China
| | - Ling Liu
- Department of Integrated Traditional Chinese and Western Medicine, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Integration of Chinese and Western Medicine Oncology, Zhejiang Cancer Hospital, Hangzhou, China
- Key Laboratory of Head and Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou, China
| | - Lei Zhang
- Department of Integrated Traditional Chinese and Western Medicine, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Integration of Chinese and Western Medicine Oncology, Zhejiang Cancer Hospital, Hangzhou, China
- Key Laboratory of Head and Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou, China
| | - Changhong Wu
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yi Lu
- Department of Clinical Nutrition, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Qinghua Yao
- Department of Integrated Traditional Chinese and Western Medicine, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Integration of Chinese and Western Medicine Oncology, Zhejiang Cancer Hospital, Hangzhou, China
- Key Laboratory of Head and Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou, China
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Clinical Nutrition, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- *Correspondence: Qinghua Yao,
| |
Collapse
|
15
|
Wang M, Zhou B, Cong W, Zhang M, Li Z, Li Y, Liang S, Chen K, Yang D, Wu Z. Amelioration of AOM/DSS-Induced Murine Colitis-Associated Cancer by Evodiamine Intervention is Primarily Associated with Gut Microbiota-Metabolism-Inflammatory Signaling Axis. Front Pharmacol 2022; 12:797605. [PMID: 35002731 PMCID: PMC8740177 DOI: 10.3389/fphar.2021.797605] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/08/2021] [Indexed: 01/02/2023] Open
Abstract
Evodiamine (EVO), an indole alkaloid derived from Rutaceae plants Evodia rutaecarpa (Juss.) Benth.、Evodia rutaecarpa (Juss.) Benth. Var. bodinieri (Dode) Huang or Evodia rutaecarpa (Juss.) Benth. Var. officinalis (Dode) Huang, has anti-inflammatory and anti-tumor activities. Our previous study found that EVO attenuates colitis by regulating gut microbiota and metabolites. However, little is known about its effect on colitis-associated cancer (CAC). In this study, the protective effects of EVO on azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced colitis and tumor mice were observed, and the underlying potential mechanism was clarified. The results suggested that EVO ameliorated AOM/DSS-induced colitis by inhibiting the intestinal inflammation and improving mucosal barrier function. And EVO significantly reduced the number and size of AOM/DSS-induced colorectal tumors along with promoted apoptosis and inhibited proliferation of epithelial cell. Moreover, EVO promoted the enrichment of SCFAs-producing bacteria and reduced the levels of the pro-inflammatory bacteria, which contributes to the changes of microbiota metabolism, especially tryptophan metabolism. Furthermore, inflammatory response (like Wnt signaling pathway、Hippo signaling pathway and IL-17 signaling pathway) were effectively alleviated by EVO. Our study demonstrated that the protective therapeutic action of EVO on CAC is to inhibit the development of intestinal inflammation-cancer by regulating gut microbiota metabolites and signaling pathways of colon intestinal epithelial, which may represent a novel agent for colon cancer prevention via manipulation of gut microbiota.
Collapse
Affiliation(s)
- Mengxia Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.,Shenzhen Institute of Geriatrics, Shenzhen, China
| | - Biqiang Zhou
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Weihong Cong
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Miao Zhang
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Ziwen Li
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.,Shenzhen Institute of Geriatrics, Shenzhen, China
| | - Yan Li
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.,Shenzhen Institute of Geriatrics, Shenzhen, China
| | - Shaoyu Liang
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.,Shenzhen Institute of Geriatrics, Shenzhen, China
| | - Keji Chen
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Depo Yang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhengzhi Wu
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| |
Collapse
|
16
|
Fan Y, Wang W, Tian L, Yin J. Salidroside induced repair of myocardial infarction through Nrf2/HO-1. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e20218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Yanbo Fan
- Wuhan Hospital of Traditional Chinese Medicine, China
| | - Wei Wang
- Wuhan Hospital of Traditional Chinese Medicine, China
| | - Liqun Tian
- Wuhan Hospital of Traditional Chinese Medicine, China
| | - Jie Yin
- Hubei University of Chinese Medicine, PR China
| |
Collapse
|
17
|
Zhang H, Ta N, Shen H, Wang H. Effects of Jian Pi Qing Chang Hua Shi decoction on mucosal injuries in a 2,4,6-trinitrobenzene sulphonic acid-induced inflammatory bowel disease rat model. PHARMACEUTICAL BIOLOGY 2021; 59:683-695. [PMID: 34110957 PMCID: PMC8204966 DOI: 10.1080/13880209.2021.1928240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/28/2021] [Accepted: 05/04/2021] [Indexed: 05/27/2023]
Abstract
CONTEXT Jian Pi Qing Chang Hua Shi decoction (JPQCHSD) has been considered as an effective remedy for the treatment of inflammatory bowel disease (IBD) in Chinese traditional medicine. OBJECTIVE We evaluated the efficacy of JPQCHSD on 2-4-6-trinitrobenzene sulphonic acid (TNBS)-induced IBD rats and the responsible mechanisms. MATERIALS AND METHODS Except the rats of the control group (50% ethanol), Sprague-Dawley rats (180 ± 20 g) induced by TNBS (150 mg/kg in 50% ethanol), received water extract of JPQCHSD daily at 0, 9.5, 19, or 38 g/kg for 12 days. The rats were sacrificed, and their colons were removed to evaluate the disease activity index. Malondialdehyde (MDA), superoxide dismutase (SOD), myeloperoxidase (MPO), immunoglobulin A (IgA), tumour necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and nuclear factor-κB were evaluated. RESULTS JPQCHSD extract significantly reduced the disease activity index of TNBS-induced colitis with a median effective dose (ED50) of 26.93 g/kg. MPO and MDA were significantly reduced in the 19 and 38 g/kg groups (ED50 values 37.38 and 53.2 g/kg, respectively). The ED50 values for the increased SOD and IgA were 48.98 and 56.3 g/kg. ED50 values for inhibition of TNF-α, IL-1β, and IL-6 were 32.66, 75.72, and 162.06 g/kg, respectively. DISCUSSION JPQCHSD promoted mucosal healing in IBD rats via its anti-inflammation, immune regulation, and antioxidation properties. CONCLUSIONS JPQCHSD has healing function on IBD. Further clinical trials are needed to demonstrate its efficacy and tolerance to IBD.
Collapse
Affiliation(s)
- Huicun Zhang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Institute of Chinese Medicine, Beijing, China
| | - Na Ta
- Center Hospital of Beijing Daxing District Caiyu Town, Beijing, China
| | - Hong Shen
- Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Hongbing Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Hospital of Traditional Chinese Medicine Yanqing Hospital, Beijing, China
| |
Collapse
|
18
|
Siraj MA, Islam MA, Al Fahad MA, Kheya HR, Xiao J, Simal-Gandara J. Cancer Chemopreventive Role of Dietary Terpenoids by Modulating Keap1-Nrf2-ARE Signaling System—A Comprehensive Update. APPLIED SCIENCES 2021; 11:10806. [DOI: 10.3390/app112210806] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
ROS, RNS, and carcinogenic metabolites generate excessive oxidative stress, which changes the basal cellular status and leads to epigenetic modification, genomic instability, and initiation of cancer. Epigenetic modification may inhibit tumor-suppressor genes and activate oncogenes, enabling cells to have cancer promoting properties. The nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that in humans is encoded by the NFE2L2 gene, and is activated in response to cellular stress. It can regulate redox homoeostasis by expressing several cytoprotective enzymes, including NADPH quinine oxidoreductase, heme oxygenase-1, UDP-glucuronosyltransferase, glutathione peroxidase, glutathione-S-transferase, etc. There is accumulating evidence supporting the idea that dietary nutraceuticals derived from commonly used fruits, vegetables, and spices have the ability to produce cancer chemopreventive activity by inducing Nrf2-mediated detoxifying enzymes. In this review, we discuss the importance of these nutraceuticals in cancer chemoprevention and summarize the role of dietary terpenoids in this respect. This approach was taken to accumulate the mechanistic function of these terpenoids to develop a comprehensive understanding of their direct and indirect roles in modulating the Keap1-Nrf2-ARE signaling system.
Collapse
Affiliation(s)
- Md Afjalus Siraj
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, HI 96720, USA
| | - Md. Arman Islam
- Pharmacy Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Md. Abdullah Al Fahad
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea
| | - Habiba Rahman Kheya
- Department of Sociology, Faculty of Social Sciences, University of Dhaka, Dhaka 1000, Bangladesh
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo—Ourense Campus, E32004 Ourense, Spain
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo—Ourense Campus, E32004 Ourense, Spain
| |
Collapse
|
19
|
Administration of Nrf-2-Modified Hair-Follicle MSCs Ameliorates DSS-Induced Ulcerative Colitis in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9930187. [PMID: 34745427 PMCID: PMC8566060 DOI: 10.1155/2021/9930187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 09/23/2021] [Indexed: 02/06/2023]
Abstract
Ulcerative colitis (UC) is a common chronic nonspecific intestinal inflammation of unknown etiology associated with a low cure rate and a high relapse rate. Hair follicle mesenchymal stem cells (HF-MSCs) are a class of pluripotent stem cells that have differentiation potential and strong proliferation ability. Nuclear factor red system related factor (Nrf-2) is a key factor in the oxidative stress response. Dextran sulfate sodium- (DSS-) induced rat UC models closely mimic human UC in terms of symptoms and histological changes. Animals were divided into five groups, including a healthy group and UC model rats treated with normal saline, Nrf-2, HF-MSCs, or Nrf-2-expressing HF-MSC group. Based on the expression of intestinal stem cells, inflammatory factors, anti-inflammatory factors, and disease activity index scores, Nrf-2-expressing HF-MSCs had the most obvious therapeutic effect under the same treatment regimen. This study provided a new potential clinical treatment option for ulcerative colitis.
Collapse
|
20
|
Zhou C, Zhou H, Zhang F, Hao L, Guo J. Active Ingredients and Potential Mechanisms of the Gan Jiang-Huang Qin-Huang Lian-Ren Shen Decoction against Ulcerative Colitis: A Network Pharmacology and Molecular Docking-Based Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:1925718. [PMID: 34539797 PMCID: PMC8445727 DOI: 10.1155/2021/1925718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/01/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Ulcerative colitis (UC), a chronic and nonspecific inflammatory bowel disease, seriously affects the quality of patients' life. Han Re Bing Yong Fa (treating diseases with both cool- and warm-natured herbs) is a classical therapeutic principle of traditional Chinese medicine (TCM), which is often used to treat chronic diseases, including UC. The Gan Jiang-Huang Qin-Huang Lian-Ren Shen decoction (GJHQHLRSD), a representative of Han Re Bing Yong Fa, is effective in alleviating inflammatory symptoms in UC. However, the pharmacological mechanism underlying its anti-inflammatory effect remains unclear. METHODS A network pharmacology strategy, including the construction and analysis of the drug-disease network, was used to explore the complex mechanism of GJHQHLRSD treatment of UC. In addition, molecular docking technology was used to preliminarily examine the binding ability of the potential active components and core therapeutic targets of GJHQHLRSD. RESULTS The network pharmacology results revealed 140 targets of GJHQHLRSD which are involved in UC. The PPI network analysis identified seven target genes: BCL2L1, NR3C1, ALOX5, S1PR5, NR1I2, CYP2D6, and LPAR6. The molecular docking results revealed that the following displayed strongest combined effects: EGFR with kaempferol, ERK1 with worenine, STAT3 with Palmidin A, BCL2L1 with diop and VEGFA with ginsenoside Rg3. The KEGG and gene ontology enrichment analyses results indicated that GJHQHLRSD functions by regulating the EGFR signaling pathway in UC treatment. Other effective biological processes involved in UC treatment included cancer-related as well as inflammation and viral infection signaling pathways, such as the "MicroRNAs in cancer," "TNF signaling pathway," and "JAK-STAT signaling pathway." CONCLUSIONS This study reflects the multicomponent, multitarget, and multipathway characteristics of the action mechanism of GJHQHLRSD in treating UC. Furthermore, it helps better understand the TCM therapeutic principle of Han Re Bing Yong Fa and explore novel candidate drug targets for UC treatment.
Collapse
Affiliation(s)
- Ce Zhou
- Department of Proctology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Hang Zhou
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Furong Zhang
- College of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Liangliang Hao
- Department of Proctology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Jing Guo
- School of Clinical Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| |
Collapse
|
21
|
Goji berry juice fermented by probiotics attenuates dextran sodium sulfate-induced ulcerative colitis in mice. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104491] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
22
|
Chi H, Wang D, Chen M, Lin J, Zhang S, Yu F, Zhou J, Zheng X, Zou Y. Shaoyao Decoction Inhibits Inflammation and Improves Intestinal Barrier Function in Mice With Dextran Sulfate Sodium-Induced Colitis. Front Pharmacol 2021; 12:524287. [PMID: 33959000 PMCID: PMC8093868 DOI: 10.3389/fphar.2021.524287] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Shaoyao decoction (SYD), a classical traditional Chinese medicine formula, is effective for the treatment of inflammatory bowel disease (IBD). This study was designed to investigate the therapeutic effects of SYD on IBD and possible mechanisms. Dextran sulfate sodium (DSS, 3.5%) was used to induce colitis in C57BL/6 mice. Disease phenotypes were investigated based on disease activity index (DAI), colon length, and microscopic and macroscopic scores. Additionally, the presence of proinflammatory cytokines, immune cell infiltrates, intestinal cell proliferation, apoptosis, epithelial permeability, signal transducer and activator of transcription 3 (STAT3), and nuclear factor-κB (NF-κB) signaling, as well as the intestinal mucosal barrier function, were investigated. The administration of SYD significantly ameliorated the clinical signs, suppressed the levels of proinflammatory cytokines, and reduced immune cell infiltrates into colonic tissues of DSS-induced colitis model mice. SYD also significantly reduced the DSS-induced activation of STAT3 and NF-κB signaling. Furthermore, SYD promoted epithelial integrity by regulating epithelial cell apoptosis and epithelial permeability. Finally, we demonstrated that SYD protected the intestinal barrier function by significantly regulating the mucus layer genes Muc1, Muc2, Muc4, and Tff3, as well as the epithelial barrier genes Z O -1 and Occludin. Our results indicate that SYD has a protective effect on DSS-induced colitis, which is attributable to its anti-inflammatory activity and intestinal barrier function-enhancing effects. These results provide valuable insights into the pharmacological actions of SYD for the treatment of IBD.
Collapse
Affiliation(s)
- Honggang Chi
- Department of Traditional Chinese Medicine, The Second Clinical Medical College, Guangdong Medical University, Dongguan, China.,Department of Traditional Chinese Medicine, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, China
| | - Dan Wang
- Department of Pharmacology, Guangdong Medical University, Dongguan, China
| | - Mengting Chen
- Department of Pharmacology, Guangdong Medical University, Dongguan, China
| | - Jiantao Lin
- Department of Pharmacology, Guangdong Medical University, Dongguan, China
| | - Shuhua Zhang
- Department of Traditional Chinese Medicine, The Second Clinical Medical College, Guangdong Medical University, Dongguan, China
| | - Fengyan Yu
- The Second Clinical Medical College, Guangdong Medical University, Dongguan, China
| | - Jun Zhou
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuebao Zheng
- Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Dongguan, China
| | - Ying Zou
- Department of Traditional Chinese Medicine, The Second Clinical Medical College, Guangdong Medical University, Dongguan, China.,Department of Traditional Chinese Medicine, Dongguan Liaobu Hospital, Dongguan, China
| |
Collapse
|
23
|
Shen H, Zhang S, Zhao W, Ren S, Ke X, Gu Q, Tang Z, Xie J, Chen S, Chen Y, Zou J, Zhang L, Shen Z, Zheng K, Liu Y, Gu P, Cheng J, Hu J, Zhu L. Randomised clinical trial: Efficacy and safety of Qing-Chang-Hua-Shi granules in a multicenter, randomized, and double-blind clinical trial of patients with moderately active ulcerative colitis. Biomed Pharmacother 2021; 139:111580. [PMID: 33857914 DOI: 10.1016/j.biopha.2021.111580] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 02/07/2023] Open
Abstract
Qing-Chang-Hua-Shi (QCHS) is a Chinese herbal formula, which is composed of 11 herbs. Studies have also shown that QCHS granules can alleviate colitis in animal models by preventing inflammatory responses and suppressing apoptosis through the MEK/ERK signaling pathway. To determine the efficacy and safety of QCHS granules in patients with moderately active UC. We performed a multicenter, randomized, placebo-controlled, double-blind study of patients with moderately active UC who did not respond to 4 weeks of mesalazine therapy at the maximum dose. Patients were randomly assigned to groups and administered QCHS granules (125 g/day, n = 59) or an identical placebo, which was similar to the QCHS granules in color and taste (125 g/day, n = 60), with continued 5-ASA 4 g/d therapy for 12 weeks. The primary outcome was the rate of clinical response and clinical remission at week 12. The secondary outcomes were health-related quality of life, endoscopic response rate, and mucosal healing rate. Any changes in mucus/bloody stool and diarrhea were recorded. Out of the 119 enrolled patients at 10 different centers in China, 102 patients completed the trial. Clinical remission and clinical response were seen in 31.48% and 92.59% of QCHS-treated patients, and 12.50% and 72.92% of placebo-treated patients, respectively. There was a significant difference between the two treatment groups. More patients receiving QCHS granules vs. placebo achieved remission of mucus/bloody stool (70.37% vs. 47.92%, P = 0.0361). Adverse event rates were similar (QCHS granules 38.33%; placebo 25.42%). In conclusion, QCHS granules were superior to the placebo in introducing clinical remission and mucosal healing, as well as in relieving mucus/blood stool in patients with moderately active and 5-ASA-refractory UC.
Collapse
Affiliation(s)
- Hong Shen
- Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of Chinese Medicine), Nanjing 210029, China
| | - Shengsheng Zhang
- Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Wenxia Zhao
- The First Affiliated Hospital of Henan University of CM, Zhengzhou, China
| | - Shunping Ren
- The Hospital of Shanxi University of Chinese Medicine, Taiyuan, China
| | - Xiao Ke
- The Second Affiliated Hospital of Fujian Traditional Chinese Medical University, Fuzhou, China
| | - Qinghua Gu
- Nantong Hospital of Traditional Chinese Medicine, Nantong, China
| | - Zhipeng Tang
- LongHua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingri Xie
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Haerbin, China
| | - Suning Chen
- Shengjing Hospital of China Medicine University, Shenyang, China
| | - Yan Chen
- GuangDong Province Hospital of Chinese Medicine, Guangzhou, China
| | - Jiandong Zou
- Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of Chinese Medicine), Nanjing 210029, China
| | - Lu Zhang
- Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of Chinese Medicine), Nanjing 210029, China
| | - Zhaofeng Shen
- Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of Chinese Medicine), Nanjing 210029, China
| | - Kai Zheng
- Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of Chinese Medicine), Nanjing 210029, China
| | - Yajun Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of Chinese Medicine), Nanjing 210029, China
| | - Peiqing Gu
- Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of Chinese Medicine), Nanjing 210029, China
| | - Jiafei Cheng
- Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of Chinese Medicine), Nanjing 210029, China
| | - Jingyi Hu
- Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of Chinese Medicine), Nanjing 210029, China
| | - Lei Zhu
- Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of Chinese Medicine), Nanjing 210029, China.
| |
Collapse
|
24
|
Fan T, Feng X, Yokota A, Liu W, Tang Y, Yan X, Xiao H, Wang Y, Deng Z, Zhao P, Wang M, Wang H, Ma R, Hu X, Huang G. Arsenic Dispensing Powder Promotes Erythropoiesis in Myelodysplastic Syndromes via Downregulation of HIF1A and Upregulation of GATA Factors. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:461-485. [PMID: 33641653 DOI: 10.1142/s0192415x2150021x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Traditional Chinese Medicine (TCM) is a practical medicine based on thousands of years of medical practice in China. Arsenic dispensing powder (ADP) has been used as a treatment for MDS patients with a superior efficacy on anemia at Xiyuan Hospital of China Academy of Chinese Medical Sciences. In this study, we retrospectively analyzed MDS patients that received ADP treatment in the past 9 years and confirmed that ADP improves patients' anemia and prolongs overall survival in intermediate-risk MDS patients. Then, we used the MDS transgenic mice model and cell line to explore the drug mechanism. In normal and MDS cells, ADP does not show cellular toxicity but promotes differentiation. In mouse MDS models, we observed that ADP showed significant efficacy on promoting erythropoiesis. In the BFU-E and CFU-E assays, ADP could promote erythropoiesis not only in normal clones but also in MDS clones. Mechanistically, we found that ADP could downregulate HIF1A in MDS clones through upregulation of VHL, P53 and MDM2, which is involved in two parallel pathways to downregulate HIF1A. We also confirmed that ADP upregulates GATA factors in normal clones. Thus, our clinical and experimental studies indicate that ADP is a promising drug to promote erythropoiesis in both MDS and normal clones with a superior outcome than current regular therapies. ADP promotes erythropoiesis in myelodysplastic syndromes via downregulation of HIF1A and upregulation of GATA factors.
Collapse
Affiliation(s)
- Teng Fan
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, P. R. China.,Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, OH, USA
| | - Xiaomin Feng
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, OH, USA
| | - Asumi Yokota
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, OH, USA
| | - Weiyi Liu
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, P. R. China
| | - Yuting Tang
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, OH, USA
| | - Xiaomei Yan
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, OH, USA
| | - Haiyan Xiao
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, P. R. China
| | - Yue Wang
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, P. R. China
| | - Zhongyang Deng
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, P. R. China
| | - Pan Zhao
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, P. R. China
| | - Mingjing Wang
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, P. R. China
| | - Hongzhi Wang
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, P. R. China
| | - Rou Ma
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, P. R. China
| | - Xiaomei Hu
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, P. R. China
| | - Gang Huang
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, OH, USA
| |
Collapse
|
25
|
Chen M, Ding Y, Tong Z. Efficacy and Safety of Sophora flavescens (Kushen) Based Traditional Chinese Medicine in the Treatment of Ulcerative Colitis: Clinical Evidence and Potential Mechanisms. Front Pharmacol 2020; 11:603476. [PMID: 33362558 PMCID: PMC7758483 DOI: 10.3389/fphar.2020.603476] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
Background: Radix Sophorae flavescentis (Kushen), a Chinese herb, is widely used in the treatment of ulcerative colitis (UC) with damp-heat accumulation syndrome (DHAS) according to traditional Chinese medicine (TCM) theory. Objective: The aim of this study was to illuminate the clinical efficacy and potential mechanisms of Kushen-based TCM formulations in the treatment of UC with DHAS. Materials and Methods: A systematic literature search was performed in the PubMed, EMBASE, Chinese Biomedical Literature database, China National Knowledge Infrastructure database, Chongqing VIP Information database, and Wanfang database for articles published between January 2000 and July 2020 on randomized controlled trials (RCTs) that used Kushen-based TCM formulations in the treatment of UC with DHAS. A network pharmacology approach was conducted to detect the potential pathways of Kushen against UC with DHAS. Results: Eight RCTs with a total of 983 subjects were included in the meta-analysis. Compared with the control subjects (5-aminosalicylic acid therapy), those who received Kushen-based TCM formulations for the treatment of UC showed a significantly higher clinical remission rate (RR = 1.20, 95% CI: [1.04, 1.38], p = 0.02) and lower incidence of adverse events (RR = 0.63, 95% CI [0.39, 1.01], p = 0.06). A component-target-pathway network was constructed, indicating five main components (quercetin, luteolin, matrine, formononetin, and phaseolin), three major targets (Interleukin-6, Myc proto-oncogene protein, and G1/S-specific cyclin-D1) and one key potential therapeutic pathway (PI3K-Akt signaling) of Kushen against UC with DHAS. Conclusion: Kushen-based TCM formulations provide good efficacy and possess great potential in the treatment of UC. Large-scale and high-quality clinical trials and experimental verification should be considered for further confirmation of the efficacy of Kushen-based formulations.
Collapse
Affiliation(s)
- Mingjun Chen
- Department of Traditional Chinese Medicine, Second Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | | | - Zhanqi Tong
- Department of Traditional Chinese Medicine, Second Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, China
| |
Collapse
|
26
|
Luo X, Yu Z, Yue B, Ren J, Zhang J, Mani S, Wang Z, Dou W. Obacunone reduces inflammatory signalling and tumour occurrence in mice with chronic inflammation-induced colorectal cancer. PHARMACEUTICAL BIOLOGY 2020; 58:886-897. [PMID: 32878512 PMCID: PMC8202763 DOI: 10.1080/13880209.2020.1812673] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/07/2020] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
CONTEXT Obacunone, a limonoid abundantly found in Citrus fruits, exhibits a variety of bioactivities. OBJECTIVE To investigate the effects of obacunone on a colorectal cancer (CRC) mouse model, and clarify its potential molecular mechanisms. MATERIALS AND METHODS The male Balb/c mice were induced with azoxymethane and dextran sulfate sodium for 12 weeks. Obacunone (50 mg/kg) was administered via oral gavage three times every week until the end of the experiment. Disease indexes including body weight, spleen weight, bloody diarrhea, colon length, histopathological score, and tumor size were measured. The anti-proliferation activities of obacunone were analyzed by MTT or flow cytometry. The expression of protein and mRNA related to cell proliferation or inflammatory cytokines was determined by Western blot, q-PCR and IHC. RESULTS Obacunone significantly alleviated bloody diarrhea, colon shortening (7.35 ± 0.2128 vs. 8.275 ± 0.2169 cm), splenomegaly, histological score (9 ± 0.5774 vs. 6 ± 0.5774) and reduced tumor size (4.25 ± 0.6196 vs. 2 ± 0.5669). Meanwhile, the expression of protein and mRNA related to cell proliferation or inflammatory cytokines was remarkably decreased in tumor tissue. Obacunone inhibited the proliferation activities of colorectal cancer cells. Moreover, obacunone induced colorectal cancer cells G1 and G2 phases arrest, and suppressed the expression of cell cycle genes. CONCLUSIONS Obacunone could alleviate CRC via inhibiting inflammatory response and tumor cells proliferation. The results may contribute to the effective utilization of obacunone or its derivatives in the treatment of human CRC.
Collapse
Affiliation(s)
- Xiaoping Luo
- Shanghai Key Laboratory of Formulated Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China
| | - Zhilun Yu
- Shanghai Key Laboratory of Formulated Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China
| | - Bei Yue
- Shanghai Key Laboratory of Formulated Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China
| | - Junyu Ren
- Shanghai Key Laboratory of Formulated Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China
| | - Jing Zhang
- Shanghai Key Laboratory of Formulated Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China
| | - Sridhar Mani
- Departments of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Zhengtao Wang
- Shanghai Key Laboratory of Formulated Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China
| | - Wei Dou
- Shanghai Key Laboratory of Formulated Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China
| |
Collapse
|
27
|
Huang C, Dong J, Jin X, Ma H, Zhang D, Wang F, Cheng L, Feng Y, Xiong X, Jiang J, Hu L, Lei M, Wu B, Zhang G. Intestinal anti-inflammatory effects of fuzi-ganjiang herb pair against DSS-induced ulcerative colitis in mice. JOURNAL OF ETHNOPHARMACOLOGY 2020; 261:112951. [PMID: 32574670 DOI: 10.1016/j.jep.2020.112951] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/21/2020] [Accepted: 05/03/2020] [Indexed: 05/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fuzi and ganjiang are widely used as traditional Chinese medicines (TCM) in China, Korea, Japan, and many other southeast Asian countries for treating ulcerative colitis (UC), emesis and heart failure for more than 1800 years. However, the underlying mechanism of fuzi, ganjiang and fuzi-ganjiang herb pair is still unclear. In our study, we explored the therapeutic effects of fuzi, ganjiang and fuzi-ganjiang herb pair against dextran sulfate sodium (DSS)-induced UC in mice model, along with the relevant mechanism. MATERIALS AND METHODS The contents of each marker compound in fuzi decoction (FD), ganjiang decoction (GD) and fuzi-ganjiang decoction (FGD) were determined using LC-MS/MS. During the experiment, bodyweight changes in each group were monitored every 5 days. On the day of sacrifice, colonic length, disease activity index (DAI) and spleen weight were also evaluated and histopathological examination was performed through hematoxylin & eosin (H&E) staining. The levels of myeloperoxidase (MPO) and inflammatory cytokines in colon tissues were determined by enzyme-linked immunosorbent assay (ELISA), and then the relative mRNA productions of inflammatory mediators, such as MPO, inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 were measured by real-time polymerase chain reaction (PCR). Involvement of MAPK, STAT3 and NF-κB signaling pathways in the pathogenesis of UC was determined in each group using Western Blot (WB) analysis. RESULTS Compared with fuzi and ganjiang single decoction, the content of the alkaloids derived from fuzi (especially the diester alkaloid with strong toxicity, hypaconitine) in fuzi-ganjiang herb pair decoction was reduced. Additionally, the 6-gingerol, which was not found in ganjiang single decoction, was retained in fuzi-ganjiang herb pair decoction. FD, GD, and FGD significantly restored the bodyweight reduction, colon shortening, DAI elevation, splenomegaly and histological score in DSS-induced UC mice. Furthermore, except for the failure of low dosage of ganjiang decoction (GD-L) on IL-17A, all FD, GD and FGD significantly inhibited the production of MPO and inflammatory cytokines, such as IFN-γ, TNF-α, IL-1β, IL-6, IL-10 and IL-17A, and suppressed the relative expression of inflammatory mediators, such as MPO, iNOS and COX-2 mRNA in colon tissues of DSS-induced mice. According to WB analysis, fuzi, ganjiang and fuzi-ganjiang combination inhibited the activation of MAPK, NF-κB and STAT3 signaling pathways. CONCLUSIONS Our study demonstrated that fuzi, ganjiang and fuzi-ganjiang combination possess prominent anti-inflammatory activities against DSS-induced UC mice; the involved mechanism may be related to inhibition the activation of MAPK, NF-κB, and STAT3 signaling pathways.
Collapse
Affiliation(s)
- Chuanqi Huang
- Department of Pharmacy, Wuhan No.1 Hospital (Wuhan Hospital of Traditional and Western Medicine), Wuhan, China
| | - Junli Dong
- Department of Pharmacy, Wuhan No.1 Hospital (Wuhan Hospital of Traditional and Western Medicine), Wuhan, China
| | - Xiaoqi Jin
- Department of Pharmacy, Wuhan No.1 Hospital (Wuhan Hospital of Traditional and Western Medicine), Wuhan, China; College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Haoran Ma
- Department of Pharmacy, Wuhan No.1 Hospital (Wuhan Hospital of Traditional and Western Medicine), Wuhan, China
| | - Dan Zhang
- Department of Pharmacy, Wuhan No.1 Hospital (Wuhan Hospital of Traditional and Western Medicine), Wuhan, China
| | - Fuqian Wang
- Department of Pharmacy, Wuhan No.1 Hospital (Wuhan Hospital of Traditional and Western Medicine), Wuhan, China
| | - Lu Cheng
- Department of Pharmacy, Wuhan No.1 Hospital (Wuhan Hospital of Traditional and Western Medicine), Wuhan, China
| | - Yan Feng
- Department of Pathology, Wuhan No.1 Hospital (Wuhan Hospital of Traditional and Western Medicine), Wuhan, China
| | - Xin Xiong
- Department of Pharmacy, Wuhan No.1 Hospital (Wuhan Hospital of Traditional and Western Medicine), Wuhan, China
| | - Jie Jiang
- Department of Pharmacy, Wuhan No.1 Hospital (Wuhan Hospital of Traditional and Western Medicine), Wuhan, China
| | - Lei Hu
- Department of Pharmacy, Wuhan No.1 Hospital (Wuhan Hospital of Traditional and Western Medicine), Wuhan, China
| | - Mi Lei
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Bin Wu
- Department of Transfusion Medicine, Wuhan No.1 Hospital (Wuhan Hospital of Traditional and Western Medicine), Wuhan, China
| | - Geng Zhang
- Department of Pharmacy, Wuhan No.1 Hospital (Wuhan Hospital of Traditional and Western Medicine), Wuhan, China.
| |
Collapse
|
28
|
Li W, Lin K, Zhou M, Xiong Q, Li C, Ru Q. Polysaccharides from Opuntia milpa alta alleviate alloxan-induced INS-1 cells apoptosis via reducing oxidative stress and upregulating Nrf2 expression. Nutr Res 2020; 77:108-118. [PMID: 32422500 DOI: 10.1016/j.nutres.2020.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 01/11/2020] [Accepted: 02/06/2020] [Indexed: 11/29/2022]
Abstract
The incidence and progression of type 2 diabetes are closely related to pancreatic β-cell damage. Oxidative stress may be one of the key factors contributing to β-cell apoptosis. Opuntia milpa alta polysaccharides (MAPs) are water-soluble macromolecular polysaccharides that have antidiabetic effects in vivo. Therefore, we hypothesized that MAPs might effectively prevent β-cell apoptosis via the inhibition of oxidative damages. In this study, INS-1 cells were exposed to alloxan with different concentrations of MAPs in vitro, and the cell viability, oxidative enzyme activities, nitric oxide production, reactive oxygen species production, apoptosis, and the expression of proteins in the antioxidant nucleus transcription factor NF-E2-related factor 2 (Nrf2) pathway and proteins related to apoptosis were measured to assess oxidative stress responses and apoptosis. The results indicated that INS-1 cell viabilities and superoxide dismutase and reduced glutathione activities were significantly restored, whereas lactate dehydrogenase releases and reactive oxygen species, nitric oxide, and malondialdehyde levels were greatly decreased after MAPs treatment. We found that MAPs could attenuate alloxan-induced apoptosis by increasing the expression of Bcl-2 and decreasing the expression of Bax and the activities of caspase-3 and caspase-9. The results of Western blot revealed that MAPs suppressed the expression of cleaved caspase-3 and cleaved PARP and upregulated the expression of nucleus Nrf2 and its downstream protein. These findings indicated that MAPs could alleviate alloxan-induced β-cell apoptosis by reducing oxidative stress and upregulating Nrf2 expression.
Collapse
Affiliation(s)
- Weiling Li
- Wuhan Institutes of Biomedical Sciences, Jianghan University, Wuhan, Hubei 430056, PR China.
| | - Kuan Lin
- Wuhan Institutes of Biomedical Sciences, Jianghan University, Wuhan, Hubei 430056, PR China.
| | - Mei Zhou
- Wuhan Institutes of Biomedical Sciences, Jianghan University, Wuhan, Hubei 430056, PR China.
| | - Qi Xiong
- Wuhan Institutes of Biomedical Sciences, Jianghan University, Wuhan, Hubei 430056, PR China.
| | - Chaoying Li
- Wuhan Institutes of Biomedical Sciences, Jianghan University, Wuhan, Hubei 430056, PR China.
| | - Qin Ru
- Wuhan Institutes of Biomedical Sciences, Jianghan University, Wuhan, Hubei 430056, PR China.
| |
Collapse
|
29
|
Wang X, Saud SM, Wang F, He S, Zhang X, Hua B, Li W. Protective effect of ShaoYao decoction on colitis-associated colorectal cancer by inducing Nrf2 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2020; 252:112600. [PMID: 31981745 DOI: 10.1016/j.jep.2020.112600] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/10/2020] [Accepted: 01/18/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ulcerative colitis were prone to develop into ulcerrelated colorectal cancer with high risk of mortality. Shaoyao Decoction (SYD), a compound prescription of Chinese traditional medicine, was reported to have anti-colorectal cancer effect. Thus this study mainly investigated the protective and preventive effect of SYD against oxidative damages and inflamatory response through in vivo and in vitro experiments. AIM OF THE STUDY Shaoyao decoction (SYD), a compound prescription of traditional Chinese medicine, is effective in treating ulcerative colitis. The increased levels of reactive oxygen species (ROS) in inflammatory cells potentially drive the development of carcinomas. Nuclear factor-erythroid 2-related factor 2 (Nrf2) has became a novel target for the prevention of colorectal cancer (CRC). In this study, we assessed the antioxidation effect of SYD against colitis associated colorectal cancer through in vivo and in vitro experiments. MATERIALS AND METHODS In vivo AOM/DSS-induced murine model of colon cancer and in vitro H2O2-induced oxidative stress in HT-29 cells model were conducted. To determine the antioxidant activity of SYD, protein expression of Nrf2 and its downstream genes were detected by western blot, RT-PCR and Enzyme-linked immunosorbent assay. RESULTS Both in vivo and in vitro experiments demonstrated that SYD exerts antioxidant effect through activation of Nrf2 pathway and upregulation expression of Nrf2 downstream genes. SYD is shown to have preventive effect against colitis-associated colorectal cancer. CONCLUSIONS These observations suggest that SYD is effective in the enhancement of antioxidant ability via activation of Nrf2 pathway and the up-regulation of Nrf2-downstream phase II enzymes expression. The anti-inflammation and antioxidant action of SYD together contributes to the prevention and treatment of ulcerrelated colorectal cancer.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5, Beixiange Road, Xicheng District, Beijing, 100053, China; Department of Medical Security Management, Wangjing Hospital, China Academy of Chinese Medical Sciences, No.6, Zhonghuan South Road, Chaoyang District, Beijing, 100102, China
| | - Shakir M Saud
- Department of Family Medicine, Contra Costa Regional Medical Center, Martinez, CA, 94553, USA
| | - Fang Wang
- Department of Oncology, Wangjing Hospital, China Academy of Chinese Medical Sciences, No.6, Huajiadi Road, Chaoyang District, Beijing, 100102, China
| | - Shengqi He
- Department of Oncology, Wangjing Hospital, China Academy of Chinese Medical Sciences, No.6, Huajiadi Road, Chaoyang District, Beijing, 100102, China
| | - Xiwen Zhang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5, Beixiange Road, Xicheng District, Beijing, 100053, China
| | - Baojin Hua
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5, Beixiange Road, Xicheng District, Beijing, 100053, China.
| | - Weidong Li
- Department of Scientific Research Management, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5, Beixiange Road, Xicheng District, Beijing, 100053, China.
| |
Collapse
|
30
|
Zhang H, Gu H, Jia Q, Zhao Y, Li H, Shen S, Liu X, Wang G, Shi Q. Syringin protects against colitis by ameliorating inflammation. Arch Biochem Biophys 2020; 680:108242. [DOI: 10.1016/j.abb.2019.108242] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/26/2019] [Accepted: 12/29/2019] [Indexed: 02/07/2023]
|
31
|
Liu D, Wang H, Zhang Y, Zhang Z. Protective Effects of Chlorogenic Acid on Cerebral Ischemia/Reperfusion Injury Rats by Regulating Oxidative Stress-Related Nrf2 Pathway. Drug Des Devel Ther 2020; 14:51-60. [PMID: 32021091 PMCID: PMC6954849 DOI: 10.2147/dddt.s228751] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/27/2019] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Cerebral ischemia-reperfusion (CI/R) injury is caused by blood flow recovery after ischemic stroke. Chlorogenic acid (CGA, 5-O-caffeoylquinic acid) is a major polyphenol component of Coffea canephora, Coffea arabica L. and Mate (Ilex paraguariensis A. StHil.). Previous studies have shown that CGA has a significant neuroprotective effect and can improve global CI/R injury. However, the underlying molecular mechanism of CGA in CI/R injury has not been fully revealed. MATERIALS In this study, CI/R rat model was constructed. The rats were randomly divided into nine groups with ten in each group: Control, CGA (500 mg·kg-1), CI/R, CI/R + CGA (20 mg·kg-1), CI/R + CGA (100 mg·kg-1), CI/R + CGA (500 mg·kg-1), ML385 (30 mg·kg-1), CI/R + ML385 (30 mg·kg-1), CI/R + CGA + ML385. Cerebral infarction volume was detected by TTC staining. Brain pathological damage was detected by H&E staining. Apoptosis of cortical cells was detected by TUNEL staining. The expression of related proteins was detected by RT-qPCR and Western blotting. RESULTS Step-down test and Y maze test showed that CGA dose-dependently mitigated CI/R-induced brain damage and enhanced learning and spatial memory. Besides, CGA promoted the expression of BDNF and NGF in a dose-dependent manner and alleviated CI/R-induced nerve injury. Moreover, CGA increased the activity of SOD and the level of GSH, as well as decreased production of ROS and LDH and the accumulation of MDA. Notably, CGA attenuated oxidative stress-induced brain injury and apoptosis and inhibited the expression of apoptosis-related proteins (cleaved caspase 3 and caspase 9). Additionally, CGA reversed CI/R induced inactivation of Nrf2 pathway and promoted Nrf2, NQO-1 and HO-1 expression. Nrf2 pathway inhibitor ML385 destroyed this promotion. DISCUSSION All the data indicated that CGA had a neuroprotective effect on the CI/R rats by regulating oxidative stress-related Nrf2 pathway.
Collapse
Affiliation(s)
- Dequan Liu
- Department of Neurology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan471000, People’s Republic of China
| | - Huilin Wang
- Department of Neurology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan471000, People’s Republic of China
| | - Yangang Zhang
- Department of Ultrasound, The Affiliated Children's Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, 710003, People’s Republic of China
| | - Zhan Zhang
- Department of Ultrasound, The Affiliated Children's Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, 710003, People’s Republic of China
| |
Collapse
|
32
|
Pompili S, Sferra R, Gaudio E, Viscido A, Frieri G, Vetuschi A, Latella G. Can Nrf2 Modulate the Development of Intestinal Fibrosis and Cancer in Inflammatory Bowel Disease? Int J Mol Sci 2019; 20:E4061. [PMID: 31434263 PMCID: PMC6720292 DOI: 10.3390/ijms20164061] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/08/2019] [Accepted: 08/12/2019] [Indexed: 12/15/2022] Open
Abstract
One of the main mechanisms carried out by the cells to counteract several forms of stress is the activation of the nuclear factor erythroid 2-related factor (Nrf2) signaling. Nrf2 signaling controls the expression of many genes through the binding of a specific cis-acting element known as the antioxidant response element (ARE). Activation of Nrf2/ARE signaling can mitigate several pathologic mechanisms associated with an autoimmune response, digestive and metabolic disorders, as well as respiratory, cardiovascular, and neurodegenerative diseases. Indeed, several studies have demonstrated that Nrf2 pathway plays a key role in inflammation and in cancer development in many organs, including the intestine. Nrf2 appears to be involved in inflammatory bowel disease (IBD), an immune-mediated chronic and disabling disease, with a high risk of developing intestinal fibrotic strictures and cancer. Currently, drugs able to increase cytoprotective Nrf2 function are in clinical trials or already being used in clinical practice to reduce the progression of some degenerative conditions. The role of Nrf2 in cancer development and progression is controversial, and drugs able to inhibit abnormal levels of Nrf2 are also under investigation. The goal of this review is to analyze and discuss Nrf2-dependent signals in the initiation and progression of intestinal fibrosis and cancers occurring in IBD.
Collapse
Affiliation(s)
- Simona Pompili
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Roberta Sferra
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Angelo Viscido
- Department of Life, Health and Environmental Sciences, Gastroenterology, Hepatology and Nutrition Division, University of L'Aquila, 67100 L'Aquila, Italy
| | - Giuseppe Frieri
- Department of Life, Health and Environmental Sciences, Gastroenterology, Hepatology and Nutrition Division, University of L'Aquila, 67100 L'Aquila, Italy
| | - Antonella Vetuschi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Giovanni Latella
- Department of Life, Health and Environmental Sciences, Gastroenterology, Hepatology and Nutrition Division, University of L'Aquila, 67100 L'Aquila, Italy.
| |
Collapse
|