1
|
Xia Z, Zhao X, Wang L, Huang L, Yang Y, Yin X, He L, Aga Y, Kahaer A, Yang S, Hao L, Chen C. Amelioration of Inflammation in Rats with Experimentally Induced Asthma by Spenceria ramalana Trimen Polyphenols via the PI3K/Akt Signaling Pathway. Int J Mol Sci 2024; 26:165. [PMID: 39796021 PMCID: PMC11720363 DOI: 10.3390/ijms26010165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/13/2025] Open
Abstract
Asthma is a chronic inflammatory respiratory disease that affects millions globally and poses a serious public health challenge. Current therapeutic strategies, including corticosteroids, are constrained by variable patient responses and adverse effects. In this study, a polyphenolic extract derived from the Tibetan medicinal plant Spenceria ramalana Trimen (SRT) was employed and shown to improve experimentally (ovalbumin + cigarette smoke, OVA + CS) induced asthma in rats. Initially, the potential therapeutic mechanism of the polyphenolic components in SRT on OVA + CS-induced asthma was predicated by network pharmacology analysis. Subsequently, in vivo experiments identified that SRT polyphenols exhibit significant anti-asthmatic activities, primarily mediated by lowering inflammatory cell counts such as the WBC (white blood cell), eosinophils, and neutrophils, decreasing the expression of inflammatory cytokines (IL-4, IL-5, IL-13, and TNF-α), alleviating lung histological damage (reduced inflammation, collagen deposition, and mucus secretion), and enhancing the epithelial barrier integrity (upregulation of ZO-1, occludin, and claudin-1). Additionally, SRT polyphenols downregulated the PI3K/Akt (Phosphoinositide 3-kinase/protein kinase B) signaling pathway, improved gut microbiota disruption, and regulated fecal metabolites (glucose-6-glutamate, PS (16:0/0:0), 8-aminocaprylic acid, galactonic acid, Ascr#10, 2,3,4,5,6,7-hexahydroxyheptanoic acid, phosphodimethylethanolamine, muramic acid, 9-oxohexadeca-10e-enoic acid, and sedoheptulose) in asthmatic rats. In conclusion, SRT polyphenols exerted multifaceted protective effects against OVA + CS-induced asthma in rats, highlighting their potential value in preventing asthma via the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Zhaobin Xia
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Z.X.); (X.Z.); (L.W.); (L.H.); (Y.Y.); (X.Y.); (L.H.); (Y.A.); (A.K.)
| | - Xing Zhao
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Z.X.); (X.Z.); (L.W.); (L.H.); (Y.Y.); (X.Y.); (L.H.); (Y.A.); (A.K.)
| | - Lu Wang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Z.X.); (X.Z.); (L.W.); (L.H.); (Y.Y.); (X.Y.); (L.H.); (Y.A.); (A.K.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu 610041, China
| | - Lin Huang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Z.X.); (X.Z.); (L.W.); (L.H.); (Y.Y.); (X.Y.); (L.H.); (Y.A.); (A.K.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu 610041, China
| | - Yanwen Yang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Z.X.); (X.Z.); (L.W.); (L.H.); (Y.Y.); (X.Y.); (L.H.); (Y.A.); (A.K.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu 610041, China
| | - Xiangyu Yin
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Z.X.); (X.Z.); (L.W.); (L.H.); (Y.Y.); (X.Y.); (L.H.); (Y.A.); (A.K.)
| | - Luyu He
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Z.X.); (X.Z.); (L.W.); (L.H.); (Y.Y.); (X.Y.); (L.H.); (Y.A.); (A.K.)
| | - Yuebumo Aga
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Z.X.); (X.Z.); (L.W.); (L.H.); (Y.Y.); (X.Y.); (L.H.); (Y.A.); (A.K.)
| | - Ankaer Kahaer
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Z.X.); (X.Z.); (L.W.); (L.H.); (Y.Y.); (X.Y.); (L.H.); (Y.A.); (A.K.)
| | - Shiyu Yang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Z.X.); (X.Z.); (L.W.); (L.H.); (Y.Y.); (X.Y.); (L.H.); (Y.A.); (A.K.)
| | - Lili Hao
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Z.X.); (X.Z.); (L.W.); (L.H.); (Y.Y.); (X.Y.); (L.H.); (Y.A.); (A.K.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu 610041, China
| | - Chaoxi Chen
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Z.X.); (X.Z.); (L.W.); (L.H.); (Y.Y.); (X.Y.); (L.H.); (Y.A.); (A.K.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
2
|
Tabeshpour J, Asadpour A, Norouz S, Hosseinzadeh H. The protective effects of medicinal plants against cigarette smoking: A comprehensive review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156199. [PMID: 39492128 DOI: 10.1016/j.phymed.2024.156199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/08/2024] [Accepted: 10/27/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUNDS Cigarette smoking remains a pervasive and harmful habit, and it poses a significant public health concern globally. Tobacco smoke contains numerous toxicants and carcinogens that contribute to the incidence of various diseases, including respiratory ailments, cancer, and cardiovascular disorders. Over the past decade, there has been a growing interest in exploring natural remedies to mitigate the harmful effects of cigarette smoke (CS). Medicinal plants, with their rich phytochemical compositions, have emerged as potential sources of protective agents against CS-induced damage. OBJECTIVES The current review attempts to comprehensively review and provide a thorough analysis of the protective effects of medicinal plants, including ginseng, Aloe vera, Olea europaea, Zea mays, green tea, etc. against CS-related toxicities. MATERIALS AND METHODS A comprehensive research and compilation of existing literature were conducted. We conducted a literature search using the Web of Science, PubMed, Scopus, and Google Scholar. We selected articles published in English between 1987 and 2025. The search was performed using keywords including cigarette smoking, cigarette smokers, second-hand smokers, natural compounds, plant extracts, naturally derived products, natural resources, phytochemicals, and medicinal plants. RESULTS This review critically investigated recent literature focusing on the effects of medicinal plant extracts, essential oils, and isolated compounds on reducing the adverse consequences of CS exposure. These investigations encompassed several in vivo, in vitro, and clinical trials, clarifying the mechanisms underlying the protective effects of these plants. The notable antioxidant, anti-inflammatory, and detoxifying properties of these botanical interventions were also highlighted. CONCLUSION Collectively, this review emphasizes the potential of medicinal plants in alleviating the harmful effects of CS. The rich active constituents present in these plants offer various mechanisms that counteract oxidative stress, inflammation, and carcinogenesis induced by CS exposure. Further research is warranted to reveal the precise molecular mechanisms, derive dosing recommendations, and explore the efficacy of botanical interventions in large-scale clinical trials, ultimately improving public health outcomes and providing valuable insights for the smoking population worldwide.
Collapse
Affiliation(s)
- Jamshid Tabeshpour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Amirali Asadpour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Sayena Norouz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Xu F, Wu Q, Yang L, Sun H, Li J, An Z, Li H, Wu H, Song J, Chen W, Wu W. Modification of gut and airway microbiota on ozone-induced airway inflammation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176604. [PMID: 39353487 DOI: 10.1016/j.scitotenv.2024.176604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/06/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Ground-level ozone (O3) has been shown to induce airway inflammation, the underlying mechanisms remain unclear. The aim of this study was to determine whether gut and airway microbiota dysbiosis, and airway metabolic alterations were associated with O3-induced airway inflammation. Thirty-six 8-week-old male C57BL/6 N mice were divided into 2 groups: sterile water group and broad-spectrum antibiotics group (Abx). Each group was further divided into two subgroups, filtered air group (Air) and O3 group (O3), with 9 mice in each subgroup. Mice in the Air and O3 groups were exposed to filtered air or 1 ppm O3, 4 h/d for 5 consecutive days, respectively. Mice in Abx + Air and Abx + O3 groups were exposed to filtered air or O3, respectively, after drinking broad-spectrum Abx. 24 h after the final O3 exposure, mouse feces and bronchoalveolar lavage fluids (BALF) were collected and subjected to measurements of airway oxidative stress and inflammation biomarkers, 16S rRNA sequencing and metabolite profiling. Hematoxylin-eosin staining of lung tissues was applied to examine the pathological changes of lung tissue. The results showed that O3 exposure resulted in airway oxidative stress and inflammation, as well as gut and airway microbiota dysbiosis, and airway metabolism alteration. Abx pre-treatment markedly changed gut and airway microbiota and promoted O3-induced metabolic disorder and airway inflammation. Spearman correlation analyses indicated that inter-related gut and airway microbiota dysbiosis and airway metabolic disorder were associated with O3-induced airway inflammation. Together, inhaled O3 causes airway inflammation, which may implicate gut and airway microbiota dysbiosis and airway metabolic alterations.
Collapse
Affiliation(s)
- Fei Xu
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Qiong Wu
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Lin Yang
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Han Sun
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Juan Li
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Zhen An
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Huijun Li
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Hui Wu
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Jie Song
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Weidong Wu
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China.
| |
Collapse
|
4
|
Li S, Dai Z, Zhang T, Guo Z, Gao F, Cheng X, An J, Lin Y, Xiong X, Wang N, Jiang G, Xu B, Lei H. Investigation of the therapeutic effects and mechanisms of Houpo Mahuang Decoction on a mouse model of chronic obstructive pulmonary disease. Front Pharmacol 2024; 15:1448069. [PMID: 39575390 PMCID: PMC11578825 DOI: 10.3389/fphar.2024.1448069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/28/2024] [Indexed: 11/24/2024] Open
Abstract
Background With a growing global population affected by Chronic Obstructive Pulmonary Disease (COPD), the traditional Chinese herbal formula Houpo Mahuang Decoction (HPMHD) has been used for centuries to address respiratory ailments. While studies have demonstrated the therapeutic benefits of HPMHD in COPD, the effective active ingredients, potential targets, and molecular mechanisms underlying its effectiveness remained unclear. Methods The mechanisms of action of certain HPMHD components, targets, and pathways for the treatment of COPD were predicted using a network pharmacology method. We induced a COPD mouse model using porcine pancreatic elastase and evaluated the pathological changes and healing processes through HE and Masson staining. Immunofluorescence was used to assess the levels of IL-6 and TNF-ɑ. RNA-Seq analysis was conducted to identify differentially expressed genes (DEGs) in the lungs of normal, control, and treated mice, revealing the biological pathways enriched by HPMHD in COPD treatment. Finally, the expression of DEGs was verified using Western blotting and RT-qPCR. Results HPMHD effectively alleviated pathological symptoms and improved COPD in mice by modulating the IL-17 signaling pathway. Treatment with HPMHD improved lung morphology and structure, reduced inflammatory cell infiltration, and inhibited IL-6 and TNF-ɑ levels. Network pharmacology and transcriptomics further revealed the mechanism, indicating that the IL-17 signaling pathway might been instrumental in the inhibitory effect of HPMHD on mouse model of COPD. Subsequent experiments, including protein blotting and RT-qPCR analysis, confirmed the activation of the IL-17 signaling pathway by HPMHD in the COPD mouse model, further supporting the initial findings. Conclusion HPMHD was shown to alleviate COPD and reduce lung inflammation in mice, potentially through the activation of the IL-17 signaling pathway. This study provides a novel direction for the development of COPD drugs.
Collapse
Affiliation(s)
- Shanlan Li
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Ziqi Dai
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Tong Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Zhuoqian Guo
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Feng Gao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Xuehao Cheng
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Jin An
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Yixuan Lin
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | | | - Nan Wang
- Aimin Pharmaceutical Group, Henan, China
| | | | - Bing Xu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Haimin Lei
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
5
|
Zhou X, Zhao X, Dong H, Gao Y. Chrysene contribution to bronchial asthma: Activation of TRPA1 disrupts bronchial epithelial barrier via ERK pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117095. [PMID: 39395376 DOI: 10.1016/j.ecoenv.2024.117095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/14/2024]
Abstract
BACKGROUND Elevated polycyclic aromatic hydrocarbon (PAH) levels are associated with exacerbation of asthma. Chrysene is one of the most prevalent unsubstituted PAHs in the environment. Transient receptor potential ankyrin 1 (TRPA1) can be used as a chemoreceptor to detect inhaled stimuli and plays an important role in the occurrence and deterioration of asthma. Whether exposure to a high concentration of chrysene in the environment can activate TRPA1 and contribute to the development of asthma, potentially through the dysfunction of the bronchial epithelial barrier, remains unclear. METHODS A cell-based assay was performed to verify the downregulation of the expression of E-cadherin and tight junction (TJ) proteins by chrysene in bronchial epithelial cells to explore the role of chrysene-mediated TRPA1 activation in the regulation of TJ protein expression through the extracellular signal-regulated protein kinase (ERK) pathway. Animal tests were conducted to determine whether chrysene could enhance airway hyperresponsiveness (AHR) induced by house dust mites (HDMs) and disrupt barrier function, thereby contributing to asthma. RESULTS The cell-based assay revealed that chrysene could disrupt the function of the bronchial epithelial barrier and decrease the expression levels of E-cadherin, zonula occludens-1 (ZO-1), occludin, and claudin-5 through the ERK pathway. Chrysene induced airway epithelial barrier dysfunction primarily through TRPA1 instead of transient receptor potential vanilloid 1. TRPA1 knockdown was able to attenuate chrysene-induced downregulation of TJ protein expression and downregulate ERK activation (p-ERK). Compared with exposure to HDM alone, coexposure to chrysene and HDM resulted in an increased incidence of AHR, disruption of barrier function, and eosinophilic inflammatory responses in a mouse model of asthma. Coexposure to chrysene and HDM increased TRPA1 expression. The animal test verified that the TRPA1 inhibitor HC030031 could suppress chrysene and HDM-induced asthma in mice. CONCLUSIONS Our findings showed that chrysene contributed to the breakdown of the function of the bronchial epithelial barrier through the TRPA1-ERK axis and therefore acted as an adjuvant to contribute to asthma.
Collapse
Affiliation(s)
- Xinjia Zhou
- Department of Otolaryngology-Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Xiaoyu Zhao
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Han Dong
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Yuan Gao
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| |
Collapse
|
6
|
Wang C, Niu Z, Zhang Y, Liu N, Ji X, Tian J, Guan L, Shi D, Zheng H, Gao Y, Zhao L, Zhang W, Zhang Z. Exosomal miR-129-2-3p promotes airway epithelial barrier disruption in PM 2.5-aggravated asthma. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:123053. [PMID: 39467462 DOI: 10.1016/j.jenvman.2024.123053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/20/2024] [Accepted: 10/20/2024] [Indexed: 10/30/2024]
Abstract
Particulate matter 2.5 (PM2.5) exposure is intricately linked to asthma exacerbations. Damage to the airway epithelial barrier function serves as an initiating factor for asthma attacks and worsening symptoms. In recent years, numerous exosomal microRNAs (miRNAs) have emerged as potential biomarkers for diagnosing asthma. However, the mechanisms by which PM2.5-induced exosomes exacerbate asthma remain unclear. This study aims to investigate the role of exosomal miR-129-2-3p in regulating airway epithelial cell barrier function, its potential targets, and signaling pathways involved in PM2.5-induced aggravation of asthma. In this study, miR-129-2-3p is highly expressed in plasma exosomes from patients with asthma, mouse lung tissue and plasma exosomes, and exosomes produced by PM2.5-stimulated 16HBE cells. Moreover, the exposure level of PM2.5 is positively correlated with exosomal miR-129-2-3p in plasma in patients with asthma. As the concentration of PM2.5 increases, the synthesis of connexin (ZO-1, occludin, and E-cadherin) is gradually weakened, while the content of inflammatory factors (IL-6, IL-8, and TNF-α) is notably upregulated in PM2.5 exacerbated asthmatic mice. PM2.5-induced exosomes can decrease the level of connexin, enhance cell permeability and promote the secretion of inflammatory factors in 16HBE cells. TIAM1, a specific target gene for miR-129-2-3p, regulates the synthesis of connexin. Exosomal miR-129-2-3p exacerbates airway epithelial barrier dysfunction by targeted inhibition of the TIAM1/RAC1/PAK1 signaling pathway in PM2.5 aggravated asthma. In contrast, blocking miR-129-2-3p may be an alternative approach to therapeutic intervention in asthma.
Collapse
Affiliation(s)
- Caihong Wang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, China; Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, China; Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, China; MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, China.
| | - Zeyu Niu
- Department of Environmental Health, School of Public Health, Shanxi Medical University, China; Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, China; MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, China.
| | - Yan Zhang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, China; Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, China; MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, China.
| | - Nannan Liu
- Department of Environmental Health, School of Public Health, Shanxi Medical University, China; Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, China; MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, China.
| | - Xiaotong Ji
- Department of Environmental Health, School of Public Health, Shanxi Medical University, China; Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, China; MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, China.
| | - Jiayu Tian
- Department of Environmental Health, School of Public Health, Shanxi Medical University, China; Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, China; MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, China.
| | - Linlin Guan
- Department of Environmental Health, School of Public Health, Shanxi Medical University, China; Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, China; MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, China.
| | - Dongxing Shi
- Department of Environmental Health, School of Public Health, Shanxi Medical University, China; Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, China; MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, China.
| | - Huiqiu Zheng
- Department of Environmental Health, School of Public Health, Shanxi Medical University, China; Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, China; MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, China.
| | - Yuhui Gao
- Department of Environmental Health, School of Public Health, Shanxi Medical University, China; Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, China; MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, China.
| | - Lifang Zhao
- Department of Environmental Health, School of Public Health, Shanxi Medical University, China; Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, China; MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, China.
| | - Wenping Zhang
- MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, China; Department of Toxicology, School of Public Health, Shanxi Medical University, China.
| | - Zhihong Zhang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, China; Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, China; MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, China.
| |
Collapse
|
7
|
Liu Y, Liu H, Shao Q, Shi H, Cheng F, Wang X. Majie Cataplasm Alleviates Asthma by Regulating Th1/Th2/Treg/Th17 Balance. Int Arch Allergy Immunol 2024; 185:900-909. [PMID: 38749400 DOI: 10.1159/000538597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/26/2024] [Indexed: 09/04/2024] Open
Abstract
INTRODUCTION T cells play a critical role in inflammatory diseases. The aim of the present study was to investigate the effects of Majie cataplasm (MJC) on asthma and to propose a possible mechanism involved in this process. METHODS Airway inflammation, infiltration of inflammatory cells, levels of interleukin (IL)-4, IL-10, IL-17, and interferon (IFN)-γ, levels of Th2, Treg, Th17, and Th1 cells, and the expressions of IL-4, IL-10, IL-17, IFN-γ, GATA binding protein 3 (GATA-3), Foxp3, RAR-related orphan receptor gamma (RORγt), and T-bet were detected. RESULT MJC treatment reduced lung airway resistance and inflammatory infiltration in lung tissues. MJC treatment also reduced the numbers of eosinophils and neutrophils in the blood and bronchoalveolar lavage fluid (BALF). The levels of IL-4 and IL-17 in the blood, BALF, and lungs were suppressed by MJC, and IFN-γ and IL-10 were increased. Furthermore, MJC suppressed the percentage of Th2 and Th17 and increased the percentage of Th1 and Treg in spleen cells. In addition, MJC can inhibit asthma by increasing expressions of IFN-γ, IL-10, T-bet, and Foxp3, as well as decreasing expressions of IL-4, IL-17, GATA-3, and RORγt. CONCLUSION MJC may improve airway hyperresponsiveness and inflammation by regulating Th1/Th2/Treg/Th17 balance in ovalbumin-induced rats. And MJC may be a new source of anti-asthma drugs.
Collapse
Affiliation(s)
- Yuanjun Liu
- Beijing Key Laboratory, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Haixia Liu
- Disease-Syndrome Research Center, China Academy of Chinese Medical Sciences Institute of Basic Theory for Chinese Medicine, Beijing, China,
| | - Qi Shao
- Beijing Key Laboratory, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Hanfen Shi
- Beijing Key Laboratory, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Fafeng Cheng
- Beijing Key Laboratory, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Xueqian Wang
- Beijing Key Laboratory, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
8
|
Wang L, Guo Y, Sun X, Wang D, Xie T, Liu L, Sun L, Wei L. Mechanistic insights into targeting caspase-3 activation and alveolar macrophage pyroptosis by Ephedra and bitter almond compounds for treating pediatric pneumonia via network pharmacology and bioinformatics. Chem Biol Drug Des 2024; 103:e14487. [PMID: 38670559 DOI: 10.1111/cbdd.14487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 01/14/2024] [Accepted: 02/05/2024] [Indexed: 04/28/2024]
Abstract
This study investigates the molecular mechanism of Ma Huang-Ku Xing Ren, a traditional Chinese medicine formula, in treating pediatric pneumonia. The focus is on the regulation of caspase-3 activation and reduction of alveolar macrophage necrosis through network pharmacology and bioinformatics analyses of Ephedra and bitter almond components. Active compounds and targets from ephedrine and bitter almond were obtained using TCMSP, TCMID, and GeneCards databases, identifying pediatric pneumonia-related genes. A protein-protein interaction (PPI) network was constructed, and core targets were screened. GO and KEGG pathway enrichment analyses identified relevant genes and pathways. An acute pneumonia mouse model was created using the lipopolysaccharide (LPS) inhalation method, with caspase-3 overexpression induced by a lentivirus. The mice were treated with Ephedra and bitter almond through gastric lavage. Lung tissue damage, inflammatory markers (IL-18 and IL-1β), and cell death-related gene activation were assessed through H&E staining, ELISA, western blot, flow cytometry, and immunofluorescence. The study identified 128 active compounds and 121 gene targets from Ephedra and bitter almond. The PPI network revealed 13 core proteins, and pathway analysis indicated involvement in inflammation, apoptosis, and cell necrosis, particularly the caspase-3 pathway. In vivo results showed that Ephedra and bitter almond treatment significantly mitigated LPS-induced lung injury in mice, reducing lung injury scores and inflammatory marker levels. It also decreased caspase-3 activity and cell death in alveolar macrophages. In conclusion, the active ingredients of Ma Huang-Ku Xing Ren, particularly targeting caspase-3, may effectively treat pediatric pneumonia by reducing apoptosis in alveolar macrophages, as demonstrated by both network pharmacology, bioinformatics analyses, and experimental data.
Collapse
Affiliation(s)
- Lei Wang
- Changchun University of Chinese Medicine, Changchun, China
| | - Yinan Guo
- Department of Pediatrics, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Xiaozhou Sun
- Department of Pediatrics, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Dan Wang
- Department of Pediatrics, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Tianlong Xie
- Department of Pediatrics, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Liang Liu
- Department of Pediatrics, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Liping Sun
- Department of Pediatrics, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Lina Wei
- Department of Pediatrics, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
9
|
Li C, Xu J, Abdurehim A, Sun Q, Xie J, Zhang Y. TRPA1: A promising target for pulmonary fibrosis? Eur J Pharmacol 2023; 959:176088. [PMID: 37777106 DOI: 10.1016/j.ejphar.2023.176088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/02/2023]
Abstract
Pulmonary fibrosis is a disease characterized by progressive scar formation and the ultimate manifestation of numerous lung diseases. It is known as "cancer that is not cancer" and has attracted widespread attention. However, its formation process is very complex, and the mechanism of occurrence has not been fully elucidated. Current research has found that TRPA1 may be a promising target in the pathogenesis of pulmonary fibrosis. The TRPA1 channel was first successfully isolated in human lung fibroblasts, and it was found to have a relatively concentrated distribution in the lungs and respiratory tract. It is also involved in various acute and chronic inflammatory processes of lung diseases and may even play a core role in the progression and/or prevention of pulmonary fibrosis. Natural ligands targeting TRPA1 could offer a promising alternative treatment for pulmonary diseases. Therefore, this review delves into the current understanding of pulmonary fibrogenesis, analyzes TRPA1 biological properties and regulation of lung disease with a focus on pulmonary fibrosis, summarizes the TRPA1 molecular structure and its biological function, and summarizes TRPA1 natural ligand sources, anti-pulmonary fibrosis activity and potential mechanisms. The aim is to decipher the exact role of TRPA1 channels in the pathophysiology of pulmonary fibrosis and to consider their potential in the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Chao Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Jiawen Xu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Aliya Abdurehim
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Qing Sun
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Junbo Xie
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yanqing Zhang
- Biotechnology & Food Science College, Tianjin University of Commerce, Tianjin, 300134, China.
| |
Collapse
|
10
|
Zhou L, Hao M, Fan X, Lao Z, Li M, Shang E. Effects of Houpo Mahuang Decoction on serum metabolism and TRPV1/Ca 2+/TJs in asthma. JOURNAL OF ETHNOPHARMACOLOGY 2023; 302:115873. [PMID: 36309114 DOI: 10.1016/j.jep.2022.115873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/06/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Houpo Mahuang Decoction (HPMHD is one of the classic traditional Chinese prescriptions that has been used in the treatment of asthma. The therapeutic effects and mechanism of HPMHD in aggravated asthma remain to be explored, especially from the perspective of metabolomics and Transient Receptor Potential Vanilloid-1 (TRPV1)/Ca2+/Tight junction (TJ) regulation. AIM OF THE STUDY To investigate the therapeutic and metabolic regulatory effects and the underlying mechanism of HPMHD in asthmatic rats. MATERIALS AND METHODS The asthmatic rats were administered with the corresponding HPMHD (at dosages of 5.54, 11.07, 22.14 mg/kg). Then inflammatory cells in peripheral blood and bronchoalveolar lavage fluid (BALF) were counted, the levels of interleukin (IL)-4 and IL-13 in BALF were measured, and the changes in enhanced pause (Penh) and pathological damage of lung tissues were also detected to evaluate the protective effects of HPMHD. The serum metabolic profile of HPMHD in asthmatic rats was explored using Ultra-High-Performance Liquid Chromatography-mass spectrometer (UHPLC-MS), and the regulatory effects on TRPV1 and TJs of HPMHD in asthmatic rats were detected by Western blotting analysis. In vitro, 16HBE cells were stimulated with IL-4 plus SO2 derivatives and then administered HPMHD. The intracellular Ca2+ regulated by TRPV1, and the expression levels of TRPV1 and TJ proteins (TJs) were then detected by calcium imaging and Western blotting. The effects were verified by inhibition of TRPV1 and in short hairpin RNA (shRNA)-mediated TRPV1 silencing cells. RESULTS HPMHD significantly attenuated the airway inflammation of asthmatic rats, and reduced the levels of inflammatory cells in peripheral blood and BALF as well as the levels of IL-4 plus IL-13 in BALF. In addition, the airway hyperresponsiveness and lung pathological damage were alleviated. Serum metabolomic analysis showed that 31 metabolites were differentially expressed among the normal saline-, model-, and HPMHD-treated rats. Pathway enrichment analysis showed that the metabolites were involved in 45 pathways, among which, TJs regulation-relevant pathway was associated with the Ca2+ concentration change mediated by the TRP Vanilloid channel. In vivo and in vitro experiments indicated that HPMHD reduced the concentration of intracellular Ca2+ via suppressing the expression and activation of TRPV1, increased the expression of ZO-1, Occludin, and Claudin-3, and protected the integrity of TJs. CONCLUSION The current study indicates that HPMHD alleviates rat asthma and participates in the regulation of serum metabolism. The anti-asthma effects of HPMHD might be related to the protection of TJs by inhibiting the intracellular Ca2+ concentration via TRPV1.
Collapse
Affiliation(s)
- Liping Zhou
- School of Traditional Chinese Medicine & Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China
| | - Mengyang Hao
- School of Traditional Chinese Medicine & Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China
| | - Xinsheng Fan
- School of Traditional Chinese Medicine & Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China; Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae, Nanjing, 210023, Jiangsu Province, China.
| | - Zishan Lao
- School of Traditional Chinese Medicine & Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China
| | - Mengwen Li
- School of Traditional Chinese Medicine & Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China
| | - Erxin Shang
- Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae, Nanjing, 210023, Jiangsu Province, China
| |
Collapse
|
11
|
Protective Effects of Herba Houttuyniae Aqueous Extract against OVA-Induced Airway Hyperresponsiveness and Inflammation in Asthmatic Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7609785. [PMID: 36408342 PMCID: PMC9674414 DOI: 10.1155/2022/7609785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/13/2022]
Abstract
Herba Houttuyniae is the well-knownfood-medicine herb with the special taste and smell. It is also widely used in south China for prevention of various chronic pulmonary inflammatory diseases including asthma. However, the active ingredients and therapeutic mechanism of this herb remain obscure. In this study, network pharmacology technology was employed to investigate the effects of Herba Houttuyniae aqueous extract (HHAE) on OVA-induced airway hyperresponsiveness and inflammation. The results showed that six compounds (isoramanone, kaempferol, 1-methyl-2-nonacosyl-4-quinolone, C09747, spinasterol, and quercetin) were found to be mainly responsible for the therapeutic effects of the herb, which totally regulated the expressions of 168 asthma-related proteins. All those targets involved in the signal transduction of the prolactin signaling pathway, central carbon metabolism in cancer, EGFR tyrosine kinase inhibitor resistance, endocrine resistance, and VEGF signaling pathway. The in vivo experiment also revealed that orally administrated with HHAE alleviated airway hyperresponsiveness and inflammation in OVA-induced asthmatic mice. It significantly decreased the counts of neutrophils, eosinophils, and lymphocytes as well as the levels of IL-1β, IL-4, IL-6, and IL-13 in BALF of asthmatic mice. Mechanically, HHAE downregulated both the mRNA and protein expressions of p38 MAPK, PI3K, AKT, and VEGF in the lung tissues of asthmatic mice. Therefore, HHAE improved OVA-induced airway hyperresponsiveness and inflammation in mice and could be a potential supplement for asthma treatment.
Collapse
|